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ABSTRACT

Mainstream deep learning-based dysarthric speech detection ap-
proaches typically rely on processing the magnitude spectrum of
the short-time Fourier transform of input signals, while ignoring the
phase spectrum. Although considerable insight about the structure
of a signal can be obtained from the magnitude spectrum, the phase
spectrum also contains inherent structures which are not immedi-
ately apparent due to phase discontinuity. To reveal meaningful
phase structures, alternative phase representations such as the mod-
ified group delay (MGD) and instantaneous frequency (IF) spectra
have been investigated in several applications. The objective of this
paper is to investigate the applicability of the unprocessed phase,
MGD, and IF spectra for dysarthric speech detection. Experimental
results show that dysarthric cues are present in all considered phase
representations. Further, it is shown that using phase representations
as complementary features to the magnitude spectrum is benefi-
cial for deep learning-based dysarthric speech detection, with the
combination of magnitude and IF spectra yielding a high perfor-
mance. The presented results should raise awareness in the research
community about the potential of the phase spectrum for dysarthric
speech detection and motivate research into novel architectures
which optimally exploit magnitude and phase information.

Index Terms— phase, modified group delay, instantaneous fre-
quency, CNN, dysarthria

1. INTRODUCTION

Dysarthria is a motor speech disorder arising from different condi-
tions of brain damage and manifesting through articulation deficien-
cies, vowel quality changes, abnormal speech rhythm, pitch vari-
ation, or breathiness [1]. Since dysarthria can be one of the ear-
liest signs of several neurodegenerative disorders, its accurate di-
agnosis in clinical practice is crucial [2, 3]. The clinical diagnosis
of dysarthria is typically done through an auditory-perceptual ap-
proach, which can be subjective and time-consuming. To comple-
ment the clinical perceptual assessment, automatic dysarthric speech
detection approaches have been developed.

Automatic dysarthric speech detection approaches can be
broadly categorized into two categories, i.e., i) approaches based
on handcrafted acoustic features combined with classical machine
learning algorithms [4–8] and ii) deep learning-based approaches
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that automatically learn high-level discriminative dysarthric rep-
resentations [9–14]. Given the potential of deep learning-based
approaches to characterize abstract but important acoustic cues be-
yond the realm of knowledge-based handcrafted features, in this
paper we focus on deep learning-based approaches.

Mainstream deep learning-based dysarthric speech detection ap-
proaches rely on processing the magnitude spectrum (or features de-
rived from the magnitude spectrum) of time-frequency representa-
tions such as the short-time Fourier transform (STFT) or continu-
ous wavelet transform [10–14]. In [10], articulation impairments of
patients suffering from dysarthria are modeled through a convolu-
tional neural network (CNN) operating on the magnitude spectrum
of the continuous wavelet transform. In [11, 12], a CNN is trained
on the STFT magnitude spectrum or Mel frequency cepstral coeffi-
cients of neurotypical and dysarthric input signals. The STFT mag-
nitude spectrum is also used in [13, 14] to train unsupervised and
supervised auto-encoders for dysarthric speech detection. Although
considerable insight about the structure of a signal can be obtained
from the magnitude spectrum, there are inherent structures also in
the phase spectrum, which however has been largely ignored in au-
tomatic dysarthric speech detection techniques.

The disregard of the phase spectrum in speech processing appli-
cations arises mainly due to the difficulty in processing the phase and
due to the uncertainty about its importance [15, 16]. Since phase is
wrapped to its principal value, the phase spectrum is discontinuous.
Consequently, the phase spectrum is irregular and does not contain
visible spectro-temporal patterns that correlate with our understand-
ing of speech. However, several methods have been developed to
derive alternative representations revealing spectro-temporal struc-
tures hidden in the phase spectrum. Two such representations are
the modified group delay (MGD) spectrum [17, 18] and the instan-
taneous frequency (IF) spectrum [19, 20]. The MGD and IF spectra
reflect the derivative of phase along the frequency and time axis and
have been shown to reveal much more meaningful structures than
the unprocessed phase spectrum [20]. In addition, although early
studies have demonstrated the unimportance of phase to speech per-
ception [21, 22], more recent studies have established the potential
of the phase spectrum in different applications such as speech en-
hancement [16, 23], automatic speech recognition for neurotypical
and dysarthric speech [24, 25], or speech synthesis [26]. The poten-
tial of the phase spectrum has also been demonstrated for computa-
tional paralinguistic applications such as speaker recognition [27,28]
and speech emotion recognition [29, 30].

To the best of our knowledge, the STFT phase spectrum or its al-
ternative representations such as the MGD or IF spectra have never
been incorporated in deep learning-based dysarthric speech detec-
tion approaches. As shown in [17, 18], the MGD spectrum reflects
the formant structure of the speech signal. Further, as shown in [19],



the IF spectrum for narrow-band analysis displays pitch informa-
tion in the form of fine harmonic detail. Since, the MGD spectrum
can be expected to capture articulation deficiencies and vowel qual-
ity changes and the IF spectrum can be expected to capture pitch
variation, we expect such representations to be useful for dysarthric
speech detection.

In a recently proposed approach, we have used the temporal en-
velope and fine structure (i.e., analytical phase) representations of
speech signals computed through a Gammatone filter bank and sub-
sampling [31]. These input representations are separately processed
by CNNs to learn two discriminative representations, which are then
jointly used for dysarthric speech detection. Experimental results
in [31] show that such an approach yields a considerable perfor-
mance improvement when compared to processing only the STFT
magnitude spectrum. However, it remains unclear whether this sub-
stantial performance increase arises because of the incorporation of
the analytical phase or because of the auditory-inspired processing
through a Gammatone filter bank instead of a uniform STFT filter
bank.

In this paper we investigate the applicability of STFT phase rep-
resentations (i.e., the unprocessed phase spectrum, MGD spectrum,
and IF spectrum) for dysarthric speech detection. To this end, we an-
alyze the dysarthric speech detection performance of a CNN which
uses only phase representations of input signals. In addition, we ana-
lyze whether phase representations provide complementary cues for
dysarthric speech detection that cannot be extracted from the magni-
tude representation. Experimental results show that dysarthric cues
are present in all considered phase representations, with the MGD
and IF spectra yielding a similar dysarthric speech detection perfor-
mance as the magnitude spectrum. Further, it is shown that using
both the magnitude and any of the phase representations is bene-
ficial, resulting in a considerable performance improvement as op-
posed to using a single representation. Finally, it is shown that using
the STFT magnitude and IF spectra results in a considerably bet-
ter performance than using the temporal envelope and fine structure
representations from [31].

2. INPUT REPRESENTATIONS

In this section, the computation of input signal representations is
presented. Section 2.1 presents the STFT phase representations in-
vestigated in this paper. For completeness, Section 2.2 provides a
brief review of the temporal envelope and fine structure representa-
tions used in [31].

2.1. STFT magnitude and phase representations

Let us consider the time-domain signal s(n) at time index n. To
compute the STFT, the signal is segmented into L segments sl(n)
(with or without overlap) of length N samples. Each segment sl(n)
is multiplied by an analysis window and the discrete Fourier trans-
form is applied to obtain the complex STFT coefficients Sk,l, k =
1, . . . ,K, with K denoting the total number of subbands. The com-
plex STFT coefficients can be expressed as

Sk,l = |Sk,l|ejθk,l , (1)

with |Sk,l| and θk,l denoting the magnitude and phase of the l-th seg-
ment at the k-th subband. Figs. 1(a) and 1(b) depict the magnitude
and phase spectra for an exemplary utterance s(n). It can be ob-
served that while the magnitude spectrum exhibits spectro-temporal
patterns where formant and pitch information can be identified, the
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Fig. 1. STFT representations of an exemplary utterance computed
using N = 320 samples with a 50% overlap and a Hanning analysis
window: (a) logarithm of the magnitude, (b) phase, (c) modified
group delay, and (d) instantaneous frequency.

phase spectrum is irregular and difficult to interpret since the phase
is wrapped to its principal value, i.e., −π ≤ θk,l ≤ π.

In this paper we investigate the applicability of two alternative
phase representations in deep learning-based dysarthric speech de-
tection which aim to reveal spectro-temporal structures hidden in
the phase spectrum, i.e., the modified group delay (MGD) spec-
trum [17,18] and the instantaneous frequency (IF) spectrum [19,20].

The group delay is defined as the negative of the derivative of
phase across frequency and can be computed as

τk,l =
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with Y r
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k,l denoting the real and imaginary part of the STFT
coefficients Yk,l of yl(n) = nsl(n). To reduce the spiky nature
of the group delay spectrum in (2), the MGD spectrum is proposed
in [18], which can be computed as
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(3)
where Ŝk,l denotes the cepstrally smoothed version of |Sk,l| and
α and γ are hyper-parameters controlling the spiky nature of the
resulting spectrum [18].

The IF spectrum is defined as the derivative of phase across time
and can be computed as [32, 33]

IFk,l = arg{Sk,l+1S
∗
k,l}, (4)

with arg{·} denoting the complex phase function and {·}∗ denoting
the complex conjugate. Using (4) to compute the IF spectrum helps
to partly alleviate phase wrapping issues [32, 33].

Figs. 1(c) and 1(d) depict the MGD and IF spectra for the pre-
viously considered exemplary utterance s(n), with magnitude and
phase spectra depicted in Figs. 1(a) and 1(b). It can be observed that
contrary to the phase spectrum and similarly to the magnitude spec-
trum, both the MGD and IF spectra exhibit regular spectro-temporal
patterns which can be potentially exploited by deep learning-based
dysarthric speech detection approaches.



2.2. Temporal envelope and fine structure representations

Instead of computing signal representations based on the uniform
STFT filter bank, in [31] we have proposed to compute the temporal
envelope and fine structure representation using Gammatone filter
banks mimicking cochlear frequency analysis. To this end, the signal
s(n) is split into K complementary frequency bands of equal width
along the human basiliar membrane [34]. Let us denote by sck(n) the
signal obtained at the output of the k-th band pass filter. The analytic
representation of sck(n) is given by

sak(n) = sck(n) + jH{sck(n)}, (5)

where H{·} denotes the Hilbert transform. The magnitude and co-
sine of the phase of the complex coefficients in (5) yield the temporal
envelope and fine structure signals. These signals are sub-sampled
by taking the mean over sliding windows of length N samples (with
or without overlap) to obtain the final temporal envelope and fine
structure representations used for dysarthric speech detection in [31].

3. MAGNITUDE AND PHASE-BASED
DYSARTHRIC SPEECH DETECTION

To investigate the applicability of phase representations for dysarthric
speech detection, we consider the state-of-the-art CNN-based ap-
proach from [10] depicted in Fig. 2(a). As shown in this figure,
the CNN operates on (K × B)–dimensional magnitude represen-
tations, with B denoting a user-defined number of time frames (cf.
Section 4.4). Through alternating convolutional and max-pooling
layers, the network learns a discriminative representation from the
magnitude spectrum of neurotypical and dysarthric signals. In
Section 4.4 we investigate the performance of this approach when
(K × B)–dimensional phase representations (i.e., unprocessed
phase, MGD, IF) are used as input instead of the magnitude spec-
trum used in [10].

To further analyze whether phase representations provide addi-
tional cues that cannot be extracted from the magnitude, we consider
the dual input CNN from [31] depicted in Fig. 2(b). In [31], this dual
input CNN operates on (K × B)–dimensional envelope and fine
structure representations computed as described in Section 2.2. As
shown in this figure, different convolutional and max-pooling layers
are used on the different input representations. Hence, two differ-
ent discriminative representations are learned and jointly exploited
through fully-connected layers to detect dysarthric speech. Instead
of using the temporal envelope and fine structure representations, in
this paper we investigate the performance of the dual input CNN op-
erating on the STFT magnitude spectrum and phase representations,
i.e., magnitude and phase spectra, magnitude and MGD spectra, or
magnitude and IF spectra.

4. EXPERIMENTAL RESULTS

In this section, the dysarthric speech detection performance of the
single and dual input CNNs is compared for different input repre-
sentations. A PyTorch implementation of the considered approaches
is available online.1

4.1. Database

We consider recordings of 24 different words and a phonetically
balanced text from 50 neurotypical speakers and 50 PD patients

1https://github.com/idiap/pddetection-phase-reps
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Fig. 2. Block diagram of the considered CNN-based dysarthric
speech detection approach: (a) single input approach operating on
the magnitude, phase, MGD, or IF spectrum and (b) dual input ap-
proach operating on the magnitude and phase spectra, magnitude and
MGD spectra, or magnitude and IF spectra. CLs, MPLs, and FCLs
refer to convolutional, max-pooling, and fully-connected layers, re-
spectively.

from the well-balanced PC-GITA database [35]. The recordings are
downsampled to 16 kHz from the original sampling frequency of
44.1 kHz. The average length of the total speech material available
for each speaker is 32.1 seconds.

4.2. Input representations and network architectures

The STFT is obtained using a weighted overlap-add framework with
a Hanning analysis window without overlap and a frame size of
N = 160 samples (i.e., 10 ms), resulting in K = 81 subbands.
The logarithm of the magnitude spectrum, the phase spectrum, and
the IF spectrum are computed from the STFT coefficients (cf. Sec-
tion 2.1). To compute the MGD spectrum, we use a cepstral window
of length 20 samples, α = 0.6, and γ = 0.3 (cf. (3)). The temporal
envelope and fine structure representations are also computed using
10 ms segments without overlap and K = 81 auditory filter banks.
The remainder of the parameters used in computing the temporal
envelope and fine structure representations are the same as in [31].
Similarly to [31], (K×B)–dimensional segments usingB = 50 and
a 50% overlap are extracted from the computed representations and
used as inputs to the CNNs. Input representations are normalized to
a mean of 0 and a standard deviation of 1.

The architecture of the single input CNN in Fig. 2(a) consists
of two convolutional layers with 64 channels, a 2 × 2 kernel for
the first layer, and a 3 × 3 kernel for the second layer. Each con-
volutional layer is followed by a ReLU activation function, batch
normalization, and max-pooling with a 2 × 2 kernel. The second
convolutional layer is followed by a dropout layer with a rate of 0.5.
After the dropout layer, a fully-connected layer (input dimension of
4224 and output dimension of 2) followed by the softmax function
is used.

The dual input CNN in Fig. 2(b) has the same architecture of
convolutional, max-pooling, and dropout layers for the upper and
lower branches as the single input CNN. The output of these two
branches is fused through a fully-connected layer with an input size
of 8448, an output size of 128, and a ReLU activation function. A
final fully-connected layer with an input size of 128 and an output
size of 2 followed by the softmax function is then used.

4.3. Training and evaluation

The performance of the considered approaches is evaluated in a
speaker-independent stratified 10-fold cross-validation framework.



Table 1. Performance of the single input CNN operating on magnitude and
phase representations.

Representation Accuracy AUC

Magnitude 69.72 ± 15.62 0.77 ± 0.16
Phase 62.76 ± 14.52 0.70 ± 0.15
MGD 70.78 ± 12.22 0.79 ± 0.12
IF 72.64 ± 13.37 0.79 ± 0.13

The stochastic gradient descent algorithm and cross-entropy loss are
used for training. The batch size is 128 and the initial learning rate is
0.01. In each training fold, a development set with the same size as
the test set is used, such that the learning rate is halved if the loss on
the development set does not decrease for 5 consecutive iterations.
Training is stopped when the learning rate has decreased beyond
10−6 or after 100 epochs. The single input CNNs are randomly
initialized. The convolutional layers of the dual input CNNs are
initialized with the convolutional layers of the trained single input
counterparts.

The final prediction score for a test speaker is obtained through
soft voting of the prediction scores obtained for each (K × B)–
dimensional input representation belonging to the speaker. Dysarthric
speech detection performance is evaluated in terms of the area under
ROC curve (AUC) and classification accuracy for a decision thresh-
old of 0.5. To reduce the impact that the random initialization of
networks and the random split of speakers into training and testing
folds have on the final performance, we have trained all networks
with 5 different random seeds for 5 different splits of speakers. The
reported performance measures are the mean and standard deviation
of the performance obtained across these different models.

4.4. Results

To investigate the applicability of phase representations in compar-
ison to the traditionally used magnitude spectrum, we analyze the
performance of the single input CNN operating on different input
representations. Table 1 presents the performance of the single in-
put CNN operating on the magnitude, phase, MGD, and IF spec-
tra. It can be observed that using the IF spectrum yields the high-
est performance in terms of accuracy, with an AUC score similar to
the AUC score obtained when using the MGD spectrum. Further,
it can be observed that the performance when using the magnitude
and MGD spectra is very similar. This result is to be expected since
as it can be visually inspected in Fig. 1, the MGD spectrum contains
spectro-temporal patterns that are similar to the magnitude spectrum.
The lowest performance in terms of accuracy and AUC score is ob-
tained when using the phase spectrum, which is also to be expected
since the phase spectrum is irregular and visually void of meaning-
ful structures. However, it should be noted that using the phase spec-
trum yields an accuracy of 62.76% and an AUC score of 0.70, which
shows that although the phase spectrum does not visually exhibit any
regular spectro-temporal structures, a CNN nevertheless manages to
partially discover cues in the phase spectrum that are important for
dysarthric speech detection.

To investigate whether phase representations provide comple-
mentary cues to the magnitude representation, we analyze the per-
formance of the dual input CNN operating on the magnitude and dif-
ferent phase representations. Table 2 presents the performance of the
dual input CNN operating on the magnitude and phase spectra, the
magnitude and MGD spectra, and the magnitude and IF spectra. In
addition, the performance of the dual input CNN from [31] operating
on the temporal envelope and fine structure representations is also

Table 2. Performance of the dual input CNN operating on the magnitude
spectrum and different phase representations. The performance of the dual
input CNN from [31] operating on the temporal envelope and fine structure
signals is also presented.

Representation Accuracy AUC

Magnitude-Phase 87.32 ± 09.69 0.93 ± 0.10
Magnitude-MGD 80.92 ± 10.11 0.90 ± 0.10
Magnitude-IF 93.68 ± 05.32 0.97 ± 0.05
Envelope-Fine structure 86.04 ± 08.03 0.94 ± 0.08

presented. When comparing the dual input CNNs operating on dif-
ferent magnitude and phase representations, it can be observed that
using the magnitude and IF spectra yields the highest performance,
with an accuracy of 93.69% and an AUC score of 0.97. Further,
it can be observed that combining the magnitude and phase spectra
yields a considerably better performance than combining the mag-
nitude and MGD spectra. This result shows that although the phase
spectrum is irregular, it contains more complementary cues to the
magnitude spectrum for dysarthric speech detection than the MGD
spectrum. A comparison of the results in Tables 1 and 2 shows that
all phase representations contain complementary cues to the magni-
tude spectrum, with all dual input CNNs yielding a considerably bet-
ter performance than their single input counterparts. Finally, Table 2
shows that using the temporal envelope and fine structure representa-
tions yields a similar performance as using the magnitude and unpro-
cessed phase representations, but a considerably worse performance
than using the magnitude and IF representations. These results con-
firm that the performance improvement we obtained in [31] can be
attributed to the incorporation of the analytical phase of the signal
and not to the use of auditory-inspired filter banks. Nevertheless,
exploring alternative representations of the temporal fine structure
signals that are applicable for dysarthric speech detection remains a
viable future research direction.

In summary, the results presented in this section confirm that all
phase representations of the STFT provide useful cues for dysarthric
speech detection and should be used in addition to the traditionally
used magnitude representation. In particular, combining the magni-
tude and IF spectra results in a very high dysarthric speech detection
performance.

5. CONCLUSION

Deep learning-based dysarthric speech detection approaches typi-
cally learn discriminative representations by processing the magni-
tude spectrum of signals and ignoring the phase spectrum. In this
paper we have investigated the applicability of STFT phase represen-
tations for dysarthric speech detection. Since the phase spectrum is
irregular and visually void of spectro-temporal patterns, we have an-
alyzed two alternative representations which reveal hidden structures
of the phase spectrum, i.e., the MGD and IF spectra. Using a single
input CNN we have shown that all considered phase representations,
i.e., the unprocessed phase, MGD, and IF spectra, contain dysarthric
cues. Using a dual input CNN operating on both the magnitude and
phase representations we have shown that all considered phase rep-
resentations serve as complementary features to the magnitude spec-
trum, with the combination of magnitude and IF spectra yielding a
high performance. The presented results have demonstrated the im-
portance of considering phase information for dysarthric speech de-
tection and will hopefully motivate research on novel architectures
to optimally combine the magnitude and phase information.
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