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ABSTRACT
Protection of minors against destructive content or illegal advertising
is an important problem, which is now under increasing societal and
legislative pressure. The latest advancements in an automated age
verification is a possible solution to this problem. There are however
limitations of the current state of the art age verification methods,
specifically, the lack of approaches focusing on video-based or even
solely audio-based approaches, since the image domain is the one
with the majority of publicly available datasets. In this paper, we
consider the problem of age verification as a multimodal problem
by proposing and evaluating several audio- and image-based models
and their combinations. To that end, we annotated a set of publicly
available videos with age labels, with a special focus on the children
age labels. We also propose a new training strategy based on the
adaptive label distribution learning (ALDL), which is driven by
facial anthropometry and age-based skin degradation. This adaptive
approach demonstrates the best accuracy when evaluated across
several test databases.

CCS CONCEPTS
• General and reference → Verification; • Computing method-
ologies→ Supervised learning by classification.
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1 INTRODUCTION
The children are consuming online-based content at an increasingly
younger age. Multiple instances are reported when children are ex-
posed to unsolicited, destructive, or even illegal content, ranging
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Figure 1: Examples of faces from image/video databases.

from an advertisement not taking into account the age of the con-
sumers1 to online predators pretending being young kids in online
games and chat rooms2. This unguarded interaction of kids with
Internet created a growing pressure by the society, and now, several
countries are starting to adopt legislation initiatives enforcing the
protection of minors against online harm3. The effective enforce-
ment of such protection, however, would require some sort of a
mechanism that, preferably, in a non-intrusive and a private manner,
can verify someone’s age. Automated on-device age verification
using personal audio recordings or facial images is one such way of
doing that.

The main issues with currently available methods for automated
age verification include their specific focus on image domain [3, 6,
11, 15, 18, 23, 26], lack of the evaluation on data with children labels,
and concerns about privacy and biometric data sharing. The datasets
used by the state of the art research, typically, contain only images

1https://www.childrenandscreens.com/findings/advertising-and-marketing-findings/
2https://www.nytimes.com/interactive/2019/12/07/us/video-games-child-sex-abuse.html
3https://www.gov.uk/government/news/landmark-laws-to-protect-children-and-stop-abuse-
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Table 1: Databases with age labels used in the experiments.

Database Modality Number of samples Label type
UTKFace [28] image 24 361 true age
APPA-REAL [1] image 7591 true age
UnFGA [9] image 26 580 apparent age, short intervals
TIDIGITS [14] audio 25 019 true age
IdiapVideoAge4 (created by us) video 4260 apparent precise age

and they fall into one of the following categories: large datasets with
true age labels but without kids, such as Morph-II dataset [19] of
incarcerated individuals of ages 16 years and older, datasets built
by scrapping the web with unreliable age labels, of which IMDB-
WIKI [20] is the largest representative, databases with apparent (i.e.,
appearing as such to a human observer) age labels such as APPA-
REAL [1], and the smaller datasets but with precise age labels that
span all ages, such as UTKFace [28]. For audio domain, the datasets
with age labels are few and far between, with the most notable
examples including a very large CommonVoice [2] albeit with very
imprecise labels in ten years ranges and TIDIGITS [14], a relatively
small set of short audio samples but with reliable age information.

In this paper, we are alleviating the issues related to age verifica-
tion by first providing a publicly available video database with age
labels, and then proposing several image, audio, and video-based
methods for age verification and assessing them on this database.
We address the concern of data security and privacy by assuming
that the age verification methods are run locally on mobile devices
without sending biometric data outside of the device. Therefore, we
consciously limit the methods we explore in this paper to those that
are capable to be run on a mobile device.

We built the video dataset with age labels, referred to as Idi-
apVideoAge4, by taking more than 4000 videos from two exist-
ing video databases VoxCeleb2 [7] and Child speech dataset from
Google5 and then assigning age labels to the videos by employing
human annotators. It is important to note that we have ensured that a
large portion (about half) of videos contained kids with ages that are
less than 18 years old. We believe that this large number of videos
with children age labels makes this dataset unique and very valuable
to the research and industrial communities, which are increasingly
interested in developing an accurate detection of minors in videos.

Using the proposed IdiapVideoAge4 video dataset and publicly
available UTKFace [28], APPA-REAL [1], UFGA [9], and TIDIG-
ITS [14] datasets (see Table1 for details), we trained and evalu-
ated several state of the art image and audio-based age verification
approaches and their multi-modal combinations. For image-based
methods, to keep the evaluations comparable, we fixed an under-
lying model to a relatively simple and small MobileNetV2 archi-
tecture [13]. This choice of architecture is justified since we focus
on age verification for mobile or VR set scenarios, which are dic-
tated by the current industry interests. Once architecture is fixed, we
compare different state of the art regression and classification-based
techniques and losses. We also propose our variant of label distri-
bution learning [11, 15] based on face anthropometry, when we use

4https://www.idiap.ch/dataset/idiapvideoage
5https://research.google.com/audioset/dataset/child_speech_kid_speaking.html

the heuristic based on facial growth rates [17, 25] and age-based
skin degradation [10] rates to determine the standard deviation of
Gaussian distribution of labels during training. The main aim of this
proposed training method, which we coined adaptive label distri-
bution learning (ALDL), is to estimate the ages of children better,
while tolerating larger errors in older age categories. The logic is
that determining whether a person is below or over 18 years old is
critical for many practical applications, while whether the person is
35 or 40 years old is not that important.

For the audio-based age verification, we proposed and evaluated
two types of approaches, a simple one based on a combination of
handcrafted Mel-frequency cepstral coefficients (MFCCs) and a two
layers of long short-term memory (LSTM) layers and an end-to-end
approach based on SincNet with four bidirectional LSTMs that was
developed for speaker diarization [4] using Pyannote [5]. We evalu-
ated these approaches using TDIGITS and the audio tracks of the
proposed IdiapVideoAge datasets. Also, to leverage the multimodal
nature of videos from IdiapVideoAge dataset, we have assessed three
different ways to combine audio and image-based approaches by i)
score fusion when scores from audio and video tracks are combined
into one score, ii) features fusion when the embeddings from two
architectures are joined and then classified with a support vector
machine (SVM), and iii) a joint training when both audio and image-
based architectures are joined at the embedding level and trained
together with the same loss.

Therefore, the main contributions of this paper are:

(1) A new publicly available dataset of videos with age labels,
labeled with human annotators. The dataset contains about
4000 videos with about half containing labels of children.

(2) An extensive evaluation of existing audio- and image-based
models and training approaches for age verification. Consid-
eration of several approaches to audio-visual joint modeling.

(3) A new label distribution learning method based on face an-
thropometry allowing it to be more adaptive to different age
labels, especially, to children age categories.

To allow researchers to verify, reproduce, and extend our work,
we provide all presented age verification models and code to run and
evaluate them as an open-source Python package6.

2 DATABASES WITH AGE LABELS
In our evaluations, we used three databases with images, one purely
audio database, and one video database that we annotated ourselves
(see Table 1 for details and some examples in Figure 1). Please note
that we did not use a popular Morph-II database [19] of facial shots

6Source code: https://gitlab.idiap.ch/bob/bob.paper.age_verification

https://www.idiap.ch/dataset/idiapvideoage
https://research.google.com/audioset/dataset/child_speech_kid_speaking.html
https://gitlab.idiap.ch/bob/bob.paper.age_verification
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made in prison because it does not contain any images of children
(the youngest is 16 years old). We also did not use IMDB-WIKI [20]
because, from our visual inspection, the age labels in IMDB-WIKI
have very poor accuracy, with about 30% of images being mislabeled,
so we deemed this database to be of little use in training our age
verification models.

2.1 UTKFace image dataset
UTKFace dataset [28] has one of the most precise true age labels and
contains over 20 000 face images with ages from a few months old
babies all the way to 116 years olds. All images in the database are
labeled by age, gender, and ethnicity. The images cover large varia-
tion in pose, facial expression, illumination, occlusion, resolution,
etc.

2.2 APPA-REAL image dataset
APPA-REAL database [1] contains 7591 images with associated real
and apparent age labels. All images are split into 4113 train, 1500
validation, and 1978 test images. Although the database contains
apparent age labels collected via crowdsourcing, in our evaluations,
we only use real true ages provided by the authors.

2.3 UnFGA image dataset
The 26 580 of images in UnFGA database [9] were collected from
Flickr, which were uploaded using iPhone 5 (or later) smart-phone
devices, and released by their authors to the general public under
the Creative Commons (CC) license. The data included in the col-
lection is intended to be as true as possible to the challenges of
real-world imaging conditions. In particular, it attempts to capture
all the variations in appearance, noise, pose, lighting and more, that
can be expected of images taken without careful preparation or pos-
ing. The ages of faces in the database were labeled manually by the
authors and the labels are actually short intervals of three or five
years. Therefore, in our evaluations, we have used the midpoints of
the label intervals as ground truth age labels.

2.4 TIDIGITS audio dataset
TIDIGITS dataset contains speech which was originally designed
and collected at Texas Instruments, Inc. for the purpose of designing
and evaluating algorithms for speaker-independent recognition of
connected digit sequences. The dataset contains speech from 326
speakers (111 men, 114 women, 50 boys and 51 girls) each pronounc-
ing 77 digit sequences of 1 to 4 seconds long. Each speaker group is
partitioned into test and training subsets. The dataset contains prices
true age labels of each person.

2.5 IdiapVideoAge video dataset
We built IdiapVideoAge4, by taking more than 4000 videos from two
existing video databases VoxCeleb2 [7] and Child speech dataset
from Google5 and then label the age of people in the videos using
three different human annotators. We asked annotators to provide
a valid age label if a person’s face is visible within more than 80%
of the video frames and it is clear that the audible speech matches
the person in the video. As the age label, we used the average of the
three annotators. We will release it as a publicly available dataset to
advance the research in multimodal age verification.

3 AGE VERIFICATION METHODS
We consider three types of age verification methods: i) image-based,
ii) audio-based, and iii) video-based. For the image-based meth-
ods, we evaluate several state of the art approaches and propose our
own variant of ‘distribution learning’ approach based on facial an-
thropometry. For the audio-based methods, we propose one simple
method that utilizes hand-crafted MFFC features, but which can
still perform on par with a state of the art method that is based on
a speech segmentation [4]. For video-based methods, we consider
three well-known techniques with various levels of complexity of
combining two audio- and image-based models: i) fuse scores of
separately trained models to get one score per a video sample, ii)
extract the features/embeddings from the two models and train an-
other simple classifier, such as SVM to produce resulted scores, and
iii) joint both models at the embedding level and train them jointly
using the same loss.

It is important to note that an age verification can be considered as
either a classification or regression problem, which will dictate the
way the model will be trained and evaluated. If the goal is to detect an
actual age of a person, then regression is a logical choice, although a
classification, where each age is a class, is another possible approach.
In practical applications, especially, when we focus on detecting
ages of children, the classification can be viewed as either a binary
problem, e.g., detect whether a person is below or above 18 years
old, or a categorical problem when we detect, for instance, whether
the person is a child (below 8 years old), of a puberty age (between 8
and 13), an adolescent (between 13 and 18), a young adult (between
18 and 25), an adult (between 25 and 35), of a middle age (between
35 and 50), and a senior (above 50) [8].

CNN backbone

Softmax

Softmax

Softmax

Predicted 
Age

Figure 2: Diagram of regression via classification approach.

3.1 Image-based approaches
As an underlying architecture for image-based age verification ap-
proaches, we use MobileNetV2 [13]. MobileNetV2 is definitely not
the latest and not the most efficient architecture, but we assume that
it needs to be running on a mobile device for privacy and data pro-
tection reasons. Moreover, the choice of the underlying architecture
is not really that important when we are comparing such techniques
as training strategies and losses. The logic is that if one specific
technique performs relatively well with MobileNetV2, it will also
perform as well with another more efficient architecture.

It is also important to note that in all experiments, we use Mo-
bileNetV2 with weights pre-trained for face recognition problem on
MS-Celeb database [12] of facial images. We have also tried models
pre-trained on a generic ImageNet [21] dataset, but we noticed a
consistently better accuracy if the model is pre-trained on faces.



MM ’22, October 10–14, 2022, Lisboa, Portugal Pavel Korshunov and Sébastien Marcel

LSTM (32) 
LSTM (32)

Softm
ax

Predicted 
Age

Speech signal Framed signal Spectrogram Features Classifier FC layer

Figure 3: Diagram of MFCCs with LSTM approach for audio-based age classification.

All image-based models we compare share the following parame-
ters and training techniques. Faces in all images (and video frames)
are detected by MTCNN [27] and cropped and aligned to 112 × 112
size. We trained with 32-size batches, using Adam optimizer with
learning rate 0.0002, and using such standard image augmentations
like randomly changing brightness, hue, contrast, JPEG compres-
sion, etc. We trained for 200 epochs with early stopping based on
the validation loss.

Here are the different image-based training strategies we evaluate
in this paper:

• classification: A typical classification training strategy with
a cross entropy loss. A fully-connected layer of size equal
to the number of classes is added at the top of MobileNetV2
architecture and the full model is trained on faces with age
labels.
• regression: A typical regression training strategy using mean

squared error (MSE) loss and a single node added on top of
MobileNetV2 model.
• rvc: Regression via classification training strategy (RVC) [3]

(see Figure 2 for an illustration) when an age range is split
into several sets of classes using sliding window. The network
has several heads (fully-connected layers), one for each split.
At the inference, the average of the expected values on the
outputs from several network heads is taken and is considered
to be the predicted age. There are different ways to split the
age range and there can be different number of network heads.
Following the insights from [3], we used 5 network heads
of 17 classes each with the sliding window moving within
the range from 1 to 61 years. Please note that the authors
of the method [3] trained their models using a subset of the
images from UTKFace dataset with ranges from 21 to 60
years old only (to have a more balanced data distribution).
Since we used the whole dataset, our experimental results are
not directly comparable with the results in [3].
• distribution: Distribution based training strategy [11], where

instead of using one-hot encoding for true labels, as it is in a
typical classification (with a classification layer added at the
top of a MobileNetV2 model), a normal distribution with a
specified sigma is used. It means that the ground truth label
instead of a strict class becomes a distribution with the center
at that true label. The model predicts a distribution, so as a
loss, Kullback-Leibler divergence to compare predicted and
true distributions is used. For inference, an expectation of the
predicted distribution is used as the final predicted age. To
compute normal distribution for each label during training,
sigma 2.0 is recommended by the authors of [11].

• adaptive: Our proposed variant of a distribution-based strat-
egy, where the sigma of the normal distribution is not fixed
but is dynamic, depending on the true age label. For peo-
ple younger than 18 years old, sigma is computed using the
craniofacial growth rates [17], for middle ages, a more mod-
erate growth rates are used [16], and for more senior ages,
the changes in skin texture are taken into account [10]. The
actual values of sigma follow a linear approximations of the
changes in face of skin corresponding to the age ranges. The
logic behind choosing sigma depending on the true age label
is for the training to choose a small value of sigma below
1.0 (narrow normal distribution) when the difference between
two ages is critical, e.g., for children, and a large sigma larger
than 2.0 (wide distribution) for age ranges when faces of peo-
ple do not change that fast, like for middle ages. For the exact
implementation, see our open source package6.

3.2 Audio-based approaches
We propose to use two different audio-based approaches: a long
short-term memory (LSTM) based model that uses Mel-frequency
cepstral coefficients (MFCC) features and a end-to-end model adapted
from the model created for speaker segmentation task [4] of the di-
arization problem and implemented with pyannote toolkit [5].

For the first model, which we refer to as simple and illustrated by
Figure 3, we compute MFCC features from a given audio sample
by first splitting it into overlapping 20ms-long speech frames with
10ms overlap. The frames are pre-emphasized with 0.97 coefficient
and pre-processed by applying Hamming window. MFCC features
are obtained from a power spectrum (512-sized FFT) by applying
mel-scale filter of size 20. A discrete cosine transform (DCT-II) is
applied to the filtered values and first 20 coefficients are taken with
their deltas and delta-deltas [24] resulting in 60-long feature vectors.

We use sliding windows of length 25 with overlap 5 of these
MFCC feature vectors as input to two stacked LSTM layers (each
with 16 hidden units) and fully-connected layer on top as an embed-
ding. The final classification (or regression) layer is added with a
cross entropy (or MSE) loss.

For the second model, which we refer to as pyannote, we used
model pre-trained on DIHARD3 speech corpus [22] created for the
diarization problem. The model is proposed in [4] to be used for a
segmentation task but we modified it for the age classification task.
The architecture of the model remains the same as proposed by the
authors and basically consists of a SincNet network which takes
audio samples as input and four bi-directional LSTM layers (with
128 units) stacked on top with two additional fully connected layers.
Please see [4] for more details.
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Figure 4: Diagram of score or feature fusion to join audio and
image-based age classification models.

Table 2: Evaluation of image-based models on the test set of
UTKFace dataset in seven age categories scenario.

Training Data Training strategy f1-score

0 UTKFace adaptive 0.599
1 Several rvc [3] 0.596
2 Several adaptive 0.591
3 Several distribution [11] 0.589
4 UTKFace classification 0.581
5 UTKFace rvc [3] 0.581
6 Several classification 0.559
7 APPA-REAL classification 0.516
8 UnFGA classification 0.483

3.3 The multimodal approach
We evaluated three different ways to combining image and audio
modalities (see an example diagram in Figure 4), including the
following:
• Score fusion. Train separate image-based and audio-based

models (can be trained on different databases) and then use
them to compute scores for each video independently. Using a
support vector machine (SVM), we trained a simple classifier
on the score pairs from both models to combine them in the
most efficient way and lead to one score value, representing
the output of both modalities.
• Feature fusion. Use the same pretrained models but instead of

scores, combine the last layer embeddings and train an SVM
classifier to produce the one final score that leverages both
modalities.
• Co-training of two modalities. Combine two models by join-

ing their last embedding layers together and co-train them
using the same loss function. This joint co-training needs to
be done on the same samples, hence only a database with
videos can be used.

4 METRICS AND EVALUATION PROTOCOLS
We consider three main scenarios when evaluating age verification
methods: i) a binary classification, when we evaluate whether the
person is less than 18 years old or older, ii) a categorical classifi-
cation, when we classify a person in one of seven age categories
such as childhood (below 8 years old), puberty (between 8 and 13),
adolescence (between 13 and 18), early adulthood (between 18 and
25), adulthood (between 25 and 35), middle aged (between 35 and

50), and seniority (above 50) [8], and iii) detection of the exact age
of a person.

To evaluate the accuracy of the age detection, especially in classi-
fication scenarios, we use f1-score, which is defined as f1-score =
2(P∗R )
P+R , where P precision and R is recall. The f1-score allows us to

compare two different classifiers in a balanced way. To ensure the
balanced f1-score value for data with unbalanced number of different
labels (e.g., the number of samples in different age categories can
vary a lot), we used a weighted variant of the metric. Also note that
the higher the f1-score value is the better.

To compare models that predict exact ages, e.g., a regression
trained model, it is more common to use mean absolute error (MAE)
metric, which measures an average error of the predicted ages from
the ground truth values. We also use this metric to compare our
results with state of the art methods, which typically focus on pre-
dicting exact ages [3, 11, 15]. Note that the lower the MAE value is
the better.

5 EXPERIMENTAL RESULTS
We have implemented all our models using Tensorflow 2.07 except
for the end-to-end audio-based approach that used pyannote [5],
which is implemented using PyTorch8.

We conducted extensive intra- and inter-database experiments,
however, we focus on a selected subset of the experiments in order
to save space. For the evaluation code and all of the experimental
results, please refer to our open source package6.

The results for the image-based models (see Section 3.1) for
seven age categories scenario (see Section 4) are presented in Ta-
ble 2. The table shows the overall f1-scores computed on the test
set of UTKFace database. For training, we either used a training set
of UTKFace, a training set of another database (like APPA-REAL
or UnFGA), or a combination of training sets from four different
databases, denoted as ‘Several’ in the column ‘Training Data’ of the
table: the three image-based databases plus the video frames from
our IdiapVideoAge database. From Table 2, we can note that the
proposed ‘adaptive’ approach that is based on facial anthropometry
performs well compared to a simple classifier, regression via classifi-
cation, or a distribution-based approaches. The top three approaches
are very similar in terms of f1-score accuracy with differences in
third decimals. What is important to note is that training and testing
on the same UTKFace database can lead to overfitting and mislead-
ingly better results, as it is demonstrated when we compare results
of the simple classifier when it is trained on different databases
(all are tested on the same test set of UTKFace). It performs well
when trained on the same database (row 4) but its performance de-
grades significantly when trained on either APPA-REAL or UnFGA
databases. Training on a combination of datasets and also using a
more advanced training technique will however lead to a consider-
able improvement in accuracy and generalization capabilities.

To better understand the top performed models from Table 2 and
compare them with a simple approach, we have plotted confusion
matrices for classification, adaptive, and rvc models in Figure 5.
From the plots, we can see that the most challenging age categories
are puberty, adolescence, and early-adulthood, where the models are

7https://www.tensorflow.org/
8https://pytorch.org/

https://www.tensorflow.org/
https://pytorch.org/
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(a) classification model trained on UTKFace (b) adaptive model trained on Several datasets (c) rvc [3] model trained on Several datasets

Figure 5: Confusion matrices for selected image-based models tested on UTKFace.

Table 3: Evaluation of image-based models on the test set of UTKFace dataset in the exact age scenario.

Mean absolute error (MAE)
Training Data Training strategy overall puberty childhood adolescence early adulthood above 25 years

0 Several adaptive 5.969 5.707 7.973 7.748 3.970 6.063
1 UTKFace adaptive 5.999 6.976 6.707 6.113 3.577 6.230
2 Several distribution [11] 6.069 5.915 9.613 9.033 5.129 5.933
3 Several rvc [3] 6.195 7.976 7.267 7.596 4.814 6.203
4 UTKFace rvc [3] 6.577 9.780 7.560 7.099 5.390 6.569
5 Several regression 7.666 11.476 10.947 10.179 6.177 7.511

Table 4: Evaluation of audio-based models on the test set of Idi-
apVideoAge dataset in binary (18-years old) scenario.

Training Data Training strategy f1-score

0 IdiapVideoAge pyannote [4] 0.976
1 IdiapVideoAge simple 0.961
2 TIDIGITS pyannote [4] 0.921
3 TIDIGITS simple 0.801

the most ‘confused’. Note that the adaptive model is significantly
more accurate in the childhood age category compared to rvc model
(with slightly higher overall f1-score), which means the intended
focus on detecting children more accurately has worked, however,
the lack of detection in the puberty and adolescence means there
is still an obvious room for improvement. Indeed, these confusion
matrices indicate that age verification is still a difficult problem.

The majority of the state of the art approaches focus on detecting
the exact age of a person from the facial image, therefore, we eval-
uated the image-based models (see Section 3.1) in this scenario as
well. The evaluation results are shown in Table 3. The table contains
the same models as in the evaluation scenario when we had seven
age categories (see Table 2), but a classification model is replaced
by a regression model instead. Also, mean absolute error (MAE)
is used in this scenario (since we are actually measuring the error

of detecting correct age) instead of f1-score. In both scenarios, the
same test set of UTKFace database was used as the evaluation set.

From Table 3, we can note that the proposed adaptive approach
has the smallest overall MAE value. We also computed MEA metric
for some of the ‘younger’ categories to compare the methods in
terms of their performance in each of the children categories. This
by-category-comparison shows that the adaptive approach performs
well for the childhood age category (below 8 years old) but the
puberty and adolescence ages are the most challenging, which is
consistent with the confusion matrices from Figure 5.

To understand how the image-based model perform when used
directly on videos, we assessed adaptive and distribution models on
our IdiapVideoAge video database in seven age categories scenario
(see top two rows of Table 5). When compared with the results
of testing on UTKFace database shown in Table 2, we can notice
that IdiapVideoAge database seem less challenging for image-based
models, since the overall f1-score 0.75 on IdiapVideoAge database
is higher than 0.591 obtained on UTKFace dataset for the same
adaptive model.

Compared to the image-based models, both of the audio-based
models (see Section 3.2 for details) perform poorer on IdiapVideoAge
dataset as is demonstrated by the lowest f1-scores in the two bottom
rows of Table 5, with pyannote performing considerably better than a
simple model (based on MFCC features with LSTM networks). The
main reason for a relatively poor performance of simple audio-based
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(a) classification model trained on IdiapVideoAge (b) Audio-visual model co-trained on IdiapVideoAge (c) adaptive model trained on Several datasets

Figure 6: Confusion matrices for image-based and audio-visual joint models tested on IdiapVideoAge in seven age categories scenario.

Table 5: Evaluation of image, audio, and joint models on the test set of IdiapVideoAge audio-visual database in seven age categories
scenario.

Training Data Image model Audio model Fusion Type f1-score

0 Several adaptive none no fusion 0.750
1 Several distribution [11] none no fusion 0.738
2 IdiapVideoAge classification simple embeddings 0.733
3 IdiapVideoAge classification simple co-joint training 0.731
4 IdiapVideoAge classification pyannote [4] score 0.729
5 IdiapVideoAge classification none none 0.728
6 IdiapVideoAge classification simple score 0.711
7 IdiapVideoAge none pyannote no fusion 0.614
8 IdiapVideoAge none simple no fusion 0.521

model is the fact that it is trained from scratch on the age-labelled
data without any pre-training stage. All image-based and pyannote
models were pre-trained on external large databases, so this fact
needs to be considered when judging all of the performances.

If we train and evaluate the audio-based models in a binary sce-
nario, when we are focusing solely on detecting whether a person
is below or above 18 years old, the performance becomes more
appealing, with accuracy nearing 100%, as illustrated by Table 4.
From the table, it is clear that pyannote model generalizes the best,
since even if it is trained on TIDIGITS database and evaluated on
IdiapVideoAge, its f1-score is still well above 0.9, which shows that
this state of the art model has better learning capacity compared to a
simple one.

As the last important question we want to answer is to understand
whether the audio and video data is complimentary to each other
and whether we can leverage from both modalities to go above their
individual accuracies when combining them into a joint approach.
To evaluate that, we took one image-based classification model,
we chose it due to its simplicity compared to other state of the art
models, and combined it with both simple and pyannote audio-based
models using score fusion, feature fusion, and co-joint training. All
these methods are compared with representatives of an individual
modality in Table 5. This table shows that all variants of multimodal

approaches lead to better performance compared to single modality
methods, as rows 2, 3, and 4, which are multimodal approaches,
have higher f1-scores compared to a corresponding classification
image-based model in row 5 and both audio-based model at the
bottom. However, Table 5 also demonstrates that a more advanced
training techniques like adaptive and distribution can lead to better
performance (the top two rows of the table) without resorting to a
much more complex joint models.

To analyze this observation in more details, we plot confusion
matrices for three models (see Figure 6): a simple image-based clas-
sification model, this model combined with a simple audio-based
model jointly trained on IdiapVideoAge dataset, and the best per-
forming image-based adaptive model. The figure shows that the
situation is not as simple as it appears, if we only look at Table 5,
since we can clearly notice that an addition of audio modality leads
to a significant improvement in both childhood, puberty, and ado-
lescence categories compared to a single classification model. It is
also interesting that a joint audio-visual model is better than a more
advance adaptive model for childhood and puberty categories, which
is a significant observation, if the main focus is on detection of chil-
dren. A more work and investigation can be done in this direction but
the obtained results are nevertheless telling that a co-joint training
of an audio-visual model could be a viable practical alternative.
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6 CONCLUSION
In this paper, we considered the problem of age verification in image,
audio, and multi-domain contexts with the main focus on detecting
the age of children. We built a video database with age labels that
can be used to train and test both single and multi-domain models.
We also proposed an image-based approach based on facial anthro-
pometry that shown to advance the state of the art, especially, when
applied to children age categories. This study has also demonstrated
that the problem of age verification is very challenging and more
research work needs to be done to bring the field to a practically
useful state.
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