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ABSTRACT

The simplicity and accessibility of tools for generating
deepfakes pose a significant technical challenge for their de-
tection and filtering. Many of the recently proposed methods
for deeptake detection focus on a ‘blackbox’ approach and
therefore suffer from the lack of any additional information
about the nature of fake videos beyond the fake or not fake
labels. In this paper, we approach deepfake detection by solv-
ing the related problem of attribution, where the goal is to dis-
tinguish each separate type of a deepfake attack. We design a
training approach with customized Triplet and ArcFace losses
that allow to improve the accuracy of deepfake detection on
several publicly available datasets, including Google and Jig-
saw, FaceForensics++, HifiFace, DeeperForensics, Celeb-DF,
DeepfakeTIMIT, and DF-Mobio. Using an example of Xcep-
tion net as an underlying architecture, we also demonstrate
that when trained for attribution, the model can be used as a
tool to analyze the deepfake space and to compare it with the
space of original videos.

Index Terms— Deepfake attribution, deepfake detection,
cross-database evaluations, ArcFace loss, Triplet loss

1. INTRODUCTION

Recent advances in automated video and audio editing tools,
generative adversarial networks (GANs), and social media al-
low creation and fast dissemination of high quality tampered
videos, which are generally called deepfakes. Typically, in
these videos, a face is swapped with someone else’s using
GANs. Accessible open source software and apps for the face
swapping led to a wide and rapid dissemination of the gener-
ated deepfakes, posing a significant technical challenge for
their detection and analysis.

Many databases with deepfake videos were created to
help develop and train deepfake detection methods. One of
the first freely available database was DeepfakeTIMIT [1],
followed by the FaceForensics database with deepfakes gen-
erated from 1000 Youtube videos [2], and which was later
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morphed into FaceForensics++ with more types of deepfakes
and a separate set of original and deepfake videos provided
by Google and Jigsaw [3]. Several independent extensions of
FaceForensics++ were also proposed, including HifiFace [4]
and DeeperForensics [5] datasets (see examples of differ-
ent deepfakes from FaceForensics++ and its extensions in
Figure 1). Another 5000 videos-large database of deep-
fakes generated from Youtube videos is Celeb-DF v2 [6].
But the most extensive and the largest database to date with
more than 100K videos (80% of which are deepfakes) is the
dataset from Facebook [7], which was available for download
to the participants in the recent Deepfake Detection Challenge
hosted by Kaggle1.

Many methods for deepfake detection were proposed re-
cently [3, 8, 9, 10, 11], however, as it is typical for deep
learning-based approaches, they suffer from the lack of gen-
eralization on different types of generative models, video
blending techniques used in deepfakes, and data unseen dur-
ing training [12, 13]. This issue was clear at Facebook’s
Deepfake Detection Challenge2 when the top approaches of
the competition have shown a much lower error on the public
validation set, compared to the error on the secret test set,
which contained unseen data and deepfakes generated using
undisclosed methods. This lack of generalization and also
the lack of understanding the space of deepfake attacks and
the differences between them are impeding the advances in
deepfake detection and their wide employment.

In this paper, we address two problems of the generaliza-
tion of deepfake detection and lack of their understanding by
solving a single problem of attack attribution. The goal of
an attribution approach is not just to distinguish real videos
from all deepfakes but to assign a different label to each type
of deepfake seen during training. This approach, of course,
is only possible when the dataset provides information on
which deepfake generation method was used for which video,
which, for instance, Facebook or Google datasets do not pro-
vide. Once the model is trained for attribution, it can be used
in two-fold manner: i) as a binary classifier during test time
to simply distinguish deepfakes and real videos and ii) as a

1https://www.kaggle.com/c/deepfake-detection-challenge
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Fig. 1: Cropped faces from videos of FaceForensics++ [3], HifiFace [4], and DeeperForensics (DF) [5] databases.

descriptor of the test dataset, since by attributing all test deep-
fake videos we can label them as being of a specific deepfake
type. The hypothesis is that the attribution approach would
allow us, regardless of the underlying model, to estimate the
space of deepfake attacks better than a binary classifier. Then,
the trained model can become a versatile tool for both well-
generalizable deepfake detection tool and for an analysis of
the deepfake space.

We have previously shown [14] that using a training-for-
attribution approach works very well for deepfake detection,
especially on unseen databases. In this paper, we extend that
work by using more data for training attribution-based mod-
els, by proposing to use a custom loss aiming to improve de-
tection and interpretability, and by using such models for ana-
lyzing the embedding space of deepfakes. Please note that our
aim is not to show that an attribution-based approach works,
for that, please refer to our previous work [14], but to extend
it further.

Therefore, in this paper, we focus solely on Xception
net [15] as an underlying model that we train for attribution
using different approaches. Any other model can be used,
but we use Xception due its popularity and because it is fast
enough to train. We adjusted the model and the training pro-
cess to perform an attribution for ten classes of real videos
and various deepfakes from FaceForensics++ [2] (it has five
types of deepfakes), Celeb-DF [6], HifiFace [4], and Deeper-
Forensics [5] (two types of deepfakes) databases. We propose
to use three different approaches to model the deepfake at-
tacks space: i) by training with a simple dense layer of the
size ten added at the top of the baseline model, referred to
simply as Attribution, ii) by training using triplet loss [16],
referred to as TripleLoss, and by iii) training using a modified
ArcFace loss [17], referred to as ArcFaceMod. We compare
these approaches to a baseline binary classifier trained on the
same datasets and the same underlying model.

We evaluate the proposed approaches (Binary, Attribu-
tion, TripletLoss, and ArcFaceMod) by training on the com-
bination of train subsets from FaceForensics++, Celeb-DF,
HifiFace, and DeeperForensics and testing on three other
datasets: DeepfakeTIMIT [1], Google and Jigsaw [3], and
DF-Mobio [14].

Since we are unable to fit all the results and plots in the pa-
per, we invite the reader to explore the evaluations in Jupyter

notebook as part of our open-source Python package with re-
producible experiments2.

2. ATTRIBUTION APPROACHES

We consider three different techniques to train models for
deepfake attribution: i) a simple attribution when a dense
layer the size of the number of classes is added to the model,
ii) an approach to train a model as a siamese network with
triplet-loss [16], and (iii) an approach where we modified an
ArcFace [17] loss to better model the space of deepfakes. We
compare these approaches with a simple Binary classifier.

To keep the evaluations comparable, we use the same un-
derlying Xception model [15] with weights pre-trained on Im-
ageNet [18], the same preprocessing steps and training pa-
rameters. As input, we use 224 × 224 faces cropped with
Blazeface face detector for 15 frames per video. We train for
20 epochs, with the best performing model selected based on
the validation loss, on batches of size 16 with Adam optimizer
and a learning rate of 0.0002.

The differences between training approaches lie in the top
layers and losses. For Binary classifier, we use a single neu-
ron for classification and a cross entropy loss, for Attribution,
instead of a single neuron we use a layer of size ten, which is
equal to the number of different classes, with the same loss,
for TripletLoss [16], we use embedding layer of size 64 and
a triple loss with semi-hard triplets, and for ArcFaceMod, we
use the same 64 sized embedding layer but with a modified
ArcFace [17] loss.

We train all the approaches on a combination of Face-
Forensics++ and its extensions with Celeb-DF, which amounts
to nine different deepfake classes plus one for real videos
(see face examples from FaceForensics++ and its extensions
in Figure 1). We combine training sets of all these datasets
to form a large training ‘super-set’. Then, we test the trained
models on each of these datasets to see how the models per-
form in the same-database scenario. Then, test them on the
entire Google, DF-Mobio, and DeepfakeTIMIT databases
to test how well the models generalize in a cross-database
scenario. We also show how different attribution approaches
model the space of deepfakes of different datasets.

2https://gitlab.idiap.ch/bob/bob.paper.deepfake attribution/-/tree/icassp2022



For more details on Binary, Attribution, and Triplet-
Loss based approaches, please refer to [14], where these
approaches are evaluated in a similar settings, except that a
smaller subset (without DeeperForensics and HifiFace deep-
fakes) of training data was used.

2.1. ArcFaceMod loss

To better model a space of deepfakes, we propose using a
modified additive angular margin loss (ArcFace) [17], which
led to high accuracies in face recognition benchmarks. The
idea behind both triplet and angular loss approaches is simi-
lar: to minimize the distance between the sample of the same
class and maximize the distance between samples of different
classes. However, adapting an angular loss to the specifics of
deepfake detection is more intuitive. In face recognition and
many other classification problems, all classes are considered
equal, however, in deepfake detection, this is not the case,
since we have a distinct different class of real original videos.
Hence, we would like a trained model to treat real class dif-
ferently from all deepfake classes. And it is easier to adapt
the angular distance metric to this situation compared to the
Euclidean used in TripletLoss. Therefore, we propose chang-
ing the value of margin (see m in the equation (3) of [17])
depending on the type of training sample. To further separate
real class in the embedding space from all the fake classes,
we increase margin value from a recommended 0.5 to 0.6 for
real samples and decrease it to 0.4 for all the deepfakes.

Similar to TripletLoss (see more details in [14]), we con-
vert an embedding space into ten classes by training another
set of classifiers: k-nearest neighbor (NN), logistic regression
(LR), and support vector machine (SVM). We trained these
classifiers using the embeddings extracted from the validation
set of our combined ‘super’ dataset and the hyper parameters
were tuned using grid search on the ‘super’ test set. Num-
ber k = 14 was found to be the best for k-nearest neighbor,
0.001 as the regularization parameter for logistic regression,
and 0.01 as the regularization parameter for SVM.

2.2. Evaluation methodology

We evaluate all approaches, using several metrics: an area
under the curve (AUC), which is a popular metric used in
the literature on deepfake detection [3, 6, 19], false positive
rate (FPR), false negative rate (FNR), and half total error rate
(HTER), which are the commonly used metrics for evaluation
of classification systems that rely on a detection threshold.
We define the threshold θfpr to correspond to the FPR value
of 10% on a validation set, which means 10% of fake videos
are allowed to be misclassified as real. Using this thresh-
old on the scores of the test sets will result in the test FPR
and FNR values. Hence, HTER, defined as HTER(θfpr) =
FPRtest+FNRtest

2 can be used as a single value metric to com-
pare all approaches.

Table 1: Same-database evaluation of deepfake detection.

AUC FNR FPR HTER
Approach Test DB (%) (%) (%)

Binary

Celeb-DF 98.56 1.12 26.76 13.94
FaceForensics++ 48.03 95.00 4.20 49.60
DeeperForensics 54.62 95.00 3.57 49.29
HifiFace 25.29 95.00 8.57 51.79

Attribution

Celeb-DF 100.00 1.69 0.00 0.84
FaceForensics++ 99.14 0.71 10.36 5.54
DeeperForensics 99.93 0.71 2.50 1.61
HifiFace 96.57 0.71 35.00 17.86

TripletLoss-NN

Celeb-DF 99.76 0.56 10.88 5.72
FaceForensics++ 98.84 1.43 9.20 5.31
DeeperForensics 99.78 1.43 2.86 2.14
HifiFace 98.63 1.43 15.00 8.21

ArcFaceMod-LR

Celeb-DF 99.87 0.00 5.59 2.79
FaceForensics++ 99.06 1.43 11.34 6.38
DeeperForensics 99.95 1.43 2.50 1.96
HifiFace 98.81 1.43 16.43 8.93

3. EXPERIMENTAL RESULTS

Our same- and cross-database experiments are aimed to be as
comparable as possible. We trained all detection approaches
using the same training ‘super-set’ formed by combining
Celeb-DF and FaceForensics++ with its extensions. We eval-
uated the approaches on the test sets of Celeb-DF, FaceForen-
sics++, HifiFace, or DeeperForensics in the same-dataset
scenario and on the entirely unseen DeepfakeTIMIT, Google
(from Google and Jigsaw), and DF-Mobio datasets in the
cross-database scenario. The results published in [14] can be
considered as an ablation study, since it used a smaller subset
of training data.

Table 1 shows the same-database scenario results for the
baseline binary classifier, the classifier trained for an attribu-
tion task, a triplet-loss classifier, and a modified ArcFace-loss
classifier. We report only NN-based results for TripletLoss
and LR-based for ArcFaceMod because of the limited space
in the paper and because k-nearest neighbor classifier led to
the best results for TripletLoss, while logistic regression was
the best for ArcFaceMod (for a complete set of results please
refer to the open source package2). Table 1 demonstrates that
a Binary classifier does not even generalize well when it is
trained on a combination of the databases and evaluated on
one of them. Table 1 also shows that Attribution, TripletLoss,
and ArcFaceMod techniques perform very well on the indi-
vidual databases in terms of both AUC and HTER metrics,
with Attribution not doing very well on HifiFace, on which
both TripletLoss and ArcFaceMod are able to excel.

The cross-database results shown in Table 2 is a mixed
bag. ArcFaceMod underperformed compared to Attribution
and TripletLoss, which was probably due to the small batch
size that we set to 16 for compatibility with other methods,
while it is advised to use 512 sized batches [17, 20]. De-
spite this, all attribution methods generalize better than Bi-



(a) Attribution (b) ArcFaceMod-LR (c) TripletLoss-NN

Fig. 2: t-SNE plots for attribution approaches on the test set of the combined Celeb-DF, FF++, HifiFace, and DeeperForensics.
Color shows predicted labels, real videos in blue; marker style – true labels. (Zoom-in to see details or see more online2).

(a) Attribution (b) ArcFaceMod-LR (c) TripletLoss-NN

Fig. 3: t-SNE plots for attribution approaches on DF-Mobio database. Color shows predicted labels; marker style – true labels.

nary. However, both Attribution and TripletLoss faired worse
compared to the previous work, when a smaller subset of data
was used for training (only Celeb-DF and FaceForencisc++).
With a smaller training set, TripleLoss led to 13.26 HTER on
DeepfakeTIMIT, 26.55 on Google and 23.16 on DF-Mobio
(see Table IV in [14]). It may be caused by even larger im-
balance in our ‘super-set’ training data since there a very few
real videos compared to deepfakes. Employing training tech-
niques to compensate for the imbalance and to fight against
overfitting will be our future work.

Besides the generalization abilities, attribution-based ap-
proaches can also be used as tools to analyze the test data,
since we can use these pre-trained models to label test data by
different deepfake type as illustrated by t-SNE plots in Fig-
ure 2 and Figure 3. We computed t-SNE plots from the em-
beddings for TripleLoss and ArcFaceMod and from the layer
before last for Attribution. We colored the test samples of
a given database in the colors corresponding to the deepfake
type predicted by the attribution method. The markers style
(shapes of the dots) correspond to the true labels provided by
the database. As we are the authors of DF-Mobio database,
we know that its deepfakes are the most similar to Face Swap
and Deepfakes types from FaceForensics++, which is what
Figure 3 show. This observation testifies to the soundness
of using an attribution approach for interpreting the unknown
sets of deepfakes. Figure 2 also shows how different attribu-
tion methods model the embedding space with ArcFaceMod
resulting in angular clusters and TripleLoss in Euclidean ones.

Table 2: Cross-database evaluation of deepfake detection.

AUC FNR FPR HTER
Approach Test DB (%) (%) (%)

Binary
DF-Mobio 36.90 95.43 3.70 49.56
Google 54.01 54.27 34.58 44.43
DeepfakeTIMIT 70.54 38.60 34.38 36.49

Attribution
DF-Mobio 75.52 12.36 59.66 36.01
Google 87.89 2.20 56.39 29.30
DeepfakeTIMIT 84.97 4.88 46.56 25.72

TripletLoss-NN
DF-Mobio 83.15 22.60 26.03 24.32
Google 84.15 6.06 54.11 30.08
DeepfakeTIMIT 70.08 52.33 21.25 36.79

ArcFaceMod-LR
DF-Mobio 79.98 9.73 58.65 34.19
Google 88.79 0.55 69.46 35.00
DeepfakeTIMIT 63.55 27.21 62.19 44.70

4. CONCLUSION

In this paper, we proposed to train a neural network model for
attribution task using custom angular loss in addition to triplet
loss based training and a simple attribution-based classifier.
We showed that regardless of which loss is specifically used,
the models trained for attribution on a set that contained nine
types of deepfakes perform very well in both same- and cross-
databases scenarios. These models can also be used to auto-
matically categorize deepfakes into different types that can
help in the forensics analysis of unknown deepfake videos.
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