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Abstract

The accuracy of finger vein recognition systems gets de-
graded due to low and uneven contrast between veins and
surroundings, often resulting in poor detection of vein pat-
terns. We propose a finger-vein enhancement technique,
ResFPN (Residual Feature Pyramid Network), as a generic
preprocessing method agnostic to the recognition pipeline.
A bottom-up pyramidal architecture using the novel Struc-
ture Detection block (SDBlock) facilitates extraction of
veins of varied widths. Using a feature aggregation mod-
ule (FAM), we combine these vein-structures, and train the
proposed ResFPN for detection of veins across scales. With
enhanced presentations, our experiments indicate a reduc-
tion upto 5% in the average recognition errors for com-
monly used recognition pipeline over two publicly available
datasets. These improvements are persistent even in cross-
dataset scenario where the dataset used to train the ResFPN
is different from the one used for recognition.

1. Introduction

Use of vascular patterns as the biometric recognition trait
is becoming more prevalent due to its distinctive advantages
such as high recognition accuracy, difficulty in spoofing,
and less interference of external factors. Typically, veins
of finger(s), palm, and wrist are popular biometric modal-
ities. In this work, we consider only finger vein (FV) as
the biometric modality. The reflection-based FV scanners
can be constructed in a contactless manner—which makes
them an attractive biometric modality offering a better user
experience and alleviating hygiene concerns (that may oc-
cur in enclosure or touch-based vein scanners). The per-
formance of FV recognition pipeline is strongly correlated
to the quality of the FV presentation acquired by the near-
infrared (NIR) sensor (i.e. camera). These blood vessels
lie beneath the skin of the subject and therefore do not al-
ways appear prominent in the acquired presentation. Fig-
ure 1 shows (see top row) some samples of FV presenta-
tions where the vein structures are not clearly visible across

Figure 1: The top row shows examples of original (acquired
by sensor) FV presentations: two each from SDUMLA [20]

and UTFVP [17] datasets. The corresponding images from
the bottom row are the results of the proposed vein enhance-
ment technique.

the region. Due to lack of contrast and uneven illumination,
these presentations often suffer from poor feature extrac-
tion, and subsequently result in low and incorrect matching
scores impeding the performance of the overall FV recog-
nition system. In this work, we propose a deep learning
(DL)-based technique for enhancement of vein structures in
the presentations acquired in the NIR spectra. The proposed
technique is independent module that can be plugged into an
existing FV recognition pipeline at the preprocessing stage.

An overall FV recognition pipeline can be built from
conventional image processing techniques or it can be based
on a deep convolutional neural network (CNN). Typically,
in both cases, the NIR presentation is first preprocessed for
cropping, resizing, and orientation correction. The conven-
tional processing pipeline employs feature extraction block
to generate a feature descriptor (it acts as reference or tem-
plate for enrolment data), followed by the matching block
that computes similarity metric between feature descriptor
of the test sample (also known as probe) and predefined
templates. The DL-based FV recognition pipelines usually
combine both blocks by modeling the recognition task as
an n-class classification problem. A cascade of convolu-
tional and pooling layers learns vein-related features which
are then transformed into class probabilities by one or more
fully connected layers. For any pipeline, conventional or



DL-based, efficient extraction or learning of relevant fea-
tures from input presentations is the key to build a highly ac-
curate recognition system. Popular feature extraction meth-
ods such as repeated line tracking [10], wide line detec-
tor [6], and maximum curvature (MC) [11] are based on
computation of the local gradient or cross-sectional profile
of pixels as the first step. The efficacy of these quantities
(gradient or profile) is directly proportional to the contrast
in the image. The deep CNNs, as well, are susceptible to
distortion in the quality of input images such as noise, blur,
and contrast [3, 5, 4]. This essentially reinforces the im-
portance of good contrast (between vein structures and sur-
roundings) in designing a highly accurate FV recognition
pipeline. It may be noted that the publicly available FV
datasets are relatively much smaller (in the range of 2000-
3000 total presentations), furthermore, only a fraction of
entire dataset is used for training purposes. Since training
deep CNNs with small amount of data is challenging, im-
proving the quality of the input presentations— by enhanc-
ing the vein structures— can be of significant assistance in
training as well as inference. From the existing literature, it
appears that the problem of enhancement of vein structures,
particularly using learning-based methods, has not received
much attention despite its apparent usefulness.

Using the presentations as captured by the NIR sen-
sor without the aforementioned enhancement has two se-
rious shortcomings: (1) Due to variable width of blood
vessels and variable local contrast (because of presence of
tissues around vessels), the feature extraction may detect
fewer vein-structures from the presentation. The subtle
vein structures— that may carry subject-specific discrimi-
natory information— may remain undetected. Alternatively,
one has to extensively experiment with parameters of fea-
ture extractor or CNN to obtain good recognition accuracy.
(2) Since the parameters of pipeline are tuned for specific
dataset or sensor, the FV recognition system can suffer from
poor generalization across different datasets. In case of
change of NIR sensor, which is a quite common real life
use-case, one has to rely on expensive and time-consuming
solution of capturing new dataset to tune the parameters or
train the CNN.

To address these concerns, we propose a deep CNN-
based method for enhancement of vein structures from the
FV presentations acquired in NIR channel. Our network
accepts an NIR presentation in the form of single chan-
nel image; and generates an image consisting of vein-like
structures. This result is combined with the input to ob-
tain the enhanced presentation which can then be processed
by any FV recognition pipeline. Samples of enhanced im-
ages obtained from our work are shown in (the bottom
row of) Figure 1 where the appearance of veins is much
sharper, clearer, and visibly darker as compared to their un-
processed/ original versions. With good contrast around

veins, these presentations are less sensitive to the param-
eters of feature extraction method or model. We train our
model using the vein annotations (manually generated bi-
nary labels) as the target.

As vein structures exhibit variable width or thickness,
the choice of spatial resolution (or scale) is crucial in de-
signing the enhancement network. Our network consists
of structure detection blocks at multiple resolutions akin to
the feature pyramid networks (FPNs)[9]. The vein struc-
tures (or their parts) detected at each level are combined
through a feature aggregation module (FAM) to get a fused
output. We design a structure detection block (SDBlock) as
the basic unit of our network—that detects vein structures
and also generates a set of feature maps, at reduced resolu-
tion, for processing by subsequent blocks. Through resid-
ual architecture, our network is able to extract FV structures
across scales and fuse those to obtain an enhanced FV pre-
sentation. The contributions of our work can be summa-
rized as follows:

* We have designed a fully convolutional Residual FPN
(ResFPN) for enhancement of vein structures. This
architecture, consisting of only 600k parameters, effi-
ciently detects vein structures of varied thickness with-
out need for any specific tuning.

* We have introduced a novel unit for structure detec-
tion, SDBlock. Through the SDBlock, we are able to
achieve two objectives simultaneously: extraction of
vein structures and generation of input for next lay-
ers/blocks.

* Through indirect assessment of work, we demonstrate
the efficacy of the proposed enhancement technique:
the average error rate of FV recognition performance
on publicly available datasets reduced upto 5% af-
ter enhancing the presentations by ResFPN. This im-
provement has been validated in intra- and cross-
dataset testing scenarios.

In Section 2, we briefly describe existing works related
to FV enhancement. The proposed ResFPN is described
in Section 3. We provide experimental results along with
details of datasets and evaluations measures in Section 4.
Finally, Section 5 provides concluding remarks.

2. Related Work

Kumar and Zhou [8] generated an average background
image for a sub-block of input FV presentation, followed by
local histogram equalization. A combination of edge pre-
serving filtering, elliptic highpass filtering and histogram
equalization was proposed by Pi et al. [14]. The contrast
limited adaptive histogram equalization (CLAHE) has been
considered towards enhancement of vein region by several
works [8, 1, 7]. The use of Gabor wavelets at various
scales and orientations for enhancement of venous regions



has been proposed by Yang and Shi [19]. They have also
devised a scattering removal method for better visibility of
the acquired presentation. Methods in [16, 13] also advo-
cate the use of Gabor filters for enhancement of FV presen-
tations.

Peng et al. proposed a non-local means (NLM)-based
technique for enhancement of veins in the NIR presenta-
tion [12]. Their work is based on the availability of several
local patches with similar vein structures. These multiple
patches have been exploited to enhance the vein-structures.
A recent work by Zhang et al. combines the guided filter
and tri-Gaussian model for FV image enhancement [21].

All aforementioned approaches for enhancement of vein
regions are based on conventional image processing tech-
niques. Despite success of deep CNNs in enhancement or
restoration of images, very few works have studied DL-
based approaches for this task. In [15], a fully convolutional
network (FCN) has been developed to enhance the vein pat-
terns, more specifically to recover the missing segments
within vein patterns. The training data were created by ran-
domly cropping some pixels from the FV images, and the
corresponding FCN was trained using MSE (mean square
error) loss between the output of the FCN and original im-
age. Recently, Bros et al. proposed a deep autoencoder-
based method for enhancement of FV presentations [2].
They used presentations enhanced with vein-annotations to
train their network by reducing the MSE loss.

3. ResFPN for Vein Enhancement

In this section, we first describe the architecture of the
proposed ResFPN for FV enhancement along with our ra-
tionale in designing its building blocks. Subsequently we
provide details of training procedure and formulation of loss
function.

3.1. Network Architecture

Learning features at all scales from a combination
of bottom-up pathway, top-down pathway, and lateral
connections— also known as feature pyramid network
(FPN)- has been shown to be efficient generic feature
extractor [9, 18]. When analyzed locally, vein pattern is
a structure of variable thickness; and extracting such a
structure would require learning a set of convolutional
filters at different spatial resolutions or scales. Based on
the idea of FPN [9], we construct a multi-level bottom-
up pathway to extract vein features at different scales.
Figure 2a shows the overall architecture of the proposed
ResFPN. We call each unit of this pathway as the structure
detection block (SDBlock)—which will be described
later in this section. At each successive level, the SDBlock
extracts vein-like structures from larger receptive fields as
the spatial dimensions (resolution) of the corresponding
feature maps gradually reduce. Vein structures so-obtained

from each SDBlock are then combined by a feature aggre-
gation module (FAM) which normalizes them in terms of
resolution and number of feature maps. As each SDBlock
extracts only a part of overall vein pattern (depending on its
width or thickness), we combine the normalized outputs of
FAM into a single channel representation of the extracted
structures. The vein-enhanced presentation is obtained by
a linear combination of the output of our network and the
original input presentation.

Structure Detection Block (SDBlock):

The architecture of SDBlock— the fundamental unit for
extraction of vein-like structures— is shown in Figure 2b.
Detection of thin and subtle vein-structures is accomplished
by learning a set of convolutional kernels, followed by a
non-linear activation such as ReLU. (In Figure 2b corre-
sponding convolutional and ReL.U layers are represented as
Cr and Rp, respectively.) The size of kernels can be cal-
culated by analyzing the nominal width of vein structures
at original resolution. We employ a stride of 2 across the
CF layer which implicitly reduces the spatial dimensions,
while no explicit spatial-level feature pooling is used. The
outputs of Rp are structure features (sy) extracted by the
L-th SDBlock.

Given the nature of vein structures, the feature extrac-
tion process is akin to learning a set of bandpass filters.
The output of such filters strongly suppresses or removes
the information content beyond their effective bandwidth.
Therefore, using these outputs (sz) directly for detection
of structures (that are predominantly present in the possibly
suppressed frequency bands) is likely to render ineffective
results. Therefore, we propose to implement the shortcut
(using the ResNet terminology) by adding the input of the
SDBIock to the output of Rr. The input is passed through
a convolutional layer Cj to align its dimensions (spatial di-
mensions and number of feature maps) to those of structure
features, sy,. After the addition of shortcut, the correspond-
ing output (xr,41) is normalized at batch level (BN) which
may then be fed to the next SDBlock.

If x;, is the input to the SDBlock, which could be the FV
presentation (I) or feature maps generated by previous SD-
Block, the functioning of the L-th SDBlock is summarized
below.

s = Rp(Cr(xy1)) 9]
X411 = BN(C}(XL) + SL) ()

The SDBIlock, thus, accepts feature maps (or the input
presentation), and generates two outputs: (1) the residual
structure features— to be processed by the FAM for output,
and (2) normalized feature maps— to be processed by the
SDBIlock at next level. The process of detection of sr,
features operates in different frequency bands for each
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Figure 2: Architectures of the proposed finger vein enhancement technique: (a) ResFPN and (b) SDBlock. The blue dotted

lines in (a) represent FAM.

SDBlock. The proposed architecture simplifies these ob-
jectives using shortcut connections: the residual component
is trained to learn structures in the feature maps; while
the combined/ summed component, boosted with detected
features, is suitable for similar processing at the next scale.

Feature Aggregation Module (FAM):

The FAM receives structure features, sy, from each SD-
Block; and as the first step normalizes them through up-
sampling and 1 x 1 convolutions. For each SDBlock, the
structure features are computed on successively reduced
scale (spatial resolution) of feature maps. We use nearest
neighbor-based interpolation to upsample the structure fea-
tures to the scale of original input presentations. Thus, no
learning parameters are involved at upsampling stage. Us-
ing 1 x 1 convolutions, we convert the feature maps of each
SDBIock into the same channel-dimension, say n.y, and re-
fer to them as Sy,.

As each s, is upsampled to the resolution of input pre-
sentation, the upsampling factor of up; is determined ac-
cordingly. If the network consists of k¥ SDBlocks, we obtain
a composite feature map with k n.}, channels whose spatial
dimensions are same as that of the input presentation. This
composite feature map, foomp, represents the aggregation of
vein features learnt across multiple scales. We fuse the in-
dividual feature maps of fcomp into a single channel output,
¥, using two layers of convolutional layers with an inter-
mittent ReLLU activation. The final output, y, is obtained
through sigmoidal activation of y.

The functions of the FAM are summarized below.

3)
“4)

sL = Cu(up,(sL))
y=0Cs (Rl (01(concat{§L}))>
y = Sigmoid(y)

The enhanced presentation, I, is obtained by linear
combination of the output, y, and the input presentation, I
using a predefined weight o € (0,1) asIp = ay+(1—a)L.

3.2. Loss Function

We formulate the problem of detection of vein structures
as a binary classification problem that assigns a probability
of being a (part) of vein to each pixel. The loss function,
therefore, is defined as the binary cross entropy (BCE) be-
tween the vein-annotations (a binary image with vein mark-
ing) and the output, y, of the ResFPN. The outputs of each
SDBIlock post dimensional normalization, are expected to
have extracted parts of vein pattern. Therefore, we also
propose to calculate loss over each of normalized feature
maps, Sy. These feature maps are passed through a sig-
moidal activation, the BCE loss is computed for each of n,
feature maps, and then averaged to yield a scalar value. The
overall loss function, £, is defined as summation of losses
computed over each of L levels, and the loss computed on
final output. If we denote the vein-annotations as Yiarget.
then the expression for overall loss function is provided by
Equation 5.

L
L= ﬁBCE(Ytarget; y) +Z LpcE (Ytargeta Singid(/s\k))

k=1
)
3.3. Training Procedure

A small size of vein dataset and cumbersome task of
manual annotation of vein structures drastically limit the
scope of training large deep networks. In addition to de-
signing a deep network with relatively fewer parameters,
we have incorporated data augmentation by flipping it along



horizontal and vertical axes. Each input presentation gener-
ates 4 samples (2 by horizontal flip and 2 by vertical flip)
which are then shuffled during training. Note that each pre-
sentation is flipped to create 4 x data contrary to typical aug-
mentation strategies where either original or flipped data are
considered (flipping takes place randomly). The input pre-
sentations are rescaled to a fixed size (320 x 240 in our
case) to ensure consistency across different datasets. The
vein-annotations, acting as targets, were also processed in
the same manner. For training the ResFPN, we have chosen
the Adam optimizer with a learning rate of 1.0e-4. To gen-
erate the enhanced presentation, we have used o = 0.10 to
combine the vein-structures with input.

4. Experiments and Results

We begin this section with details of the FV datasets
and the protocols designed for our experiments. Since
there are no direct methods to access the performance of
enhancement, we have considered indirect assessment of
our work by measuring the difference in the performance
of overall FV recognition without and with application of
our enhancement technique. We employ a conventional FV
recognition pipeline that consists of preprocessing functions
(cropping, orientation correction, resizing, etc.), followed
feature extraction using Maximum Curvature (MC) tech-
nique [11]. The Miura Matching technique [10] is used to
compute the similarity or matching score between the probe
and model. We calculate the performance of FV recogni-
tion using the measures described in Section 4.2. Then we
have provided results of our experiments on conventional
FV recognition pipeline. The python code to reproduce the
experimental results will be released publicly.'

4.1. Datasets and Protocols

For experiments, we have used two publicly available
datasets: SDUMLA [20] and UTFVP [17]. The SDUMLA
dataset consists of FV images of 6 fingers (3 finger of each
hand) from 106 individuals. This collection has been re-
peated 6 times (called as sessions) to obtain a total of 3,816
FV presentations with 320 x 240 pixels in size. As we con-
sider each finger as a separate entity for our experiments,
the SDUMLA dataset is considered to have 106 x 6 = 636
clients. It should be also noted that vein annotations are
available only for session-I. We require this dataset for
two tasks: (1) to train and validate the ResFPN for en-
hancement; and (2) to validate the overall FV recognition
pipeline. The first task requires a split of presentations to
train the CNN, and to validate its performance over train-
ing epochs. The second task requires two disjoint sets of

IRepository of Python code for experiments described in this work:
https://gitlab.idiap.ch/bob/bob . paper . resfpn_
CVprw

Identities Sessions
I I/ [ IV/V/VI
1
A
: training unused
508 (80%) preprocessing
C D
572 (10%) development | development
.B . enrollment probes
validation
preprocessing E F
636 (10%) evaluation evaluation
enrollment probes

Table 1: Experimental Nom protocol for the SDUMLA
database.

data: one to obtain score-related thresholds (dev), and an-
other to evaluate the performance of FV recognition using
these score thresholds (eval). In each subset, a further
split of samples is required to enroll (i.e., to build mod-
els), and samples to probe. We have created a Nom (Nor-
mal Operative Mode) protocol where both tasks and their
subtasks are allocated samples without any overlap of sam-
ples or clients. The data from session-I has been used for
training and validating the ResFPN by splitting in the ra-
tio of 0.8:0.2. Thus, 508 FV presentations from session-
I of SDUMLA were used to train the ResFPN, while re-
maining 128 presentations were used to evaluate the perfor-
mance of the ResFPN over each training epoch. Hereafter
we do not use the presentations from first 80% clients as
these have been seen by the network. The remaining 20%
data is split into equal halves for dev (development set) and
eval (evaluation or test set). In either case, the presenta-
tions from sessions II and III are used for enrollment and
those from sessions IV, V and VI are used for probing. The
protocol is summarized in Table 1.

The UTFVP dataset consists of 6 fingers (3 for each
hand) from 60 individuals captured twice in 2 sessions.
The dataset, thus, consists of 1,440 FV presentations with
672 x 380 pixels. Considering each finger as a separate
identity, we have a total of 60 x 6 = 360 unique fingers
in the UTFVP dataset. For experiments, we consider the
Nom (Normal Operative Mode) protocol which is similar to
the one implemented for the SDUMLA dataset.> Here, the
unique fingers from first 10 clients are considered towards
training the ResFPN. Due to small size of training set, we
do not split it further for validation, and rather the perfor-
mance of model is evaluated on the training data itself (no
cross-validation for ResFPN). FV presentations from clients
11-28 constitute the dev set, and remaining presentations

2The details of Nom protocol as devised by Idiap Research Institute:
https://www.idiap.ch/software/bob/docs/bob/bob.
db.utfvp/master
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Figure 3: Receiver Operating Characteristics (ROC) curve and score histogram for the FV recognition on the Nom protocol

of the SDUMLA dataset.

from clients 29-60 are included in the eval set. We omit
further details of this protocol for the brevity of space.

4.2. Evaluation Measures

We have reported the performance of the overall FV
recognition pipeline using False Match Rate (FMR) and
False Non-Match Rate (FNMR). The FMR is the ratio of
number of impostor attempts incorrectly classified as gen-
uine matches to the total number of impostor attempts. The
FNMR is defined as the percentage of genuine matches that
are incorrectly rejected. We used the equal error rate (EER)
on the dev set to compute the score threshold, where FMR
~ FNMR. The Half-Total Error Rate (HTER)- average of
FMR and FNMR on the eval set—is also reported.

4.3. Results

Baselines: The recognition performances of eval sets
of SDUMLA as well as UTFVP datasets without applying
the proposed enhancement technique are considered as the
baselines for each dataset. For SDUMLA dataset, we ob-
tained 12.1% EER on its dev set, and 13.4% HTER on
the eval set. For the UTFVP dataset, these numbers were
1.3% and 2.4%, respectively. The results are summarized
in Table 2. The Receiver Operating Characteristics (ROC)
plots for SDUMLA and UTFVP baselines are shown in Fig-
ures 3 and 4, respectively (indicated by blue lines).

Experiments on SDUMLA dataset: The ResFPN
trained on (the train set of) SDUMLA dataset was used
to enhance the presentations of dev and eval sets of the
SDUMLA dataset. This intra-dataset experiment, however,
does not have any overlapped samples or clients across par-
titions. On enhanced FV presentations, we obtained the
EER of 7.2% on the dev set where 4,140 matches out of
57,132 were incorrectly classified. For the eval set, the
HTER was 8.4% with 4,343 incorrect results out of 52,272
matches. The reduction in the overall classification error on

the dev as well as eval setis around 5% after applying the
vein-enhancement at preprocessing stage. The number of
falsely matched impostors reduced from 5,922 to 4,300 (i.e.,
nearly 27% less) on the eval set of the SDUMLA. This im-
provement is particularly important since it was observed
on the subset of the data that was unseen by the ResFPN
and FV recognition system. For the cross-dataset testing,
we have enhanced the FV presentations from SDUMLA
using the ResFPN trained on the UTFVP dataset. Com-
pared to the baseline, we observed an average improvement
of 3% on the dev set for this experiment. For the eval set,
the number of falsely matched impostors reduced by nearly
500 samples, and the number of incorrectly rejected gen-
uine matches reduced to 34 from 61. In terms of HTER,
the use of vein-enhancement resulted in an improvement of
4.9% over the baseline. For both experiments, the perfor-
mance measures are provided in Table 2 and ROC plots are
shown in Figure 3. It may be observed from the ROCs that
the performance of the FV recognition using enhanced pre-
sentations is consistently better than the baseline (without
enhancement) over a complete range of FMR. This relative
improvement is highlighted even more on the ROC of eval
set at lower values of FMR. For enhanced presentations, the
score histograms of the eval set (Figure 3c) indicate a bet-
ter separation between scores of both classes, and also low-
ered mean and lesser variance of the scores of the impostor
comparisons.

Experiments on UTFVP dataset: The Nom protocol
of the UTFVP dataset comprises 73,344 impostor com-
parisons and 384 genuine comparisons on the eval set.
When the presentations were enhanced using the proposed
ResFPN (trained on the SDUMLA, i.e. cross-dataset), 209
impostor comparisons were incorrectly classified as gen-
uine. This number is approximately 1/4-th of the same
metric obtained for non-enhanced version of same presen-
tations. On the dev set, we observed 40% reduction for this



Measure Baseline (No Enhancement) Enhanced with ResFPN (SDUMLA) Enhanced with ResFPN (UTFVP)
dev eval dev eval dev eval

Test dataset: SDUMLA

FMR 12.1 (6856/56718) | 11.4 (5922/51876) || 7.2 (4110/56718) | 8.3 (4309/51876) 9.2 (5206/56718) | 10.4 (5401/51876)

FNMR 12.1 (50/414) 15.4 (61/396) 7.2 (30/414) 8.6 (34/396) 9.2 (38/414) 8.6 (34/396)

HTER 12.1 13.4 7.2 8.4 9.2 9.5

Test dataset: UTFVP

FMR 1.2 (274/23112) | 1.1 (807/73344) 0.5 (107/23112) | 0.3 (209/73344) || 0.5(107/23112) | 0.3 (218/73344)
FNMR | 1.4 (31216) 3.6 (14/384) 0.5 (1/216) 2.3 (9/384) 0.5 (1/216) 2.9 (11/384)
HTER 1.3 2.4 0.5 13 0.5 1.6

Table 2: Performance evaluation of the proposed ResFPN for FV enhancement on the SDUMLA and UTFVP datasets along
with baselines. All measure rates are in %. The numbers in parenthesis indicate the number of incorrectly classified samples

for total samples in the given class.

metric with respect to the baseline. The FNMR and, thus,
HTER on both sets of the UTFVP dataset also improved
by 0.8-1.3% when the performance of FV recognition was
evaluated in the cross-dataset scenario as detailed in Table 2.

Interestingly, when the FV presentations were enhanced
using ResFPN trained on the other (disjoint) partition
of UTFVP, we observed the improvement, in terms of
FMR/FNMR, to be similar to the aforementioned cross-
dataset experiment. The total number of misclassifications
on the dev set of the UTFVP reduced from 277 (in base-
line) to 108 for both experiments of vein enhancement. This
improvement was even better for the eval set where mis-
classifications reduced from 821 to 218-229 after enhance-
ment of the input. While it may appear that the ResFPN
trained on the subset of UTFVP has performed relatively
poorer than the network trained on the SDUMLA dataset,
it may be noted that the train set of UTFVP consists
of only 388 presentations, which is much smaller than its
SDUMLA counterpart.

The ROC plots for the dev set are near-perfect for both
enhancement experiments as indicated by almost horizon-
tal curves in Figure 4a. While the performance of baseline
experiment slowly degrades for FMR < 1073, the recog-
nition of the enhanced presentations remains consistently
accurate. On the eval set, one can observe that the im-
provement in FV recognition, brought by the ResFPN, is
similar for models trained on SDUMLA as well as UTFVP.
Figure 4c shows the overall increase in the genuine scores
of the enhanced presentations which improves separability
of genuine comparisons from the impostor attempts.

5. Conclusions

In this work, we have proposed a ResFPN (Residual Fea-
ture Pyramid Network) for enhancement of vascular pat-
terns in the FV presentations acquired in NIR. This network

can be integrated into a standard recognition pipeline as a
part of preprocessing module. With its peculiar SDBlock
and FAM architectures, the proposed network is able to de-
tect vein-structures at various scales and combine them effi-
ciently to generate an enhanced presentation. With usage of
enhanced data, the performance of recognition system has
improved in terms of FMR, FNMR, and HTER- over dif-
ferent datasets as demonstrated by our results. Thus, the
resultant recognition systems are more accurate and secure.

We have introduced a novel network architecture for
detection of vein-structures. Further work in this direc-
tion mainly includes better generalization across variety
of recognition methods, and efficiently processing size-
independent presentations.
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