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Detecting Face Presentation Attacks in NIR
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Abstract—For the automotive industry moving towards personalized applications and experiences, the identification of the person
inside vehicle is necessary; and it must be carried out in a secure manner. In this paper, we propose a unique face presentation attack
detection (PAD) system for operation inside a passenger vehicle. A typical in-vehicular face PAD system is required to function with
several constraints such as bounded sensing (imaging) capabilities, limited computing resources on embedded devices, real-time
inference, and essentially, very high accuracy. In this work, we develop a face PAD system for automotive domain, relying on a single
NIR camera, to continually verify whether the driver’s face is bona-fide or not. Our work has two main contributions: first, a lightweight
face PAD framework has been developed using a 9-layer convolutional neural network (CNN). With its compact size and limited set of

operators, it can be deployed in a resource constrained embedded device to achieve a near real-time inference. To alleviate the
problem of limited training data (face PAD in NIR) for a given system, we develop an efficient mechanism to obtain this CNN through
the combination of adaptation of domain-specific layers and task-specific fine-tuning of a base CNN. As the second contribution, we
collect a large face PAD dataset with 5800+ videos, acquired in NIR (940 nm) illumination, for in-vehicular use-cases. This dataset,
named VFPAD, captures several real-world variations in terms of environmental settings, illumination, subject’s pose, and
appearances. Based on the VFPAD dataset, we demonstrate that the proposed face PAD method achieves very high performance
(overall accuracy ~ 98.0%), and also outperforms several baseline face PAD methods. The dataset will be shared with the wider

scientific community for research purposes.

Index Terms—CNN, Face presentation attack detection (PAD), near-infrared, domain adaptation.

1 INTRODUCTION

Face recognition (FR) technology, alongside its technical
advancements, is finding new consumer applications be-
yond the realms of access control. FR systems are now
also being introduced into the domain of automotive ap-
plications [1]. Current applications of FR technology in cars
revolve mainly around personalization (e.g., [2]) and driving
safety [3]. The next generation of biometric applications
being developed in the automotive domain will include
integrated services- that will leverage the identity authen-
tication capabilities built into the vehicle in the form of FR
and other biometric technologies. However, robustness and
security are two important concerns that must be addressed
for such applications to be truly useful. Hence, an efficient
mechanism for detection of spoofing attempts or presentation
attacks (PAs) on FR system is an indispensable component
of the aforementioned class of automotive applications.

A classic example of such use-case is the companies of-
fering home delivery services—where the customer receives
a doorstep delivery of the goods, cloths, food items, etc.;
and makes the payment using cash or card on the receipt.
In this whole process where the end transaction takes place
at remote locations, it is crucial that the person involved
in the delivery as well as payment of each transaction is
correctly identified. It helps the companies to ensure safe
and trustworthy delivery experience, and also to avoid
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Figure 1. A user attempting to spoof the FR system inside the car by
presenting a fake identity of another subject. The camera, mounted on
the steering wheel, is intended to capture facial region of the person in
the driver’s seat; while the user presents a tablet replaying a video clip
of another person’s face.

frauds related to impersonations. In this classic scenario of
a distributed PoS (point of sale), each PoS is typically in
the form of a vehicle (delivery truck or car). Figure 1| shows
a typical attempt of spoofing the FR system (mounted on
steering wheel or dashboard) where the subject presents
another identity for authentication. A secure and robust
identity management can be accomplished by installing an
FR system in each PoS, coupled with a face PAD system
to assure that the FR system is being presented with the
genuine (bona-fide) identity of the subject.

In this work we propose a face PAD system for de-
ployment in a passenger vehicle. Such a face PAD system
is expected to function in a resource-limited environment,
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similar to that on current mobile devices; while providing
the inference in continuous, near real-time manner. Most
mobile computing platforms include a Trusted Execution
Environment (TEE) that provides a safe area for executing
trusted applications (TA). The TEE guarantees the security,
confidentiality, and integrity of the code and data loaded
into the environment. In mobile computing parlance, the
TEE is also referred to as the Secure World, in contrast
to the Normal World (which may include a Rich Execu-
tion Environment (REE)). Most mobile applications run in
the Normal World, whereas security-sensitive applications,
such as biometric authentication systems, run in the Secure
World. In comparison to the REE, the TEE offers a limited
set of computing operators. These computing constraints
influence the design of the appropriate face PAD solution.

Besides accuracy, the face PAD model must be small
in terms of memory footprint, and fast in processing or
inference. The state-of-the-art methods of face PAD are
based on the use of deep convolutional neural networks
(CNN ). Several popular face PAD methods employ a well-
known architecture as a base CNN (often referred to as
backbone) which is then suitably adapted for the task of
face PAD. The architectures such as VGG [4] and ResNet [5]
are used as backbone networks for state-of-the-art face PAD
methods in [6], [7], [8l, [9], [10]. Although efficient, these
backbone CNNs are large in size and comprise many layers,
resulting in slow processing and heavy storage. A 16-layer
VGG network consists of as many as 135M parameters. For
different variants of ResNet, these numbers are in the range
of 11-58M. The number of layers in these CNNs also impact
the processing time unless the system is highly optimized.
For the face PAD system to function at real-time speeds in
the TEE, the PAD CNN model should be implemented using
a limited set of operators, and it should be relatively small
in terms of number of parameters.

A primary limitation in developing a face PAD system
for the aforementioned in-vehicular environment is the lack
of appropriate datasets. Most of the publicly available PAD
datasets are collected in limited laboratory settings; and
hence, these are far from being realistic. For example, in
the present use-case, the person in driver’s seat may wear
glasses, sunglasses, or hat— which occlude a part of their
face. Due to limited options of installing camera (such as
vehicle’s dashboard), one may not obtain an absolutely
frontal orientation of the person’s face. An uneven illumi-
nation is a well-known problem for FR and face PAD. Since
the delivery vehicle can be at different locations, including
indoor ones, the effect of outside illumination (which often
impacts from one window of the vehicle) also requires spe-
cific attention. The existing face PAD datasets do not cover
such multitude of variations, and thus, their applicability
towards developing a solution to the real world problem
is limited. It should also be noted that majority of existing
PAD datasets, and therefore, face PAD methods involve
presentations acquired in visual spectra (grayscale or RGB).
The extended spectra, such as near infrared (NIR), offer
several advantages over visual domain [11]], [12]; and thus
it can be a better choice for such real applications, provided
a low-cost sensor is available.

In this work, we address the real-world problem of PAD
for automotive domain through two steps: creation of PAD
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dataset that covers many varied scenarios of in-vehicle use-
case with several bona-fide presentations and combinations
of different PAs. This dataset is acquired in NIR imaging
channel. Secondly, we build a small size, lightweight face
PAD CNN using a 9-layer LightCNN [13] for detection of
PAs in an automobile. Note that the base CNN is trained
for FR task using an FR dataset captured in visual domain
(due to availability of large training data); whereas the PAD
CNN is required to detect PAs acquired NIR channel. We
propose a combination of domain-specific adaptation and
task-specific fine-tuning to obtain the CNN for NIR-based
Face PAD. We also ensure that the proposed CNN is built
using a limited set of CNN operators so that it can be
deployed in generic hardware (such as TEE), and can also
be easily optimized. The effectiveness of proposed PAD
method is evaluated on the newly collected unique VFPAD
dataset.

The specific contributions of our work can be summa-
rized as follows:

o A lightweight CNN architecture for continuous (near
real-time) face PAD for presentations acquired in near
infrared (NIR) imaging channel. The CNN consists of
5.5M parameters in 9 layers. With a limited set of neural
network operators, it may be easily optimized further
for specific hardware, such as TEE.

o We provide a simple, yet efficient mechanism through
the combination of domain adaptation and fine-tuning
that can be employed to obtain a lightweight CNN
for face PAD in NIR data, whereas the base CNN is
pretrained for FR task on RGB presentations.

o A new in-vehicular NIR dataset with 5800+ videos cap-
tured in a large variety of conditions with respect to
illumination, pose, accessories, etc. To the best of our
knowledge, this is the first of its kind, publicly available
PAD dataset acquired in NIR.

e Through performance evaluation over several baseline
PAD methods, we demonstrate that the proposed PAD
method yields state-of-the-art results.

After a discussion on published scientific literature rel-
evant to the current work in Section [2, we describe the
VFPAD dataset in Section [3| Details of the experimental
methodology are described in Section i} The experimental
details and results of PAD are provided in Sections 5| and [6]
respectively. Conclusions are discussed in Section 7]

2 RELATED WORK

For a face PAD in in-vehicular environment, there is no
previously published work that may be directly considered
as a precedent. In this section, therefore, we discuss some
related research works that conform to various processing
steps of our specific face PAD problem. In recent years,
research in face PAD has seen two significant developments-
first, the shift from color (RGB) imagery to other wavelength
bands (NIR, SWIR, and thermal imaging); and second, the
use of features derived from CNNs instead of hand-crafted
features [14], [15]. Accordingly, we discuss the state of
research in face PAD based on extended range imagery,
followed by brief details of some commonly used face PAD
datasets acquired in NIR imaging channel; and provide an
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overview of recent CNN architectures for face PAD based
on NIR data.
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We start by noting that presentation attack instruments
(PAI) are usually designed to mimic the appearance of
human faces in visible light (i.e., frequency bands roughly
in the range from 380 to 750nm, often also referred to
as RGB). Such PAls, however, do not always present the
same characteristics as the human face under illumination
beyond the visible light range. On the other hand, with
improvement in technology, the quality of PAs in visible
light is approaching that of bona-fide presentations. This
realization has led to innovations in face PAD research based
on extended range (ER) imagery. In recent years, both active
and passive-sensing approaches for face PAD in ER imagery
have been explored.

Raghavendra et al. [16] have used 7-band multispectral
imagery for face PAD, captured using a SpectroCam™
multispectral camera. This device captures presentations in
narrow bands centered at the wavelengths ranging from
4251nm-930nm. They have proposed two face PAD ap-
proaches based on image fusion and score fusion. Quan-
titative results [16] show that the score fusion approach per-
forms significantly better than the image fusion approach.

Bhattacharjee and Marcel [11] have also investigated the
use of ER imagery for face PAD. They demonstrate that a
large class of 2D attacks, specifically, video replay attacks,
can be easily detected using NIR imagery. In live presen-
tations under NIR illumination, the human face is clearly
discernible. However, electronic display monitors appear
almost uniformly dark under NIR illumination. Therefore,
using NIR imagery, simple statistical measures are often
sufficient to distinguish between bona-fide presentations and
PAs. For photo-based PAs, printed on certain class of print-
ers, and for 3D mask-based PAs, the use of NIR towards
face PAD is not straightforward, and an advanced machine
learning approach is necessary.

Most face PAD studies involving NIR imagery have, in-
fact, explored the combination of RGB and NIR channels.
Liu and Kumar [17] demonstrate the superiority of NIR over
visible light for detecting 3D-mask based PAs. They con-
sider various CNN configurations for face PAD including a
Siamese network. They also show that a combination of RGB
and NIR data can further improve the performance of PAD.
In [12], Kotwal et al. have also demonstrated that combining
RGB and NIR image data improves the performance of face
PAD, compared to face PAD based on RGB imagery alone.
Jiang et al. [18] have proposed a generative adversarial net-
work (GAN)-based approach for synthesizing an NIR image
from an RGB image, for situations where it is not possible
to deploy an NIR camera. Li ef al. [19] have used a binocular
camera that combines an RGB sensor and an NIR sensor
along with NIR (850 nm) illumination. The RGB and NIR
face images captured by the camera are stacked together
(after adequate registration) to construct a multi-channel
input image for the feature extraction stage. Agarwal et
al. [20] tackle the problem of detecting obfuscation using
3D flexible masks using multispectral imagery through
combining images captured under visible light, NIR, and
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LWIR wavelength bands. Their experiments, based on a
variety of handcrafted local texture descriptors, show that
thermal imagery is best suited for reliable detection of
masks. Hernandez-Ortega et al. have demonstrated the use
of remote photo-plethysmography (rPPG) for detection of
liveliness [21]. They extracted the rPPG signal from the face
region of NIR videos of about 10 s duration, followed by an
SVM classifier.

The works discussed in this section demonstrate that
NIR is a viable imaging channel for face PAD applica-
tions. Several of these studies have demonstrated that other
wavelength bands, such as SWIR and LWIR, may be even
more effective than NIR for face PAD. Capturing SWIR and
LWIR data, however, often involves very expensive sensors.
NIR sensors today are significantly cheaper, even than low
cost thermal sensors of comparable image resolution. These
observations give us confidence that using an NIR sensor to
design a face PAD system strikes the right balance between
cost and efficacy.

Although ER imagery offers significant advantages for
detection of face PAs, a majority of real-world face PAD
systems acquire only visual spectra data. Very recently, Liu
et al [22] proposed a cross-modal auxiliary (CMA) frame-
work that uses a generative model to map the acquired
RGB presentation to another domain, such as NIR; and then
using it along visual domain data towards multi-modal face
PAD.

2.2 NIR Face-PAD Datasets in the Public Domain

Many of the publications discussed in Section have
been accompanied by publicly available face PAD datasets
including presentations captured under NIR illumination.
Here we present brief descriptions of some such datasets.

MS-Face [23]: This is the first public dataset to explore
the use of NIR imagery for face PAD. Specifically, data
is collected under two kinds of illumination: visible light
and 800 nm (NIR) wavelengths. The dataset contains data
captured from 21 subjects. Bona-fide presentations in this
dataset have been collected under five different conditions.
For PAs under visible light, high quality color prints have
been used; whereas PAs under NIR illumination have been
created using gray level images printed at 600 dpi.

EMSPAD [24]: the Extended Multispectral Presentation At-
tack Database (EMSPAD) contains images captured using a
Pixelteq Spect roCam™ camera. The dataset contains seven
band multispectral stacks per time instance, that is, for each
frame, 7 images have been captured in narrow wavelength
bands ranging from 425nm-930 nm. Bona-fide and attack
presentations for 50 subjects comprise this dataset. It in-
cludes only one kind of PAI, namely, 2D color-print attacks
constructed using a color laser printer and a color inkjet
printer.

MLFP [20]: The Multispectral Latex Mask based Video Face
Presentation Attack (MLFP) dataset has been prepared for
experiments in detecting obfuscation attacks using flexible
latex masks. The dataset consists of 150 bona-fide and 1200
attack videos, corresponding to 10 subjects. The PAs have
been performed using seven latex masks and three paper
masks. Data has been collected in both indoor and outdoor
environments.
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Table 1
Details of publicly available Face PAD Datasets acquired in NIR imaging domain. (* indicates video presentations.)

Dataset Year | PAI Type # Files | # Subjects | Collection Environment
MS-Face [23] 2016 | 2D- print 2352 21 Indoor

EMSPAD [24] 2017 | 2D- print 10500 50 Indoor

MLEFP [201 2017 | 3D- latex mask 1350* 10 Indoor+Outdoor
CIGIT-PPM [25] 2019 | 2D- print; 3D- mask 93358 72 Indoor

WMCA [26f 2019 | 2D- print, replay; 3D- silicone mask, rigid mask | 1941* 72 Indoor

XCSMAD [12] 2019 | 3D- custom silicone mask 535* 17 Indoor

CASIA-SUREF [27] 2019 | 2D- print, cut 21000* | 1000 Indoor

VFPAD (This work) | 2021 | 2D- print, replay; 3D- silicone mask, rigid mask | 5836* 40 Indoor+Outdoor

CIGIT-PPM [25]: The CIGIT PPM (paired photo and mask
attacks) dataset consists of 93358 paired color and NIR face
images corresponding to 72 subjects. Attack presentations
consist of print and 3D mask attacks. The diversity of record-
ings includes variations such as spoofing medium, record-
ing environment, pose, expression, glasses/no glasses, reso-
lution and distance.

WMCA [26]: The Wide Multi-Channel presentation Attack
(WMCA) dataset consists of short video recordings from
multiple imaging channels that are spatially and temporally
aligned. The presentations are recorded in color, depth, ther-
mal, and NIR (860 nm) channels. It contains a variety of 2D
and 3D PAs- 2D print and replay attacks, mannequins, pa-
per masks, silicone masks, rigid masks, transparent masks,
and non-medical eyeglasses. The dataset consists of 1679
videos, including 347 bona-fide videos collected from 72
subjects under various conditions.

XCSMAD [12]: The eXtended Custom Silicone Mask At-
tack Dataset (XCSMAD) is a multi-channel dataset dedi-
cated to PAs constructed using custom-made 3D silicone
masks. The data are captured using color, infrared, and
two varieties of thermal imaging devices. It consists of 535
presentations in total, wherein 295 videos are PAs. It also
provides bona-fide presentations of subjects whose 3D masks
were created—which facilitates analysis of vulnerability and
impersonation attacks.

CASIA-SURF [27]: This dataset consists of video record-
ings of 1000 subjects acquired in color, infrared, and depth
channels. With 6 types of photo attacks, it consists of 21000
videos in total. The photo attacks also include operations
such as cropping, bending the print paper, and stand-off
distance.

Table[T]summarizes the details of publicly available PAD
datasets acquired in NIR.

2.3 Face-PAD using CNNs

Over the last decade, deep CNNs have emerged as a promis-
ing tool for detection of face PAs. With superior performance
over PAD methods based on handcrafted features, a major-
ity of NIR-based methods discussed in Section [2.1| employ
deep CNNs to perform face PAD. However, the amount
of PAD data is often inadequate for training a CNN from
scratch. Therefore, most CNN-based face PAD methods
function in a two-step approach: a CNN is first trained in
an end-to-end fashion for a task of face recognition from a
large FR dataset (alternatively, several FR CNN models are

publicly available for research purposes). This CNN is then
fine-tuned using PAD dataset to distinguish between bona-
fide presentations and PAs. The fine-tuning often involves
utilizing the outputs of intermittent layers of the primary
(FR) CNN, and constructing few subsequent layers (and a
classifier) for improving the performance of the PAD CNN.

In [12], it was first demonstrated that embeddings ex-
tracted from a CNN trained for FR could be directly used
to achieve very low misclassification rates for face PAD.
This work relies on the 9-layer LightCNN [13]. A multi-
channel CNN (MC-CNN) that takes advantage of shared
layers of a CNN to obtain unified embeddings from all
input channels (where each data channel represents data
collected in a single spectral band) has been proposed
in [26]. These embeddings are classified by a set of fully
connected layers that perform two class classification. Li et
al. [19] have adapted the MobileNet-v3 [28] for face PAD.
They report a half-total error rate (HTER) of 1.1% on a self-
collected dataset including RGB and NIR presentations. Un-
fortunately, this dataset is not publicly available. However,
the work is of interest in our context, since they demonstrate
that a fairly small CNN (namely, MobileNet-v3) can be used
effectively for the task of face PAD. In [29]], Kotwal et al. have
introduced a patch-pooling layer in a CNN, which serves
to extract texture descriptors of input. Using such patch-
pooling layers in a LightCNN, they demonstrate perfect face
PAD on the WMCA dataset and state-of-the-art performance
on the MLFP dataset.

3 VFPAD DATASET

To develop an efficient face PAD system for an automobile,
the foremost crucial requirement is appropriate training
dataset. This dataset must encompass various real-world
scenarios for the present use-case. In addition to varia-
tions in illumination, pose, and common accessories (that
cause partial occlusion), the dataset should also include
substantial presentations from different 2D and 3D PAls.
Towards this goal, we have created a novel dataset, named
VFPAD (in-Vehicular Face Presentation Attack Detection)
that consists of 5800+ video presentations from bona-fide and
attacks acquired in NIR imaging domainﬂ

Each video presentation in the VFPAD dataset, approx-
imately 10s long, has been recorded inside a car using
Entron F001 (with NIR 940nm filter) camera positioned

1. VFPAD dataset: https:/ /www.idiap.ch/dataset/vfpad
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Figure 2. Setup inside the vehicle for VFPAD recordings. The NIR
camera, mounted on the steering wheel, is marked by a red circle; and
two blue rectangles show the locations of NIR illuminators.

on the steering wheel of the car. Figure 2] shows the data
recording setup which also includes two NIR illuminators
on each of the front pillars. The dataset consists of 4046 bona-
fide recordings from 40 subjects (24 males and 16 females),
and 1790 attack presentation videos from a total of 89 PAls.
The VFPAD dataset comprise HD recordings (1280 x 720
pixels) with 12-bit resolution.

Here, we provide details of PAls and acquisition pro-
cedure for VFPAD dataset. The experimental protocol used
throughout this work has also been subsequently described.

3.1 Description of PAls

The 2D PAls used in the VFPAD dataset include: (a) A4
sized color printed photographs, and (b) digital color images
(photographs) and videos replayed on a tablet device (iPad
2). Each PAI (photograph, digital image, or video) represents
a face region of the subject. We have used two kinds of color
printers to prepare the printed PAls: laser printer (Develop
ineo+ 364e) and inkjet printer (Epson XP 680). As the toner
used in the laser printer is NIR-reflective, the facial features
in the PAI are clearly visible under NIR illumination. On the
other hand, in the photographs printed on inkjet printer, the
image (or facial features) are poorly visible or often invisible
under NIR illumination. In the digital replay PAls (iPad 2)
as well, the image content is completely invisible under NIR
illumination.

To create 3D PAs, we have considered the flexible as well
as rigid face-masks for creation of the VFPAD dataset. The
flexible masks used here are generic head-and-shoulders
masks made of silicone. This type of commercial grade
masks, with cost in the range of US$ 600-800, have pre-
viously been used for multichannel face PAD [26]. We
have used 20 such masks to record PAs from the VFPAD
dataset. An example of this category of masks is shown in
Figure Ba).

We have also constructed PAs in VFPAD dataset using
40 rigid masks for real subjects. These masks were manufac-
tured by two sources (20 masks each)- Dig:Ed, a 3D-printing
company in Germany; and REAL-f Co. Ltd. based in Japan.
To create these custom masks, we captured the following
data from 40 subjects: (a) a 3D scan of face captured using
a RealSense SR300 (RGB-D) camera from Intel, (b) several
facial photographs captured using a Sony Alpha 7-II cam-
era, and (c) physical measurements of facial features (the
subjects were asked to hold ruler next to their face during

—
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Figure 3. Examples of 3D PAls used in the VFPAD dataset: (a) generic
silicone mask, (b) custom rigid mask (by Dig:Ed), (c) custom rigid mask
(by Real-F), and (d) custom silicone mask.

photography). The 3D-printed rigid masks manufactured
by Dig:Ed are made of amorphous powder compacted with
resin. Real-F uses a proprietary Three-dimension Photo Form
technique to transfer high resolution photographs onto a
synthetic curved surface. Additional facial features such
as eyes, eyelashes, etc. are then applied to the mask. Fig-
ures [B[b) and (c) show rigid masks created by Dig:Ed and
Real-f, respectively.

Additionally, we have also used 21 custom silicone
masks made by Nimba Creations Ltd. (see for details).
An example of custom mask of this category is shown in
Figure B(d). During capturing presentations using silicone
masks (which are manufactured with holes in place of eye-
sockets), we have used either artificial eyes (made of plastic
or glass) or simply eye-cutouts from printed photographs.

3.2 Data Acquisition

For bona-fide presentations, each subject sat in the driving
seat. Similarly, for 2D PAs, the attacker sat in the driving
seat, holding the 2D PAI at the appropriate position. For 3D
PAs, the mask was attached to a mannequin or a stand; and
the position, height, and angle were adjusted as required.

We introduce several variations in the recordings to
construct a challenging dataset that mimics real-world sce-
narios. As the vehicle may be present in indoor or outdoor
environment, we record the presentations in 4 different
sessions: (a) outdoor in sunny weather, (b) outdoor in cloudy
weather, (c) indoor in dimly lit area, and (d) indoor in
brightly lit area. The outdoor sessions were recorded in
open spaces, while the indoor sessions were conducted in
basement parking.

Another form of illumination variation was introduced
by controlling the NIR illuminators placed inside the vehi-
cle. When both illuminators were on, the presentations re-
ceived uniform illumination. We recorded non-uniform vari-
ant of presentations by keeping on only one NIR illuminator
(the one near to the subject). For the NIR camera, placed
on the steering wheel, to obtain a frontal presentation of
subject’s face, the subject (bona-fide or PA) is required to tilt
the face at camera. On the other hand, when the subject is
in normal position (i.e. looking ahead on the road), the NIR
camera is placed below the subject’s face, and is normal to
their chin region. We have recorded both variations (frontal
and below) of head pose in the VFPAD dataset.

In the real-world scenario, the person in driver’s seat
is likely to wear an accessory like glasses, sunglasses, or
hat. These objects partially occlude the subject’s face, and
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Figure 4. Samples of presentations from VFPAD dataset demonstrating
variations in accessories, pose, and illumination, etc. The upper two
rows consist of bona-fide samples, and the bottom row depicts pre-
sentation attacks. The images, captured in 12 bit resolution, have been
converted to 8-bit representation by discarding lower 4-bits.

thereby, may deteriorate the performance of FR and PAD
systems. Having a training data that consists of such oc-
cluded bona-fide presentations may be helpful in improving
the robustness of face PAD methods. We have created 6-7
looks through different combinations of accessories for each
real subject as- (1) natural, (b) medical glasses (wherever
applicable), (c) artificial (dummy) glasses, (d) sunglasses
(almost opaque to NIR illumination), (e) hat, (f) glasses +
hat, and (g) sunglasses + hat.

Through combination of aforementioned variations, 96—
112 videos presentations for each bona-fide subjects have
been collected. For each PAI, 16 videos were recorded (no
looks variation). Figure [d] shows examples of various presen-
tations captured in the VFPAD dataset: where top two rows
consist of bona-fide presentations, and the bottom row shows
some attack presentations.

3.3 grandtest Protocol for VFPAD Dataset

To conduct the PAD experiments: training and testing the
FPAD CNN, we have designed the grandtest protocol with
fixed and disjoint partitions. In the grandtest protocol, as
summarized in Table [2} the VFPAD dataset is split into
three disjoint sets: one for training (train); one for devel-
opment (dev) purposes such as tuning the parameters, or
validating the performance of CNN; and one for evaluating
the performance of the PAD system (eval). From each
video presentation, 20 frames have been selected through
uniform sampling of the video. However, since the number
of print attacks were relatively lesser, we have selected
80 frames from presentations involving print attacks. This
modification provides a good balance across different types
of attacks in the dataset. The train set consists of 1503
bona-fide and 595 PA videos. The dev set contains 1247 bona-
fide videos and 666 PA videos; while 1296 bona-fide and 529
PA videos comprise the eval set of the grandtest protocol.
It is important to note that the three sets are subject-wise
disjoint, that is, all data from a given subject appears only
in one of the three sets.

6
Table 2
The grandtest protocol for the VFPAD dataset.

Partition # Videos | Split Ratio (%)
train-bona-fide 1503 37.15
train-attack 595 33.24
dev-bona-fide 1247 30.82
dev-attack 666 37.20
eval-bona-fide 1296 32.03
eval-attack 529 29.56
Total 5836

4 PRopPOSED FACE PAD CNN

In this section, we provide an overview of the proposed PAD
method for detection of 2D and 3D presentation attacks on
FR system. These presentations have been acquired in NIR
imaging domain in a challenging in-vehicular setup.

An NIR-adapted Face PAD (referred to as FPAD) method
using a deep CNN is proposed for the aforementioned task.
In addition to high accuracy at detection of PAs, the pro-
posed method is also computationally efficient with smaller
memory footprint—which facilitates its deployment in re-
source constrained environment such as TEE. We employ a
combination of transfer learning and domain-specific adap-
tation of few, specific layers of the pretrained FR CNN to
accomplish the task of face PAD. Details of different stages
of the proposed FPAD framework are described below.

4.1

The first stage of the proposed FPAD framework is the
preparation of input presentations to the specific format
required by the deep CNN that functions as a feature
extractor. With the availability of several face detectors, the
detection of facial landmarks from the RGB presentations is
quite straightforward. However, for the NIR presentations,
the appearances of genuine human faces and PAs are quite
different from the ones in visual spectra. A direct use of face
detector pretrained on visual spectra data on the presen-
tations acquired in NIR can result in poor accuracy of the
detection and localization of face. The NIR data, therefore,
should be explicitly normalized (or preprocessed) for better
and accurate detection of face.

Additionally, the VFPAD dataset has been captured in
various environmental conditions- indoors as well as out-
doors. The VFPAD dataset, thus, exhibits a large variation
in the illumination conditions. The top row in Figure [
shows 4 samples from the VFPAD dataset. These samples,
that belong to the same subject, have been recorded in
different environmental conditions (from left to right: the
outdoor sunny, outdoor cloudy, indoor dimly lit, and indoor
brightly lit, respectively.) With such a high degree of uneven
illumination, the face detection can fail very often. Such
failures, considered as failure to acquire (FTA), reduce the
amount of valid data available to the PAD system. The FTA
also limits the applicability of the PAD system for real-life
scenarios having similar illumination conditions.

To reduce the effect of uneven illumination, we normal-
ize the input NIR presentation through a region-based adap-
tive histogram equalization (AHE). However, the vanilla

Preprocessing
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AHE methods tend to amplify the noise in homogeneous
regions. We employ a contrast limited variant of AHE (also
known as CLAHE) to each NIR presentation—where the
input is divided into small regions (patches); each region
is subjected to AHE with parameters determined by region-
based statistic; and finally, the equalized regions are blended
together. This preprocessing is specific to the detection of
face and facial keypoints only. It is not applied during
preparing the presentation for PAD. We apply MTCNN face
detector [31] to detect the face and some facial keypoints. We
align the input face presentation such that the eye center and
mouth center of a face are aligned to predefined coordinates.
The aligned face images are resized to a fixed dimension of
128 x 128 pixels. The Entron NIR camera used to acquire
data generates a 12-bit output. We discard the lower 4-bits of
the VFPAD data to obtain an 8-bit representation as required
by the subsequent CNN.

4.2 Architecture of FPAD CNN

Since the PAD datasets are often too small to train a deep
CNN from scratch, researchers have advocated the use of
transfer learning from networks that have been pretrained
for a similar, but not the same task. For this purpose, we
consider a CNN pretrained for face recognition (FR) due
to- (a) similarity with PAD with respect to the input feature
space, and (b) availability of large amounts of training data
(although acquired in visual channel). In the subsequent
discussions, we refer to this network as ‘base network’ to
distinguish it from the actual PAD network (or model).

Preparation of Base Network:

To build a base network, we have utilized a 9-layer ver-
sion of LightCNN FR model [13]. This CNN (hereafter,
LightCNN-9) is one of the most accurate publicly available
FR CNNs with a demonstrated accuracy of ~ 98.7% on the
LFW dataset [32]. With compact architecture, as depicted
in Figure |5 the LightCNN-9 achieves this performance
with a much smaller set of parameters compared to the
other FR CNNs. (For a comparative study of other popular
lightweight architectures, see Sec. [6.3]) The smaller size of
the network is particularly important for the present FPAD
framework, since the final model should be able to function
from a low-end device, such as smartphone, with limited
resources inside an automobile.
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Figure 5. Schematic representation of (a) LightCNN-9 architecture, and
(b) its group block.
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The base network (FR CNN) is trained from scratch
using a grayscale (or RGB) data. We adopt the training
procedure as suggested by the creators of LightCNN-9 [13].
In addition to grayscale face presentations with specific

DSUs Higher Task-specific
Layers FC + Classifier
) H Fixed (from H
Finetune \ pretrained model) H
[—Jconvlayer ~ [Jpoollayer [ fclayer

Figure 6. Proposed adaptation mechanism of a generic CNN for face
PAD. Different layers of CNN are categorized according to their func-
tioning during adaptation process.

alignment, Wu et al. suggest a use of data augmentation
by random horizontal flipping and random cropping of
input presentations to generate fixed size patches. The base
network generates an output vector with dimensionality
equal to the number of unique identities present in the
training dataset. We use the cross entropy loss function to
train the base network. For C class classification, the cross
entropy loss, Lcg, for i-th input presentation is given by
Equation [T}
c

Lcg =— Zyi,c IOg(pi,c)a
c=1

M

where y; refers to a boolean (0 or 1) indicating whether the
class label ¢ for input ¢ is correct or not. p; . is predicted
probability of input ¢ belonging to class c.

Adaptation for Face PAD in NIR:

The base network is required to be adapted for a different
task (face PAD) on data from a different domain (NIR). The
filters learnt by first layer of a CNN are akin to those of
Gabor filters or color blobs [33]; while the features computed
by the last layer of a CNN are highly specific to the task
and dataset [33], [34]. Therefore, several transfer learning
methods are related to adaptation of higher layers of the
base CNN as per the requirement and specifications of
new task. To this end, we fine-tune the fully connected
layer (£c1) of the base network from the VFPAD dataset
to obtain the embeddings that are more appropriate for PAD.
Also, we construct a regression-based classifier which is fed
with the embeddings of FPAD CNN. This classifier can be
represented as the final fully connected layer (referred to
as fc2) having a single output node through sigmoidal
activation. The dimensionality of classifier layer for FPAD
CNN is 256 x 1.

Freitas Pereira et al. [35] showed that features learnt by
higher layers of FR CNN are domain independent, and thus,
these can be efficient at encoding face presentations acquired
in different imaging domains. They demonstrated a use-case
of heterogeneous face recognition (HFR) which involves
FR and matching across pairs of various imaging domains.
They showed that HFR can be performed by retraining only
the lower layers of FR CNN using data from a specific do-
main, while the set of remaining features, from higher layers
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of CNN, can be shared among different imaging domains.
The features from lower layers, to be adapted for a given
domain, are also referred to as Domain Specific Units (DSU).
In this work, however, the final objective (or task) remains
unchanged across different domains. We apply this concept
of domain-specific adaptation of FR CNN for the present
task of face PAD. We consider the first two convolutional
layers (convl and group2 as per Figure [5) as the DSUs,
and retrain the same using NIR presentations from VFPAD
dataset. Our work, thus, applies adaptation of DSUs in a
cross-task scenario.

The overall procedure of adaptation and retraining of
base network to obtain the FPAD CNN for NIR presen-
tations is summarized in Figure [f] It indicates the role of
different layers in the adaptation process for a generic CNN.
To initialize the FPAD CNN, model weights from the base
network are reused. This prevents plausible over-fitting, that
may occur due to limited data from NIR imaging domain.
The NIR presentations from VFPAD dataset are used to fine-
tune the FPAD CNN. These presentations are preprocessed
to obtain cropped, fixed size, and specifically aligned face
images. We retrain the specific layers of FPAD CNN for a
binary classification task using Binary Cross Entropy (BCE)
loss function. If p is the predicted probability of a given
presentation being bona-fide, then the binary cross entropy
loss, Lpce, is given by Equation 2|

Lece = — (y log(p) + (1 —y) log(1 —p)). )
Here, y is a boolean for the label value which is set to 1 for
bona-fide, and to 0 for PA.

5 EXPERIMENTAL SETUP

In this section, we provide implementation details for the
CNN framework proposed for face PAD inside automobile.

5.1 Training Base Network

Our base network, LightCNN-9, has been trained from
scratch for FR using a visual spectra dataset. For training, we
have used a publicly available CASIA WebFace dataset [36]
that consists of 494,414 images from 10,575 unique iden-
tities. As the base network requires cropped and aligned
facial region as the input, we have employed the MTCNN-
based [31] face detector on images from the CASIA dataset.
The face images, aligned to specific keypoints, were resized
to 144 x 144 pixels—whose random crops of size 128 x 128
were provided to the base network during training. The im-
ages were also randomly flipped around their vertical axis,
(i.e., swapping of left and right sides of image) to improve
the diversity of training data through augmentation.

We trained the base network for FR using Cross Entropy
loss (also referred to as Categorical Cross Entropy) using
Stochastic Gradient Descent (SGD) optimizer [37]. For SGD,
we set the learning rate to 1 x 1072, weight decay to 1 x
1074, and momentum was set to 0.90. The base network
was trained for 50 epochs with a minibatch of 128 samples.

5.2 Adaptation of FPAD Network

The LightCNN-9 network, pretrained on CASIA WebFace
dataset for FR, serves as a base network for FPAD CNN.
The first two convolutional layers (referred to as conv1l and
group?2 in [13] and the first fully connected layer (referred
to as £c1) were adapted for the purpose of NIR-based face
PAD. Thus, only these layers were set to trainable, while
weights of all other layers were frozen (i.e., not to be mod-
ified during retraining/fine-tuning process). The prefinal
layer, £c1, of the FPAD CNN produces a 256-D embedding.
We created a subsequent fully connected layer (fc2) with
dimensionality of 256 x 1 to provide a final score (or the
output) of the PAD network. The output of this layer was
passed through sigmoidal activation.

The VFPAD dataset, specifically collected in in-vehicular
environment, was used to train and evaluate the FPAD
CNN. This dataset consists of 4046 bona-fide presentations,
and 1790 attack presentations acquired in NIR channel. With
grandtest protocol as described in Section 3.3} we consid-
ered 20 frames from each video for face PAD experiments,
except for print attacks where 80 frames from each video
were selected. For detection of facial keypoints, the NIR
presentations from the VFPAD dataset were normalized
using CLAHE method where we have used the regions
with 1/8-th of the input dimensions. The clip limit, as
required by CLAHE to limit the over-amplification, was
set to 5% for each region. The original presentations were
converted to 8-bit format by discarding lower 4-bits, and
provided to MTCNN face detector to obtain facial land-
marks. After spatial alignment and resizing to 128 x 128,
these presentations were provided to the FPAD CNN for
domain-specific adaptation and fine-tuning. To adapt the
FPAD CNN for binary classification problem of face PAD,
we have used Adam optimizer [38] along with Binary Cross
Entropy (BCE) loss. A learning rate of 1 x 10™* was set
for Adam optimizer; and the retraining procedure was run
for 20 epochs where each minibatch consisted of randomly
shuffled 128 presentations.

The grandtest protocol for VFPAD dataset consists
of train, dev, and eval sets. To retrain (adaptation of
DSUs and fc layer) the FPAD CNN, we have used the
presentations from train set of the dataset only. At every
epoch, the performance of FPAD CNN was validated on
the dev set of the VFPAD dataset, and the best model was
tracked.

5.3 Performance Measures

We have used the following evaluation measures for report-

ing the performance of the PAD system:

o APCER (attack presentation classification error rate) is
defined as the proportion of presentation attacks (PA)
incorrectly classified as bona-fide. If Npars denotes the
number of PAIS, the APCER of a PAD method is given
by Equation

Npais
1 PAI

E score;,

i=1

APCERpar = 1 —

®)

Npats

where the binary variable score; is set to 0 if the ¢-th
presentation is classified as bona-fide, and to 1 otherwise.
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When multiple categories (or species) of PAls are present,
the overall APCER is considered as the average APCER
across total attack categories. However, in the present
case, we have not differentiated within such categories.

o BPCER (bona-fide presentation classification error rate) is
defined as proportion of bona-fide presentations that are
incorrectly classified. For Ngr bona-fide presentations, the
BPCER can be calculated as per Equation 4

Ngr

1
BPCER = — score;.

(4)

o ACER (Average classification error rate) is computed as
the average of the above two measures:

APCER + BPCER
. . )
The EER, used to determine the score threshold on de-

velopment (dev) set, is essentially the ACER for dev set
where APCERgey & BPCER4ey.

ACER =

6 RESULTS AND PERFORMANCE EVALUATION

Since the VFPAD dataset is the first dataset of its kind
(that captures presentations inside an automobile using
NIR channel) we also evaluate the performance of some
common face PAD methods on the VFPAD dataset to es-
tablish baselines. Subsequently, we present results with the
proposed FPAD CNN. We also include the performance of
FPAD CNNs adapted from two other commonly used light
weight backbone CNNSs. Finally, we briefly discuss the effect
of adaptation of different layers for the proposed FPAD
framework, and reasons for incorrect results.

6.1 Baseline Face PAD on VFPAD Dataset

To maintain the consistency across experiments from the
baselines and proposed PAD method, we have used the
same preprocessing steps for all experiments. Also, the
presentations from train set of VFPAD are considered for
training the classifier (or CNN, wherever applicable); and
presentations from the dev set are used to select the score
thresholds of classifier, and also the best model in case of
CNN-based methods.

The first baseline method, proposed by Costa-Pazo et
al. [39], uses Image Quality Measures (IQM) as features to
be classified using a logistic regression (LR) classifier. We
construct the first baseline using this PAD method on the
VFPAD dataset, and refer to it as IQM+LR method. Our sec-
ond baseline method consists of the features derived from
local binary patterns (LBP) (uniform LBP§?) to be classfied

Table 3
Performance evaluation of the baseline PAD methods on the VFPAD
dataset for grandtest protocol. All measure rates are in %. The
numbers in parenthesis indicate the number of incorrectly classified
samples for total samples in the given class.

PAD dev set eval set

Method ACER APCER BPCER ACER
IOM + LR 11.69 8.53 (1119/13126) | 9.09 (2324/25565) 8.81
LBP + LR 15.60 9.01 (1183/13126) | 13.60 (3476/25565) | 11.30
CNN + LR | 10.97 1.85 (243/13126) 6.19 (1582/25565) 4.02
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using LR classifier. We denote this baseline as LBP+LR
method. Our third baseline, referred to as CNN+LR, makes
use of the embeddings of a pretrained FR CNN (pretrained
in visual spectra, but not adapted for NIR-based PAD) as
features to train an LR classifier towards face PAD [12].

The performance of all baselines on the grandtest pro-
tocol of VFPAD dataset are provided in Table [3} The image
quality-based PAD method, IQM+LR, resulted in classifica-
tion error rates in the range of 8-12% across different parti-
tions, and also across both classes of the VFPAD dataset. The
LBP+LR method, that learns subtle micro-textural patterns,
provided the average error rate above 10% on the eval
set of the VFPAD dataset. Also, we observed that for the
same score threshold, it did not produce good results on
the dev set where nearly one in every eight samples were
incorrectly classified. The CNN-based PAD baseline used
the LightCNN-9 model pretrained on the CASIA WebFace
dataset. Its embeddings were directly used to train the
PAD classifier. With this baseline method, the APCER on
the eval set of VFPAD was as low as 1.85%; however,
more than 6% bona-fide samples were incorrectly classified as
attacks. On VFPAD dataset, the CNN+LR method resulted
in the average classification error of 4%. However, it may
be noted that its classification accuracy on the dev set was
nearly 2.5x that on the eval set. For all baseline methods,
the ACER values for dev set of grandtest protocol of the
VEFPAD dataset lie in the range of 10-15%, while these differ
from their eval set counterparts with a margin of 4-5%.

6.2 Results of the FPAD CNN on VFPAD Dataset

The results of proposed FPAD method on the grandtest
protocol of VFPAD dataset are provided in Table i} On the
eval set of the VFPAD dataset, the FPAD CNN achieved the
overall accuracy of 98.53%. The score-threshold was chosen
as EER on the dev set of the same dataset. With APCER
of 1.49%, the proposed method misclassified 195 attack pre-
sentations (in terms of frames or images) from 13126 overall
PA presentations. On the other side, out of 25565 bona-
fide presentations (frames/images), 374 were misclassified
resulting in the BPCER of 1.46%.

It can be observed that the proposed FPAD method
outperforms the baseline methods by large margins in terms
of classification error rates from both classes. For baselines
using handcrafted features, the FPAD CNN provides an
improvement of at least 7% in terms of overall accuracy
measured by ACER. With a gain of 4.5+% of BPCER and
marginal improvement in APCER, the proposed FPAD CNN
proves to be superior to the deep CNN-based PAD baseline
as well. On the dev set, the FPAD CNN provides at least

Table 4
Performance evaluation of the proposed FPAD method on the VFPAD
dataset for grandtest protocol. All measure rates are in %. The
numbers in parenthesis indicate the number of incorrectly classified
samples for total samples in the given class.

Dataset FTA | APCER BPCER ACER
Partition

dev 0.27 | 0.92 (169/18453) | 0.91 (221/24190) | 0.91
eval 0.14 | 1.49 (195/13126) | 1.46 (374/25565) | 1.47
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Figure 7. Receiver Operating Characteristics (ROC) curve for the pro-
posed FPAD CNN using grandtest protocol of the VFPAD dataset.

10x smaller error rates as compared to any of the baseline
methods. Nearly similar error rates across disjoint partitions
indicate a better generalization of FPAD CNN. Thus, trans-
fer learning from a pretrained FR CNN, through adaptation
of DSUs, is an efficient mechanism to obtain a CNN for the
detection of face presentation attacks acquired in infrared
domain.

Presentation attacks in the VFPAD dataset are con-
structed using 4 types of instruments (PAls): photo prints,
digital displays (to replay video), rigid masks, and flexible
custom masks. In Table 5| we provide the breakdown of
classification error rates for each category of PA. The video-
replay attacks were carried out using an iPad. The contents
of screen of this tablet were not visible in the NIR channel,
and hence, these presentations, indeed, consist of noisy,
spurious signals as captured by the sensor of the camera. For
most replay attacks, the face detection fails, and therefore,
the frame does not get processed. In case of PAs constructed
using high quality photo-prints, photographs printed on the
inkjet printer were not visible to the sensor of NIR camera.
Therefore, only photo-prints obtained from the laser printer
have been used to train and test the FPAD CNN. In the
grandtest protocol, we have considered 4x frames per
video presentation for print attacks as compared to the
presentations of bona-fide entities or those of mask attacks.
A higher number of frames were used to balance different
types of attacks, and thereby, to obtain the FPAD CNN
with a robust response against a variety of presentation
attacks. For the eval set of VFPAD dataset, 0.1% of print
attacks were incorrectly detected as genuine ones. For pre-
sentation attacks created using a flexible facial mask, the
misclassification rate was as low as 2.35% and 0.7% on the
eval and dev sets, respectively, of the VFPAD dataset. The
classification error rates were relatively higher for PAs using
rigid 3D masks. We obtained APCER of 2.4-3.4% for rigid
masks over different partitions of the VFPAD dataset using

Table 5
Performance breakdown across different PAls for the FPAD CNN on the
VFPAD dataset for grandtest protocol. The overall EER on the dev
set was considered as the score threshold. All measure rates are in %.

PA Instrument

APCER (dev)

APCER (eval)

Replay 0.00 0.00
Print 0.00 0.10
Rigid mask 3.35 243
Flexible mask 0.69 2.35

10

DET dev.
20 — dev. 90

DET eval.

— eval.

BPCER (%)
S
BPCER (%)
=
S

H ] 5

(%% ﬁé%

legsg%waﬁww O ® S PP ngw&?w YO @ PP
APCER (%) APCER (%)

(a) dev set (b) eval set

Figure 8. Detection Error Tradeoff (DET) curve for the proposed FPAD
CNN using grandtest protocol of the VFPAD dataset.

the grandtest protocol. For every category of PA, the
corresponding APCER values are better than those obtained
for any of the baseline methods.

Figure [7| shows the receiver operating characteristics
(ROC) curve for the FPAD CNN on dev and eval sets of the
VFPAD dataset. for the proposed FPAD CNN, the ROC is
nearly perfect for APCER values above 1072 on both sets of
the VFPAD. For extremely small values of APCER (around
1073), the BPCER deteriorates nominally by 2-3%. It should
also be noted that the ROC is similar for both dev and eval
sets, whereas the CNN was trained on the train set which
has no subjects from the other two sets.

The detection error trade-off (DET) curve from Figure
indicates the behavior of the classifier over a range of
APCER and BPCER values. As observed from the Figure,
the value of BPCER for APCER @ 1.0% is nearly equal
to 1.0% which indicates well-balanced performance of the
FPAD CNN at low error rates. With this operating point,
the performance of FPAD CNN on the eval set of VFPAD
is marked (small circle) on the DET plot from Figure
This operating point resulted in the APCER and BPCER
values of ~ 1.50%- both of which are nearly similar, and
slightly higher than the corresponding error rates on dev
set. It should be noted that the FPAD CNN was adapted
only from train set; and data from other two sets were
completely unused.

6.3 Performance of FPAD CNNs with Different Base
Networks

A use of lightweight CNN as the backbone is important
for the present FPAD use-case due to limited resource
constraints. As a first step, we have conducted PAD ex-
periments on the following 4 different architectures (with
some ablation) to identify the most suitable architecture
for VFPAD: MobileNets [40], [41], FeatherNet [42], Deep-
PixBis [43], and LightCNN-9 [13]. While MobileNets are
generalized architectures to build lightweight networks;
the FeatherNet, DeepPixBiS (based on DenseNet), and
LightCNN have specifically been developed for face PAD.
To train the base (or backbone) networks for each ar-
chitecture (except the DeepPixBiS), we have used the CA-
SIA WebFace dataset, and followed the same procedure
as described in Sec. for training an FR network. For
DeepPixBiS, we have followed the procedure devised by
its original authors where the base network is trained on
ImageNet. The model (or checkpoint) with the least loss
on the training set was selected for subsequent adaptation
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Figure 9. Plots of ROC and DET of the FPAD CNN using different
backbone architectures. The plots are obtained on the grandtest
protocol of the VFPAD dataset.

for FPAD using VFPAD dataset. The domain-specific adap-
tation, as depicted in Fig. [6} requires finetuning a subset
of DSUs and one or more fully connected layers at higher
depth. With multiple blocks, layers, and their parameters,
the MobileNets, FeatherNet, and DenseNet present a large
number of combinations of layers that may be adapted
or finetuned for the task of FPAD. A detailed study of
the domain-specific adaptation for these deep networks
is beyond the scope of this paper. Thus, we restrict our
experiments to a specific subset of layers for each network
while keeping all remaining layers fixed. The procedure
for adaptation remains the same as detailed in Sec.
(Although for DeepPixBiS, the entire network has been
finetuned as suggested by its authors.) Table [ provides
the details of layers finetuned for each network and the
corresponding results obtained on the dev and eval sets
of VFPAD.

Figure [9 shows the ROC and DET plots for eval set of
the VFPAD dataset for each of the backbone architectures.
We obtained less than 3% average error for the FPAD
CNNs adapted from FeatherNet and LightCNN9, while the
MobileNetV2-based network could not produce a compa-
rable performance. However, it may be observed from the
ROC and DET plots that the performance of FeatherNet
drops significantly as one attempts to vary the operating
point (i.e., the score threshold). For the APCER of 1%, the
FeatherNet-based FPAD CNN resulted in the BPCER above
10%. On the other hand, for the LightCNN9-based FPAD
CNN, the BPCER value remained around 2% for the exactly
same APCER setting. Following these observations, we de-
cided to develop the final model based on the LightCNN9
as the backbone—although other two networks are much

Table 6
Details of layers/blocks of various base networks considered for the
domain-specific adaptation; and the performance of corresponding
FPAD CNN on the VFPAD dataset for grandtest protocol. The overall
EER on the dev set was considered as the score threshold. All
measure rates are in %. The names of layers are consistent with their
original publications as cited.

Architecture
MobileNetV2 [41

Adapted Layers/ Blocks

conv2d, bottleneckl/ expl, bottleneck2/
exp (1 of 6), bottleneck7/ exp (6 of 6),
conv2d, classifier

conv2d, BlockB, BlockB (1 of 6), BlockA (2
of 2), Streaming (DW), classifier

all layers

ACER (dev)
15.16

ACER (eval)
8.88

FeatherNet [42] 3.03 3.02

DeepPixBiS [43]
LightCNNO [13!

0.43
091

1.24
147

convl, group2, fcl, classifier

11

Table 7
Details of ablation study with different combinations of layers
considered for the adaptation; and the performance of corresponding
FPAD CNN on the VFPAD dataset for grandtest protocol.

Config Layers to Adapt ACER | ACER
convl | group2 | fcl | fc2 (dev) (eval)

1 X X v v 0.62 10.14

2 v X X v 3.36 3.32

3 v X v v 1.98 1.51

4 v v v v 0.91 1.47

smaller in size. The DeepPixBiS architecture provided the
best performance with average error of 1.24%; however, it
finetunes all layers of the network using VFPAD dataset
(while other architectures consider only a small fraction of
the base network towards finetuning). Additionally, it uses
a different dataset for training the base network. Therefore,
these results may not be readily comparable, but they rather
demonstrate a trade-off between the training complexity (or
timing/ parameters) versus the possible performance of the
resultant network. It may be noted that these results are
based on our limited experimentation, and adapting more
layers and/or changing training procedure may lead to
different inferences.

6.4 Performance of FPAD CNN with Different Adapted
Layers

The proposed FPAD CNN is an outcome of domain-specific
adaptation of a base network (trained for FR from visual
spectra data). The adaptation procedure operates on a sub-
set of domain-specific lower (or input-side) layers, and a
subset of task-specific higher (or output-side) layers. To
understand the effect of each subset, and also to find a
suitable combination of layers on each side, we conducted
the ablation study for adapting different combinations of
layers of the FPAD CNN on the VFPAD dataset. For this
task, we have considered only the LightCNN9-based FPAD
CNN.

In [12], it was demonstrated that the FR CNN pretrained
on the visual spectrum data can be effectively used towards
face PAD of NIR presentations. Thus, in the first ablation, we
do not adapt any DSUs of the base FR CNN, but consider
prefinal fully connected layer and subsequent classifier for
the purpose of adaptation. These layers are highly specific
to the present task. In the complementary study, only the
first convolutional layer (convl) has been considered for
adaptation, in addition to the final binary classifier. Here,
a single DSU has been adapted to the input NIR data;
however, the final embeddings (input to the final classifier)
are obtained without any finetuning of task-specific higher
layers. The next combination consists of adaptation of one
layer from DSU (convl) and one layer from task-specific
layers (fc1) to perform face PAD on VFPAD dataset. It can
be observed from Table[/]that this adaptation scheme results
in a much better performance as compared to using only
domain- or task—specific layers for the present task. In the
final combination, we considered two layers from DSU and
the task-specific fully connected layer for domain-specific
adaptation of FPAD CNN. This combination resulted in the
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(a)

Figure 10. Examples of misclassifications by the FPAD CNN. First
example on left is bona-fide presentation; and the other examples are
presentation attacks. All examples are acquired in NIR spectrum. For
8-bit display, the lower 4-bits of the original data are discarded.

best set of results with APCER and BPCER values around
1%, with more layers (or parameters) being subjected to the
adaptation.

Table ] summarizes the combinations considered for
adaptation and corresponding results obtained on the VF-
PAD dataset. The learning rates were varied in the steps of
{1073,107%,107°}, and training minibatches consisted of
either 64 or 128 randomly sampled presentations.

6.5 Discussion

Misclassified Presentations: Figure provides some
examples of such presentations from VFPAD dataset. A
fraction of misclassified samples appeared to be over-
or under-saturated. For these samples, belonging to
both classes- bona-file and PA, a large region was not
usable due to saturation which could have resulted in the
incorrect classification by the CNN. The VFPAD dataset
consists of 50% presentations captured from the camera
placed at an oblique angle to the subject’s face. In these
presentations, the orientation of the subject’s face or mask
is highly non-frontal, which has been a reason for some
misclassification. While the face detector and preprocessor
are capable of working with minor variations in the size
and orientations; for large deviations, the FPAD CNN may
generate incorrect results. Finally, certain high-quality mask
attacks appear highly similar to that of a genuine face when
captured by the given NIR camera in in-vehicular setup.
Their classification scores from FPAD CNN were quite
close to those of bona-fide samples; and hence, resulting in
misclassification.

Other Failures to Acquire Input: If the face detection fails,
the corresponding presentation cannot be processed further.
Such failures can mostly be attributed to (a) severely over-
or under-exposed presentations, (b) too much angled (non-
frontal) orientation of subject’s face with reference to the
axis of camera, and (c) non-visibility of a face (or any
content) from some PAs, especially digital display ones, in
the NIR wavelength bands of the capturing device. Figure[1]]
shows some examples of presentations where preprocessing
module could not detect a human face. These samples are
regarded as failure to acquire (FTA). Note that FTA values
are same for the baseline experiments as well; and hence,
the results are comparable.

7 CONCLUSIONS

In this paper we have developed a novel face PAD frame-
work for in-vehicular environment. This framework, based
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(d)

Figure 11. Examples of presentations from VFPAD resulting in FTA
due to failure at detecting the face. First two examples are bona-fide
presentations; while the last two examples are the presentation attacks
constructed using a photo print, and a digital display, respectively. All
examples are acquired in NIR spectrum. For 8-bit display, the lower 4-
bits of the original data are discarded.

on a compact 9-layer CNN, can be deployed inside a pas-
senger vehicle for continuous verification of liveliness of the
driver’s face. It uses a full-HD, single channel NIR (940 nm
in this case) image as the input to exploit advantages offered
by extended range imagery. However, lack of sufficient
training data acquired in these imaging channels (NIR) often
limits the applicability of corresponding face PAD models.
We provide a fine-tuning method coupled with adaptation
of domain-specific layers of the base CNN- to obtain the
face PAD CNN for NIR video presentations. The base CNN,
in this case, has been trained on RGB data for the FR task.
The aforementioned method modifies only 3 layers of the
base CNN while the weights from other layers (as learnt for
FR in RGB) are shared.

To evaluate the performance of the proposed face PAD
method, we have collected a large dataset (VFPAD) consist-
ing of 5800+ videos. It includes bona-fide presentations from
40 subjects and attack presentations from 89 PAIs (2D PAL
printed photographs and digital replay; and 3D PAI: rigid
and flexible masks). These presentations have been captured
in a car using a single channel NIR camera mounted on
the steering wheel. The dataset provides four variations
in external environmental conditions, and two variations
of pose and NIR illumination each. Additionally, for bona-
fide subjects, we have incorporated 67 variations through
combinations of eyewear and hat. Experimental results over
the grandtest protocol of VFPAD dataset show that the
proposed method achieves excellent performance with ap-
proximately 1.5% of the APCER as well as BPCER. These
results also outperform several classical and deep learning-
based face PAD methods by a reasonable margin.
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