
1

Towards Protecting Face Embeddings
in Mobile Face Verification Scenarios
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Idiap Research Institute (Martigny, Switzerland)

Abstract—This paper proposes PolyProtect, a method for protecting the sensitive face embeddings that are used to represent people’s
faces in neural-network-based face verification systems. PolyProtect transforms a face embedding to a more secure template, using a
mapping based on multivariate polynomials parameterised by user-specific coefficients and exponents. In this work, PolyProtect is
evaluated on two open-source face verification systems in a mobile application context, under the toughest threat model that assumes
a fully-informed attacker with complete knowledge of the system and all its parameters. Results indicate that PolyProtect can be tuned
to achieve a satisfactory trade-off between the recognition accuracy of the PolyProtected face verification system and the irreversibility
of the PolyProtected templates. Furthermore, PolyProtected templates are shown to be effectively unlinkable, especially if the
user-specific parameters employed in the PolyProtect mapping are selected in a non-naive manner. The evaluation is conducted using
practical methodologies with tangible results, to present realistic insight into the method’s robustness as a face embedding protection
scheme in practice. The code to fully reproduce this work is available at: https://gitlab.idiap.ch/bob/bob.paper.polyprotect 2021.

Index Terms—biometrics, biometric template protection, face recognition, embeddings, privacy, non-invertible transform, polynomials.
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1 INTRODUCTION

The reliance on automated face recognition systems to au-
thenticate a person’s identity is becoming commonplace.
Whether we are attempting to unlock our smartphones or
cross a country border, success (or failure) is increasingly
defined by a machine’s ability to recognise the link between
our faces and our identities. Despite the numerous security
benefits associated with this form of authentication, there
are growing privacy concerns over how our sensitive face
data is being handled by the increasing number of appli-
cations that are demanding this personal information for
identity management.

Modern face recognition systems are based on deep
learning architectures, whereby a compact face represen-
tation (commonly referred to as an embedding) is learned
from several example images of a person’s face. Recently,
it has been shown that a face embedding can be inverted
to recover an approximation of the original face image [1]–
[3], and that certain soft biometric attributes (e.g., sex, race,
age, hair colour) can be extracted from the representative
face embeddings [4], [5]. These findings indicate that face
embeddings contain a wealth of personally identifiable in-
formation, which, if leaked from the system(s) in which they
are employed, would represent a threat to the privacy of face
recognition system users.

To ensure the public’s trust in face recognition technolo-
gies, it is imperative that we establish effective means of
protecting the employed face embeddings. This is especially
important in light of the recent EU General Data Protection
Regulation (GDPR)1, which imposes a legal obligation to
exercise caution in handling biometric data to protect indi-
viduals’ digital identities. Considering the urgency of this
matter in view of the widespread use of face recognition in

1. https://bit.ly/3nMM1Qz

practice, work investigating the protection of face embed-
dings is surprisingly limited.

This paper aims to contribute towards preserving the
privacy of face recognition system users, by proposing a
method for converting our sensitive face embeddings to
more secure representations. In particular, we propose a
new method, called PolyProtect, which maps face embed-
dings to protected templates with the help of multivariate
polynomials, whose parameters are defined separately for
each user of the underlying face recognition system. Con-
sidering the proliferating use of face recognition in mobile
devices, such as smartphones, we present a comprehensive
evaluation of PolyProtect in a mobile application scenario,
on two open-source face verification systems. Our results
indicate that PolyProtect shows promise as an effective face
embedding protection scheme in practice.

The remainder of the paper is structured as follows.
Section 2 outlines the main approaches to face embedding
protection in the literature; Section 3 proposes our new
protection method, PolyProtect; Section 4 analyses PolyPro-
tect in terms of the three most common evaluation criteria;
and Section 5 presents concluding remarks and avenues for
future work.

2 FACE EMBEDDING PROTECTION METHODS

It is generally agreed upon that a face embedding protection
method should possess the following three properties:

1) Recognition accuracy: The incorporation of the
protection method into a face recognition system
should not result in a (significant) degradation of
the system’s recognition accuracy.

2) Irreversibility: It should be impossible (or compu-
tationally infeasible) to recover the original face em-
bedding (or face image) from its protected version.
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3) Unlinkability: It should be possible to generate
multiple, sufficiently different protected templates
from the same subject’s face embeddings, such that
the templates cannot be linked to the same identity.
This would allow for the renewal (replacement) of
compromised templates and the use of the same
face identity across multiple applications, without
the risk of cross-matching the protected templates.

In the literature, there are two main types of approaches
towards face embedding protection, as illustrated in Fig. 1.
The first type of approach consists of learning face embed-
dings from face images using a neural network optimised
for this task, then mapping the learned embeddings to
protected templates using a separate, handcrafted protection
algorithm. The second type of approach involves training a
neural network to learn a suitable protection algorithm, to
transform a face image to its protected template.

Fig. 1. The two main types of approaches to face embedding protection.

Examples of the first type of approach to face embedding
protection, include: [6]–[12]. These methods use some sort
of algorithmically defined transformation to convert the
face embeddings (learned from the input face images) to
more secure representations. The proposed transformations
include one-way cryptographic [6] or Winner Takes All
[7] hashing, convolution of the embedding with a random
kernel [8], use of the Fuzzy Commitment [9] or Fuzzy Vault
[10] scheme, fusion of a subject’s face embedding with a
different subject’s face embedding using keys extracted from
the two sets of features [11], and homomorphic encryption
[12]. The main issue with these approaches is that they
have not been comprehensively evaluated in terms of their
ability to simultaneously satisfy all three properties of face
embedding protection methods. More specifically, although
an evaluation of the recognition accuracy is presented for all
the methods, the irreversibility and unlinkability analyses
often lack depth. In particular, the irreversibility tends to
be either: (i) assumed (e.g., based on the secrecy of certain
transformation parameters or on the reputed irreversibility
of the employed transforms) but not empirically justified
in the evaluation context, or (ii) estimated from a purely
theoretical point of view that does not reflect the method’s
robustness to an inversion attack in practice (where certain
theoretical assumptions are unlikely to hold). Similarly, the
renewability of protected templates is usually simply as-
sumed by virtue of the randomness of external parameters,
but the unlinkability property is seldom experimentally
validated. So, we do not have a complete picture of each
method’s strengths and weaknesses.

Examples of the second type of approach to face em-
bedding protection, include: [13]–[20]. These methods learn
the protected template from the input face image (with
face embeddings being extracted, in some format, during
the process). In [13]–[16], a random code is pre-defined for

each subject during enrollment, then the neural network is
trained to map different samples of the same subject’s face
to their (same) corresponding code. A cryptographic hash
of the random code represents the protected face template.
The main limitation of these approaches is that, since the
protected templates are pre-defined, we would need to re-
train the neural network for the enrollment of each new user
or the re-enrollment of existing users whose protected tem-
plates have been compromised. To get around this problem,
the methods in [17]–[20] train a neural network to learn its
own representation of a protected template, instead of training
it to learn a mapping to a pre-defined (pre-hash) code.
In [17], the neural network is trained to map face images
to intermediate binary codes then correct errors in these
binary codes (followed by cryptographic hashing of the
error-corrected codes). Since the network is trained to learn
the same code for every presentation of the same subject’s
face, renewal of compromised protected templates would be
impossible. To enable template renewability, [18]–[20] train
their neural networks to incorporate external, user-specific
randomness into the process of learning the protected tem-
plates. These methods appear promising in their ability to
generate renewable and unlinkable protected templates, but
there is currently no analysis providing insight into the
expected scalability of the renewability effort before neural
network re-training may need to be invoked. Furthermore,
the irreversibility of most of the methods in the type 2
protection approach has been evaluated in terms of the final
protected template, based on certain assumptions (e.g., the
secrecy of user-specific parameters or the one-way property
of the cryptographic hash function); however, there has
been no consideration of how irreversibility may be affected
by potential information leakage in different layers of the
trained neural network, assuming a fully-informed attacker
with access to the network and its learned parameters. So,
we have insufficient evidence of the methods’ irreversibility
in practice, particularly for a fully-informed attacker.

Considering both types of approaches towards face em-
bedding protection (Fig. 1), the second type appears to be
gaining traction recently. This is because the promise of de-
signing a potentially complex protection algorithm without
the need to explicitly define it, is attractive. Unfortunately,
this approach has several limitations. Firstly, the protection
method is specific to the neural network within which it has
been trained, so it cannot be readily adopted for the protec-
tion of face embeddings generated by other face recognition
models. Secondly, template renewability appears infeasi-
ble or impractical for all but methods such as [18]–[20];
however, more empirical evidence is needed to justify the
scalability of these methods without invoking network re-
training. Thirdly, when we train a neural network to learn a
protection algorithm for the input face images, there is often
uncertainty about what exactly the network is learning at
each stage of the process, which makes it difficult to perform
a comprehensive evaluation of the irreversibility of the
resulting protected templates. This is because, if we assume
the most challenging threat scenario where an adversary
is assumed to have access to the trained model (i.e., the
network architecture and all its learned parameters), then
the irreversibility analysis should consider how this knowl-
edge could be used to extract additional information about
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the original face embedding/image from different layers of
the neural network. Thus far, none of the face embedding
protection methods in the literature has presented such a
thorough irreversibility analysis, so we do not have a fair
picture of how irreversible the protected face templates
would be in practice.

For the aforementioned reasons, our work focuses on
the first type of approach, where a handcrafted protection
algorithm is applied to learned face embeddings. This ap-
proach allows for: (1) a flexible protection method that can
be applied to face embeddings generated using different
face recognition models; (2) the enrollment of new users or
re-enrollment of compromised users without the need to re-
train any neural network; and (3) a more precise definition
of the protection algorithm (without the uncertainty in
neural-network-based learning), and thus a better under-
standing of appropriate evaluation techniques. Although a
few face embedding protection methods in this category
have already been proposed (e.g., [6]–[12]), they are incom-
plete in their evaluations (as explained earlier), making it
difficult to draw concrete conclusions on their robustness.

In light of this discussion, the main contribution of
this paper is a new protection method, PolyProtect, which
transforms face embeddings to their protected counterparts
via user-specific multivariate polynomials. The following
two sections describe PolyProtect and present an evaluation
of its suitability as a face embedding protection method.
It should be emphasized that our focus was on evaluating
PolyProtect from a practical point of view, particularly when
analysing its irreversibility, which is usually neglected in
favour of theoretical approaches in the literature. The pre-
sented results are, therefore, more tangible and realistic than
the idealistic outcomes of purely theoretical evaluations,
which makes it easier to grasp PolyProtect’s practical value.
Although theoretical evaluations can be valuable in certain
cases, we would nevertheless encourage other researchers
to also consider adopting practical methodologies when
evaluating their proposed protection methods. This would
help to provide a clearer picture of the methods’ robustness
in practice, thereby allowing for more direct method com-
parisons in specific application contexts.

3 POLYPROTECT

This section proposes PolyProtect, a new method for pre-
serving the privacy of face embeddings in neural-network-
based face recognition systems. Let V = [v1, v2, ..., vn]
denote an n-dimensional, real-number face embedding. The
aim of PolyProtect is to map V to another real-number
feature vector, P = [p1, p2, ..., pk] (where k < n), which is
the protected version of V . This is achieved by mapping
sets of m (where m << n) consecutive elements from
V to single elements in P via multivariate polynomials
defined by a set of m user-specific (i.e., distinct for each
user of the face recognition system), ordered, unique, non-
zero integer coefficients, C = [c1, c2, ..., cm], and exponents,
E = [e1, e2, ..., em].

The first m consecutive elements of V (i.e., v1, v2, ..., vm)
are mapped to the first element in P (i.e., p1) via Eq. (1):

p1 = c1v
e1
1 + c2v

e2
2 + ...+ cmvemm (1)

The elements of V used to generate p2 depend on the de-
sired amount of overlap between successive sets of elements.
The minimum overlap is 0, in which case the elements of V
in each set would be unique. The maximum overlap is m−1,
in which case successive element sets would share m − 1
elements. Eqs. (2) and (3) define the mapping from V to p2
for overlaps of 0 and m− 1, respectively:

p2 = c1v
e1
m+1 + c2v

e2
m+2 + ...+ cmvemm+m (2)

p2 = c1v
e1
2 + c2v

e2
3 + ...+ cmvemm+1 (3)

The remaining elements in P (i.e., p3, ..., pk) are gen-
erated in a similar manner, until all the elements in V
have been used up. If the last set of elements from V is
incomplete because the dimensionality of V is not divisible
by the required number of element sets (defined by m and
the amount of overlap), V is padded by a sufficient number
of zeros to complete the set. Fig. 2 illustrates the mapping
from V to P for overlaps of 0 to 4, when V consists of 128
elements and m = 5.

From Fig. 2, it is evident that the dimensionality of P
is influenced by the amount of overlap used in the V →
P mapping. Using an overlap of 0 results in the smallest
P (consisting of 26 elements), and using an overlap of 4
results in the largest P (consisting of 124 elements). So, it
is reasonable to conclude that, the greater the amount of
overlap, the more information from V will be contained in
P . This will be shown to have an effect on the recognition
accuracy and irreversibility properties of PolyProtect, which
are evaluated in Section 4.

The main idea behind PolyProtect was to design a
protection algorithm that introduces user-specific, tuneable
non-linearities to a face embedding, such that the result-
ing protected template would be irreversible even if all
the parameters of the mapping are known. The use of
multiple multivariate polynomials with user-specific coef-
ficients and exponents thus seemed like a natural choice.
The requirement that the mapping from a face embedding
to its protected template be user-specific, was motivated by
a desire to satisfy the unlinkability property (see Section
1). Furthermore, we wished to be able to easily tune the
protection algorithm to control the trade-off between the
recognition accuracy and irreversibility properties, which is
achievable in PolyProtect primarily by varying the amount
of overlap. Since PolyProtect relies on user-specific param-
eters (C and E), its envisioned operating scenario is in
cooperative verification applications (such as proving one’s
identity in order to unlock a personal smartphone).

To the best of our knowledge, PolyProtect represents
a novel approach towards face embedding protection. Al-
though the reader may be tempted to liken PolyProtect
to the Fuzzy Vault scheme [21] due to the use of poly-
nomials in both methods, there are actually a number
of fundamental differences between the two approaches.
Firstly, the Fuzzy Vault scheme operates on unordered sets
of elements, whereas PolyProtect relies on an ordered feature
vector (e.g., an embedding). Secondly, the polynomial used
in the Fuzzy Vault scheme is univariate (i.e., each element in
the biometric template serves as the input to the polynomial
in turn), whereas PolyProtect’s polynomials are multivariate
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Fig. 2. Mapping 128-dimensional V to P via PolyProtect, using C = [c1, c2, ..., c5] and E = [e1, e2, ..., e5], for different amounts of overlap.

(i.e., groups of elements from the biometric template are si-
multaneously passed to the polynomial). Thirdly, the Fuzzy
Vault scheme relies on the addition of random data points
(chaff points) to hide the polynomial outputs, whereas this is
not a feature of PolyProtect. Fourthly, the verification oper-
ation in the Fuzzy Vault scheme requires the reconstruction
of the secret polynomial to extract its coefficients, which
serve as the user’s secret key. The verification of PolyPro-
tected templates does not require polynomial reconstruction
nor the extraction of a secret key; instead, PolyProtected
templates are compared directly using a distance/similarity
metric. So, we may conclude that PolyProtect and the Fuzzy
Vault scheme represent fundamentally different approaches
to biometric template protection.

Although its construction suggests the suitability of
PolyProtect for protecting any real-number biometric fea-
ture vector, the focus of this paper is on its applicability
to face embeddings alone. Similarly, although PolyProtect is
envisioned for use in cooperative verification scenarios in
general, the evaluation presented in this paper will target
only a mobile application context. This is because: (i) facial
recognition in mobile devices (such as smartphones) is one
of the most (if not the most) common face verification ap-
plications in practice, and (ii) this type of facial recognition
represents the least constrained (and thus most challeng-
ing) cooperative face verification scenario. The suitability of
PolyProtect to serve as an effective face embedding protec-
tion scheme in a mobile application scenario in practice, is
evaluated in Section 4.

4 ANALYSIS OF POLYPROTECT FOR FACE
EMBEDDINGS

This section evaluates the suitability of PolyProtect for se-
curing face embeddings in face verification systems. Section
4.1 describes our experimental set-up. Then, Sections 4.2
to 4.4, respectively, evaluate PolyProtect in terms of the

three properties outlined in Section 1: recognition accuracy,
irreversibility, and unlinkability.

4.1 Experimental set-up
To evaluate the suitability of PolyProtect for protecting
face embeddings, we first needed to establish a baseline
deep-neural-network-based face recognition system, into
which PolyProtect could be incorporated. We adopted
two open-source systems for this purpose, both imple-
mented within the bob.bio.face_ongoing PyPI pack-
age2: facenet and idiap msceleb inception v2 centerloss rgb,
henceforth referred to as Facenet and Idiap, respectively.
The main difference between the two systems lies in how
they generate face embeddings from face images, which
is defined by their adopted deep neural network models:
Facenet uses the open-source FaceNet model 20170512-
110547 from David Sandberg3, and Idiap uses a CNN
model based on the Inception-ResNet-v2 architecture and
trained on the MS-Celeb-1M dataset4. Both the Facenet and
Idiap systems work with 128-dimensional face embeddings,
which were the inputs to our PolyProtect algorithm.

As noted earlier, we focus on face verification rather than
identification. Fig. 3 illustrates the incorporation of PolyPro-
tect into the enrollment and verification stages of our two
baseline systems, which are differentiated by their feature
extractors (i.e., deep neural network models trained to ex-
tract 128-dimensional face embeddings from face images).

Fig. 3 indicates that, during enrollment, the reference
face embedding, V R, is protected using PolyProtect (de-
fined by the user-specific parameters C and E), then the
resulting protected template, PR, is stored in the system’s
database. During verification, the query face embedding,
V Q, is likewise protected to generate PQ. Then, PQ and
PR are compared using the cosine distance metric, and

2. https://bit.ly/2XLsYLQ
3. https://bit.ly/39oYNMV
4. https://bit.ly/3Alwivn

https://bit.ly/2XLsYLQ
https://bit.ly/39oYNMV
https://bit.ly/3Alwivn
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Fig. 3. Enrollment (green arrows) and verification (red arrows) in the PolyProtected Facenet and Idiap face recognition systems. FR and FQ

are the reference and query input face images, V R and V Q are the corresponding 128-dimensional face embeddings, and PR and PQ are the
PolyProtected templates. The PolyProtect mapping is defined by the user-specific coefficients, C, and exponents, E.

the resulting score is processed to determine whether or
not the underlying faces match. The cosine distance metric
was chosen because the same metric was used to compare
the unprotected face embeddings in our baseline systems
(i.e., V R and V Q), which makes it easier to evaluate the
effect of PolyProtect on the systems’ recognition accuracy.
Technically, however, the score output by the Comparator
in Fig. 3 is a similarity score, because the cosine distances are
multiplied by -1 (to turn them into similarity scores). So, the
score range is [-2.0, 0.0], where -2.0 would indicate that PR

and PQ (or V R and V Q) are as different as possible, while
0.0 would imply that they are the same.

Note that the reason for selecting the Facenet and Idiap
face recognition systems was that they were reported5 to
have the best recognition accuracy when evaluated in the
verification scenario on the face dataset that we deemed
the most suitable for evaluating PolyProtect: Mobio [22],
which consists of bi-modal (audio and video) data cap-
tured from 152 people. We chose to evaluate PolyProtect
on this dataset for four main reasons. Firstly, the dataset
is publicly available6, which allows for the reproducibility
of our experiments. Secondly, Mobio consists of face videos
captured using two mobile devices (a phone and a laptop),
in a cooperative user scenario (i.e., appropriate for verifica-
tion experiments). The prevalence of mobile devices in our
society, as well as current market trends, suggests that this
is likely to be one of the (if not the) biggest uses for face
verification in practice (e.g., unlocking your smartphone
with your face). So, this database seemed like a very suitable
choice for evaluating the applicability of PolyProtect to face
verification systems in practice. Thirdly, the videos were
captured in uncontrolled environments, so the face images
extracted from the video frames are realistic and natural in
terms of illumination, head poses, and facial expressions.
Fourthly, the samples were acquired over 2 years across 5
countries, and 12 sessions in total were captured per per-
son (database subject). This, together with the uncontrolled
acquisition environment, makes the database challenging in
the amount of session variability it exhibits.

To evaluate the PolyProtected systems, we first needed
to establish three parameters: the value of m, and the ranges
of C and E. Recall that m specifies the number of elements
from the face embedding, V , used to generate each element

5. https://bit.ly/39jfCIT
6. https://bit.ly/39n3pDi

in the protected template, P . We chose m = 5, meaning
that each element in P was generated using 5 consecutive
elements from V , as illustrated for different overlaps in Fig.
2. Our thinking behind setting m = 5 was inspired by the
Abel-Ruffini theorem, which states that there is no closed-
form algebraic expression for solving polynomials of degree
5 or higher with arbitrary coefficients [23]. While this does
not imply that it is impossible to find the roots of such
polynomials, what it means is that a general expression does
not exist (unlike, for example, for 2-degree polynomials).
So, an attacker trying to reverse the V → P mapping
to recover V could not rely on an analytical approach
using an existing, well-defined formula. While they could
attempt to use a root-finding algorithm to find a numerical
approximation for V , such methods are generally sensitive
to initial guesses and are, therefore, prone to converging to a
false solution. (More details on the feasibility of recovering
V from P are provided in the irreversibility analysis in
Section 4.3.) The reason we did not set m > 5 was because
this would require using exponents larger than 5 in the
PolyProtect mapping. Since the face embeddings consist
of quite small floating point values, large powers would
effectively obliterate certain embedding elements during
the PolyProtect mapping. In the same vein of thought, the
exponents, E, in our PolyProtected systems were randomly-
permuted, unique integers in the range [1, 5].

The choice of a suitable range for the coefficients, C , was
not as evident. We experimented with several C ranges to
generate the PolyProtected templates, but there appeared
to be no significant differences in the resulting recognition
accuracy of our PolyProtected face verification systems. We
suspect that this is due to the use of the cosine distance
metric in the comparison of PolyProtected templates. Since
this metric calculates the difference between the directions
of the vectors being compared, their magnitudes are less
important, so the effects of using a larger or smaller C range
are presumably diluted as a result. We expect that employ-
ing a magnitude-sensitive metric (e.g., Euclidean distance)
would result in larger differences in the recognition accuracy
of the PolyProtected systems when different C ranges are
employed; however, at this stage we have chosen to adopt
the cosine distance metric for consistency with the compari-
son of unprotected face embeddings in the baseline systems,
and we leave the investigation of alternative metrics to
future work. For the evaluations presented in this paper, we

https://bit.ly/39jfCIT
https://bit.ly/39n3pDi
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used an arbitrarily selected C range of [-50, 50], so all sets
of Cs consisted of 5 randomly-selected, unique, non-zero
integers in this range.

We are now ready to present our evaluation of PolyPro-
tect, when the protection method is incorporated into the
Facenet and Idiap face verification systems, and when the
analysis is performed on the Mobio dataset. The evaluation
is based on the three properties of protection methods
outlined in Section 1: recognition accuracy, irreversibility,
and unlinkability. Sections 4.2 to 4.4, respectively, present
the corresponding analysis. As mentioned in Section 2, our
focus was on evaluating PolyProtect from a practical point of
view (as opposed to theoretical), to present a clearer picture
of the method’s practical value.

4.2 Recognition accuracy

This section investigates how the recognition accuracy of the
PolyProtected face verification systems compares to that of
the corresponding baseline systems. The aim of this analysis
was to determine whether the incorporation of PolyProtect
into a deep-neural-network-based face verification system
would degrade the attainable recognition accuracy.

To conduct this analysis, the recognition accuracy of each
baseline system (Facenet and Idiap) was first evaluated on
the Mobio dataset, by running the mobile0-male verification
protocol7 used to generate the reported baseline results8.
The same protocol was then applied to the corresponding
PolyProtected face verification systems.

The recognition accuracy of our PolyProtected face ver-
ification systems was evaluated in two scenarios: (i) Nor-
mal (best-case) scenario, and (ii) Stolen Coefficients and
Exponents (worst-case) scenario. The PolyProtected system
should operate in the Normal scenario most of the time.
Here, we assume that each enrolled user dutifully employs
their own C and E parameters in the generation of their
PolyProtected face templates, as envisioned by the design
of the PolyProtect scheme. In the Stolen Coefficients and
Exponents scenario, a user attempts to pass off as a dif-
ferent user by stealing the target’s C and E parameters,
and applying them to their own face embedding to gen-
erate their PolyProtected template. While it is reasonable
to assume that the latter scenario should be uncommon
in practice (provided that users’ C and E parameters are
stored securely), it is still important to consider this worst-
case scenario (as is sometimes done in the literature) when
analysing the expected recognition accuracy of PolyProtect
in practice.

The Normal (N) scenario was simulated by randomly
generating a set of different C and E parameters for each
subject, then applying those parameters to map each of
the subject’s reference and query embeddings to their cor-
responding PolyProtected templates. So, for reference and
query face embeddings from the same subject, the same C
and E parameters were used to generate their correspond-
ing PolyProtected templates, while reference and query face
embeddings from different subjects were protected using
different C and E parameters (since these parameters are

7. https://bit.ly/3nP9HnF
8. https://bit.ly/39jfCIT

subject/user-specific). Next, comparison scores were com-
puted between all required pairs of reference and query
PolyProtected templates (as defined by the aforementioned
verification protocol), resulting in a set of genuine scores
(when the templates being compared originate from the
same subject) and a set of impostor scores (when the tem-
plates originate from different subjects).

To simulate the Stolen Coefficients and Exponents (SCE)
scenario, we assumed the worst-case scenario where each
subject’s C and E parameters are stolen and used by the
other subjects. So, for all query face embeddings that were
meant to be compared to a particular reference embedding
(according to the adopted verification protocol), the same
C and E parameters (i.e., those belonging to the reference
identity) were used to generate all the corresponding query
PolyProtected templates. Consequently, although the gen-
uine scores were calculated in the same way for both the
N and SCE scenarios, the impostor scores were calculated
using subject-specific parameters in the N scenario and
reference-specific parameters in the SCE scenario.

This process was repeated for 10 trials, where for each
trial a new set of C and E parameters was chosen for each
subject. (This may be interpreted as simulating 10 different
applications in which the same subjects are enrolled.) Then,
the genuine and impostor scores across the 10 trials were
concatenated (separately), and the recognition accuracy was
calculated on the concatenated scores. These same sets of
C and E parameters (10 per subject) were applied to each
PolyProtected system (Facenet and Idiap), as well as for
each overlap parameter defining the PolyProtect mapping.
Fig. 4 depicts the resulting ROC plots, generated on the
evaluation set of the Mobio database, in the N and SCE
scenarios. Each plot compares the verification accuracy of
the corresponding baseline system against the verification
accuracy of the PolyProtected system for different amounts
of overlap used in the PolyProtect mapping.
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Fig. 4. ROC plots comparing the baseline and PolyProtected face veri-
fication systems, in the N and SCE scenarios. The vertical dashed line
in each plot corresponds to the match threshold at a False Match Rate
(FMR) of 10−3 or 0.1%, which is a commonly used criterion.

There are three important observations from Fig. 4.
Firstly, the recognition accuracy of the PolyProtected
systems improves as the amount of overlap increases.

https://bit.ly/3nP9HnF
https://bit.ly/39jfCIT
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This makes sense, because a larger overlap used in the
PolyProtect mapping ensures the generation of a higher-
dimensional PolyProtected template (see Fig. 2), which con-
tains more information from the original face embedding.
Consequently, the larger the overlap, the better the expected
recognition accuracy.

Secondly, at the indicated match threshold at FMR =
10−3 (or 0.1%), the recognition accuracy of both the Facenet
and Idiap PolyProtected systems in the N scenario is slightly
better than that of the corresponding baseline, when an
overlap of 3 or 4 is used in the PolyProtect mapping. This is
despite the fact that these PolyProtected systems work with
templates of lower dimensionality (63 and 124 for overlaps
of 3 and 4, respectively) than that of the face embeddings
used in the baseline systems (128). So, this improvement
in the recognition accuracy of the aforementioned PolyPro-
tected systems is most probably due to the use of user-specific
C and E parameters in the generation of the PolyProtected
templates, which increases the separation between different
users in the protected feature domain. Although the recog-
nition accuracy of the PolyProtected systems using overlaps
of 0-2 appears a little worse than that of the baseline for both
Facenet and Idiap at FMR = 10−3, even the worst accuracy
(i.e., at overlap = 0) is still very good, resulting in a true
match rate (1 - FNMR) of about 0.96 (96%). Furthermore, if
a higher FMR can be tolerated, then the difference in the
recognition accuracy of all PolyProtected systems and the
corresponding baseline becomes fairly insignificant, reach-
ing approximate equivalence at an FMR of 10−2 (1%).

Thirdly, the recognition accuracy of the PolyProtected
systems in the SCE scenario is worse, in general, than the
baselines. This may be attributed to the fact that, in this
scenario, we are essentially performing a dimensionality re-
duction in the mapping from each subject’s face embedding
to their PolyProtected template, without the benefits of the
additional user-specific information as in the N scenario.
Consequently, the amount of discriminative information in
the protected templates may be expected to be less than
that in the unprotected face embeddings, resulting in lower
recognition accuracy. Nevertheless, even in this worst-case
scenario, the recognition accuracy of both the Facenet and
Idiap PolyProtected systems using an overlap of 4 is almost
equivalent to that of the corresponding baselines at FMR
= 10−3. Even the PolyProtected systems using an overlap
of 3 appear to perform very well, with a true match rate
of around 0.98 (98%) for Facenet and 0.97 (97%) for Idiap.
Furthermore, similarly to the observation made for the N
scenario, a higher FMR tolerance in the employed systems
would ensure that all PolyProtected systems (i.e., for all
overlaps) achieve high recognition accuracy even in the SCE
scenario; for example, at an FMR of 10−2 (1%) in Fig. 4, the
true match rate for all PolyProtected systems is over 0.95
(95%), and the performance of PolyProtected systems using
overlaps of 3 and 4 achieves equivalence with the baselines.

In summary, our analysis indicates that the recognition
accuracy of a PolyProtected system depends on the amount
of overlap used in the PolyProtect mapping, with the accu-
racy improving as the overlap increases. When the system
operates in the envisioned (N) scenario, the recognition
accuracy may be expected to be higher than, approximately
equivalent to, or not significantly worse than, that of the

baseline system (using unprotected face embeddings), de-
pending on the chosen match threshold. In the worst-case
(SCE) scenario where all users’ parameters are stolen, the
recognition accuracy of a PolyProtected system may be
worse than that of the baseline; however, our results indicate
that the performance can be improved by tuning the amount
of overlap used in the PolyProtect mapping as well as the
FMR tolerance of the underlying system. So, although this
worst-case scenario is highly unlikely to occur in practice9,
even in this case the recognition accuracy should be accept-
able, ensuring that the system does not suffer much in the
time it takes to replace the compromised PolyProtected tem-
plate(s). We may thus reasonably conclude that PolyProtect
is capable of satisfying the recognition accuracy property of a
face embedding protection scheme.

It would be useful to present quantified comparisons of
the recognition accuracy of PolyProtect to that of other face
embedding protection schemes in the literature, but it is
currently not possible to do this fairly, because none of these
methods have been evaluated on the Mobio dataset (which
we deem most representative of PolyProtect’s intended ap-
plication scenario). Considering the possibility of evaluating
the other face embedding protection schemes on the Mobio
dataset ourselves, this would only be fair if: (i) the com-
parison was against type 1 protection methods (discussed
in Section 2), since this would enable us to de-couple the
feature extraction and protection steps, (ii) the embeddings
were generated using the same feature extraction process,
such that the comparison targeted solely the protection al-
gorithms, and (iii) we had access to the methods’ imple-
mentations, to ensure that they were represented correctly.
The only method that approximately fits this requirement
is [12], which employs fully homomorphic encryption to
protect 128-dimensional embeddings generated using the
same open-source FaceNet model adopted for our Facenet
baseline. In this case, however, evaluating [12] specifically
on Mobio does not seem necessary, since a known feature
of homomorphic encryption methods is their ability to en-
sure approximately zero loss in the recognition accuracy –
indeed, [12] showed that this is achievable regardless of the
evaluation dataset, depending on the precision of the face
embedding quantisation scheme and the adopted match
threshold. So, we may reasonably conclude that PolyPro-
tect appears comparable to [12] in its ability to be tuned
to approximately maintain the recognition accuracy of the
baseline (unprotected) system, when the protected system
operates as intended (N scenario for PolyProtect, and the
use of user-specific encryption/decryption keys for [12]).

Having made this comparison, we also note that the use
of PolyProtect may actually cause an increase in the resulting
recognition accuracy (as discussed in our analysis of Fig. 4),
while this would not be possible using the homomorphic
encryption method in [12]. On the other hand, although
[12] does not present the equivalent of PolyProtect’s SCE
scenario (i.e., stolen encryption/decryption keys), we may
expect that the use of same encryption/decryption keys
to enroll different subjects in [12] would produce approxi-

9. It is unlikely that each user would steal all the other users’
PolyProtect parameters, especially at the same time. So, the N scenario
results are more indicative of the expected recognition accuracy.
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mately the same comparison scores as for the user-specific
key scenario. Despite this potential advantage of [12] over
PolyProtect in the worst-case (albeit practically unlikely)
scenario, the main pitfall of [12] is that the face embeddings
are secure only insofar as the decryption keys remain secret.
PolyProtected templates, on the other hand, do not rely
solely on the secrecy of the user-specific parameters to
protect the original face embeddings. An analysis of the
irreversibility of PolyProtect is presented in Section 4.3.

4.3 Irreversibility

A face embedding protection method is considered irre-
versible (non-invertible) if it is impossible (or computa-
tionally infeasible) to recover the original (unprotected)
face embedding from its protected template. This section
investigates the irreversibility of PolyProtect. Section 4.3.1
defines our adopted threat model, on which the subsequent
irreversibility analysis will be based. We then consider the
difficulty of recovering the original face embedding from
one (Section 4.3.2) or more (Section 4.3.3) PolyProtected
templates from the same subject.

4.3.1 Threat model

To analyse PolyProtect’s irreversibility, we must first de-
fine our threat model, as specified in ISO/IEC 30316 (the
international standard on performance testing of biometric
template protection schemes)10. The threat model charac-
terises the type of attacker on which we wish to base our
irreversibility analysis. The most difficult threat model in
ISO/IEC 30316 is referred to as a full disclosure model, which
assumes that the attacker knows everything there is to know
about the protection method (e.g., algorithms, secrets, etc.).
Since this type of attacker would represent the worst-case
scenario in practice, we decided to base our analysis of the
irreversibility of PolyProtect on the full disclosure model.

In the context of PolyProtect, we define the full disclo-
sure threat model as assuming that the attacker has access to
the following information: knowledge of the PolyProtect al-
gorithm, including the number of embedding elements (m)
used to generate each PolyProtected element, the amount
of overlap used in the PolyProtect mapping, as well as
the user-specific C and E parameters that define PolyPro-
tect’s polynomials; one or more PolyProtected templates,
P , corresponding to a particular face embedding, V ; and
knowledge of a face embedding element distribution, which
is representative of the face embeddings used to create the
PolyProtected templates to which the attacker has access.
The attacker’s goal, therefore, is to use all this information
to attempt to recover a subject’s original face embedding, V ,
from one or more of their PolyProtected templates, P .

Recall that, in our experimental set-up (see Section
4.1), a face embedding consists of 128 elements, i.e., V =
[v1, v2, ..., v128]. In the PolyProtect irreversibility analysis,
the attacker’s aim is to recover these 128 elements from the
corresponding PolyProtected template, P = [p1, p2, ..., pk]
(where k depends on the amount of overlap used in the
PolyProtect mapping, as illustrated in Fig. 2). Since our
full disclosure threat model assumes that the attacker has

10. https://bit.ly/3hLRnYM

some knowledge of the distribution of these 128 embedding
elements, the first step in analysing the irreversibility of
PolyProtect was to estimate this distribution. Note that, as
defined by the Mobio database protocol we adopted, the
face embeddings used in our experiments were divided into
two sets: development and evaluation. Each set was further
split into reference embeddings (used for enrollment) and
query embeddings (used for verification). Since the intention
of the adopted database protocol is to report results on
the evaluation set, we may consider the evaluation set’s
reference face embeddings as the embeddings that are
used to generate the enrolled PolyProtected templates. It
is, therefore, precisely these embeddings that the attacker
in our irreversibility analysis is trying to recover. This
means that the attacker should not have access to these
embeddings; however, they may be assumed to have access
to the development set, since these embeddings are not
used for enrollment11. The attacker could, therefore, use
the development set’s reference face embeddings to estimate
the distribution of the 128 elements in the evaluation set’s
reference embeddings, which they are attempting to recover.

Our irreversibility analysis thus began with an esti-
mation of the probability distribution for each of the 128
elements in a face embedding, using the reference embed-
dings from Mobio’s development dataset, separately for our
Facenet and Idiap baseline systems. This means that each
embedding element was considered separately across all the
reference embeddings, to estimate its corresponding proba-
bility distribution. So, for each of our two baseline systems,
we ended up with 128 different probability distributions,
one for each of the 128 embedding elements.

Note that these probability distributions reveal a lot of
information about the underlying embeddings (and thus the
face images from the Mobio database), so we are unable
to publish the distributions in this paper, because access
to the Mobio dataset is granted based on an end-user
license agreement. Since our PolyProtect code is publicly
available, the interested reader may generate these results
for themselves upon gaining lawful access to Mobio.

The probability distributions were next used to estimate
the irreversibility of PolyProtect when the fully-informed
attacker has access to one (Section 4.3.2) or more (Section
4.3.3) PolyProtected templates from the same person.

4.3.2 Single PolyProtected template
This section considers the feasibility of recovering the origi-
nal face embedding, V , from its PolyProtected template, P .
A fully-informed attacker could attempt this P → V inver-
sion in one of two ways: (i) analytically, or (ii) numerically.

An analytical approach towards inverting P would
involve re-arranging the system of multivariate polyno-
mial equations used in the V → P mapping (see Sec-
tion 3), to obtain an explicit solution for each variable, vi
(i = 1, 2, ..., n), in V = [v1, v2, ..., vn]. Note that a variable
corresponds to an element in the original face embedding,
so in the case of our experimental set-up, which employed
128-dimensional face embeddings, there are 128 variables,
i.e., V = [v1, v2, ..., v128]. This means that our V → P

11. In general, the purpose of the development set is to establish
certain evaluation parameters, such as the match threshold.

https://bit.ly/3hLRnYM
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mapping is a mapping from a 128-dimensional space to a
lower-dimensional space, where the dimensionality of the
PolyProtected template, k, is determined by the amount of
overlap used (see Fig. 2). Consequently, the inverse map-
ping, P → V , would be a mapping from the k-dimensional
space to the 128-dimensional space. These forward and
inverse mappings are summarised in Table 1.

TABLE 1
V → P and P → V mappings for different overlap amounts.

Overlap V → P P → V

0 R128 → R26 R26 → R128

1 R128 → R32 R32 → R128

2 R128 → R42 R42 → R128

3 R128 → R63 R63 → R128

4 R128 → R124 R124 → R128

Considering Table 1 alongside the description of
PolyProtect in Section 3, we can interpret the presented
mappings as follows. When an overlap of 0 is used, the
V → P mapping is defined by 26 equations in 128 variables
(unknowns), resulting in a 26-dimensional PolyProtected
template, P . Based on the description of PolyProtect in
Section 3, we know that each of these 26 equations consists
of a unique set of 5 variables. So, it is reasonable to assume
that the 26 equations are linearly independent, meaning that
the inverse mapping (P → V ) cannot be uniquely defined,
due to the 128− 26 = 102 degrees of freedom.

Similar observations can be made for overlaps 1 to
4; however, in this case, each equation does not consist
of an entirely unique set of variables, since there is some
overlap between the different sets of embedding elements
used to generate each PolyProtected element, meaning that
there are fewer degrees of freedom in the inverse mapping.
Nevertheless, since every equation consists of at least one
variable that is not used by any of the other equations, it
is still reasonable to assume that all the equations, for all
overlaps, are linearly independent. Consequently, we may
conclude that the inverse mapping, P → V , is defined by an
underdetermined system of equations and, therefore, techni-
cally does not exist. This is because there are (theoretically)
infinitely many solutions for the elements in V that could
produce P , so there is no unique solution.

Furthermore, as discussed in Section 4.1, the Abel-
Ruffini theorem states that there is no closed-form algebraic
expression for solving polynomials of degree 5 or higher.
Since we used m = 5 in our PolyProtect implementation,
each equation in the V → P mapping is a multivariable
5-degree polynomial. So, we may deduce that an analytical
solution for P → V does not exist, implying that PolyPro-
tected templates are theoretically irreversible.

Although PolyProtect is irreversible in theory, in practice
there will not be an infinite number of solutions for V . This
is because the values of V will be limited in some way (e.g.,
by the range and precision of possible values) depending
on the implementation of the underlying face recognition
system. Consequently, the number of valid solutions will
be constrained in practice. Furthermore, the mathematical
impossibility of deriving an exact solution to the problem
of recovering V from P may present a smaller obsta-

cle in practice, where an attacker might be satisfied with
an approximation of V . So, although the inverse mapping,
P → V , cannot be explicitly defined, a real-world attacker
may attempt to use a numerical solver to converge to an
approximate solution for V from a set of initial guesses.

To estimate the feasibility of such an attempt in prac-
tice, we simulated this irreversibility attack using an open-
source numerical solver: Python’s scipy.optimize.root function
with the lm method. This method adopts the Levenberg-
Marquardt algorithm, which approximates a solution to
a non-linear system of equations using a damped least-
squares approach. This algorithm is reported to be very
reliable for solving non-linear, medium-sized (i.e., a few
hundred variables) optimization problems in practice12, and
can be applied to underdetermined systems of equations13.
Since the recovery of V from P is represented as an under-
determined 128-variable system of non-linear equations, we
deemed this method very suitable for our purposes.

The first step in attempting to recover an approximation
of the original face embedding, V , from its PolyProtected
template, P , using the aforementioned numerical solver,
was to set up a system of k equations (where k corresponds
to the dimensionality of P , as per Table 1) for each overlap
amount. For example, the system of 26 equations for overlap
= 0 (see Fig. 2) was set up for the numerical solver as follows:

c1v
e1
1 + c2v

e2
2 + c3v

e3
3 + c4v

e4
4 + c5v

e5
5 − p1 = 0

c1v
e1
6 + c2v

e2
7 + c3v

e3
8 + c4v

e4
9 + c5v

e5
10 − p2 = 0

...
c1v

e1
126 + c2v

e2
127 + c3v

e3
128 + c40

e4 + c50
e5 − p26 = 0

Note the use of zeros in place of v129 and v130 in the
last (26th) equation, which is due to the padding required to
make the 128 dimensions of our face embeddings divisible
by 5 (our choice for m, as explained in Section 4.1). The sys-
tems of equations for overlaps 1 to 4 were set up in a similar
way, except that each system consisted of a different number
of equations (as per Table 1). For example, for overlap = 4,
the system consisted of 124 equations, as follows:

c1v
e1
1 + c2v

e2
2 + c3v

e3
3 + c4v

e4
4 + c5v

e5
5 − p1 = 0

c1v
e1
2 + c2v

e2
3 + c3v

e3
4 + c4v

e4
5 + c5v

e5
6 − p2 = 0

...
c1v

e1
124 + c2v

e2
125 + c3v

e3
126 + c4v

e4
127 + c5v

e5
128 − p124 = 0

Since it was possible to fully formulate each of
the 124 equations using the 128 embedding elements
(v1, v2, ..., v128), no padding of the face embeddings was
necessary in this case. Please refer to Fig. 2 to visualise the
systems of equations for all overlap amounts.

Next, the numerical solver was used to approximate a
solution for V = [v1, v2, ..., v128] from every P that was
generated for the evaluation set of reference face embeddings

12. https://bit.ly/3tSGKbo
13. https://bit.ly/3nQcvkc

https://bit.ly/3tSGKbo
https://bit.ly/3nQcvkc
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in Section 4.2 (i.e., a total of 380 P templates for each
overlap amount). Since the numerical solver requires a set
of initial guesses for v1, v2, ..., v128, we randomly generated
100 guesses for each of the 128 embedding elements. The
guesses were drawn from the probability distributions es-
tablished for the corresponding embedding elements on the
development set of reference embeddings (as explained in
Section 4.3.1).

The numerical solver then started from the provided
initial guesses to estimate a solution for each of the 128 em-
bedding elements in V , from the corresponding P . As soon
as the solver indicated that a solution for V had been found
(by setting the Boolean flag success to 1), the process was
stopped. Since the error tolerance for the solution was set
to a very small (default) value (1.49012e − 08), an attacker
attempting this inversion attack in practice should have no
reason to doubt that the solution returned at this point in
the process is a good approximation to V . So, not all 100
initial guesses necessarily needed to be tried. Once all 380 P
templates had passed through the solver, we calculated the
solution rate as the proportion of all P s for which a solution
was found.

If a solution, V ∗, for a particular P was found, we then
calculated the comparison score between this approxima-
tion of the corresponding face embedding and the true
embedding, V , in terms of the negative cosine distance (as
for the recognition accuracy in Section 4.2). The idea was to
determine whether V ∗ was a close enough approximation to
V , such that V ∗ could be used to launch a replay attack in
our baseline face recognition systems, which store the unpro-
tected V as a reference face embedding. Since the closeness
of a match between two face embeddings in practice would
always be dependent on a match threshold (i.e., the match
will never be perfect), it makes sense to judge the success of
an inversion attack in the same way.

We used the aforementioned approach to calculate the
match rate for each set of P templates for which a solution
for V was found by the numerical solver. The match rate
refers to the proportion of P s for which the comparison
score between V ∗ and V was greater than or equal to a
pre-defined match threshold. The match rate was computed
at two thresholds established on the baseline systems’ devel-
opment set14 of face embeddings: at FMR = 0.1% (commonly
used) and at FMR = 1%, to represent higher-security and
lower-security application scenarios, respectively.

Finally, we calculated the inversion success rate = solution
rate × match rate, to estimate the overall success rate for an
attacker attempting the P → V inversion using the numer-
ical solver. Table 2 presents the resulting inversion success
rates for our Facenet and Idiap PolyProtected systems.

Table 2 shows two important trends. Firstly, the inver-
sion success rate is, in general, lower when the baseline
systems operate at a stricter match threshold (at a lower
FMR). This is because a stricter threshold would impose
a tougher standard on what is meant by a good enough
approximation of V . So, the stricter the threshold in practice,
the less likely the inversion attack would be to succeed, in
the sense that it would become more difficult to match the

14. Simulates the real-life scenario where match thresholds are tuned
offline, on a different set of subjects to that encountered in the systems’
deployment scenario (represented by the evaluation set of embeddings).

TABLE 2
Inversion success rates at different match thresholds.

Threshold Overlap Facenet Idiap

@ FMR = 0.1%

0 0.00 0.00
1 0.00 0.00
2 0.01 0.01
3 0.15 0.15
4 0.95 0.96

@ FMR = 1%

0 0.00 0.00
1 0.01 0.01
2 0.08 0.05
3 0.52 0.49
4 0.95 0.97

recovered approximation of V (i.e., V ∗) to the unprotected
V used in the baseline face recognition system. This trend
is most evident for an overlap of 3 in Table 2, for which
the inversion success rate for both the Facenet and Idiap
systems is 0.15 at the stricter threshold (at FMR = 0.1%) and
around 0.50 at the more lenient threshold (at FMR = 1%).

The second important trend from Table 2 is that the in-
version success rate increases as the amount of overlap used
in the PolyProtect mapping increases. This makes sense,
because a larger overlap results in a higher-dimensional
PolyProtected template (see Table 1 and Fig. 2), which
contains a greater amount of information from the original
face embedding. Consequently, the system of equations in
the P → V mapping for larger overlaps is more constrained
than for smaller overlaps, meaning that, if a solution for V
is found, it is more likely to be closer to the true solution.
For example, we see that for both the Facenet and Idiap sys-
tems, the inversion success rate for PolyProtected templates
generated using overlaps of 0-2 is close to 0 at both match
thresholds, meaning that the templates can be considered
practically irreversible at these operating points. Although the
inversion success rate for an overlap of 3 was found to be
higher, the results indicate that the attacker would still fail
to invert the PolyProtected template 85% of the time when
the match threshold is set at FMR = 0.1% and about 50%
of the time when the threshold is set at FMR = 1%. This is
still significantly better than using the original (unprotected)
face embeddings, especially considering that this evaluation
was based on the assumption of a fully-informed attacker,
which should be extremely unlikely in practice.

Overall, our analysis suggests that using overlaps of 0,
1, or 2 would be the safest option, and that an overlap of
3 might be acceptable depending on the operating match
threshold. An overlap of 4, on the other hand, appears to
be an unwise choice, because the inversion success rate
was found to be close to 1 for both thresholds in Table
2. Having said this, recall that our analysis is based on
the toughest threat model, whereby we assume that our
simulated attacker knows everything there is to know about
the PolyProtected systems, including representative proba-
bility distributions of the original face embedding elements,
as well as all the parameters employed in the PolyProtect
mapping. This should not be the case in practice, meaning
that a real-life inversion attack would be significantly less
likely to succeed. For example, the user-specific parameters,
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C and E, would not be stored in the open, but rather
secured separately (e.g., via encryption, on a separate token,
etc.). Also it should be difficult for the attacker to obtain
representative embedding distributions from which to draw
the initial guesses for the numerical solver. These factors
combined would make it much more difficult for the solver
to converge to a close approximation of the original em-
bedding, meaning that, in a real-life inversion attack, the
inversion success rate should be close to 0 most of the time.

Considering once again our worst-case evaluation sce-
nario based on a fully-informed attacker, the two main
trends observed in Table 2 imply that the inversion success
rate for PolyProtected templates in practice will depend on
the amount of overlap used in the PolyProtect mapping
and the operating threshold of the baseline face recogni-
tion system in which the unprotected face embeddings are
employed. If we were to form a general recommendation on
what overlap amount to use for the PolyProtect mapping in
practice (for the considered evaluation scenario), we should
consider Table 2 alongside the ROC plots in Fig. 4. Based
on this comparison, we may conclude that, in general, an
overlap of 2 would most likely provide the best trade-
off between irreversibility and recognition accuracy. Since
the corresponding PolyProtected templates were shown to
be practically irreversible even for the worst-case (albeit
unlikely) scenario of a fully-informed attacker, we may
reasonably conclude that PolyProtect would be suitable
for securing face embeddings in practice. Having made
this recommendation, Table 2 and Fig. 4 further suggest
that overlaps of 0 and 1 may be more suitable for lower-
security applications, which operate at more lenient (i.e.,
set at higher FMRs) thresholds, while an overlap of 3
could offer the best accuracy versus irreversibility trade-
off in higher-security applications (where a lower FMR is
desired). Remember, however, that the smaller the overlap,
the more irreversible, and thus more privacy-preserving, the
PolyProtected templates would be.

A meaningful, quantifiable comparison between the ir-
reversibility of PolyProtect and that of the other face em-
bedding protection schemes in the literature is currently
extremely difficult. This is mainly due to inconsistencies in
the adopted evaluation methodologies (there is no standard-
ised approach, since the evaluation tends to be method-
specific) and the assumed threat model (which is usually
not even explicitly defined). Furthermore, it is often not
evident how we should fairly select comparable parame-
ters (e.g., user-specific transformation keys) across different
protection methods, since such parameters (if they exist) do
not always take the same form or have the same meaning.
For reasons such as these, comparing the irreversibility
properties of different face embedding protection methods
in the literature may result in ambiguous conclusions on
which method is better in this regard. So, such comparisons
are usually avoided.

On a final note, we would like to make a case for
practical irreversibility evaluation methodologies. Recall that
the irreversibility analysis presented earlier for PolyProtect
was based on defining a successful inversion as the ability
to use the approximation of V recovered from its P (i.e.,
V ∗) to impersonate the same identity in an unprotected
face recognition system that employs V itself. This seems

like a reasonable approach for estimating PolyProtect’s irre-
versibility in practice, because it gives us direct insight into
what exactly a successful inversion attack might mean in a
real-life scenario. In our view, this is more useful (from a
practical point of view) than a theoretical evaluation, since
such evaluations tend to be based on unrealistic assump-
tions (like the assumption of the existence of an infinite
number of solutions for V , as discussed earlier in the con-
text of an analytical irreversibility analysis for PolyProtect).
We thus hope to encourage a greater focus on practical
evaluation methodologies when analysing the irreversibility
of face embedding protection methods in the literature,
particularly in terms of inversion attacks for which readily-
available tools can be used (such as Python’s numerical
solver in our analysis). This would help to produce more
tangible results, which may make it easier to understand
and compare the expected irreversibility of different protec-
tion methods in practice. Furthermore, since we are at the
stage where the protection of face embeddings is becoming
an urgent requirement in real-life applications, a practically-
oriented irreversibility analysis would surely be appreciated
by deployers of face recognition systems.

4.3.3 Multiple PolyProtected templates
Section 4.3.2 analysed the irreversibility of PolyProtect when
an attacker has access to only one PolyProtected template,
P , corresponding to a certain face embedding, V . In this
section, we consider the scenario where the attacker has
access to multiple PolyProtected templates from the same V ,
which they attempt to combine to recover an approximation
of V . This is referred to as a Record Multiplicity Attack
(ARM) in the literature. This type of attack could occur
in the scenario where the same face embedding is used to
generate different PolyProtected templates (using different
C and E parameters), then each PolyProtected template is
either enrolled in a different application or used to replace
a compromised PolyProtected template in the same applica-
tion. Although such an attack should be extremely difficult
to launch in practice15, it must still be considered when
analysing PolyProtect’s irreversibility.

To analyse the susceptibility of PolyProtect to ARM, we
proceeded as follows. We assumed that different PolyPro-
tected templates from the same subject are generated using
the same original face embedding, V . In practice, we should
never use exactly the same face embedding to generate dif-
ferent PolyProtected templates for the same subject. This
is because the original face embedding should never be
stored in the clear, meaning that each enrollment should
request a new sample of the enrollee’s face. Consequently,
each PolyProtected template belonging to the same subject
should be generated using a different instance of V . In
our ARM analysis, however, we consider the worst-case
scenario where the same V is used to generate all of a
subject’s P templates. This should make it easier to com-
bine the information from these PolyProtected templates to
recover the original face embedding, which means that this
represents the best-case scenario for the attacker.

The face embeddings and corresponding PolyProtected
templates used in this analysis were the same as those

15. The attacker would need to know which applications to target,
and how to hack them to steal the subject’s PolyProtected templates.
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used for the irreversibility analysis in Section 4.3.2. This
means that each V was associated with 10 different P s
(each generated using different C and E parameters). Our
ARM analysis thus consisted of attempting to recover an
approximation of V using 1 to 10 of its corresponding P s.
This was simulated using the numerical solver approach
explained in Section 4.3.2. This time, however, we were
trying to solve systems of k × p equations (where k is the
dimensionality of the P templates, and p is the number of
P s that the attacker is assumed to have access to), instead
of only k equations as in Section 4.3.2.

So, the first step was to set up a system of k × p
equations for each overlap amount16, and for each value
of p in the range [1, 10]. For example, for overlap = 0, to
simulate an attacker with access to the minimum of only
one 26-dimensional P , we set up a system of 26 equations
in 128 unknowns (embedding elements), same as for the
irreversibility analysis in Section 4.3.2. On the other hand,
to simulate an attacker with access to the maximum of
ten 26-dimensional P s generated from the same V , we
set up a system of 260 equations in 128 unknowns (i.e.,
one set of 26 equations used in the V → P mapping for
each of the 10 PolyProtected templates). Note that, unlike
the 26-equation system, the 260-equation system would
not be underdetermined but overdetermined, meaning that the
additional constraints to the solution space may allow the
attacker to have a greater chance of recovering a good
approximation of V from ten P s than from one P . So, we
would expect to see an increase in PolyProtect’s susceptibil-
ity to ARM as the number of P s considered in the attack
increases. However, an overdetermined system of equations
may introduce inconsistencies to the solution space, so this
expected trend cannot be considered certain in practice.

Similarly to the analysis in Section 4.3.2, we evaluated
the inversion success rate = solution rate × match rate. This
was calculated separately for each p in the range [1, 10] (i.e.,
1 to 10 PolyProtected templates per V ), and for each overlap
amount. Note that, since the aim of this analysis was to
determine whether using multiple PolyProtected templates
would make it easier to recover the original face embedding
than using only one PolyProtected template, the choice of
match threshold was not so important, particularly because
the irreversibility analysis in Section 4.3.2 already demon-
strated the effects of using different match thresholds. So,
Fig. 5 illustrates the inversion success rate for the Facenet
and Idiap systems as the number of PolyProtected templates
increases from 1 to 10, based only on the most commonly
used match threshold at FMR = 0.1% from Section 4.3.2.

From Fig. 5, it is evident that, in general, the inversion
success rate increases as the number of PolyProtected tem-
plates used in the attack increases. This makes sense, be-
cause access to a larger number of PolyProtected templates
from the same embedding provides more information about
that embedding, thereby allowing the numerical solver to
approximate a more accurate solution to the P → V system
of equations. As stated earlier, however, an overdetermined
system of equations may result in an inconsistent solution
set, thereby actually confusing the solver as to which solu-
tion is the correct one. This may explain the sudden drop in

16. The k values for overlaps 0 to 4 are indicated in Table 1.
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Fig. 5. Inversion success rate when an attacker is assumed to have
access to multiple PolyProtected templates from the same face embed-
ding. The results are based on the match threshold calculated at FMR
= 0.1% on the development set of baseline face embeddings.

the inversion success rate in various curves in Fig. 5 (e.g.,
between 5 and 6 PolyProtected templates for overlap = 1 in
both plots). So, a larger number of templates may not always
translate to a higher inversion success rate in practice, even
if this does appear to be the general trend.

Another general trend from Fig. 5 is that, the greater
the amount of overlap used in the PolyProtect mapping,
the fewer PolyProtected templates would be required to
launch a Record Multiplicity Attack. This is in line with the
irreversibility analysis in Section 4.3.2, which showed that
the inversion success rate for a single P increases as the
amount of overlap increases. Since PolyProtected templates
generated using a greater overlap contain more information
about the original face embedding, it makes sense that
the attacker would require more PolyProtected templates
generated using a smaller overlap to achieve the same
inversion success rate as for fewer PolyProtected templates
generated using a larger overlap. So, we may conclude that,
the smaller the amount of overlap used in the PolyProtect
mapping, the less susceptible PolyProtect would be to a
Record Multiplicity Attack in practice.

Having made these observations, we must emphasize
that our ARM analysis assumed that all PolyProtected tem-
plates to which an attacker has access, have been generated
from exactly the same face embedding, V . This should not be
the case in practice, even if the PolyProtected templates were
acquired from the same system during re-enrollment of the
same (compromised) user. Additionally, multiple PolyPro-
tected templates belonging to the same subject enrolled in
different applications may not be generated by exactly the
same system (e.g., Facenet or Idiap), nor is it necessary for
the amount of overlap used in the V → P mapping to be the
same across these different systems. So, our ARM analysis
represents the best-case scenario for our simulated attacker,
but in a real-world scenario the susceptibility of PolyProtect
to this type of attack should be much lower, especially since
the attacker is unlikely to be fully informed.

Nevertheless, Fig. 5 indicates that even in this best-case
scenario for the attacker, a high inversion success rate (e.g.,
≈ 0.9 or above) for a commonly used match threshold is
unlikely to be attainable for PolyProtected templates gener-
ated using overlaps of 0 or 1, even if the attacker had access
to 10 templates from the same face embedding. Although
such a high inversion success rate may be achievable for
PolyProtected templates generated using an overlap of 2, the
attacker would need to acquire a large number of templates
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from the same face embedding (i.e., 9 or 10), which may be
considered practically infeasible17. On the other hand, Fig. 5
suggests that a smaller number of PolyProtected templates
would be needed when those templates have been gener-
ated using a larger overlap amount (i.e., 4-5 templates for an
overlap of 3, or 1-2 templates for an overlap of 4). Although
it is reasonable to assume that it would be difficult to acquire
even 4-5 different PolyProtected templates from the same
person in practice, 1-2 templates would be more feasible. So,
as concluded for the single-template irreversibility analysis
in Section 4.3.2, an overlap of 4 is not recommended in prac-
tice due to the high risk of inversion of the PolyProtected
template(s) by a fully-informed attacker. In fact, in Section
4.3.2 we observed that an overlap of 2 generally seems to of-
fer the best trade-off between irreversibility and recognition
accuracy, while overlaps of 0 and 1 may be more suitable for
lower-security applications, and an overlap of 3 could offer
the best accuracy/irreversibility trade-off in higher-security
applications. We make the same recommendation in light of
our ARM analysis, while emphasizing once again that, in
order to prioritise user privacy, a smaller overlap should be
employed in the PolyProtect mapping, as this would ensure
the generation of more irreversible PolyProtected templates.

Finally, as for the irreversibility analysis in Section 4.3.2,
it is currently impossible to present a meaningful, quantifi-
able comparison between PolyProtect’s ARM susceptibility
to that of the other face embedding protection schemes in
the literature. This time, however, such a comparison is not
only limited by the evaluation inconsistencies explained in
Section 4.3.2, but also by the fact that this type of analysis
is lacking for most of the proposed protection methods.
For example, of the methods mentioned in Section 2, ARM
susceptibility was only evaluated in [18]. In [18], the authors
state that the ARM attacking complexity is lower bounded
by the effort of exhaustively searching for the user-specific
key, thereby concluding that ARM does not reduce the
complexity of inverting the protected templates. No analysis
is presented to validate this claim from a practical point of
view, however, especially considering the possibility of the
user-specific key being leaked when it is decoded during an
authentication attempt. So, it is difficult to draw a fair com-
parison between the susceptibility to ARM of the method in
[18] compared to that of PolyProtect, in a practical context.

4.4 Unlinkability
Assume that a certain PolyProtected face embedding, P ,
is enrolled in a face recognition system. This section in-
vestigates whether, in the event that P is compromised
(e.g., stolen from the system’s database), we could renew
it, i.e., cancel it and generate a replacement PolyProtected
template, P ′, by using different C and E parameters in the
V → P mapping. The two templates, P ′ and P , should
be sufficiently different to ensure that they are unlinkable
(i.e., cannot be linked to the same identity). We also con-
sider, therefore, the possibility of generating multiple diverse
PolyProtected templates from the same subject’s face, for
the purpose of enrolling this person in multiple applications
without the risk of cross-matching their identity.

17. Hacking the database of even one system should be difficult, let
alone 9 or 10 different systems, or the same system this many times.

To conduct this evaluation in as realistic a setting as
possible, we assumed that different PolyProtected templates
belonging to the same subject would have been generated
using different instances of that subject’s face embedding.
This is because the face embedding used to generate a par-
ticular PolyProtected template should be discarded during
enrollment (i.e., only the PolyProtected template should be
stored in the recognition system’s database), so each new
enrollment would require a new image of the subject’s face,
from which a new embedding would be generated. For
example, let V1 denote a subject’s first face embedding, P1

represent the corresponding PolyProtected template, and C1

and E1 denote the coefficients and exponents used to gen-
erate P1, respectively. Now, assume that P1 is compromised
in some way, meaning that we must remove it from the
database and replace it with a new PolyProtected template
from the same subject’s face. To achieve this, we ask the
person to present a new sample of their face, from which the
representative face embedding, V2, is extracted. To protect
V2 via PolyProtect, we then generate new parameters, C2

and E2, which are used to create the new protected tem-
plate, P2. Alternatively, P1 and P2 could be used to enroll
the same subject in two different applications. The following
analysis considers whether P2 is likely to be sufficiently
different from P1, such that they can effectively be seen as
distinct, unlinkable identities.

PolyProtect’s unlinkability property was evaluated using
the framework proposed in [24]. We chose to adopt this
framework, because it considers unlinkability from a practi-
cal angle, which has been our focus in evaluating PolyPro-
tect in this paper. Specifically, the method in [24] measures
unlinkability in the context of the mated and non-mated
score distributions, which represent the comparison scores
between different protected templates from the same subject
and between different protected templates from different
subjects, respectively. The unlinkability is measured in terms
of two metrics: D↔(s), a local score-wise measure of the
degree of linkability based on the likelihood ratio between
mated and non-mated scores, and Dsys

↔ , a global measure of
the overall linkability of the underlying recognition system.

To evaluate the unlinkability of PolyProtected templates
using the approach from [24], the first step was to select a
number of different face embeddings from each subject in
our adopted Mobio dataset, to simulate the enrollment of
the same subject in multiple face recognition applications
(or the re-enrollment of the subject in the same application
in the event that their protected template has been com-
promised). Then, the idea was to apply a different set of
C and E parameters to each face embedding, to generate
its corresponding PolyProtected template, P . Based on the
recommendation18 in [24], we randomly selected 10 differ-
ent face embeddings per subject, resulting in 10 different
PolyProtected templates per person. Then, each PolyPro-
tected template was compared to every other PolyProtected
template from the same subject to generate a set of mated
comparison scores. Additionally, each PolyProtected tem-
plate was compared to all PolyProtected templates from
every other subject to generate a set of non-mated comparison

18. At least 5 different protected templates per subject should be
used. The authors used 10 in their experiments.
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scores. This process was repeated for 10 trials, where in
each trial a new set of 10 face embeddings was randomly
selected for each subject in the dataset. The resulting 10
sets of mated and non-mated comparison scores were then
concatenated (separately), and the concatenated scores were
used to evaluate the unlinkability of the PolyProtected tem-
plates. For reference, we also calculated the unlinkability of
the corresponding unprotected embeddings in the same way.

Fig. 6 shows the unlinkability plots19 for the development
subset of the Mobio database, separately for our Facenet and
Idiap PolyProtected and baseline (unprotected) systems.
Due to space restrictions, we show only the unlinkability
plots for an overlap of 2, since this was the generally
recommended overlap value in Section 4.3, and Table 3 sum-
marises the global Dsys

↔ measures for all overlaps. Note that
we used the development database subset instead of the evalu-
ation subset. This is because we wished to check whether full
unlinkability was attainable if the only requirement for the
10 different PolyProtected templates from the same subject
was that their randomly generated C and E parameters
were different, but the extent of the differences between the
resulting PolyProtected templates was not checked. In other
words, our aim was to use the development subset as a
sounding board for checking whether the aforementioned
process would ensure the incorporation of sufficient diver-
sity into different PolyProtected templates from the same
subject; if so, then we would apply the same procedure on
the evaluation Mobio subset, otherwise the approach would
need to be reconsidered.

Fig. 6. Unlinkability plots for baseline and PolyProtected (with overlap
= 2) Facenet and Idiap systems, on Mobio’s development set. D↔(s)
measures the score-wise degree of linkability, and the vertical dotted
lines mark the score range within which linkability≈ 0. Dsys

↔ (in the titles)
indicates the overall system linkability, over the entire score range.

TABLE 3
Dsys
↔ for PolyProtected systems on Mobio’s development set.

Overlap 0 1 2 3 4
Facenet Dsys

↔ 0.14 0.15 0.15 0.15 0.16
Idiap Dsys

↔ 0.09 0.10 0.10 0.11 0.12

19. Produced using open-source code at: https://bit.ly/3tYv3jw

There are several important observations from Fig. 6 and
Table 3. Firstly, note that Dsys

↔ measures the overall system
linkability, where a value of 0 would indicate that the system
is fully unlinkable, whereas a value of 1 would indicate that
the system is fully linkable. We observe that Dsys

↔ for our
baseline systems, which use unprotected face embeddings,
is closer to 1, indicating that unprotected face embeddings
from the same subject (e.g., used across different applica-
tions) are almost fully linkable. On the contrary, the Dsys

↔ val-
ues for our PolyProtected systems are closer to 0, suggesting
that different PolyProtected templates generated from the
same subject’s face embeddings are almost fully unlinkable.

Another observation is that Dsys
↔ increases slightly as

the amount of overlap used in the PolyProtect mapping
increases. This may be attributed to the fact that a greater
overlap produces a higher-dimensional PolyProtected tem-
plate, which contains more information from the original
face embedding, so it may be a little easier to link higher-
dimensional PolyProtected templates from the same iden-
tity. Having said this, the difference in Dsys

↔ between the
different overlaps in Table 3 does not appear significant.

Fig. 6 and Table 3 also show lower Dsys
↔ values for the

PolyProtected Idiap system compared to the Facenet system,
even though Dsys

↔ for the two baseline systems is the same.
This is probably due to differences in the original embed-
ding distributions, which are emphasized as a result of the
PolyProtect mapping. Although the differences in the Dsys

↔
values across the two PolyProtected systems seem minor,
this finding nevertheless indicates that the unlinkability of
PolyProtected templates depends in part on the underlying
face features, which makes sense in practice.

Another important observation20 from Fig. 6 relates to
the local score-wise measure of linkability, D↔(s). In both
PolyProtected system plots, the value of D↔(s) within the
score range marked by the vertical dotted lines is approx-
imately 0. This indicates that, if we were to compare two
PolyProtected templates and the resulting score was within
that range, it would be almost impossible to link the two
templates to the same identity; in other words, the systems
are fully unlinkable within that score range. Outside this
score range, however, D↔(s) in both PolyProtected system
plots gradually increases to 1. This implies that, if we were
to compare two PolyProtected templates and the resulting
score was found to lie towards the extremes of the score
range, we could be almost certain that the two templates
belong to the same identity; in other words, the systems
tend towards full linkability outside the score range marked
by the vertical dotted lines.

We believe that this phenomenon of full linkability at
the extremes of the PolyProtected systems’ score range (in-
dicated by the two bumps in the mated score distributions)
is mainly due to the relationship between the signs of the
corresponding elements among each pair of PolyProtected
templates that is compared to generate those scores. If the
corresponding elements of the two PolyProtected templates
all have the same signs (i.e., either both positive or both
negative), then the resulting score will be close to 0.0. This
is because the comparison score is a measure of the angle
between the two template vectors, and the angle approaches

20. The same observation was made for overlaps of 0, 1, 3, and 4.

https://bit.ly/3tYv3jw
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0 when the corresponding vector elements are similar in
magnitude (since they come from the same subject’s face)
and have the same signs (which is determined both by
the signs of the original elements and the effects on the
signs by the PolyProtect mapping). Alternatively, if the
corresponding PolyProtected elements have opposite signs,
the score will be close to -2.0. This effect is more prominent
for PolyProtected templates from the same subject’s face
embeddings, because these embeddings are much more
similar than embeddings from different subjects’ faces. Con-
sequently, these similarities may be exaggerated to produce
PolyProtected templates that are either as similar as possible
(score ≈ 0.0) or as different as possible (score ≈ -2.0),
depending on the choice of the C and E parameters used in
the PolyProtect mappings.

Based on the aforementioned observations, we conclude
that our PolyProtected systems achieved a promising overall
degree of unlinkability (indicated by the low Dsys

↔ values),
but the systems were only fully unlinkable within a certain
part of the score range. So, we investigated the possibility of
achieving full unlinkability across the entire score range, by
selecting the C and E PolyProtect parameters in a stricter
way, such that the mated scores would be forced (as much
as practically possible) to lie within the aforementioned
range. In other words, we tested the possibility of removing
the mated score distribution bumps at the extreme ends
of the score range, through smarter PolyProtect parameter
selection. To achieve this, we proceeded as follows.

We established the full unlinkability score range on our
development dataset (as shown in Fig. 6), then applied that
score range to the evaluation dataset. Note that Mobio’s
development and evaluation datasets consist of different
subjects, so we can think of this approach as establishing
the score range prior to system deployment on a dataset
that simulates the application scenario, but when we do
not know who will use the systems in practice. Since the
full unlinkability score range was found to vary across the
Facenet and Idiap face recognition systems and across the
different overlaps, we used separate, system-specific and
overlap-specific score ranges to select the C and E PolyPro-
tect parameters that would be employed in generating the
PolyProtected templates on Mobio’s evaluation dataset.

The same process that was applied on the development
subset to randomly select the face embeddings used in the
unlinkability analysis (described earlier), was applied to the
evaluation dataset, and the same number of face embeddings
and thus PolyProtected templates (i.e., 10 per subject, for
each of 10 trials) was considered. The only difference was
in the way that the C and E parameters were selected. For
the development dataset, we simply required the parameters
to be different for different PolyProtected templates for the
same subject’s face embeddings. For the evaluation dataset,
however, the parameter selection process was more strict.

Let {V1, V2, ..., V10} represent a set of 10 face embed-
dings randomly selected for a particular subject from Mo-
bio’s evaluation dataset. For the unlinkability analysis, we
needed to generate a PolyProtected template for each of
these 10 embeddings, meaning that we had to generate
10 sets of C and E parameters. This was accomplished as
follows. To produce P1, which is the PolyProtected template
of V1, we simply generated the corresponding C1 and E1

randomly. Then, to produce P2 from V2, we also began
by generating the corresponding C2 and E2 parameters
randomly. At this point, ideally we would have liked to
compare P2 to P1 and check if the resulting score was
within the score range established for the corresponding
face recognition system on Mobio’s development dataset; if
this was the case, then C2 and E2 would be considered
acceptable, otherwise a new set of parameters would be
randomly generated until the aforementioned condition was
satisfied. Unfortunately, however, such an approach would
assume that the deployers of the face recognition system
knew in advance all the PolyProtected templates that a
particular person would use to enroll into different applica-
tions, which should not be the case in practice (but may be
possible for template replacements within the same system).
What we can assume, however, is that the parameters used to
generate those PolyProtected templates are known, because
this is the only way to ensure that the same parameters
are not used across different applications or for replacement
PolyProtected templates within the same application.

So, we adapted the process of selecting C2 and E2, such
that, instead of being compared to P1, the P2 produced
using these parameters was compared to the PolyProtected
template produced from applying C1 and E1 to the same
face embedding, V2. If the comparison score between the
two PolyProtected templates was within the required score
range, then C2 and E2 were accepted; otherwise, a new set
of parameters was randomly generated until the aforemen-
tioned condition was satisfied. Once P2 was successfully
produced, we moved on to the selection of parameters
C3 and E3, which would be used to produce P3 from
V3. Similarly to the process used for P2, we began by
randomly generating C3 and E3 to produce P3. This time,
P3 was compared to two other PolyProtected templates: one
resulting from applying C1 and E1 to V3, and the other
resulting from applying C2 and E2 to V3. If both compar-
ison scores were within the required score range, P3 was
considered successful; otherwise, C3 and E3 kept being ran-
domly generated until the score condition was satisfied. This
process was continued until all 10 PolyProtected templates
were successfully generated, where P10 was compared to
PolyProtected templates produced using V10 and all 9 sets
of previously-generated C and E parameters.

The idea behind this strict process of selecting the C
and E parameters was to ensure that different PolyProtected
templates generated from the same face embedding would
be unlinkable. If we could achieve this, then it would be rea-
sonable to assume that the selected parameters would also
ensure unlinkability between PolyProtected templates gen-
erated from different face embeddings belonging to the same
subject (which should be the case if the face embeddings
are quite similar). Note that this parameter selection process
was conducted separately for each system (Facenet and
Idiap) and each overlap in the set {0, 1, 2, 3, 4}, using the
corresponding score ranges established on the development
dataset. Fig. 7 shows the unlinkability plots resulting from
applying this strict C and E parameter selection process on
Mobio’s evaluation dataset. Due to space restrictions, Fig. 7
presents the unlinkability plots only for overlap = 2 for each
of our two PolyProtected systems, and Table 4 summarises
the Dsys

↔ values for all overlaps.
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Fig. 7. Unlinkability plots for PolyProtected (overlap = 2) Facenet and
Idiap systems, on Mobio’s evaluation set using strict C and E selection.

TABLE 4
Dsys
↔ for strict C and E selection on Mobio’s evaluation set.

Overlap 0 1 2 3 4
Facenet Dsys

↔ 0.03 0.04 0.03 0.04 0.03
Idiap Dsys

↔ 0.03 0.02 0.02 0.01 0.01

From Fig. 7 and Table 4, it is clear that Dsys
↔ for all

PolyProtected systems is effectively 0. This suggests that,
by employing a stricter parameter selection process for the
PolyProtect mapping, it is possible to achieve almost full
unlinkability for PolyProtected templates generated using
all overlap amounts, on both the Facenet and Idiap systems.
Furthermore, unlike in Fig. 6, D↔(s) in Fig. 7 does not
approach anywhere near a value of 1 across the entire
score range21. A few scores are shown to have a non-zero
D↔(s) measure, suggesting that there is a small probability
of establishing a link between the PolyProtected templates
being compared, if such a score is obtained; however, the
low D↔(s) values even for these scores implies a very small
degree of linkability, which is reflected in the near-zero Dsys

↔
measures. So, we may reasonably conclude that effectively
full unlinkability of PolyProtected face embeddings is at-
tainable in practice, provided that the C and E parameter
generation is conducted in a manner smarter than naive
random selection.

Note that, during our strict parameter selection pro-
cess, we actually implemented a score range tolerance if
suitable C and E parameters could not be found within
100 tries. The tolerance started at 0 and was increased by
0.01 for every 100 failed parameter generation attempts.
This was done to speed up the experiments, and we did
not check for repetition across the 100 tries. So, we expect
that more optimal unlinkability results could be obtained
with a more stringent implementation, perhaps using a
lower/zero tolerance. Nevertheless, the aim was to show
that the unlinkability of our PolyProtected systems can be
improved by adopting a smarter-than-random parameter
selection method. The results in Fig. 7 and Table 4 prove
that this is realisable in practice.

Of the example face embedding protection methods
mentioned in Section 2, an unlinkability analysis was pre-
sented in [18]–[20]. These evaluations were also conducted
using the unlinkability framework proposed in [24], and
the best Dsys

↔ values are approximately comparable to our
results in Table 4. Since the full experimental procedure (e.g.,
the number of protected templates considered per subject)

21. The same trend was observed for all overlaps.

adopted for the unlinkability analysis of all these methods is
not always clear, we cannot guarantee that our unlinkability
comparison is perfectly fair. We may reasonably conclude,
however, that in our respective evaluation scenarios, both
PolyProtect and the protection methods in [18]–[20] were
shown to satisfy the unlinkability criterion to a high degree,
using the same general evaluation framework.

5 CONCLUSIONS AND FUTURE WORK

This paper proposed PolyProtect, a method for protecting
face embeddings in neural-network-based face verification
systems. PolyProtect maps a face embedding to a lower-
dimensional representation, via multivariate polynomials
defined by user-specific coefficients and exponents. The
recognition accuracy, irreversibility, and unlinkability of
PolyProtect were evaluated on two open-source face veri-
fication systems in a mobile application context.

We showed that PolyProtect is capable of preserving or
improving the baseline (unprotected) systems’ recognition
accuracy under normal operating conditions, and that the
accuracy can be tuned by varying the amount of overlap
used in the PolyProtect mapping. Acceptable accuracy is
thus attainable even in the worst-case (albeit unlikely) sce-
nario where all user-specific parameters are stolen.

Our irreversibility analysis, for a fully-informed attacker,
simulated the feasibility of recovering an approximation of
the face embedding from its PolyProtected template(s), us-
ing a numerical solver. The inversion success rate was calcu-
lated in terms of the comparison score between the returned
solution and the true face embedding, which was assumed
to be enrolled in the baseline (unprotected) face recognition
system. At a commonly-used match threshold, PolyPro-
tected templates generated using overlaps of 0-2 were found
to be practically irreversible, those generated using an over-
lap of 3 partially irreversible, and those generated using the
maximum overlap of 4 almost fully reversible. As expected,
the inversion success rate was demonstrated to increase
when the baseline face recognition system adopts a more
lenient match threshold, though the difference was mainly
noticeable for an overlap of 3. Access to multiple PolyPro-
tected templates from the same face embedding was shown
to increase the chances of a successful template inversion
in the best-case scenario for the attacker, but in general a
high success rate was found to be unattainable unless the
maximum overlap was used in the PolyProtect mapping
(not recommended) or the number of acquired templates
was impractically large. We thus recommended carefully
selecting the overlap parameter in practice, according to the
desired irreversibility versus recognition accuracy trade-off.

Finally, an analysis of PolyProtect’s unlinkability prop-
erty showed that it is possible to achieve effectively full un-
linkability between multiple PolyProtected templates from
the same subject’s face embeddings, particularly if the user-
specific parameters employed in the PolyProtect mappings
are selected in a smarter-than-random fashion. This suggests
that it would be possible to generate sufficiently diverse
PolyProtected templates from the same subject’s face, such
that: (i) compromised templates could be renewed (i.e.,
cancelled and safely replaced by new ones), and (ii) dif-
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ferent templates could be enrolled in different applications
without the risk of cross-matching.

Our focus in evaluating PolyProtect was on using prac-
tical evaluation methodologies, to present insight into the
method’s robustness as a real-life face embedding protec-
tion scheme. The results indicated that the method is ca-
pable of satisfying the recognition accuracy, irreversibility,
and unlinkability criteria, even under the toughest threat
model that assumes a fully-informed attacker with complete
knowledge of the system and all its parameters. We may
thus reasonably conclude that PolyProtect shows promise
in practice, which is important considering the urgent re-
quirement for robust face embedding protection methods in
real-life face recognition applications.

Current plans for future work include extending the
unlinkability analysis to estimate the number of different
PolyProtected templates that can be generated from the
same face identity, investigating alternative (magnitude-
specific) metrics for measuring the similarity between
two PolyProtected templates, evaluating PolyProtect’s suit-
ability as a face embedding protection method in other
face recognition contexts (besides mobile), and applying
PolyProtect to embeddings from other biometric modalities
(besides the face).

ACKNOWLEDGMENTS

This material is based upon work supported by the Center
for Identification Technology Research (CITeR) under Grant
No. 20F-01I, and CITeR affiliates IDEMIA and SICPA.

REFERENCES

[1] A. Zhmoginov and M. Sandler, “Inverting face embeddings with
convolutional neural networks,” arXiv preprint arXiv:1606.04189,
2016.

[2] F. Cole, D. Belanger, D. Krishnan, A. Sarna, I. Mosseri, and
W. T. Freeman, “Synthesizing normalized faces from facial identity
features,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 3386–3395.

[3] G. Mai, K. Cao, P. C. Yuen, and A. K. Jain, “On the reconstruction
of face images from deep face templates,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 41, no. 5, pp. 1188–
1202, 2019.
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