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Abstract

Robots are becoming more and more present around us, both in industries and in our homes.
One key capability of robots is their adaptability to various situations that might appear in the real
world. Robot skill learning is therefore a crucial aspect of robotics aiming to provide robots with
programs enabling them to perform one or several tasks successfully. While such programming
is usually done by an engineer or a developer, making robot programming available to anyone
would dramatically increase the range of applications currently feasible for robots. Learning
from Demonstration (LfD) is a robot skill learning paradigm addressing this aim by developing
intuitive frameworks for non-expert users to easily (re)program robots.
While Learning from Demonstration has emerged as a successful way to program robots, several
limitations remain to be addressed. Typical approaches still require some forms of preprocessing,
such as the alignment of the demonstrations, or the choice of the movement representation.
Also, the algorithms have to run with a relatively low number of demonstrations that human
users are typically willing to give, while being performant, adaptable and generalizable to new
situations. In this thesis, we propose to address these shortcomings with methods that make
Learning from Demonstration more intuitive and user-friendly. We notably propose a novel
movement representation requiring no demonstration alignment, and active learning strategies
that permit to learn complex skills from fewer demonstrations.

Keywords: Learning from demonstrations, active learning, robot learning, imitation learning
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Résumé

Les robots occupent une place de plus en plus importante autour de nous, à la fois pour des
applications industrielles et domestiques. Ils doivent pouvoir s’adapter à la diversité des situations
qui peuvent apparaître dans leur environnement, ce qui nécessite une bonne programmation robo-
tique. Celle-ci est cruciale car elle fournit aux robots des programmes leur permettant de réaliser
une ou plusieurs tâches avec succès, et elle est habituellement effectuée par un ingénieur ou un
développeur spécialisé. Nous pensons qu’ouvrir les portes de la programmation robotique à des
utilisateurs non experts élargirait drastiquement le champ des applications robotiques possibles.
L’apprentissage par démonstration est une des voies possibles pour atteindre cet objectif, il ne
nécessite pas de connaissances en programmation de la part de l’utilisateur puisque ce dernier
programme le robot simplement en lui montrant comment faire la tâche en question.
Bien que l’apprentissage par démonstration ait été appliqué avec succès pour programmer des
robots, un certain nombre de questions restent ouvertes et limitent le champ d’applications.
Les approches existantes nécessitent généralement un prétraitement des démonstrations, tel
qu’un alignement, ainsi qu’un choix approprié de la représentation du mouvement. D’autre
part, les algorithmes développés doivent fonctionner avec un nombre relativement restreint
de démonstrations qu’un utilisateur est prêt à effectuer. Enfin, ils doivent être performants,
s’adapter et généraliser à des nouvelles situations. Dans cette thèse, nous proposons des solutions
à ces limitations avec des méthodes qui rendent l’apprentissage par démonstration plus intuitif
et facile d’utilisation. Notamment, nous proposons une nouvelle manière de représenter les
mouvements qui présente l’avantage de ne pas nécessiter de prétraitement, ainsi que des méthodes
d’apprentissage actif qui permettent d’apprendre des tâches complexes avec un nombre restreint
de démonstrations.

Mots clefs : Apprentissage par démonstration, apprentissage actif, apprentissage robot, apprentis-
sage par imitation
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1 Introduction

Robots are becoming ubiquitous in our society, as they are used in many areas such as manufacture,
warehouses, logistics or agriculture. However, the difficulty to program them is a limiting factor
as robot programming typically requires many hours of work of a dedicated engineer for a given
task. Democratization of robotics is still in its early stages, which hinders the potential of robotic
applications. Let us make a comparison: back in the 90s, creating a website was hard and only
accessible to a small group of technical experts. Now that we have efficient tools allowing anyone
without specific knowledge to create his/her own website, we have dramatically increased the
business potential and creativity of the web, and most of today’s websites would not exist if such
tools would not have been created. Similarly, we believe that efficient tools permitting any user
to intuitively and easily program robots would open the way to a huge diversity of new robotic
applications [68]. For instance, robot programming would be possible for small companies which
do not have the financial resources to support a dedicated robot engineer [103], or even for private
individuals for domestic applications. We simply cannot imagine all the fallouts such tools would
have on our society [120], likely improving the lives of billions of people [47, 101].

In this thesis, we support this long-term goal of developing tools making robot programming
accessible to anyone, hence democratizing robotics. A popular framework for it is the Learning
from Demonstrations framework [22, 115, 3], by which human users can teach robot tasks
by providing them with demonstrations, i.e., showing the robot how to do the task. But this
framework suffers from several limitations hingering its applications potential. Notably, it may
not be trivial for a human user to provide good informative demonstrations, as he/she does
not know the processus by which the robot learns [25]. Also, human users are only willing to
provide a handful of demonstrations, after which they become bored and do not wish to use
the system. In this thesis, we try to address these challenges by proposing methods that make
Learning from Demonstrations more intuitive and user-friendly, hence taking a step towards
robotics democratization.
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Chapter 1. Introduction

1.1 ROSALIS project

This thesis is part of the ROSALIS project (Robot skills acquisition through active learning and
social interaction strategies), which proposes to rely on natural interactions for robot skill learning.
Most efforts in robot learning from demonstration are turned toward developing algorithms for
the acquisition of specific skills from training data. While such developments are important, they
often do not take into account the social structure of the process, in particular, that the interaction
with the user and the selection of the different interaction steps can directly influence the quality
of the collected data. Similarly, while skills acquisition encompasses a wide range of social and
self-refinement learning strategies, including mimicking (without understanding the objective),
goal-level emulation (discovering the objectives by discarding the specific way in which a task is
achieved), exploration with self-assessed rewards or feedback from the users, they each require the
design of dedicated algorithms, but the ways in which they can be organized have been overlooked
so far. In ROSALIS, we propose to rely on natural interactions for skill learning. Active learning
methodologies will be developed, relying on heterogeneous sources of information. We target
applications of robots in both manufacturing and home/office environments, both requiring
re-programming in an efficient and personalized manner.

18



1.2. Thesis organization

1.2 Thesis organization

Background This chapter introduces the research background of the thesis. In Section 2.1,
an overview of the different existing methods for robot skill learning is presented, with a focus
on methods that are based on human demonstrations. In Section 2.2, we discuss the need for
learning a probabilistic representation of movement primitives, and present the LfD framework
of probabilistic movement primitives (ProMPs). In Section 2.3, we present the machine learning
models for approximating probability distributions that will be used in the thesis, namely the
frequentist and Bayesian versions of Gaussian mixture models.

Fourier movement primitives This chapter proposes a LfD approach that leverages the the-
oretical properties of the Fourier transform to propose a method for learning robot skills from
demonstrations that is intuitive and easy to use for users. Notably, it does not require demonstra-
tions to be aligned by the user, nor the user to carefully choose the basis functions that are used
by the algorithm to approximate the movements, which is usually the case.

Active learning of Bayesian probabilistic movement primitives This chapter addresses the
problem of quantifying what constitues a good demonstration. This is a typical difficulty of LfD
methods where the human user does not know how to provide informative demonstrations to the
robot. In this chapter, we propose to quantify and leverage the uncertainties of the movement
representation for actively requesting demonstrations to the human user. This reduces the human
user cognitive load in two ways: he/she does not have to think about the next demonstration to
provide, and it reduces the overall number of demonstrations he/she has to give.

Combining social and intrinsically-motivated learning for multi-task robot skill acquisition
In this chapter, we extend the framework of the previous chapter to combine several robot learning
modalities: not only does the robot learn from demonstrations, but it also has the possibility
to learn by itself from experience with intrinsically-motivated learning. We propose a unified
framework to combine those learning modalities, as well as an active learning method for
choosing between them.

Summary and future work This chapter summarizes the contributions of the thesis, and
introduces several open research directions that could be considered for future work.
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2 Background

This chapter introduces the research background of the thesis. We start by presenting an overview
of the different existing methods for robot skill learning in Section 2.1, with a focus on methods
that are based on human demonstrations. In Section 2.2, after discussing the need to learn
a probabilistic representation of movement primitives, the LfD framework of Probabilistic
Movement Primitives (ProMPs) is presented. In Section 2.3, we present the machine learning
models for approximating probability distributions that will be used in the thesis, namely the
frequentist and Bayesian versions of Gaussian mixture models.

2.1 Robot skill learning

Robot skill learning encompasses a wide range of techniques and frameworks, the most popular
are:

• imitation learning, where the robot learns by imitating an expert (human user)

• reinforcement learning, where the robot learns by itself thanks to guidance provided by a
reward function, that acts as a reward or retribution.

• intrinsically-motivated / curiosity-driven learning, where the robot learns by itself,
following an internal reward function usually rewarding some form of curiosity.

All frameworks share the same high-level goal: proposing techniques that permit to alleviate the
need to manually program each and every robot behavior. We review here the advantages and
drawbacks of those frameworks as well as the relevant literature.

2.1.1 Imitation learning

As robots move from simple controlled environments to more complex real-world situations,
their programming is becoming more and more challenging and expensive. It might be easier
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Chapter 2. Background

for a teacher to demonstrate a desired behavior rather than to manually engineer it. This process
of learning from demonstrations and the study/design of algorithms doing so is called imitation
learning [98]. This is an active area of research with two main trends: some works attempt to
learn to replicate the desired behavior directly, a process which is called behavioral cloning [8], or
mimicking [142]. Other works attempt to learn the hidden objectives of the desired behavior from
demonstrations, a process which is called inverse optimal control [69], inverse reinforcement
learning [118], or emulation [142]. The choice of behavioral cloning versus inverse optimal
control is very problem dependent and not easy, and one should consider what is the most
parsimonious description of the behavior (policy or reward).

Another important distinction can be made between approaches that model the system dynamics
and those that do not. The former are called model-based approaches, and the latter model-free
approaches. In model-free approaches, the system dynamics are only implicitly encoded in
the policy learned. One possibility is to directly learn the mapping from state to action (the
policy) from the demonstrations [70], but this can cause stability and safety problems as the
learned policy is applied on the real robot. But in many robotic systems, position/velocity/torque
controllers are available and one can assume that the system is fully actuated. This notably
permits to learn skills at the level of the trajectory instead of the control commands level, and this
has been widely and successfully used in many approaches [14, 21, 105, 1]. In the absence of
such controllers (i.e., in unknown dynamics), it is considerably more difficult to use model-free
approaches at the trajectory level, although some recent approaches have proposed possible ways
[48, 57]. Model-based approaches alleviate this by explicitly modeling the system dynamics,
and leveraging it for learning a policy [40] or for reward learning [32]. However, it is often
challenging to learn the system dynamics of a real robotic system, for instance for tasks involving
contacts.

2.1.2 Reinforcement learning

Reinforcement learning is a popular skill learning framework by which an agent learns to
maximize an external signal coming from its environment (the reward) [134]. It is a very active
research area of artificial intelligence, that has proven very successful for achieving super-human
performance for, e.g., Atari games [91] and the Go game [132], thanks to its combination with
deep learning (i.e., deep reinforcement learning). Initially designed for discrete state-action
spaces, deep reinforcement learning has been extended successfully to continuous state-action
spaces [83]. The main drawback of this framework is the usually very high number of trials
required to learn a task (for instance, in a recent work an equivalent of 3000 hours of robot
interaction time are needed to learn hand-eye coordination for robotic grasping [82]). Though
methods have been proposed to alleviate this limitation and make real-world robotic applications
possible [46, 28, 135], this is an active area of research that remains unsolved. The subfield
of reinforcement learning that has proven the most successful on robotic applications is policy
search [35], which focuses on finding good parameters for a given policy parametrization. It
usually requires fewer data and can cope with high-dimensional state and action spaces, hence
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2.2. Movement primitives

being better suited to robotic applications [36, 74, 81]. There remains one significant limitation
of this framework: the need to carefully choose the reward function. It is known that the task
success is highly dependent on the appropriate choice of the reward signal [93]. Choosing the
reward signal carefully requires great knowledge and experience, and is therefore non-trivial for
non-expert users. Providing binary reward signals [140] is a potential solution to circumvent this
limitation, but it complexifies the whole problem as the reward signal does not provide guidance
anymore, and it therefore requires more robot trials, or another form of guidance (e.g., human
demonstrations).

2.1.3 Intrinsically-motivated learning

Intrinsically-motivated learning (a.k.a. curiosity-driven learning, self-paced learning, self-
supervised learning) is a subfield of reinforcement learning [45] that does not require the careful
design of an external reward function. It has emerged as an efficient approach for autonomous
lifelong learning in robots [99, 123], and it is inspired by the ability of humans to discover how to
produce interesting effects in their environments [141, 33, 12]. In [12], psychologists suggested
that exploration might be triggered and rewarded for situations that include novelty/surprise.
They observed that the most rewarding situations were those with an intermediate level of novelty,
between already familiar and completely new situations. This also seems to be confirmed by
recent neuroscience studies showing that dopamine might be released, not only for predicting
external rewards such as food, but also for internal rewards such as prediction errors [60]. This
suggests that intrinsic motivation systems might be present in the brain, potentially by the pres-
ence of signals related to prediction errors. Given this background, a way to implement an
intrinsic motivation system might be to build a mechanism which can evaluate the degree of
novelty of different situations from the point of view of a learning robot, and then designing an
associated reward being maximal when these features are in an intermediate level. Maximizing
this reward can then create an active exploratory behavior [89, 99, 100]. Curiosity-driven learning
has been successfully used for robot skill acquisition [122], for instance for learning tactile skills
[104], motion planning [49], learning action sequences for high-dimensional video inputs [76],
or learning to manipulate wooden blocks [94].

2.2 Movement primitives

A main difficulty in robot skill learning lies in the high dimensionality of the problem. A task
usually involves a high-dimensional state space (e.g., 7 degrees of freedom robot joint position
and velocity) over a long inherently continuous time horizon. Learning mappings or distributions
for such a high-dimensional space is difficult, which is why a popular approach is to use more
compact representations of the robot’s control policy [6], for example using movement primitives.
Modulating the movement primitives parameters permits imitation as well as reinforcement
learning, and adaption to different situations. Such formulations have been extensively studied
and used for robotic applications such as hitting [66, 73], ball-in-the-cup [74], grasping [139],
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throwing [31], and pancake flipping [77].

The aim of a movement primitives framework is a modular control architecture that permits to
create complex robot movement out of simple elemental movements. Such framework should
provide the following characteristics:

• Parallel activation of movement primitives

• Combination of movement primitives for smooth blending

• Modulation of the movement primitives (e.g., to a desired final position, velocity or
via-points)

• Learnable from demonstrations and/or reinforcement learning

• Applicable to stroke-based and periodic-based movements

A popular approach for learning robot movements is to learn a probabilistic representation of the
trajectories, either at the level of the movement primitives [23, 107, 105], or directly at the level
of the trajectory [20, 23, 24]. This gives the following benefits:

• Adaptation and modulation can be made via conditioning (e.g., conditioning the distribution
on the desired final position)

• Composition of movements can be achieved by making a product of probability distribu-
tions

• It can encode the variance of the movement, which can for example be used for minimal
intervention control

• It models the covariance between trajectories of different degrees of freedom, and can
therefore be used to couple the joints of a robot

Probabilistic Movement Primitives (ProMPs) [107, 105] have emerged as a popular tool due to
their simplicity, and to their efficient combining of movement primitives and probability distribu-
tion learning. The method therefore combines efficiently the above mentionned capabilities of
probabilistic trajectory learning as well as the low dimensionality of movement primitives. The
main idea of ProMP is to treat a movement as a distribution over trajectories, learned at the level
of movement primitives for a more compact representation. We now describe more formally the
framework of ProMPs, as it is a tool that we will use throughout the thesis.

Probabilistic movement primitives

Let us denote as yt the observation at time t of a trajectory. Such observation variable of size D
can typically contain all joint angles and velocities. A trajectory (typically, a demonstration) τ of
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size TD is the concatenation of T observations yt:

τ =

 y0...
yT

 . (2.1)

ProMP uses a nD dimensional weight vector w to compactly represent a single trajectory, where
n is typically much smaller than T . The probability of observing y at time t is given by a linear
basis function model

p(yt|w) = N


 y1,t...
yD,t

 ∣∣∣∣∣
Φ>t · · · 0

...
. . .

...
0 · · · Φt>

w,Σy

 = N (yt|Ψ>t w,Σy) , (2.2)

where Φt defines the n dimensional time-dependent basis matrix function indexed at time t, n
denotes the number of basis functions, and Σy is the D ×D observation noise variance.

A distribution over the weight vector p(w; θ) with parameters θ is introduced to capture the
variance of the trajectories. By marginalizing out the weight vector w the trajectory distribution
can be computed

p(τ ; θ) =

∫
p(τ |w)p(w; θ)dw. (2.3)

We typically choose a distribution p(w; θ) for which this integral can be computed analytically.
The most popular and simple choice is a Gaussian distribution p(w; θ) = N (w|µw,Σw) over
w, which yields the following state distribution:

yt =

∫
N (yt|Ψtw,Σy)N (w|µw,Σw)dw = N (yt|Ψtµw,Ψ

>
t ΣwΨt + Σy) . (2.4)

Learning the parameters

The parameters θ = {µw,Σw} can be learned from multiple demonstrations {τi}i by maximum
likelihood estimation of the parameters {θ,Σy} of the Hierarchical Bayesian Model (HBM)
p(τ ; θ), for example using Expectation Maximization [43]. Most often [44, 105, 108, 88], the
HBM is not optimized directly, but a two-stage process is taken to learn the parameters {θ,Σy}:

1. Convert the trajectories {τi}i to their compact representation {wi}i using linear regression.
Eventually deduce (or directly give) Σy

2. Learn the parameters θ by maximizing the likelihood p(w; θ)

It has been shown in [43] that, in the case where the full trajectories are observed (i.e., no
missing data in the demonstrations), this simplified learning procedure gives similar results to the
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alternative HBM optimization, which is why it is usually preferred for its simplicity.

Choice of the approximate distribution

While the most simple choice for approximating p(w; θ) is to use a Gaussian distribution, it has
been shown that it might not be sufficient to characterize the variability of demonstrations, and a
mixture of Gaussians is sometimes preferred [44].

2.3 Learning distributions

We have presented in previous section a popular framework for learning movement primitives.
This framework is probabilistic and aims at representing distributions of trajectories, that can,
typically, be used for generalization and adaptation to new situations. In this section, we present
several methods for learning distributions that will be used throughout the thesis.

We do not aim at providing a full review of methods for learning distributions, as it is beyond the
scope of this thesis, but rather focus on the methods that have been chosen in the thesis. From
previous section, we have seen that we have to choose a way to learn the distribution over the
weight vectors, as it in turns induces a distribution over the trajectories. The distribution will
then be used for conditioning, and hence we choose to learn them with approximate distributions
providing analytical conditional distributions. A possible and popular way to do so is to choose
a mixture of Gaussians as approximate distributions. In the following subsection, we present
the widely-used framework for learning Gaussian mixture models (GMMs) with maximum
likelihood. We then present the Bayesian Gaussian mixture model, which is a natural extension
that presents interesting properties and alleviates some of the drawbacks of standard maximum
likelihood GMMs.

In this section, we suppose we have a dataset of N D-dimensional observations {x1, . . .xN}
that we wish to model. It can be arranged as an N ×D dimensional matrixX in which the nth

row is given by x>n . Our goal is to learn a joint ditribution p(x) over the observation space.

Gaussian mixture models The Gaussian mixture distribution can be written as a linear superpo-
sition of Gaussians:

p(x) =

K∑
k=1

πk N (µk,Σk), (2.5)

whereK is the number of Gaussians, πk,µk and Σk are respectively the scalar mixture coefficient,
D dimensional mean and D ×D dimensional covariance matrix of the kth Gaussian component
of the mixture.

Let us write respectively π,µ,Σ for the concatenations of the πk, µk and Σk along the first
dimension. Assuming that our N observationsX are drawn independently from the distribution,
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we can express the log likelihood as:

log p(X|π,µ,Σ) =
N∑
n=1

log

(
K∑
k=1

πk N (xn|µk,Σk)

)
(2.6)

We aim to find the parameters θ = {π,µ,Σ} that maximize the likelihood p(X|θ). Unlike the
case of a single Gaussian, the maximum likelihood solution cannot be obtained analytically in the
Gaussian mixture case. One way to maximize this likelihood is to use gradient-based techniques
[144, 53]. Another (more popular) way is the Expectation Maximization (EM) algorithm [37],
which does not require learning rates and automatically enforces all GMM constraints (mixture
components summing to 1 and positive definite covariances). The EM algorithm is described in
Algorithm 1, for full derivations on how the EM equations are obtained the reader can refer to
[15].

It is important to note that the EM algorithm is a local algorithm, and is hence not guaranteed
to find the global maximum. The initialization of the parameters at the beginning of EM is
therefore very important, and is usually done with the K-Means algorithm [86]. The K-Means
algorithm is used to cluster the points into K clusters, the mixture coefficients, the means and the
covariance matrices can then respectively be initialized to the fraction of points, the means, and
the covariance matrices of each cluster.

Bayesian Gaussian mixture models

In this subsection, we discuss the Bayesian version of Gaussian mixture models, which provides
the advantage of recovering not only the most likely set of parameters, but a distribution over the
parameters.

As we have seen in previous subsection, the maximum likelihood estimation of Gaussian mixtures
solves the following optimization problem

θ = arg max
θ

log p(X|θ). (2.7)

Maximum Likelihood is well known for its tendency to overfit data, and for preferring complex
models, since they have more parameters and fit the data better. Therefore, maximum likelihood
cannot optimize model structure. Bayesian models provides a solution to these problems. Rather
than focusing on a single model, it learns a whole class of models. For each model, the posterior
probability given the data is computed, and prediction is made by averaging the model predictions
weighted by their posterior probabilities. This avoids overfitting, but unfortunately Bayesian
models are often intractable [16]. We propose to use Variational Bayes, an elegant framework for
Bayesian computations in graphical models. This framework permits to have analytical posterior
distributions as well as predictive densities, as we will see below. We start by introducing more
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Algorithm 1: EM algorithm for Gaussian mixtures
Data: a N ×D dimensional dataset of observationsX , the number of Gaussians K
Result: GMM parameters π,µ,Σ

1. Initialize the mixture coefficients {πk}Kk=1, means {µk}Kk=1 and covariance
matrices {Σk}Kk=1, and evaluate the initial log likelihood

2. Expectation step Calculate the responsibilities rnk using the current
parameters values:

rnk =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

3. Re-evaluate the parameter values using the current responsibilities:

µnew
k =

1

Nk

N∑
n=1

rnkxn

Σnew
k =

1

Nk

N∑
n=1

rnk(xn − µnew
k )(xn − µnew

k )>

πnew
k =

Nk

N
,

where Nk =
∑N

n=1 rnk

4. Evaluate the log likelihood

log p(X|π,µ,Σ) =

N∑
n=1

log

(
K∑
k=1

πk N (xn|µk,Σk)

)

and check for convergence of the log likelihood, if it has not converged return to
step 2.

formally the Bayesian treatment of the Gaussian mixture model.

By Bayes rule we have that:

p(θ|X)p(X) = p(X|θ)p(θ), (2.8)

which implies the following for the posterior distribution:

p(θ|X) ∝ p(X|θ)p(θ). (2.9)

The idea of the Bayesian Gaussian mixture model is to approximate the full posterior distribution
p(θ|X) over the parameters θ. Under an appropriate choice of priors, it has been shown that this
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can be done using a generalization of the standard EM algorithm [7].

A Dirichlet prior is used for the mixing coefficients and a normal inverse Wishart prior for the
means and precision matrices:

p(π,µ,Σ) = p(π)p(µ,Σ), (2.10)

p(π) ∝
K∏
k=1

πα0−1
k , (2.11)

p(µ,Σ) = p(µ|Σ)p(Σ), (2.12)

=

K∏
k=1

N
(
µk|m0,

1

β0
Σ̃k

)
W−1(Σ̃k|Σ0, ν0), (2.13)

where α0 is the weight concentration prior,m0 is the mean prior, β0 is the mean precision prior,
Σ0 is the covariance prior and ν0 is the degrees of freedom prior.

Under mild assumptions, it can be shown that the posterior distribution of the parameters is of
the same form as the prior [15], thanks to the use of conjugate priors:

p(π,µ,Σ|X) = q∗(π)q∗(µ,Σ), with (2.14)

q∗(π) = Dir(π|αk) (2.15)

q∗(µ,Σ) =

K∏
k=1

N
(
µk|mk,

1

βk
Σ̃k

)
W−1(Σ̃k|Σk, νk), (2.16)

where αk,mk, βk, Σk and νk are obtained using update equations analogous to the EM algorithm
for the maximum likelihood solution. We write in Alg.2 the equations of this variational version
of the EM algorithm. We refer the reader to Sec.10.2 of [15] for the full derivations of those
equations.
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Algorithm 2: Variational EM algorithm for Bayesian Gaussian mixtures
Data: a N ×D dimensional dataset of observationsX , the maximum number of

Gaussians K, the prior parameters α0,m0, β0, Σ0 and ν0
Result: Posterior parameters αk,mk, βk, Σk and νk

1. Initialize three statistics of the data: the number of points Nk, the means xk
and the covariances Sk of each cluster (typically with the K-Means algorithm) and
deduce the initial αk,mk, βk, Σk and νk parameters (see equations in step 3)

2. Expectation step Calculate the responsibilities rnk using the current
parameters values:

rnk ∝ π̃kΛ̃
1/2
k exp

(
− D

2βk
− νk

2
(xn −mk)

>Σ−1k (xn −mk)

)
, with

K∑
k=1

rnk = 1 for all n in [1, N ]

log Λ̃
1/2
k =

D∑
i=1

ψ

(
νk + 1− i

2

)
+D log 2 + log |Σ−1k |

log π̃k = ψ(αk)− ψ

(
K∑
k=1

αk

)
, where ψ(·)is the digamma function.

3. Maximization step Re-evaluate the parameter values using the current
responsibilities. First recalculate the three statistics of the data:

Nk =
N∑
n=1

rnk

xk =
1

Nk

N∑
n=1

rnkxn

Sk =
1

Nk

N∑
n=1

rnk(xn − xk)(xn − xk)>.

Then recalculate the parameters of the posterior distribution:

αk = α0 +Nk

βk = β0 +Nk

νk = ν0 +Nk

mk =
1

βk
(β0m0 +Nkxk)

Σk = Σ0 +NkSk +
β0Nk

β0 +Nk
(xk −m0)(xk −m0)

>

4. Check for convergence of the parameters, if they have not converged return to
step 2.
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3 Fourier Movement Primitives: an ap-
proach for learning robot skills from
demonstrations
In this chapter we propose a Fourier movement primitive (FMP) representation to learn robot
skills from human demonstrations. We focus here on rhythmic movements for which the method
is naturally suited, but we will discuss how it could be applied to discrete (point-to-point) motions.
Indeed, we believe that, whether in factory or household scenarios, rhythmic movements play
a crucial role in many daily-life tasks. Our approach takes inspiration from the probabilistic
movement primitives (ProMP) framework, and is grounded in signal processing theory through
the Fourier transform. It works with minimal preprocessing, as it does not require demonstration
alignment nor finding the frequency of demonstrated signals. Additionally, it does not entail
the careful choice/parameterization of basis functions, that typically occurs in most forms of
movement primitive representations. Indeed, its basis functions are the Fourier series, which can
approximate any periodic signal. This makes FMP an excellent choice for tasks that involve a
superposition of different frequencies. Finally, FMP shows interesting extrapolation capabilities
as the system has the property of smoothly returning back to the demonstrations (e.g. the limit
cycle) when faced with a new situation, being safe for real-world robotic tasks. We validate FMP
in several experimental cases with real-world data from polishing and 8-shape drawing tasks as
well as on a 7-DoF, torque-controlled, Panda robot.

3.1 Introduction

Upper-body rhythmic movements play a crucial role in many daily-life tasks. Whether in factory
scenarios (e.g. polishing, sawing) or household (e.g. whisking, hammering, wiping), such
tasks require the use of repetitive patterns that should adapt to new situations. As opposed to
discrete motions (e.g. reaching, picking, batting), where the final location is typically used as the
parameter to adapt the task, rhythmic skills contain richer information pertaining to aspects like
frequency, amplitude and phase, which can strongly depend on various types of inputs, such as
the task context (e.g. wiping a small or large surface). The high number of aspects that need to
be accounted for in rhythmic motions make them hard to pre-program. We propose to rely on
learning from demonstration (LfD) [13] to learn these rich features.
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Figure 3.1 – Rythmic tasks such as wiping need to be demonstrated in few demonstrations (top), while the
robot should extract the important motion features (e.g. amplitude, frequency and phase) and generalize it
in a consistent, safe manner (bottom).

The problem of learning rhythmic robot skills from demonstrations has received previous attention
from the community, especially in the context of wiping/polishing tasks [5, 4, 71, 2], with results
along two major research lines. The first one relies on dynamical system representations,
through the popular dynamic movement primitives (DMP) [64]. Indeed, extensions of the
original DMP [65, 52, 112, 41, 111] have exploited either periodic basis functions or non-linear
oscillators to encode demonstrated robot motions. The second, and more recent, line of research
leverages probabilistic approaches, either using probabilistic movement primitives (ProMP) [107]
or kernelized movement primitives (KMP) [62]. In all cases, sinusoidal basis functions are
used, capturing the periodic aspect, but limiting the applicability in cases of varying amplitude,
frequency and phase (Section 3.2).

Fourier series have been used extensively during the past decades for synthesis and analysis of
periodic signals (Section 3.3). We here propose to leverage them in the context of LfD. The
contribution of this chapter is a model for learning rhythmic skills from demonstrations and
adapting them to new situations based on Fourier movement primitives (FMP). We propose FMP
as a movement primitive representation that relies on a superposition of Fourier basis functions
(Section 3.4), or complex exponentials, as opposed to the typical choice of real-value sine/cosine
basis functions. The main advantages of FMP over the state-of-the-art are:

1. Extraction of multiple frequencies underlying demonstrations - by relying on Fourier
series as a basis representation, FMP can extract the superposition of various frequencies
in a straightforward manner.

2. No manual choice/tuning of the basis functions - Fourier basis functions do not require
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hyperparameters, in contrast to Von-Mises or sinusoidal basis functions requiring centers,
bandwidths and frequencies parameters. The use of the Fourier basis functions is also well
motivated theoretically, as any periodic signal can be represented in the Fourier domain.

3. Minimal preprocessing - FMP requires very little preprocessing. Namely, it does not
require the demonstrations to be aligned, or the basis frequency of the signal to be identified.

4. Unified magnitude and phase statistics - the underlying processing with complex num-
bers allows the system to achive a statistical analysis over amplitude, frequency and
phase (illustrated in Fig.3.2).

We evaluate FMP in 3 different scenarios (Section 3.5). First we consider data from a polishing
task, requiring one single frequency per degree-of-freedom (DOF). Second we consider the
drawing of an 8-shape, which needs a superposition of different frequencies. Finally, we use
a 7-DOF Panda robot to perform a whiteboard-wiping task, showing that the robot can start
from arbitrary locations in the workspace while smoothly converging to the demonstrations and
perform the task. We close the chapter with a discussion on the obtained results (Section 3.6) and
conclusion (Section 3.7).

3.2 Related work

In this section we build upon 2.1.1 by reviewing specifically the related work on the representation
and learning of periodic movement primitives by imitation, and we place the contribution of this
chapter in the context of the state-of-the-art.

3.2.1 Dynamical-system-based approaches

A prominent line of research based on dynamical systems stems from the seminal work of [64]
on DMP. The original DMP formulation [64] relies on simple second order dynamics to learn
point-attractor movements, while exhibiting interesting properties such as convergence to a
desired final state and resistance to perturbations. Owing to a non-linear term that shapes the
dynamics, DMP can imitate the shape of demonstrations in a straightforward way. It can be used
for both discrete and periodic movements [65], by considering non-linear oscillators and phase
dynamics. Following from these results, more complex paradigms in robotics emerged, such as
central pattern generators [34] and adaptive frequency phase oscillators [116].

In [52], Gams et al. exploit the capabilities of adaptive frequency oscillators proposed by [116] in
combination with periodic DMP. They propose a two-layered approach that relies firstly on a set of
adaptive frequency oscillators to identify the fundamental frequency and phase of a demonstrated
signal without prior knowledge of its frequency. In a second layer, a periodic DMP is trained
using the previously extracted fundamental frequency and phase, to obtain the waveform of the
signal, allowing for reproducing the skill with the aforementioned DMP properties. This approach
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has been further utilized by others in task generalization [139], human-robot collaboration [111,
110, 113], force control [51] and improved for automatic frequency extraction [112]. These
approaches share the limitation that it is not straightforward to perform statistics on the learned
model when there is access to multiple demonstrations. This consequently limits the potential of
application in compliant control, especially at the level of minimal intervention control [90, 19,
137]. Compliant control is possible using such kind of dynamical systems, however the control
policies do not reflect the structure of the data and are typically modulated by external signals,
such as EMG [111].

Finally, [2, 72, 71] propose to use autonomous dynamical systems to learn polishing tasks, relying
on formulations that share similarities with [70]. In these works, learning is done to the extent
that the robot extracts surface normals [2] and adapts its behavior to new human intentions (either
through different limit cycles [72] or task switches [71]). We, instead, focus on the learning of
the spatiotemporal aspects of demonstrations, namely magnitude, frequency and phase.

3.2.2 Probabilistic approaches

While probabilistic approaches for motor primitive learning by imitation rose in popularity, two
lines of approaches gain particular relevance for rhythmic skills. The probabilistic movement
primitives [107] presented in previous chapter can represent either discrete or periodic motions,
depending on the choice of the basis functions. By relying on cosine or Von-Mises basis functions,
ProMP can represent periodic motions [105], but has limited adaptation capability in terms of
frequency and phase.

In another direction, following the spirit of non-parametric learning, Gaussian process regression
(GPR) can also model periodic time series (see [114] ch. 4), and hence can also approximate
well rhythmic robot skills, by relying on appropriate kernels. However, it is computationally
expensive and it is not straightforward to adapt a demonstrated policy to a new situation. More
recently, kernelized movement primitives (KMP) [62, 61] have been shown to permit the learning
of periodic skills when using periodic kernel functions. Nonetheless, both KMP and GPR, despite
allowing for statistics, share the same limitations as ProMP in that the kernels conventionally
employed are not expressive enough to represent a wide range of frequencies and phases.

3.2.3 Constraint-based approaches

A third relevant line of research focuses on learning motion constraints [5, 4, 84] through
the estimation of null space matrices from data. While [5, 84] perform polishing/wiping on
flat surfaces, [4] extend the approach to be compatible with curved surfaces (which is also the
motivation behind [2]). Similarly to [2, 72, 71], the focus is not on the learning of rhythmic motion
primitives, hence application to tasks involving periodic motions (e.g. drumming, hammering)
is not straightforward. However, these approaches rely on policy learning for generalizing the
learned constraints. Hence, there is a high potential for combinations with FMP in the future.
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(a) Weights in the complex plane (b) Corresponding basis functions multiplied
by weights

Figure 3.2 – Illustration of reconstructed signals with one Fourier basis function (for k = 3). The orange
and blue points have the same amplitude but not the same phase, which results in the same signals that are
shifted in time.

3.3 Preliminaries

We briefly recall the concepts of discrete Fourier transform and inverse discrete Fourier transform,
which are used to convert sequences from time domain to frequency domain, and the other way
around.

3.3.1 Discrete Fourier transform

The discrete Fourier transform converts a one-dimensional sequence y = [y0, . . . , yT−1]
> of

T equally-spaced samples into a same length sequence of complex coefficients corresponding
to different frequencies. The basic idea is to consider the sequence y as a periodic signal of
period T I. The sequence can be perfectly represented in the frequency domain with T complex
coefficients:

∀k ∈ [[0;T − 1]] : w̃k =

T−1∑
n=0

yn exp

(
−2iπ

T
kn

)
, (3.1)

where i refers to the imaginary part of a complex number. By concatenating the T coefficients in
a vector, we get the following matrix-form formula:

w̃ = Ψy with:

∀(k, n) ∈ [[0;T − 1]]2 : Ψk,n = exp

(
−2iπ

T
kn

)
.

(3.2)

IFor discrete movements, a periodic signal of period 2T can be constructed by symmetrizing the original signal of
length T, so that the same method can be applied.
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3.3.2 Inverse discrete Fourier transform

The discrete Fourier transform is an invertible, linear transformation. Therefore, we can map the
frequency domain representation of the signal back to the time domain:

∀n ∈ [[0;T − 1]] : yn =
1

T

T−1∑
k=0

w̃k exp

(
2iπ

T
kn

)
. (3.3)

This can also be expressed in matrix form as:

y = Φ̃w̃ with Φ̃ =
1

T
ΨH , (3.4)

where H denotes the Hermitian transpose operator, which is obtained by taking the tranpose and
then taking the complex conjugate of each entry:

(ΨH)ij = Ψji, (3.5)

with the overbar denoting the scalar complex conjugate. An interesting property of Fourier
basis functions is that a single basis function represents variations of amplitude and phase. We
illustrated this in Fig. 3.2, where we can indeed see that the same basis function can represent
signals of different amplitudes (see red, blue and green signals), but also the same signal shifted
in time (see blue and orange signals).

3.4 Fourier movement primitives

In this section, we present Fourier movement primitives. First, we detail how we can compute
statistics from demonstrations, then we explain how this is exploited for minimal intervention
control in the Fourier domain.

3.4.1 Imitation learning

Let (yl)l=1, ... ,N be a series of N demonstrations of length T . For clarity purposes, we assume
that the demonstrations contain only one degree of freedom (we will discuss in subsection (3.4.4)
how it is extended to multiple ones). We compute using (3.4) the complex weights (w̃l)l=1, ... ,N

such that
∀l ∈ [[1;N ]] : yl = Φ̃w̃l. (3.6)

We then learn a distribution of (w̃l)l=1, ... ,N . The main difference here, with respect to standard
ProMP, is that the weights are complex numbers. As we want to have correlations between real
and imaginary parts of our weights (so that we can learn correlations in magnitudes or phases),
we consider an expanded real version of our weights where the real and imaginary parts are
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concatenated as:
wl = [Re(w̃l)

>, Im(w̃l)
>] . (3.7)

It is straightforward to see that wl and w̃l are linear in the complex space:

w̃l = Awl withAT×2T =
[
IT iIT

]
. (3.8)

For notation simplicity, we define Φ = AΦ̃, which implies:

∀l ∈ [[1;N ]] : yl = Φwl. (3.9)

We learn the distribution of the weights (wl)l=1 ... N by fitting a Gaussian mixture using the
Expectation-Maximization algorithm, initialized with the K-means algorithm. We retrieve the
weights, means and covariances θ = (πj ,µj ,Σj)j=1,...,M of the Gaussian mixture, whose
probability density function is expressed as:

p(w|θ) =
M∑
j=1

πjN (w|µj ,Σj),

with N (w|µj ,Σj) =
1

(2π)(2T )/2|Σj |1/2
exp

{
− 1

2
(w − µj)>Σ−1j (w − µj)

}
.

(3.10)

We would like to give here an illustration of the approach on toy data, to highlight the usefulness
of using Fourier basis functions compared to other types of basis functions, and to give an
intuition of why demonstration alignment is not required when using such basis functions. We
show in Fig.3.3a twenty toy demonstrations for a point-to-point movement. The variability
in the demonstrations is illustrative of the type of variations one has when showing point-to-
point movements, and of why a demonstration alignment is usually necessary. In Fig.3.3e, the
demonstrations are symmetrized to make them periodic, and a mixture of 5 Gaussians is learned
in the Fourier domain on those periodic demonstrations. Samples from the distribution learned
with our approach are shown in Fig.3.3f. A typical choice of demonstrations for representing
point-to-point movements is Radial Basis Functions, we show in Fig.3.3b the set of 20 radial
basis functions that we chose. Demonstrations are mapped to the lower-dimensional subspace of
dimension 20, and a mixture of 5 Gaussians is learned in this latent space. We show in Fig.3.3d
samples from the distribution learned. Notably, we can see that radial basis functions result in a
very poor representation of the demonstrations, whereas Fourier basis functions can approximate
the distribution very well. Intuitively, this is because Fourier basis functions can permit to make
statistics over both magnitude and phase, and hence can deal with non-aligned demonstrations. It
is worth verifying that the set of radial basis functions chosen is good enough for representing
the demonstrations, we plot in Fig.3.3c the reconstruction of the demonstrations mapped through
the radial basis functions forth and back. We can see that the demonstrations have indeed been
encoded properly, so the bad distribution learned with the radial basis functions is not due to
a bad choice of the radial basis functions. We highlight here again that the appropriateness of
the basis functions does not have to be checked with Fourier basis functions because of the
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equivalence between time and frequency domain which guarantees that the demonstrations are
perfectly represented in the Fourier domain.

We will use the distribution learned in the Fourier domain to perform minimal intervention control
[138]. To do so, we need a way to transform a partial trajectory (e.g., the starting position of the
robot) to the Fourier domain. In the context of ProMP, this is typically done by conditioning on
the distribution (usually a single Gaussian). We observed that this is not suitable for the high
number of dimensions we have, hence we propose a different approach that scales better with the
number of dimensions.

3.4.2 Mapping partial trajectories to Fourier domain

Given a partial demonstration y1:K of size K, we search w such that:

y1:K = Φ1:Kw, (3.11)

with Φ1:K of size K × T (containing the first K rows of Φ). It is important to note that the
approach is also valid for partial trajectories that do not occur at the beginning of the movement,
or arbitrary keypoints.

A straightforward, but naive, solution would be to choose w = (Φ1:K)+y1:K , which, in practice,
results in a value forw that is far from the distribution of demonstrated data, resulting in poor
tracking. We instead propose to leverage the knowledge of the demonstrations distribution in
the Fourier domain (as learned in Section 3.4.1) to find a set of weights w that is close to the
demonstrations, while respecting (3.11).

This can be written as the optimization problem:

max
w

p(w|θ) s.t. y1:K = Φ1:Kw, (3.12)

which is equivalent to:

min
w

(
− log p(w|θ)

)
s.t. y1:K = Φ1:Kw. (3.13)

To solve this problem more efficiently, we use a Lagrangian relaxation:

min
w

(
‖y1:K −Φ1:Kw‖2 − λ log p(w|θ)

)
, (3.14)

where λ is the Lagrange multiplier. We could find the value of λ by solving the Lagrangian dual
problem, but for simplicity purposes we fix λ to an arbitrary small value (1e − 8) as it yields
good results in all of our experiments. In practice, the weights w are of high dimensions and
therefore the different Gaussians of the mixture have no overlap (formally, this means that the
mutual information between any two Gaussians of the mixture is almost zero). The solution
of (3.14) must verify that p(w|θ) is not numerically zero (otherwise −λ log p(w|θ) tends to
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(a) Toy Demonstrations (b) Radial basis functions

(c) Reconstruction of the demonstrations with radial basis
functions

(d) Samples from distribution learned in ProMP latent
space (with a mixture of 5 Gaussians)

(e) Demonstrations symmetrized (the first 120 timesteps
contain the demonstrations and the last 120 timesteps the

respective time-reversed demonstrations)

(f) Samples from distribution learned in the Fourier
domain (with a mixture of 5 Gaussians), truncated over

the first half of the time domain

Figure 3.3 – Illustration of the advantage of Fourier basis functions for non-aligned point-to-point demon-
strations
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infinity). Under the hypothesis that the Gaussians have almost-zero mutual information, we can
find candidate solutions by solving M least squares problems:

wj = arg min
w

(
‖y1:K −Φ1:Kw‖2 − λ logN (w|µj ,Σj)

)
= arg min

w

(
‖y1:K −Φ1:Kw‖2 + λ‖w − µj‖2Σ−1

j

)
=
(
ΦH

1:KΦ1:K + λΣ−1j
)−1(

ΦH
1:Ky1:K + λΣ−1j µj

)
.

(3.15)

We can then solve (3.14) by finding the minimum over the finite set of solutions (wj)Mj=1:

j∗ = arg min
j∈[[1;M ]]

(
‖y1:K −Φ1:Kw

j‖2 − λ log(πj) + λ‖w − µj‖2Σ−1
j

)
, (3.16)

which allows us to map our partial trajectory to the Fourier domain with:

wK = wj∗ . (3.17)

The full process is summarized in Algorithm 3. Next, we propose a tracking controller in the

Algorithm 3: Partial trajectory mapping
Data: Partial observations y1:K up to timestep K
Result: Fourier weight wK such that y1:K ' Φ1:KwK

Find M candidate solutions (wj)Mj=1 with Eq. (3.15)
Compute minimum wK with Eqs. (3.16)-(3.17)

Fourier domain, leveraging the distribution learned and the possibility to map partial trajectories
to the Fourier domain.

3.4.3 Tracking in the Fourier domain

The ability to do minimal intervention control in the Fourier domain is a core component of our
proposed method, as it permits to modulate both phase and amplitude by exploiting the variability
of the provided demonstrations. We will track only one Gaussian for simplicity purposes (the
solution of Eq.3.16). This seems to be a reasonable assumption because in high dimensions, the
different Gaussians in the mixture are likely to have a very small overlap. We track this Gaussian
in the Fourier domain with the given covariance.

We could do this by using model predictive control (MPC) in the Fourier domain, but, as the
number of dimensions is high (T is the trajectory length), it would be too computationally
expensive. We propose to use a simple proportional controller to track in the Fourier domain:
an approach that proves satisfactory in practice. Given a current trajectory up to timestep t,
represented as wt in the Fourier space, we track the target µj∗ with precision matrix Σ−1j∗ . The
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update rule of the tracking controller is:

wt+1 = wt + dt β diag(Σ−1j∗ )(µj∗ −wt), (3.18)

where diag(·) is an operator zeroing all offdiagonal elements. We choose to weigh the updates by
diag(Σ−1j∗ ) and not Σ−1j∗ because we observed potential instabilities with the latter in practice.
More sophisticated controllers could be used to leverage the full-rank structure of the precision
matrix Σ−1j∗ , and we shall address this in future work.

Similarly to ProMP, we can go back from Fourier domain to time domain and find the next point
to track as well as the appropriate tracking covariance:

ydes
t+1 = Φt+1wt+1,

Σydes
t+1

= Φt+1Σj∗Φ
H
t+1,

(3.19)

with Φt+1 of size 1× T (containing the (t+ 1)th row of Φ).

The pseudocode of the algorithm is given in Algorithm 4.

Algorithm 4: Tracking in Fourier domain
Data: Partial observations y1:K up to timestep K
Result: desired trajectory ydes

K+1:T for timesteps K + 1 to T and desired covariances
[Σydes

K+1
, . . . ,Σydes

T
]

Calculate wK using Eqs.(3.15)-(3.17)
for t← K to T − 1 do

Calculate wt+1 using Eq.(3.18)
Calculate ydes

t+1 and Σydes
t+1

using Eq.(3.19)

end

3.4.4 Multidimensional case

We discuss here the extension of our method to several degrees of freedom D. The extension
is straightforward as it consists of concatenating along the dimensions. Following the previous
notation, the data and partial data are written as such:

yi =

 y1i
...
yDi

 and y1:K =

 y
1
1:K
...

yD1:K

 , (3.20)
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where the superscript j of yji denotes the jth degree of freedom. And the Φ matrix is used to
construct a block-diagonal matrix with D entries:

ΦD =

 Φ . . . 0
...

. . .
...

0 . . . Φ

 . (3.21)

Similarly, Φ1:K and Φt are concatenated D times block-diagonally. It is worth noting that in
this case, w is a vector of length TD, which means that the Gaussian mixture learned captures
correlations between the different degrees of freedom.

3.5 Experiments

In this section we show the performance of FMP on various datasets. First, we describe the data
acquisition and preprocessing step. Then, a polishing task and the task of drawing a 8-shape are
presented. Finally, the task of wiping a whiteboard is considered and applied on a real robot. When
applicable, our method will be compared against the use of ProMP with Von-Mises basis functions.
Videos of the experimental evaluation can be found at https://sites.google.com/view/fourier-
movement-primitives.

3.5.1 Data acquisition and preprocessing

For simplicity and visualization purposes, in all tasks the data consists of the position of the robot
end-effector, and is therefore 3-dimensional. All demonstrations are obtained by kinesthetically
teaching the robot. As the tasks are rhythmic, we propose to reduce the human burden by showing
only one (long) demonstration, that is then preprocessed. The demonstration is acquired at 20Hz,
and we cut it in subdemonstrations of length T , arbitrarily chosen to 120 in our experiments
(corresponding to 6 seconds). To cut the demonstration, we let a sliding window slide across the
demonstration by increments of 10 timesteps. By doing so, we exploit the fact that the task is
rhythmic and can start anywhere.

3.5.2 Polishing task

The polishing task is a representative example because it can contain as low as one frequency for
each degree of freedom. A 3-minute demonstration is recorded with the robot, from which the
demonstrations are cut as explained above.

The demonstrations are shown in Fig.3.4. We learn the distribution of the data in the Fourier
domain with M = 10 Gaussians. We show in Fig.3.5 the tracking for different starting positions:
a position that belongs to the data distribution (interpolation), and a position outside of the data
distribution (extrapolation).
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3.5. Experiments

(a) End-effector position as a function of time (b) Demonstrations in the x− y plane (different colors
represent different demonstrations).

Figure 3.4 – Demonstrations of the polishing task.

(a) Tracking trajectory x, y, z in function of time, along
with uncertainties

(b) Scatter plot of the tracking trajectory on dimensions x
and y (color gradient for time)

Figure 3.5 – Polishing from different initial positions with FMP.
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(a) T = 40, alignment, M = 1 (b) T = 120, no alignment,
M = 1

(c) T = 120, no alignment,
M = 10

Figure 3.6 – Heatmaps of distribution learned with ProMP-VM.

As we can see, our method permits both interpolation and extrapolation with respect to the
starting position. We compare now our method to the standard ProMP with Von-Mises basis
functions (later abbreviated ProMP-VM) [105]:

bVM
i (zt) = exp

(cos (2πf(zt − ci))
h

)
,

Φi(zt) =
bVM
i (zt)∑n

j=1 b
VM
j (zt)

,
(3.22)

where f denotes the frequency of the signal, ci the center of the basis function and h the width.
This method requires the demonstrations to be aligned, and to contain exactly one period of the
signal. For illustration purposes, we show how ProMP-VM performs after alignment of the data
and cutting to contain only one period (roughly at T = 40), and therefore f = 1. We used 20
basis functions with the centers ci uniformly placed between 0 and 2π. The hyperparameter h is
selected so that the basis functions become cosine (high value of h, as the exponential function is
locally equal to the identity around 0, up to a constant). We show in Fig.3.6a a heatmap of the
learned distribution, where we can see that, in the case of careful data alignment, ProMP-VM can
approximate the distribution of polishing demonstrations well. In the original ProMP method,
only one Gaussian is used to approximate the distribution of the demonstrations.

Even if, to the best of our knowledge, this has not been proposed in the ProMP literature, we
will show that increasing the number of Gaussians can alleviate the need for demonstration
alignment. Indeed, due to higher variability in the phase domain, the distribution of weights
becomes multi-modal and hence is more accurately encoded by a mixture. In Fig.3.6b, we
show the obtained results for ProMP-VM using more than one period (T=120), where we had
to explicitly provide the frequency of the signal (in this case, f=3). As we can see, without
alignment, ProMP-VM fails to approximate the distribution of the data. For a fairer comparison,
we also extend ProMP-VM by learning the distribution with a mixture model (10 Gaussians) and
show in Fig.3.6c that doing so permits to approximate the distribution well.

The results in Fig.3.6 show that, by bringing ProMP closer to FMP, the original ProMP formulation
can be greatly improved. However, a major difference between ProMP-VM and FMP lies in the
way we generate trajectory distributions that go through keypoints (see 3.4.2). With ProMP-VM,
it is done via conditioning, whereas in FMP is is achieved by mapping the keypoint to the Fourier
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(a) T = 40, alignment, M = 1 (b) T = 120, no alignment,
M = 10

(c) T = 120, no alignment,
M = 10

Figure 3.7 – Conditioning on initial position with ProMP-VM.

domain, and tracking in the Fourier domain (here, the keypoint that we evaluate is the starting
point, but it is applicable to any keypoint or partial trajectory). Indeed, as shown in Fig.3.7a,
when using ProMP-VM with alignment it is not possible to start the movement from a different
region than the one observed in the demonstrations. When we use multiple Gaussians without
alignment, this adaptation capability becomes possible (Fig.3.7b). Since ProMP-VM represents
the demonstrations with periodic basis functions, it can only generate periodic signals that will
pass through the initial point. As seen in Fig.3.7c, this mechanism does not allow to cope well
with perturbations that require to extrapolate outside of the demonstrations, while following the
demonstrations in the next cycles. Indeed, when conditioning outside of the training data, it tends
to produce overconfident trajectory distributions (because the Gaussian mixture is learned by
maximizing the log-likelihood) that do not return to the demonstrations. In contrast, FMP can
generate trajectory distributions that return back to the training data in a way that is compatible
with the variations that were observed in the demonstrations, as we can see in Fig.3.5.

3.5.3 8-shape drawing

We demonstrate a 3-minute drawing of an 8-shape, used as a standard benchmark task [52,
41]. This task is interesting because it involves a superposition of different frequencies. In the
standard ProMP-VM, only one frequency can be approximated. For a better analysis of the
performances of FMP, we propose here to benchmark FMP against an extension of ProMP-VM
that can approximate a superposition of frequencies. We include basis functions for different
frequencies f , namely for f from 1 to 5. For each f , 20 offset basis functions are used, as
previously. We use this extension of ProMP-VM on the same data as FMP (no alignment), and
with M = 10 for a fair comparison. We denote this extension as ProMP-VM-Mult.

Fig.3.8 shows demonstration samples, ProMP-VM-Mult samples, and FMP samples. We observe
that FMP samples are smoother and closer to the demonstrations than ProMP-VM-Mult samples,
which suggests that the distribution has been better learned with FMP than ProMP-VM-Mult. To
verify this observation, we computed a heatmap of the learned distribution. For ProMP-VM-Mult
and FMP, we sample 10000 trajectories from the learned distribution, and compute the heatmap.
Those are shown in Fig.3.9, next to the demonstrations heatmap.
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(a) Demonstrations (b) ProMP-VM-Mult (c) FMP

Figure 3.8 – Samples of the learned 8-shape distribution.

(a) Demonstrations (b) ProMP-VM-Mult (c) FMP

Figure 3.9 – Heatmaps of the learned 8-shape distribution.

We can see that the heatmap of ProMP-VM-Mult is more blurred compared to the FMP heatmap
(more samples seem to fall inside the 8 holes). To confirm this, we propose to evaluate quanti-
tatively the learned distribution. We compare the distributions learned with ProMP-VM-Mult
and FMP to the ground truth (obtained from the demonstrations). We note Q the ground truth
distribution, and P the approximate distribution (respectively obtained with ProMP-VM-Mult or
FMP). The distributions are discrete probability distributions, defined over the finite set of cases
X of the heatmap. We considered two different metrics:

• the Forward Kullblack-Leibler divergence:

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
.

Forward KL is known as zero avoiding, as it penalizes Q(x) = 0 when P (x) > 0. This
therefore quantifies if the distribution learned covers well the ground truth distribution.

• the Reverse Kullblack-Leibler divergence:

DKL(Q||P ) =
∑
x∈X

Q(x) log
Q(x)

P (x)
.

Reverse KL is known as zero forcing, as it does not penalize Q(x) = 0 when P (x) > 0.
This therefore measures how well our distribution Q approximates a part of the ground
truth distribution.
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ProMP-VM-Mult FMP
Forward KL 0.20 0.11
Reverse KL 0.53 0.28

Table 3.1 – Quantitative comparison of distributions learned with ProMP-VM-Mult and FMP versus
ground truth distribution for 8-shape task.

The results are presented in Table 3.1. We observe that FMP has learned a distribution that
is about twice closer to the ground truth distribution compared to ProMP-VM-Mult. This can
be interpreted easily, as ProMP-VM-Mult has several basis functions for a given frequency,
which gives many more basis functions for the same given number of frequencies, resulting in
poor statistics. Finally, we evaluate how FMP can generate trajectories that start at any given
position. In Fig.3.10, we can see that, even for tasks that involve a superposition of different
frequencies, FMP can generate trajectory distributions that get back to the training data in a
way that is compatible with the variations observed in the demonstrations. The results with
ProMP-VM-Mult were unsatifactory, consistently with Fig.3.8, they have therefore not been
included in the manuscript.

3.5.4 Real-world wiping task

Finally, we apply FMP to a real-world robotic task of whiteboard wiping. Our robot is a 7-DoF
torque-controlled Panda robot. We record a 2-minute demonstration of whiteboard wiping with
kinesthetic teaching. The demonstration is then split into subdemonstrations of length T = 120

(6s) as explained previously. For simplicity purposes, only the position of the robot end-effector
is recorded, the statistics are therefore made on end-effector position trajectories (with M = 10

Gaussians). The robot is then controlled with an impedance controller that tracks the desired
trajectory with manually specified gains, with a fixed orientation (we allow the robot to be
compliant around the normal to the plane by setting low orientation gains around that axis). An
overview of the setup is shown in Fig.3.1. In this experiment we show that we can generate
movements of arbitrary durations with FMP. While this should be trivial because we have periodic
basis functions over the duration T , this is not in practice as we did not preprocess the data so
that the beginning and end of the demonstrations are equal. We alleviate this by recomputing at
timestep T the Fourier weights w given the partial trajectory from T −K to T (in practice, we
use K=10), and subsequently can use the desired trajectory between timesteps T and 2T −K.
We then repeat this process (it is interesting to note that every time we recompute w using the
partial trajectory mapping, we allow the trajectory to change the Gaussian that is tracked). While
this might appear cumbersome, this is in practice very efficient, and much easier than having to
align the demonstrations. To evaluate the quality of the learned distribution, we propose to show
two movements given a desired initial position:

• One where we track the Gaussian mean as explained in Section 3.4.3.

• One where we sample from the Gaussian distribution and track this sample instead of the
mean.
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Figure 3.10 – 8-shape from different initial positions with FMP.
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(a) Tracking the Gaussian mean (b) Tracking a Gaussian sample

Figure 3.11 – Generated trajectories of length 400 (20s) for a given initial position.

We observe in Fig.3.11 that FMP is successful at generating trajectories of arbitrary lengths. In
addition, sampling instead of tracking a Gaussian provides an interesting possibility, as we can
see that the generated trajectory shows much more variability. This is useful for tasks that require
some (co)variations in the movement (such as wiping tasks where we do not want artifacts to
arise from a movement that repeats itself exactly).

3.6 Discussion

We now discuss the results from Section 3.5 and emphasize the advantages of FMP over other
state-of-the-art methods.

We have shown that FMP does not require demonstration alignment, as it performs statistics
directly over phase shifts in the complex weight space. It therefore goes beyond ProMP with
cosine or Von-Mises basis functions, which fails when demonstrations are not aligned (see
Fig.3.6). However, we have seen that increasing the number of Gaussians in ProMP can also
permit to alleviate the need for demonstrations alignment. Moreover, when using ProMP-VM,
only one frequency can be approximated, and it additionnally requires the extraction of this
frequency as an external preprocessing step. FMP does not require such preprocessing.

FMP can learn tasks that involve a superposition of signals of different frequencies. This
could not be done with the standard ProMP-VM. However, for a fairer comparison, we proposed
to extend ProMP-VM to different frequencies by adding basis functions of different frequencies.
We have shown that doing so permits to learn tasks that require different frequencies, but that
the distribution learned is not as accurate as the one learned with FMP (we identified a factor 2
in terms of performance for our experiment, see Table 3.1). Also, FMP can represent variations
of phase and amplitude for a given basis function in a single weight, by exploiting complex
number properties. Furthermore, as many basis functions need to be placed for each frequency for
ProMP-VM-Mult, this would not scale with the number of basis functions needed. We observed
empirically that we could not include higher frequencies in ProMP-VM-Mult, as the redundancy
and number of the basis functions led to numerical instabilities when learning the Gaussian
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mixture. In contrast, FMP scales well with the number of basis functions, as we use all of them
in our experiments. Better statistics might be obtained by performing dimensionality reduction of
the number of basis functions and we plan to address this in future work.

Defining appropriate hyperparameters for basis functions in ProMP can be cumbersome. This
holds true for ProMP-VM with periodic signals as well. Indeed, the number and centers of the
basis functions need to be appropriately chosen (too few would make a very coarse discretization
of the phase shifts, too many would lead to a very high number of basis functions, and hence poor
statistics and/or numerical instabilities). With FMP, no such choice is required, as the complex
exponentials form a basis and can approximate any signal. We therefore have a theoretical
guarantee that demonstrations can be represented by weights.

In practice, one of the few hyperparameters that needs to be chosen with FMP is the length of
the signal T to cut the demonstration(s). We noticed empirically that it had no effect on the final
solution, as long as T is big enough to contain one or more periods. FMP does not require T to be
set such that subdemonstrations are equal at the beginning and at the end. FMP just uses higher
frequencies to compensate for this, but we did not observe any problem in our experiments.

We also showed that FMP has interesting extrapolation capabilities. While theoretically possible,
conditioning to find a distribution that goes through a keypoint is not applicable in high dimen-
sions, as it collapses to the mean of the distribution and hence does not go through the desired
keypoint. We therefore proposed another way that is fast (solving of a least squares problem)
and applicable to our high-dimensional setting (see Section 3.4.2). Additionnaly, we showed
that it is safe when faced with a new situation (see Section 3.5.3). Not only does it return to
the demonstrations, but it does so in a way that exploits the variations of magnitude and phase
that were observed in the demonstrations. In the first two experiments (polishing and 8-shape),
this means that the generated trajectories return back to the limit cycle. This is a property that
is usually desirable for dynamical systems, which is not satisfied by ProMP-VM, as we saw in
Fig.3.7. Moreover extrapolation with ProMP-VM might not be safe, as conditioning far from the
Gaussian mean can result in overconfident trajectory predictions and hence highly stiff control
around a potentially poor generalized trajectory.

3.7 Conclusion

We proposed a method based on discrete Fourier transform and Probabilistic Movement Primitives,
which we call Fourier Movement Primitives (FMP) for the learning of rhythmic movements from
demonstrations. Our basis functions are theoretically well motivated and no demonstrations
alignment is required, which reduces the engineering burden. We have shown that FMP can learn
tasks that involve a superposition of basis functions of different frequencies. The extrapolation
capabilities of FMP are also relevant, generating trajectories that go back to the demonstrations
when faced with a situation different from what was observed.
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Future work will consider dimensionality reduction in the space of weights, which could enable
the use of better control strategies in the Fourier domain, by using for example a Linear Quadratic
Regulator (LQR). We will also study the possibility to perform statistics separately for the phase
and magnitude of the weights, as it could yield richer compliance control strategies with an
adaptive modulation of phase and amplitude.

We will also study the applicability of the approach for discrete (point-to-point) motions: for a
series of demonstrations of the same length T we can symmetrize each demonstration, which
would give periodic signals of length 2T , and the method can be applied with no change. In the
more general case where demonstrations do not have the same length, one possibility could be to
symmetrize several times the shorter demonstrations to match the longest one, and performing
statistics on those transformed demonstrations. Though the method would be directly applicable
in this case, the performance and usefulness compared to other types of basis functions would
have to be demonstrated.
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4 Active Learning of Bayesian Proba-
bilistic Movement Primitives

In the previous chapter, we have proposed an approach for learning robot skills from human
demonstrations, with minimal user workload. Such learning from demonstration framework
permits non-expert users to easily and intuitively reprogram robots. While such framework is
particularly interesting for its adaptability to various situations where a robot engineer might not
be available, its generalization and adaptation capabilities are heavily dependent on the quality
and diversity of the demonstrations provided. We can give the following example to illustrate this
point: let us consider a pouring task where we would like the robot to be able to adapt to different
situations, such as the initial container being filled at different levels, or the final amount of liquid
desired in the recipient. If a user only provides demonstrations that start with the container being
full, this would result in very poor robot generalization capabilities when the container is not
initially full, leading to task failure. Unfortunately, providing or requesting good demonstrations
is not easy, as quantifying what constitutes a good demonstration in terms of generalization
capabilities is not trivial.

In this chapter, we propose an active learning method for contextual probabilistic movement
primitives for addressing this problem. More specifically, we learn the trajectory distributions
using a Bayesian Gaussian mixture model (BGMM) and then leverage the notion of epistemic
uncertainties to iteratively choose new context query points for demonstrations. We show that
this approach reduces the required number of human demonstrations. We demonstrate the
effectiveness of the approach on a pouring task, both in simulation and on a real 7-DoF Franka
Emika robot.

4.1 Introduction

Learning from demonstration (LfD) offers an intuitive framework for non-expert users to easily
(re)program robots. As discussed in Chapter 2, one well-established LfD approach is to learn
probability distributions over trajectories, for example using the framework of ProMPs. One
of the main capabilities of ProMPs lies in the task generalization, which is usually achieved by
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Figure 4.1 – Overview of the pouring task with a 7-axis robot.

conditioning the trajectory distribution to some desired keypoints. It is also desirable and possible
to generalize with respect to a context or external variable, which is known before executing
the task (such as the mass of an object or the volume of a liquid to pour), by learning the joint
distribution of the context variable and the trajectory [42, 106]. Task generalization is crucial
for robotic applications. This requires a set of demonstrations to provide various executions of
the task, whose acquisition is often costly. Thus, we want to collect these demonstrations in an
efficient manner. Often, non-expert users struggle to identify what demonstration will be the most
informative to the robot [126]. One way to alleviate this limitation is to provide the user with some
feedback, such as a visual illustration of what the robot has currently learned [125]. Yet, such an
approach requires the appropriate design of a feedback mechanism, which might not be trivial in
a high-dimensional task, and still requires the user to choose the demonstration eventually. In
contrast, we propose to automatically determine what constitutes a good demonstration.

Active learning is a promising approach as it allows the robot to actively request a demonstration
to improve its comprehension of the task. This alleviates the human burden of choosing which
demonstration to provide, and is expected to reduce the number of demonstrations required for
effective generalization. The main component of an active learning framework is a metric allowing
to select the demonstration that is expected to yield the greatest improvement. Traditionally,
this metric is based on uncertainties [127]. When building statistical models, two different
kinds of uncertainties arise, namely aleatoric uncertainties and epistemic uncertainties. Aleatoric
uncertainties represent the variations in the demonstrations, i.e., different possible ways to perform
the task. This is the uncertainty that is captured by ProMPs when fitting a Gaussian or a Gaussian
mixture model (GMM) to the demonstrations. Such uncertainty is then typically used to define
when the robot must be stiff and where it can be compliant. In contrast, epistemic uncertainties
represent the uncertainties due to the lack of data. In other words, aleatoric uncertainties cannot
be reduced by adding more data, while epistemic uncertainties can be. For this reason, the
quantification of epistemic uncertainties is crucial for active learning frameworks.

In this chapter, we propose an active learning approach for ProMPs with the aim of improving
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the generalization capabilities by relying on fewer demonstrations. To do so, we use Bayesian
inference [15] to quantify both aleatoric and epistemic uncertainties in ProMPs. Specifically,
we propose to learn the ProMP with a Bayesian Gaussian mixture model (BGMM). In Sec. 4.3,
we introduce Bayesian ProMPs. Then, in Sec. 4.4, we propose an active learning method based
on the epistemic uncertainties captured by the BGMM. We demonstrate the applicability of our
approach in Sec. 4.6 on four different pouring task experiments. The first three experiments are
performed in simulation to allow quantitative comparisons and for reproducibility purposes. The
last experiment shows the applicability of the approach on a real 7-DoF robot pouring task.

The contributions of this chapter are threefold: (i) we propose a principled methodology for
deriving epistemic uncertainties in ProMPs; (ii) we propose to use a closed-form lower bound of
the differential entropy of the epistemic uncertainty as an information gain metric for an active
learning of ProMPs; (iii) we show the applicability of the approach on a robotic pouring task.

4.2 Related work

In this section we build upon 2.1.1 and review more specifically the literature that has considered
active learning for imitation learning. Indeed, as the data acquisition process is usually costly in
robotics, active learning has emerged as a viable solution [119, 96, 122, 129]. It has been shown
that active learning permits a faster exploration of the action space, which is particularly true in the
context of developmental robotics, where active learning is often referred to as curiosity-driven
learning (see 2.1.1). In the context of learning from demonstrations, active imitation learning is a
topic gaining interest. It has indeed been successfully used in a variety of robotic tasks, such as
autonomous navigation [131, 78]. In [25], the authors leverage the uncertainties on a discrete
hypothesis space to request meaningful demonstrations to a human teacher. Several approaches
have also been proposed in the context where the learner does not request full demonstrations,
but only the action to take at a given state [129, 27]. In [55], the authors propose to use active
learning with BGMMs to learn control policies from demonstrations, and show the effectiveness
of the approach on a reaching task with obstacles. One important limitation of this work is that
the uncertainties are computed for an action given the current state. Hence, it is not applicable to
robotic tasks where one needs to reason about the uncertainty over the whole task (e.g., over the
whole trajectory), which is often the case in robotics (for instance for object grasping, assembly
or navigation tasks). Also, the method requires the possibility to start and show a demonstration
from any given state, which is not always possible (for instance, starting a demonstration in the
middle of a dynamic throwing task or a pouring task is not feasible).

Closer to our work is [87], in which Gaussian process regression (GPR) is used to learn a
trajectory given a context. It is applied to a reaching task where the context is the desired
end-effector position. Although Gaussian processes are very efficient for capturing epistemic
uncertainties, they do not capture aleatoric uncertainties (variations of the task). It is therefore not
applicable to tasks where one wants to use the aleatoric uncertainties for compliant control. As
there is no guarantee of convergence of the retrieved trajectory to the desired final location, they
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combine the trajectory predicted by GPR with a dynamic movement primitive (DMP) approach
that attracts the robot to the desired goal. Thus, their approach might not be applicable for tasks
where the context is not the desired end-effector position.

In [29] the authors propose an active learning method for learning ProMPs. The distribution
is learned in the ProMP weight space using a GMM. They then use the marginal distribution
over the internal context space (trajectory keypoint) to request demonstrations for contexts that
are the furthest from any Gaussian (as Mahalanobis distance). Their approach is evaluated for
a reaching task where different grasps are possible, with attempts to generalize over different
poses of the object. This approach has several limitations. First, they choose the next context to
query based only on some distance in the context space. While in their application this can make
sense since the contexts (keypoints) are closely correlated with the trajectory distributions, this
is not relevant for a more general external context. Indeed, representing the context space well
is not so useful, as our ProMPs are used to generate trajectory distributions for a given context.
Rather, what matters is whether a given context influences the trajectory distribution. In this
regard, their method would aim to represent a context variable with no influence on trajectories
equally well as other more meaningful context variables. In contrast, our method focuses on
the conditional distribution of the weights given the context, hence learning dependencies and
correlations between the context variables and the movement. A second limitation is that the
use of a GMM does not take into account epistemic uncertainties but only aleatoric ones, while
work in active learning [127] has shown that metrics based on aleatoric uncertainties are less
effective than those based on epistemic uncertainties. Lastly, their approach uses a heuristics
to add Gaussians during learning using a threshold. Indeed, the Mahalanobis distance does not
depend on the weights attributed to the different Gaussians, which might bias the learning towards
unlikely portions of the context space. In contrast, we use Bayesian inference to infer the number
of Gaussians using a Dirichlet prior on the mixing coefficients.

4.3 Bayesian ProMPs

In this section, we present the BGMM framework for learning contextual ProMPs.

4.3.1 Contextual ProMP

We focus on tasks where adaptation with respect to an external context variable is required. Such
context variable can be any environmental property such as an object mass, an object position, or
the amount of liquid in a pitcher for a pouring task. Note that the method is general and would
be applicable to internal context variables as well (e.g., trajectory keypoints). A common way
[105, 42] to take into account context variables is to learn the joint distribution of contexts and
ProMP weights p(c,w), where c is the context variable of size Dc. For notation convenience,
we introduce w̃i = [c>i ,w

>
i ]>, hence p(c,w) = p(w̃).
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4.3.2 Problem formulation

The goal of the task lies in how to modulate the movement w based on different contexts c. We
denote the context space C as the space of all possible contexts we would like our robot to be able
to generalize to. Formally, this means that there exists an unknown ground truth target distribution
pGT(c,w) that can be used to generate robot movements pGT(w|c) adapted for context c. We
aim to learn this unknown joint distribution by active imitation learning.

4.3.3 Bayesian Gaussian Mixture Model (BGMM)

In this section, we present the learning of the joint distribution of contexts and weights with a
BGMM using variational inference. The joint distribution is defined with a mixture of K multi-
variate normal distributions (MVNs) with means µ={µk}Kk=1, precision matrices Λ={Λk}Kk=1

and mixing coefficients π={πk}Kk=1 as

p(w̃|π,µ,Λ) =

K∑
k=1

πkN (w̃|µk,Λ−1k ).

A Normal-Wishart prior is used for means and precision matrices, and a Dirichlet prior is put on
the mixing coefficients:

p(µ,Λ) =
K∏
k=1

N (µk|(β0Λk)
−1)W(Λk|Sk, νk), (4.1)

p(π) = Dir(π|α0). (4.2)

The means, the precision matrices and the mixing coefficients maximizing the posterior distri-
bution are estimated using closed-form update equations similar to those of the Expectation-
Maximization algorithm for the maximum likelihood solution, see Alg.2 in Chapter 2 for further
details. Also, they are available as parts of standard machine learning libraries (e.g., scikit-learn
for Python).

Given N demonstrations W̃ = {w̃}Ni=1, the predictive density of a new pair of context and
weight ˆ̃w = [ĉ>, ŵ>]> is equivalent to a mixture of multivariate t-distributions with mean m̂k,
covariance matrix L̂k, mixing coefficients π̂k and degrees of freedom ν̂k

p( ˆ̃w|W̃ ) =
K∑
k=1

π̂k t( ˆ̃w|m̂k, L̂k, ν̂k), where

π̂k =
αk∑K
k=1 αk

,

ν̂k = νk + 1−D −Dc,

L̂k =
(νk + 1−D −Dc)βk

1 + βk
Sk,

m̂k = mk,

(4.3)
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Figure 4.2 – Probability density functions of univariate t-distributions for several degrees of freedom.

where αk, βk andmk are derived from statistics of the data. We do not include the full equations
here, but the reader can refer to Alg.2 for more details. A multivariate t-distribution is very similar
to a multivariate Gaussian distribution, but its tails decay more slowly. A Gaussian distribution is
actually a special case of a t-distribution when the number of degrees of freedom tends to infinity.
We provide in Fig.4.2 a visualization of univariate t-distributions for different degrees of freedom.

We can then condition on the context to get the conditional posterior predictive distribution of the
weights for a given context variable as in [15] (Section 10.2.3)

p(ŵ|ĉ, W̃ ) =

K∑
k=1

π̂
w|c
k t(ŵ|m̂w|c

k , L̂
w|c
k , ν̂

w|c
k ), (4.4)

with π̂
w|c
k =

π̂k t(ĉ|m̂c
k, L̂

c
k, ν

c
k)∑K

j=1 π̂j t(ĉ|m̂c
j , L̂

c
j , ν

c
j )
, (4.5)

ν̂
w|c
k = ν̂k +Dc, (4.6)

m̂
w|c
k = m̂w

k + L̂wck L̂
cc−1

k (ĉ− m̂c
k), (4.7)

L̂
w|c
k =

ν̂k + (ĉ− m̂c
k)
>L̂cc

−1

k (ĉ− m̂c
k)

ν̂
w|c
k

· (L̂wwk − L̂wck L̂cc
−1

k L̂wc
>

k ), (4.8)

where we have decomposed L̂k =

[
L̂cck L̂wc

>
k

L̂wck L̂wwk

]
.

We have shown how contextual ProMPs can be learned with Bayesian GMMs. We will now
propose an active learning strategy leveraging the uncertainties learned by the Bayesian model.
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4.4 Active learning of ProMPs

In this section, we propose an active learning strategy for Bayesian ProMPs. First, we show how
aleatoric and epistemic uncertainties can be separated when conditioning. Then, we propose a
closed-form information gain metric based on the entropy of the conditional distribution. Finally,
the full active learning process is summarized.

4.4.1 Uncertainty decomposition

The conditional posterior predictive distribution of the Bayesian ProMP encodes two types of
uncertainties: the aleatoric uncertainty (possible variations of the task, the one learned with
standard ProMPs) and the epistemic uncertainty (representing the lack of knowledge). Indeed,
from Eq. (4.8), we can see that the covariance matrix of the conditional posterior predictive
distribution can be decomposed into two parts (see also [55])

L̂
w|c
k = L̂al

k + L̂ep
k , where (4.9)

L̂al
k =

ν̂k

ν̂
w|c
k

(L̂wwk − L̂wck L̂cc
−1

k L̂wc
>

k ), (4.10)

L̂ep
k =

(ĉ− m̂c
k)
>L̂cc

−1

k (ĉ− m̂c
k)

ν̂
w|c
k

(L̂wwk − L̂wck L̂cc
−1

k L̂wc
>

k ). (4.11)

Notice that the first part does not depend on the context ĉ, while the second part grows quadrati-
cally with it. This was observed in [15] (Section 3.3.2) for Bayesian linear regression. In that
sense, we argue that the first part can be attributed to the aleatoric uncertainty, and the second
to the epistemic uncertainty. Indeed, the first part cannot be reduced when adding more data as
it models the variability in the demonstrations due to the fact that for the same given context ĉ
different movements can be executed to achieve the task. On the other hand, the second term
can be reduced when having more data. Actually, in the limit where the amount of data and the
number of Gaussians would grow to infinity, the context space would be perfectly represented
and the term (ĉ−m̂c

k)
>L̂cc

−1

k (ĉ−m̂c
k) would tend to zero. In practice, the above decomposition

is particularly useful in the context of ProMPs, because we can have access to the aleatoric
uncertainty to design compliant behaviors, or to the epistemic uncertainty for quantifying the
lack of knowledge of the model.

4.4.2 Uncertainty measurement

The most general and common uncertainty measure is the Shannon entropy [128]. Initially
proposed for discrete random variables, the Shannon entropy has been extended to continuous
probability distributions, in which case it is called continuous (or differential) entropy. We
propose to quantify the uncertainty of our conditional ProMP by calculating the (continuous)

59



Chapter 4. Active Learning of Bayesian Probabilistic Movement Primitives

entropy of its epistemic part.

The entropy of a mixture of multivariate t-distributions cannot be obtained analytically. To
avoid computationally expensive Monte Carlo sampling methods, we propose to approximate
the distribution with a GMM, for which there is a closed-form lower bound of the entropy. The
epistemic part of the conditional ProMP distribution can be approximated by a mixture of K
Gaussians using moment matching:

π̃k(c) = π̂
w|c
k , µ̃k(c) = m̂

w|c
k , Σ̃k(c) =

ν̂
w|c
k

ν̂
w|c
k − 2

L̂ep
k (c). (4.12)

We propose to use the closed-form lower bound introduced in [75], which has been shown to be
tight. It is expressed as (for clarity purposes we omit the fact that all GMM parameters depend
on c)

Hlower
(
pep(ŵ|ĉ, W̃ )

)
=

1

2

(
K log 2π +K +

K∑
i=1

π̃i log |Σ̃i|
)

−
K∑
i=1

π̃i log

K∑
j=1

π̃je
−Cα(pi,pj), (4.13)

whereCα(pi, pj) is the Chernoff α-divergence distance function between the ith and jth Gaussians
for α ∈ [0, 1]:

Cα(pi, pj) =
(1− α)α

2
· (µ̃i − µ̃j)>

(
(1− α)Σ̃i + αΣ̃j

)−1
(µ̃i − µ̃j) +

1

2
log

(
|(1− α)Σ̃i + αΣ̃j |
|Σ̃i|1−α|Σ̃j |α

)
. (4.14)

In practice we choose α = 1/2, in which case the Chernoff divergence is the Bhattacharyya
distance.

The full active learning process is summarized in Algorithm 5. Finding the context which
maximizes the epistemic entropy can be done either using a grid search if the context space is of
low dimension, or using a Bayesian optimization algorithm.

4.5 Illustrative examples

In this section, we provide more details on our motivation for considering epistemic uncertainties
for active learning. First, we motivate it with a simple coin tossing example where we demonstrate
that separating different sources of uncertainties is necessary for active learning. Then, we
illustrate aleatoric and epistemic uncertainties on a 2D toy problem to give the reader an intuitive
understanding about those concepts. Finally, we highlight the difference between our approach
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Algorithm 5: Choosing the demonstration context.

Data: demonstrations W̃ = {ci,wi}Ni=1, context search space C
Result: context c∗ at which to request a demonstration

Learn joint distribution of p(c,w) = p(w̃) with BGMM;
Calculate p(ŵ|ĉ, W̃ ) using Equations (4.4) to (4.8);
Isolate the epistemic uncertainty pep(ŵ|ĉ, W̃ ) with Equations (4.9) and (4.11);
Approximate the entropy of pep(ŵ|ĉ, W̃ ) with Equations (4.12) to (4.14);

Find c∗ = arg maxĉ∈C Hlower(p
ep(ŵ|ĉ, W̃ ))

and the more commonly used Gaussian Processes using the latter 2D toy problem.

4.5.1 Why epistemic uncertainties?

We present here a simple coin tossing problem to illustrate the need to separate the aleatoric and
epistemic uncertainties. Let us imagine we have two coins:

• Gold coin: this coin is not tricked and there is exactly a 0.5 probability of getting heads or
tail.

• Silver coin: we know this coin is tricked and there is a higher probability of getting heads
than tail. For simplifying the example, let us consider that we know that the probability of
getting heads is 0.6 or 0.7, but we do not know which value I. We suppose we have the
same belief over whether the probability is 0.6 or 0.7.

Similarly to our robotics application, our goal is to learn the conditional model p(heads|coin chosen).
In other words, our goal is to learn to predict the environment as best as we can. Given this
goal, which coin should we decide to toss? It seems obvious that we should toss the silver coin,
because we have an uncertainty whether its probability of falling on heads is 0.6 or 0.7, whereas
we already know that the gold coin is not tricked. We calculate now the entropies associated to
the choice of each coin:

INote that the following reasoning would also be valid given just the belief that the coin is tricked and no additional
assumptions, we aim here to simplify the example and the calculus.
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H(Gold) = −
∑

p∈[pheads,ptail]

p log p = −(0.5 log 0.5 + 0.5 log 0.5) = − log 0.5 ≈ 0.69

H(Silver) = −
∑

p∈[p1heads,p
1
tail,p

2
heads,p

2
tail]

= −0.5

 ∑
p∈[p1heads,p

1
tail]

p log p

− 0.5

 ∑
p∈[p2heads,p

2
tail]

p log p


= −0.5 (0.6 log 0.6 + 0.4 log 0.4)− 0.5 (0.7 log 0.7 + 0.3 log 0.3) ≈ 0.64

We can see that H(Gold) > H(Silver), so if we were to choose the coin for which we have the
more uncertainties about the outcome, we would choose the gold coin. Indeed, we have a belief
that the silver coin returns more frequently heads than tails, so we have more information about
the outcome of tossing the silver coin than the gold coin for which we know that it return heads
with probability 0.5.

This example illustrates that more uncertainties do not necessarily reflect more to learn. There are
indeed two types of uncertainties: uncertainty related to noise about which we can’t do anything,
no matter how many samples we observe, and uncertainty related to our lack of knowledge of
the environment. In this example, there is great uncertainty related to choosing the gold coin,
but this is noise and tossing the gold coin does not permit to improve our prediction. This is the
motivation for separating those two types of uncertainties for our active learning method: we
want to avoid the robot exploring environment noise from which there is nothing to be learned.

It is important to note here that the notions of aleatoric (noise) and epistemic (lack of knowledge)
uncertainties are not absolute notions [63]. They refer to uncertainty that is non-reducible or
reducible, but it may not be trivial to separate them depending on the machine learning model
used and of the application. The Bayesian Gaussian mixture model we use lends itself very well
to this distinction but this is not the case for all models. For instance, even on our simple coin
tossing example, it is not trivial to separate the entropy related to choosing the silver coin between
two terms that could be attributed to reducible and non-reducible uncertainties.

4.5.2 Visualization of uncertainties

In this subsection, we provide more insights about those notions of aleatoric and epistemic
uncertainties with a visualization of those on a two-dimensional toy problem.

We show in Fig.4.3a a toy dataset generated for illustration purposes. The underlying conditional
model that we want to learn is here a very simple identity function. But, this function exhibits
different noises for different regions of the input space. We suppose that we have some data in
two regions of the input space, for the left one the noise is high, and for the right one the noise is
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low. We will illustrate the different uncertainties and entropies on this visual two-dimensional
example. We learn a Bayesian Gaussian mixture model with two Gaussians on this data, and plot
the maximum a posteriori in Fig.4.3b. We can see that the result is very similar to the standard
maximum likelihood Gaussian mixture model. II

We can now calculate the conditional distribution using the learned BGMM, and separate its
covariance matrix into the aleatoric and epistemic terms (see Equations (4.4) to (4.11)). We
show in Fig.4.3c the aleatoric uncertainty. We observe that it is constant in the left part of the
input space, with a significant value of the uncertainty, and that it is also constant in the right
part of the input space, with a very small uncertainty value. We can note here that the aleatoric
uncertainty does not depend on the input on which we condition, given that we stay in a given
cluster (Gaussian). We can also see that the value of the aleatoric uncertainty is actually equal to
the noise in each cluster of the data. It is important to note here that this is the type of uncertainty
that we get with a standard maximum likelihood (non-Bayesian) Gaussian mixture model, and it
is the reason why they are known to predict overconfident predictions far from the training data
[9].

In Fig.4.3d, we plot the value of the epistemic uncertainty on the same data. We observe that it
is equal to zero close to the training data, no matter the level of noise. Also, we can see that it
grows quadratically as we try to make predictions far from the training data. It is interesting to
note that the epistemic uncertainties grow faster around the region of high noise than around the
region of low noise. This is because the noise of the cluster influences the value of the epistemic
uncertainty as a multiplicative factor (see Eq.(4.11)).

Given those observations, we can get the intuition of why considering aleatoric uncertainties for
active learning would result in very poor learning, and the necessity to consider the epistemic
uncertainties that are related to the lack of knowledge and not to the level of noise. We also
plot the entropies of the conditional distribution in Fig.4.3e, which are calculated as proposed in
4.4.2. This highlights that if we were to choose active learning queries based on the entropy of
the aleatoric uncertainty, we would only explore noisy regions of the input space. It also shows
that the entropy of the epistemic uncertainty is high in three regions of the input space, which
are those that are far from the training data. We also plot here the entropy of the full conditional
distribution, i.e., where the covariances are the sums of the aleatoric and epistemic terms. This
illustrates the need for separating the uncertainties for active learning instead of using the full
(aleatoric plus epistemic) conditional distribution: the input x = −2.5 in the middle of the noisy
training data has a total entropy of about 1, while the input x = 8 has a total entropy of about 0.
This suggests that the noise part is an important part of the conditional distribution, and that the
total entropy would be very biased towards exploring noisy regions.

IINote that different choices of priors can change the joint distribution learned with the BGMM. For instance, a
high mean concentration prior would tend to bring the two Gaussians means closer to the mean prior, which is usually
chosen as the mean of the data (here, (0, 0)). Also, for visualization purposes we choose a number of Gaussians which
is equal to the number of clusters in the data. In the case where more Gaussians would be considered, two Gaussians
would fit the clusters as in Fig.4.3b, and the others would fall into the prior, i.e., have the mean prior and covariance
prior.
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(a) Toy data (b) Joint distribution learned

(c) Aleatoric uncertainty (d) Epistemic uncertainty

(e) Entropy of the conditional distribution

Figure 4.3 – Visualization of the aleatoric and epistemic uncertainties of a Bayesian Gaussian mixture
model
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4.5.3 Why not Gaussian Processes?

We illustrate here the difference between our approach and the more commonly used Gaussian
Processes (GPs) for active learning. The main drawback of Gaussian Processes is its assumption
of homoscedastic noise, i.e., the assumption that the noise value is the same in the whole input
space. We show in Fig.4.4 visualizations of learned GPs on the 2D toy problem studied in
previous subsectionIII. We notably highlight two different choices of noise: a small value (as
in the right data cluster), and a high value (as in the left data cluster). We can see that GPs
cannot model the different levels of noises of the training data because of the homoscedasticity
assumption. If the noise level is chosen low, the data is fitted quite well but the prediction of the
variance for the noisy cluster is way too low, meaning overconfident predictions. In the context of
robotics, this might mean that the variance predicted does not reflect the demonstrated variance,
and hence cannot be used reliably, for instance for compliance control. If the noise level is chosen
high, then the fitting of the non-noisy data cluster is very bad, and its associated variance is high.
In robotics, this can mean that if demonstrations over a certain region of the input space are
highly precise and do not exhibit variations, the robot would still allow itself some variability
around those demonstrations, and hence would not have captured the essence of the movement.

It is worth noting that though noise homoscedasticity is a very common assumption in GPs, there
are works that have proposed ways to alleviate it to consider heteroscedastic noise [80, 79, 67].
This usually comes at the expense of a higher computational cost.

Another significant difference between GPs and BGMMs is that GPs model the conditional
distribution, while BGMMs model the joint distribution. Thus, it is possible to extract several
conditional distributions from the joint distribution learned with a BGMM. We will see in the
next chapter that it can be useful for considering several learning modalities.

4.6 Experiments

In this section, we evaluate our active learning method in four different ways related to the
pouring task. The first three favor quantitative results and reproducibility by using a simulated
environment and a given database of demonstrations to choose from. In the last experiment, we
consider the pouring task on a real 7 DoF Franka Emika robot.

In all experiments, we use N = 20 evenly spread Gaussian radial basis functions (RBFs)IV for
ProMP. The width of the RBFs are set as h = (T−1N )2. The hyperparameters of the BGMM are

IIINote that we used here the null function µ(x) = 0 as mean prior, which is why the model predicts 0 far from the
training data. If we had a prior knowledge that the data is linear, it would be possible to choose the mean prior as
µ(x) = x instead, which would result in the model predicting the identity far from the training data. Given that we
did not use such prior knowledge for the BGMM, for a fair comparison we also do not use it here.

IVNote that we could alternatively use the Fourier basis functions used in the previous chapter. We chose not
to since this would come at a greater computational complexity as the number of the Fourier basis functions is
considerably bigger, for a gain that would probably be minor because the demonstrations considered do not involve
strong misalignments.
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(a) Small homoscedastic noise (b) High homoscedastic noise

Figure 4.4 – Visualization of the uncertainties of a Gaussian Process

the default hyperparameters of the scikit-learn library. We choose a diagonal covariance matrix
prior, with a standard deviation of 0.1 for the context variables and 1 for the ProMP weights. We
use a maximum number of 5 Gaussians, or strictly less than the number of demonstrations if
there are less than 6 demonstrations.

Throughout the experiments, we compare our method to three baselines. The first one (Random)
is a random strategy using the same BGMM representation as our method. The second one (GP)
is an adaptation of [87] for external context variables: we learn the conditional model of the
trajectories given the context with a Gaussian process (GP)V using a squared exponential kernel
(hyperparameters optimization gave a length scale of 1 and output variance of 0.12). The active
learning approach for the GP baseline selects the context for which the conditional distribution
of the trajectories given the context has the most variance. The third baseline (Conkey19) is
an adaptation of [29] (introduced in Sec. 4.2) for external context variables: we learn the joint
distribution of contexts and ProMP weights with a GMM and use the Mahalanobis distance in
the context space as an active learning measure. We use the same covariance prior as with our
approach, and we use β = 3 for the hyperparameter governing how many outliers are discarded
when adding a new datapoint to the Gaussian mixture, see Eq. (7) of [29] for more detailsVI.

4.6.1 Simulated pouring

We use here a simulated pouring environment implementing the Franka Emika robot in the
PyBullet simulator [30]. The goal of this task is to pour liquid (simulated as rigid spherical
particles because PyBullet does not support fluids simulation) from a pitcher into a mug. An
overview of the simulated setup is shown in Fig. 4.5. In the first two simulated environments, we
avoid learning the affordances of the object and control directly the orientation of the edge of

VAlternatively, we could also learn a GP from contexts to ProMP weights, but in practice it gave the same results
as learning directly from contexts to trajectories. For this reason, we do not include it in this thesis.

VIAuthors advised to choose β between 2 and 3, we chose 3 because it gave the best results.
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Figure 4.5 – Overview of the simulated pouring environment.

the pitcher, from where the liquid is poured. This permits us to make the task with a reference
trajectory of just one variable: the angle of the pitcher. In the third simulated environment, we
go beyond the one-dimensional control angle case, and show the robustness of our approach for
more complex movements encoded in a 6-dimensional control variable.

1D context

In this first experiment, we consider a one-dimensional context variable, which represents the
amount of liquid in the pitcher. As the mug volume is lower than the pitcher volume, one difficulty
of the task is to stop pouring when the mug is full. We consider context variables varying from
0.05 to 1, representing how full the pitcher is (from 5% to 100%). In this experiment, the goal is
to fill the mug completely (without overflowing).

In order to have demonstrations exhibiting realistic variations, we provide real human demon-
strations using teleoperation. As the reference trajectory contains only a one-dimensional angle,
teleoperation is made simply using a camera by detecting the angle of a colored object held by
the human demonstrator. We build a dataset of 100 demonstrations for contexts evenly spread
between 0.05 and 1. Namely, we choose C = {0.05 + 1−0.05

99 k}99k=0 and provide one teleoper-
ated demonstration for each context in C. This permits reproducibility of the results and a fair
comparison of the methods as they have access to the same demonstrations for given contexts.
Demonstrations are aligned using linear interpolation. A subset of aligned demonstrations is
shown in Fig. 4.6a. We can effectively see that, the more the pitcher is filled, the less it has to be
tilted to pour into the mug. We start the active learning process with 2 initial demonstrations,
for contexts randomly chosen in the context space C. We make the experiment 20 times with
different initial demonstrations. We show in Fig. 4.7 how it compares to a random strategy
which randomly chooses the next context. In Fig. 4.7a, we plot the mean epistemic entropy
(averaged on the context space C) in function of the number of requested demonstrations. We
can see that our strategy outperforms the random strategy in terms of reduction of the epistemic
uncertainties. The diminution of the epistemic uncertainty is particularly big during the first 5
demonstrations requested with our method. In Fig. 4.7b, we propose an objective metric for
comparing quantitatively the two methods. We introduce the task cost, which is simply a `2
norm between the final volume in the mug and the desired final volume (approximated with the
number of balls in the mug. The desired number of balls is 50, which corresponds to the mug
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Figure 4.6 – Subset of demonstrations for different contexts.
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Figure 4.7 – Quantitative results for simulated 1D context pouring.
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being almost completely filled. Filling it too much is possible and increases the task cost as
well). We observe in Fig. 4.7b that our method significantly outperforms the random strategy
in the beginning of the learning process (5 demonstrations), while afterwards the results are
similar. This suggests that our active learning strategy improves learning with few demonstrations.
As the context is low-dimensional (1 dimension), this is not surprising that for more than 10
demonstrations, active learning does not yield any improvement over a random strategy which
has also explored the context space well. It is also interesting to note that our method has less
variance across experiments than the random strategy. Also, our movement representation with a
BGMM gives much better results than the GP approach as it achieves a significantly lower task
cost at all stages of the learning process. We can see that our method also outperforms Conkey19,
whose performance stagnates during the learning process. We believe this is due to the heuristics
that are proposed to add Gaussians to the mixture, which had only been tested in the 2D case in
the original paper, and that would probably need to be adjusted.

2D context

In this experiment we propose to add another context variable: the desired final volume in the
mug. This context variable also ranges from 0.05 to 1, representing how full the mug is (from 5%
to 100%). We then have c = [cpitcher, cmug]T . For this task, we manually implement a controller
performing the task, which is used as the human demonstrator (note that the demonstrations
may not be perfect, e.g., when there is not enough liquid in the pitcher initially to fill the mug
to its desired level. This means that all contexts may not be feasible, and that the user would
just provide the demonstration that is the closest from the robot request. Alternatively, one
could define more precisely the context space so that all contexts are feasible). A sample of
generated demonstrations can be found in Fig. 4.6b. We can see that, for a given desired volume
in the mug, the smaller the initial volume of the pitcher is, the more the pitcher needs to be
tilted. And, for a given initial volume of the pitcher, the more the mug needs to be filled, the
more the object has to be tilted. Note that we do not bring the pitcher back to its horizontal
position when it is fully emptied. As in the previous experiment, for reproducibility reasons, we
precompute a database of generated demonstrations. A grid of width 20 is used to represent the
context space for which demonstrations are generated, yielding 400 demonstrations. Namely,
C = {(0.05 + 1−0.05

99 i, 0.05 + 1−0.05
99 j)}19i,j=0. We also perform 20 experiments where each

experiment starts with 2 randomly sampled demonstrations from the database. Results are shown
in Fig. 4.8. We can see in Fig. 4.8a that our strategy outperforms the random strategy in terms
of reduction of the epistemic uncertainties. More importantly, we see in Fig. 4.8b that the
active learning strategy can learn the task using fewer demonstrations than a random strategy.
Namely, the model improved with 5 demonstrations obtained using our method achieves lower
task cost than if the same model was improved with 10 demonstrations using the random strategy.
Similarly, 10 actively gathered demonstrations contribute better to the task cost than 20 randomly
gathered ones. This shows that the entropy of the epistemic uncertainties of a BGMM is a good
metric for actively learning ProMPs. We also observe that our BGMM approach significantly
outperforms the GP baseline. In particular, we see that the GP approach is on par with the
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Figure 4.8 – Quantitative results for simulated 2D context pouring.

BGMM-Random approach after 5 requested demonstrations, but then performs worse than the
two approaches based on BGMMs. This motivates the use of our Bayesian representation based
on ProMPs for learning robot movements, instead of a Gaussian Process approach. Note also that
our approach has the additional advantage of quantifying the aleatoric uncertainty as well, which
can typically be exploited in ProMPs for designing compliant controllers. Also, we observe that
in this experiment the Conkey19 approach performs similarly to our approach, though slightly
worse. As explained in the previous subsection, we believe this is because this approach was
developed for a 2-dimensional context case.

3D context

In this experiment, we want to test the robustness of our method with respect to higher-
dimensional context and control variables. Hence, we add a third context variable related
to the position where the pitcher was grasped by the robot. Namely, the robot always starts from
the same position but the pitcher can have been grasped at different heights between the base and
the top. This makes the movement more complex as one rotation angle is not sufficient anymore
to characterize it, and there are correlations between the robot translations and rotations. We
use a 6-dimensional control variable consisting of position and orientation (Euler angles) of the
robot end-effector. A controller is implemented to execute the task, and is used as the human
demonstrator. For this experiment, due to the higher dimensionality of the context space, we
do not precompute a database of demonstrations as in previous experiments but generate online
the demonstrations requested by the algorithm, and use a Bayesian optimization algorithm (the
tree-structured Parzen estimator approach [10] implemented in the hyperopt Python package
[11]) to calculate the context yielding the highest epistemic entropy.

We can see in Fig. 4.9a that the reduction of the epistemic uncertainties is bigger with our
active learning metric than with the random baseline, similarly to what we observed in the past
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Figure 4.9 – Quantitative results for simulated 3D context pouring.

(a) First iteration (b) Second iteration (c) Third iteration

Figure 4.10 – Visualization of the context space during the first 3 iterations of the active learning process.
The heatmap represents the entropy of the epistemic uncertainty, yellow indicating high uncertainty.
Demonstrations are shown as grey stars. The context chosen for the next demonstration is shown as a red
star. Transparent ellipses show the marginal distribution of the ProMP in the context space.

two experiments, and that this epistemic reduction correlates with a better task cost error (see
Fig. 4.9b), confirming that the epistemic uncertainties seem to be a good active learning metric.
Finally, our method outperforms the two alternative baselines from the literature by a very large
margin in this more complicated experiment.

4.6.2 Real robot pouring task

In this experiment we demonstrate the viability of our approach on a pouring task with a real
7-axis Franka Emika Panda robot. An overview of the physical setup can be seen in Fig. 4.1. The
context space is 2-dimensional as in the previous simulated experiment, with context variables
ranging from 10% to 100%. In this experiment, we also show the robustness of our approach
to several degrees of freedom as we choose the demonstrations to be 3-dimensional (position
in the vertical plane containing the pitcher and the glass, and orientation of the pitcher). We
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give 2 initial demonstrations to the robot in random contexts, and the robot iteratively requests
20 additional demonstrations. The first 3 iterations of the active learning process are shown in
Fig. 4.10. We can see that the robot starts by requesting demonstrations at the corners of the state
space, which is normal because this is where it is the most uncertain. Note that we could use an
information-density method to make the requests close to the demonstrations (e.g., by adding a
similarity objective). We verified qualitatively that the learned movement representation permits
to pour successfully for different contexts, which can be seen on the supplementary videoVII (we
tested it on 9 different contexts, taken from a 3×3 grid in the context space).

4.7 Conclusion

In this chapter, we proposed to use Bayesian Gaussian mixture models to learn ProMPs. We
introduced a closed-form entropy measure leveraging the epistemic uncertainties captured by the
Bayesian model. We demonstrated the usefulness of the approach both in simulation and on the
real robot, showing that it reduces the number of demonstrations required to learn a movement
representation that has good generalization capabilities.

VIIhttps://sites.google.com/view/bayesianpromps
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5 Combining Social and Intrinsically-
Motivated Learning for Multi-Task
Robot Skill Acquisition
In the previous chapter, we proposed an approach for active learning from demonstrations. We
showed that active learning permitted to reduce the overall number of demonstrations required to
learn a task, while requiring fewer demonstrations. Such learning framework is still dependent
on a single learning modality: learning from demonstrations. We believe that this might limit
the possible range of applications, since some tasks might be simply too complex to be learned
purely from demonstrations. Examples can be tasks where humans cannot provide accurate
demonstrations, or tasks inherently too complex that would require too many demonstrations to
be learned properly. In this chapter, we build upon previous chapter and propose an approach
for coupling internally-guided learning and social interaction in the context of a multi-task robot
skill acquisition framework. More specifically, we focus on learning a parametrized distribution
of robot movement primitives by combining active intrinsically-motivated learning and active
imitation learning. We focus on the case where the learning modalities to use are not specified
in advance by the experimenter, but are chosen actively by the robot through experiences. Such
approach aims at combining experiential and observational learning as efficiently as possible,
by relying on a skill acquisition mechanism in which the agent/robot can orchestrate different
learning strategies in an iterative manner, and modulate the use of these modalities based on
previous experiences. We demonstrate the effectiveness of our approach on a waste throwing task
with a simulated 7-DoF Franka Emika robot, where at each iteration of the learning process the
robot can actively choose between observational/imitation learning and experiential/intrinsically-
motivated learning.

5.1 Introduction

Humans and other animals acquire and refine skills in an open-ended manner through lifelong
learning, and are hence autonomous and versatile for interacting and learning in their environ-
ments. Despite the important progress in Artificial Intelligence, robots still lack this capacity.
Endowing robots with the capability to autonomously discover and solve multiple tasks incre-
mentally and in an open-ended manner is one of the greatest challenges of robotics today and
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is the goal of the growing field of developmental robotics [85]. In particular, humans have the
ability to use several learning modalities, and most interestingly to arbitrate their choice based on
their reliability [26, 59, 142]. In this chapter, we explore a possible route towards such a goal by
proposing a principled computational approach combining intrinsically-motivated learning and
imitation learning.

In robotics, skills acquisition is most often studied by concentrating on a single learning strategy,
or by predefining a basic sequence of learning strategies in advance (e.g., a reinforcement
learning problem initialized with a demonstration). This led to large research efforts dedicated
to the development of very elaborated algorithms specialized in a single domain (learning from
demonstration, reinforcement learning, curiosity-driven learning). We argue that this complexity
could be reduced by allowing several learning strategies, and by providing a mechanism to select
these learning modalities in an open-ended and interactive manner. In the same way as we cannot
learn to play football only by watching TV and that we cannot learn football tactics from scratch
only based on the rules of the game, we believe that robots should rely on multiple learning
strategies, whose sequence can only be determined during the course of learning, in a lifelong
learning fashion.

The above argument is motivated by studies in various fields including cognitive science [54, 85],
ethology [59, 142], neurocomputing [145, 26] and robotics [117, 121, 18, 136, 17], all proving
insights, in different forms, about the importance of combining multiple learning modalities to
acquire skills. In particular, several developmental studies such as [59, 142, 58] have shown that
learning by imitation is a key component of social learning in child development. Children tend
to imitate what they are shown, even if some of the observed actions are not necessarily useful.

From a developmental robotics point of view, we argue that orchestrating multiple learning
strategies during the skill acquisition process can better cope with the specific advantages and
limitations of each individual strategy. Indeed, these strategies are often complementary to each
other, hence the necessity to combine them. Intrinsically-motivated learning requires no external
guidance, i.e., no presence of a human, but it usually involves a long interaction process with
the environment. Imitation learning, on the other hand, requires the presence of a human, but
demonstrations provide a lot of information which would have required a tremendous amount of
time to autonomously acquire.

In this chapter, we propose an active learning approach that can act on different fronts: at a
meta-level, by deciding about the currently most appropriate learning modality in an open-ended
manner, and at a low-level, by deciding about which of the condition/situation/context the agent
currently needs to experience on its own or request as demonstration.

Our contribution is a Bayesian computational framework for learning robot movement primitives
providing this high-level and low-level arbitration capability, namely:

• Strategy selection: the robot chooses actively between imitation learning and intrinsically-
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motivated learning, based on its previous experiences.

• Demonstration choice: in the imitation learning strategy, the robot chooses actively the
goal that is expected to yield the most interesting demonstration.

• Policy exploration: in the intrinsically-motivated learning strategy, the robot chooses
actively which movement is going to improve the most its knowledge of the task.

To the best of our knowledge, our work is the first to integrate these three learning aspects in a
computational framework.

This chapter is organized as follows. First, we review the existing literature in Sec. 5.2. In
Sec. 5.3, we introduce our Bayesian computational framework, and in Sec. 5.4, we derive two
active learning strategies as well as an arbitration strategy. Our experimental results are presented
in Sec. 5.5.

5.2 Related Work

We focus here on the works that specifically combine intrinsically-motivated learning and social
learning. The reader can refer to 2.1.3 for pointers to intrinsically-motivated works, and to 4.2 for
the related work on active imitation learning.

Psychologists have observed on a tool use task that intrinsically-motivated learning can be more
efficient if children can see an agent solve the task [58]. This suggests that a learning robot
could benefit from combining intrinsically-motivated learning and social learning (e.g., imitation),
instead of acquiring skills with a single learning modality. Several works in developmental
robotics have indeed studied methods combining those modalities. In [95], Nguyen et al. propose
an algorithm for combining intrinsically-motivated self-exploration and imitation learning. In
particular, a solution is proposed to the problem of choosing what learning strategy is the most
appropriate. In the context of a throwing task, they show that there is a significant gain in
combining several learning strategies and actively choosing between them. Besides the fact
that their method was only evaluated on a one degree of freedom robot, there is a fundamental
difference between their approach and ours. They base the choice of their learning strategy
on values of interest levels, which are computed with the progress previously observed when
choosing the different modalities. This supposes a notion of competence (reward) to choose
between the modalities. In contrast, our work bases its strategy selection process on uncertainties
that are computed with a statistical model representing the data (intrinsically-motivated trials and
demonstrations), and hence does not require the notion of an external reward. Additionally, the
computation of the interest values in [95] requires the evaluation of the competence before and
after each episode, which implies executing a large number of movements to measure the mean
distance to the goal. Our method is based on an internal reward related to intrinsic motivation
and alleviates therefore this limitation.
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An extension of [95] relied on the use of procedures to combine primitive policies [38], and
it has been applied on a real robot in [39]. Those approaches differ from our approach by the
way they arbitrate between the learning modalities: they seek to choose the modalities based on
the competence improvement they entailed in previous iterations. This implies that a learning
modality that led high improvement will be more likely to be selected in the future. This also
implies that all of the learning modalities have to be tried in different parts of the goal space
in order to quantify appropriately their potential competence improvement in those different
regions. This notably explains why those approaches rely on very long interaction processes,
typically of serveral thousands of iterations. In contrast, our approach does not need to try out
the different learning modalities to quantify their improvement, as the notion of improvement
is based directly on the learned model of the movement, and targets small data applications,
typically around 20 iterations. We will see that with our method the robot can know it is better to
imitate in the beginning of the learning process than trying out by itself, even though it never tried
the intrinsically-motivated learning strategy. An interest model for goal babbling is also used
in [97], by relying on an external reward. In this work, Nguyen et al. show that social learning
through human demonstrations can bootstrap the performance of an intrinsically motivated robot
learner. In a simulated fishing task experiment in which the robot needs to learn how to reach
various goals with a fishing rod, a demonstration is given at constant frequency, chosen randomly
from the set of goals. They show that this permits to reduce the task cost compared to a purely
intrinsically-motivated learning framework. As mentioned in the conclusions of the above papers,
an interesting improvement would be to have the possibility to interactively choose the switching
between those modalities. Our approach proposes a possible solution to this problem.

5.3 Bayesian Movement Representation

We use the movement representation presented in previous chapter, which is a Bayesian extension
of the widely used of probabilistic primitives. We review it briefly:

• Demonstrations are mapped to a lower-dimensional space (ProMP weight space) using
basis functions

• The joint distribution of the demonstrations is learned in the weight space using a Bayesian
Gaussian Mixture Model

• When conditioning, we separate the two types of uncertainties: aleatoric and epistemic,
and quantify the epistemic uncertainties using a closed-form lower bound of the Shannon
entropy for Gaussian mixtures.

We refer the reader to Section 4.3 for more details on the BGMM learning and conditioning, and
to Section 4.4 for the uncertainty decomposition and measurement.

In contrast to previous chapter, we will consider here task adaptation with respect to a trajectory
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via-point (final location) instead of an external context space. Due to the linear relation from
trajectory space to weight space inherited from ProMPs, note that it is possible to condition on
a trajectory via-point/s τ̂ c directly to get p(ŵ|τ̂ c, W̃ ), with minimal changes compared to the
previously considered context conditioning case: this is done simply by replacing all m̂∗

k and L̂∗
k

in (4.4)–(4.8) by Φm̂∗
k and ΦL̂∗

kΦ
>, and ĉ by τ̂ c, respectively.

We will now show how we can use the learned statistical model to build different active learning
modalities.

5.4 Active learning modalities

In this section, we derive two active learning strategies from the learned joint model: imitation
and intrinsically-motivated learning, and a criterion for choosing which learning modality is
better suited at the current learning stage. To facilitate the presentation of the approach, we will
introduce the approach in the context of a specific robot experiment, where the aim is to learn to
move an object to different positions. First, we present the task and the goal of the active learning
framework. Secondly, we present the proposed method for active imitation learning. Then, we
propose a method for active intrinsically-motivated learning. Finally, a criterion for actively
choosing whether imitation or intrinsically-motivated learning is better suited is presented.

5.4.1 Manipulation task

We present our approach in the context of learning to manipulate an object with a robot. The
trajectory is composed of the robot joint states τ robot and the object position τ obj, which implies
that the ProMP weights w are a concatenation of robot weights wrobot and object weights wobj.

The goal of the task is to move the object to different desired final object positions τ obj,t=T
des .

We denote the goal space G as the space of all desired final object positions we would like our
robot to be able to generalize to. Formally, this means that there exists an unknown ground truth
target distribution pGT(w) = pGT(wrobot,wobj) which can be used to generate robot movements
pGT(wrobot|τ obj,t=T

des ) that bring the object to the position τ obj,t=T
des .

We aim to learn this unknown joint distribution by combining imitation and intrinsically-motivated
learning.

5.4.2 Imitation learning

We suppose here that there exists a human demonstrator/oracle that can be queried to demonstrate
a robot movement that brings the object to any desired final position τ obj,t=T

des in G. Acquiring
these demonstrations is usually cumbersome, therefore we would like the demonstrations to be as
informative as possible. We propose to choose the demonstration with active learning to alleviate

77



Chapter 5. Combining Social and Intrinsically-Motivated Learning for Multi-Task
Robot Skill Acquisition

this limitation.

Given a current database of movements W̃ , we propose to leverage the uncertainties learned
by the BGMM and choose the goal τ obj,t=T

des for which the entropy of the epistemic part of the
conditional distribution p(wrobot|τ obj,t=T

des , W̃ ) is maximal. As explained in the previous section,
this entropy is not easy to compute for GMMs, so we instead maximize a closed-form lower
bound. The full active imitation learning algorithm is shown in Algorithm 6. Note that the
process is very similar to what was proposed in previous chapter, the only difference here is that
the context is internal (final object position) and not external.

Algorithm 6: Active imitation learning
Data: Movement database W̃ = {wrobot

i ,w
obj
i }Ni=1, goal space G

Result: goal τ obj,t=T
des∗ at which to request a demonstration

Learn joint distribution of p(w|W̃ ) = p(wrobot,wobj|W̃ ) with BGMM;
Calculate p(wrobot|τ obj,t=T

des , W̃ ) using Eqs (4.4) to (4.8);
Isolate the epistemic uncertainty pep(wrobot|τ obj,t=T

des , W̃ ) with Eqs (4.9) and (4.11);
Approximate the entropy of pep(wrobot|τ obj,t=T

des , W̃ ) with Eqs (4.12) to (4.14);

Find τ obj,t=T
des∗ = arg max

τ
obj,t=T
des ∈G

[
Hlower

(
pep(wrobot|τ obj,t=T

des , W̃ )
)]

.

5.4.3 Intrinsically-motivated learning

We present here another learning modality, where the robot can try out a movement by itself
and observe the environment changes in an open-ended manner. Namely, the robot chooses to
execute a particular movement and observes the movement of the object. In contrast to imitation
learning, one major advantage of intrinsically-motivated learning is that it does not require the
presence of a human demonstrator.

We propose to select a robot movement based on how uncertain we are about the object movements
it will cause. Formally, we would like to try the robot movement that maximizes the entropy of the
epistemic part of the conditional distribution p(wobj|wrobot, W̃ ), but this poses several problems.
From a robotics point of view, doing so might pose safety problems as the movement retrieved
might be very far from the underlying distribution pGT(wrobot) we aim to learn. From an active
learning point of view, our active learning selection scheme is myopic and such criterion might
select robot movements far away from the underlying distribution, i.e., where no generalization
is required. For these reasons, we propose to use an information-density method [15]. Namely,
we aim to find a robot movement that both has high information content (in the sense of the
epistemic entropy), and that is close to the distribution of robot movements probot(wrobot|W̃ ):

wrobot∗ = arg max
wrobot∈W robot

[
Hlower

(
pep(wobj|wrobot, W̃ )

)
+ βprobot(wrobot)

]
, (5.1)
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where β is an hyperparameter weighting the relative importance of the two costs.

The full intrinsically-motivated learning algorithm is shown in Algorithm 7.

Algorithm 7: Active intrinsically-motivated learning
Data: Movement database W̃ = {wrobot

i ,w
obj
i }Ni=1, robot movement spaceW robot

Result: robot movement wrobot∗ to execute

Learn joint distribution of p(w|W̃ ) = p(wrobot,wobj|W̃ ) with BGMM;
Calculate p(wobj|wrobot, W̃ ) using Eqs (4.4) to (4.8);
Isolate the epistemic uncertainty pep(wobj|wrobot, W̃ ) with Eqs (4.9) and (4.11);
Approximate the entropy of pep(wobj|wrobot, W̃ ) with Eqs (4.12) to (4.14);
Get the marginal distribution probot(wrobot|W̃ ) from p(w|W̃ );

Find wrobot∗ = arg maxwrobot∈W robot [Hlower(p
ep(wobj|wrobot, W̃ )) + βprobot(wrobot)].

5.4.4 Choosing the learning modality

We have presented two different learning modalities: imitation learning and intrinsically-
motivated learningI. We propose here a method to choose between these learning modalities.

A difficulty in choosing the right learning modality is that the epistemic entropies are not
comparable for the two learning modalities. Indeed, for imitation learning we focus on the
epistemic entropy of the robot movement conditional distribution for a given object final position,
whereas for intrinsically-motivated learning we look at the epistemic entropy of the object
movement conditional distribution for a given robot movement.

We propose to compare these learning modalities in terms of the expected reduction of the
epistemic entropies of the robot movement given the desired goal. This means that we aim to
minimize the expected (over the goal space) epistemic entropy on the robot movement when
conditioning on the desired goal. This notion of expected epistemic entropy corresponds to

EE
(
W̃
)

= E
τ

obj,t=T
des ∈G

[
Hlower

(
pep(wrobot|τ obj,t=T

des , W̃ )
)]
. (5.2)

This expected epistemic entropy permits us to introduce the notion of expected epistemic entropy
reduction, which is the reduction of the expected epistemic entropy when adding a datapoint
wnew to the database W̃ :

EER
(
wnew

∣∣∣W̃ )
)

= EE
(
W̃
)
− EE

(
W̃ ∪ {wnew}

)
. (5.3)

INote that both modalities are based on the same joint model of the movements that has been learned using a
BGMM. What changes in those scenarios is the input on which we condition, which can be the desired final object
position or the robot movement.
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In practice, computing the expected epistemic entropy reduction involves the relearning of the
BGMM with the augmented dataset W̃ ∪ {wnew} and computing the expected epistemic entropy
on this new joint model. This notion of expected epistemic entropy can straightforwardly be
extended to a distributionII of potential new datapoints pnew(w) with

EER
(
pnew(w)

∣∣∣W̃)
= Ewnew∼pnewEER

(
wnew

∣∣∣W̃)
. (5.4)

We will show now how we can use this to calculate the expected reduction of epistemic entropy
when choosing imitation learning or intrinsically-motivated learning.

Imitation learning Algorithm 6 returns the goal τ obj,t=T
des∗ that should yield the most informative

demonstration. Even though we do not know in advance what demonstrationwnew we will get
when querying the demonstrator, we can use our model to compute the distribution of potential
demonstrations p(wnew|τ obj,t=T

des∗ , W̃ ) bringing the object to the desired goal. This allows us to
compute the expected epistemic entropy reduction if choosing the imitation learning strategy
with

EER(Imitation) = EER
(
p(wnew|τ obj,t=T

des∗ , W̃ )
∣∣∣W̃)

. (5.5)

Intrinsically-motivated learning Similarly, Algorithm 7 returns the robot movement wrobot∗

expected to show an interesting object movement. We can also estimate the expected trajectories
p(wnew|wrobot∗ , W̃ ) when executing this robot movement. From this distribution, we compute
the expected epistemic entropy reduction if choosing intrinsically-motivated learning with

EER(Intrinsic) = EER
(
p(wnew|wrobot∗ , W̃ )

∣∣∣W̃)
. (5.6)

In the above, we have proposed a measure to quantify the informativeness of the different learning
strategies, which we can use to choose the most appropriate strategy by selecting the one which
leads the highest expected epistemic entropy reduction. The selection process of the best learning
strategy is summarized in Algorithm 8.

5.5 Experiments

In this section, we show the usefulness of our approaches in the context of a robotic task. First, we
present the waste throwing task we consider. Then, we evaluate quantitatively the performance of
our approaches for imitation learning, intrinsically-motivated learning, and the combination of
both.

IIIn practice for computational reasons, we approximate EER
(
pnew(w)

∣∣∣W̃)
by EER

(
wMP

new

∣∣∣W̃ )
)

, where wMP
new

denotes the most probable datapoint under pnew(w).
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Algorithm 8: Choice of learning strategy
Data: Movement database W̃ = {wrobot

i ,w
obj
i }Ni=1, goal space G, robot movement

spaceW robot

Result: the learning strategy (Imitation or Intrinsically-motivated) that is better suited

Find τ obj,t=T
des∗ with Alg.6;

Compute the expected epistemic uncertainty reduction of imitation learning
EER(Imitation) with Eq.5.5;

Find wrobot∗ with Alg.7;
Compute the expected epistemic uncertainty reduction of intrinsically-motivated
learning EER(Intrinsic) with Eq.5.6;

if EER(Imitation) > EER(Intrinsic) then
Return Imitation

else
Return Intrinsically-motivated

end

5.5.1 Waste throwing task

We consider the task of throwing waste with a 7 DoF Franka Emika Panda robot simulated in
pyBullet [30]. This task is essential for the broader challenge of automatizing various forms of
recycling. It is also relevant in diverse industrial applications requiring a robot to sort objects fast
within a limited workspace.

An overview of the simulated setup can be seen in Fig. 5.1. The goal of the task is to be able
to generate robot movements that bring a simulated can to different desired positions within a
goal space G. The particularity of this goal space is that, for a part of it, it is possible to bring the
object with a non-dynamic movement because the desired final position is in the reachable robot
workspace. However, for the rest of the goal space, the final desired object position is outside of
the robot workspace, so that it requires the robot to throw the can with a dynamic movement. For
benchmarking and reproducibility purposes, we build our experiments on a precomputed database
of demonstrations. We create 200 non-dynamic demonstrations and 260 dynamic demonstrations
using an oracle, that we gather in a database of demonstrations D. In Fig. 5.1, we illustrate
the can trajectory for three dynamic demonstrations and three non-dynamic demonstrations. In
Fig. 5.2, we show the final can positions in our database, with the blue color representing the
non-dynamic demonstrations and the orange color representing the dynamic demonstrations.

The trajectories of our database encode the robot movement at a frequency of 240Hz, with
T = 639 timesteps, representing movements of about 3 seconds. We choose a 10-dimensional
state space containing the 7 joint angle values of the robot, and the 3-dimensional Cartesian
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Figure 5.1 – Object trajectory for 6 demonstrations of the database (3 dynamic demonstrations in orange,
and 3 non-dynamic demonstrations in blue).

position of the can. In all experiments, we use N = 30 Gaussian radial basis functionsIII (RBFs)
for ProMP. The width of the RBFs are set as h = (T−1N )2, and the centers {cm}Dm=1 are evenly
spaced between −2h and T + 2h. We choose a diagonal covariance matrix prior, with a standard
deviation of 0.1 for the ProMP weights, and a mean concentration prior of 0.0001. We use a
maximum number of 5 Gaussians, or strictly less than the number of demonstrations if there are
less than 6 demonstrations. Other hyperparameters of the BGMM are the default hyperparameters
of the scikit-learn library [109].

The maximization procedure in active imitation learning and active intrinsically-motivated learn-
ing is performed using a Bayesian optimization algorithm: the Tree-Structured Parzen Estimator
approach (TPE) [10], implemented in the Python package hyperopt [11]. A maximal number of
iterations of 100 is used in the algorithm. For imitation learning, we use a 2-dimensional uniform
search space corresponding to the goal space. For intrinsically-motivated learning, as the space of
possible robot movements is of high dimension (30 basis functions × 7 joint angles), we perform
the search on the first two principal components of {wrobot

i }Ni=1, found by principal component
analysis (PCA) [143]. The search space that we use is then the marginal distribution p(wrobot)

projected to the 2-dimensional PCA subspace.

We introduce an objective metric for comparing our learning modalities: the task cost, which is
simply a `2 norm between the final object position and the desired object position, averaged over
the goal space. In practice, we compute this task cost by computing the maximum a posteriori
robot movement given a goal chosen over a uniform grid of 5 × 5 goals in the goal space,
execute those 25 movements in simulation, and average the `2 norms between the final object
positions and the desired object positions. Such a metric presents the advantage of being directly
representative of the quality of the learned task, while remaining agnostic to the metrics we chose
for active learning. It is important to note here that this metric based on an external reward is
used only for comparison, and not by our active learning algorithms.

IIINamely: Φm(t) = φm(t)∑D
n=1 φn(t)

with φm(t) = exp
(
− (t−cm)2

2h

)
.
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Figure 5.2 – Desired final object positions. The grey rectangle represents the goal space G. Blue/orange
dots show the final object position of respectively the non-dynamic/dynamic demonstrations of the
database.

5.5.2 Imitation learning

We present here the results of our method in an imitation learning scenario.

First, we show qualitatively in Fig. 5.3 our method during 20 iterations of active learning, starting
with 2 random initial demonstrations. We can see in this figure that our method effectively selects
goals that are far from goals already observed in available demonstrations. Now, we propose
to evaluate our method quantitatively. We benchmark our method against two different active
learning baselines:

• Random: this baseline simply selects a random goal g from G.

• Minimum likelihood (Min. Lik.): this method, similar to [29], chooses the goal that is the
furthest from our current task representation. Formally, this means that we compute the
marginal distribution of our BGMM over the goal space, and choose the goal that has the
minimum likelihood under this distribution.

We initialize the learning process with 2 initial demonstrations randomly sampled from the
database. For our method and the baselines, the experiment is reproduced 20 times, starting from
different initial demonstrations. The results are shown in Fig. 5.4. We can see that our method
outperforms both baselines in terms of task cost reduction across the learning process. Notably,
it performs around 30% better than the random strategy at all stages of the learning process (at
5, 10, 15, and 20 iterations), and about 50% better than the minimum likelihood strategy. This
shows that the epistemic uncertainty seems to be a good criterion for goal selection. Also, it
confirms the usefulness of this low-level arbitration capability deciding where the agent currently
needs to request a demonstration.
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Figure 5.3 – Evolution of the active imitation learning strategy. The goal space is represented in this figure.
Grey stars represent the final object position of the available demonstrations, and orange stars the selected
goal to query. The transparent ellipses show the marginal distribution of the BGMM on the goal space.
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Figure 5.4 – Evaluation of imitation learning strategy.

5.5.3 Intrinsically-motivated learning

We present here the results of our intrinsically-motivated learning method. First, we would like
to emphasize quantitatively the need for combining imitation learning and intrinsically-motivated
learning for this waste throwing task. Namely, we want to show that using intrinsically-motivated
learning can effectively reduce the task cost. We show in Fig. 5.5 the task cost (averaged over 20
demonstrations) for:

• 10 random demonstrations;

• 10 random demonstrations + 20 active intrinsically-motivated trials;

• 30 random demonstrations.

We can see that, starting from 10 initial demonstrations, 20 intrinsically-motivated learning trials
can improve the model. We can notably see that 20 intrinsically-motivated trials reduce the
task cost half as well as 20 additional demonstrations. This shows that intrinsically-motivated
learning can be used to reduce the burden of the human demonstrator by reducing the number of
demonstrations s/he will be asked. Namely, Fig. 5.5 shows that intrinsically-motivated learning
seems to be a good learning modality to be combined with imitation learning. Also, note that
intrinsically-motivated trials are less informative than demonstrations, which is intuitive since
an intrinsically-motivated trial explores locally around the demonstrations, and hence is less
informative than demonstrations in unknown areas. We propose now a baseline to compare our
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Figure 5.5 – Influence of demonstrations for intrinsically-motivated learning strategy.

intrinsically-motivated learning method with:

• Random: This baseline computes the marginal p(wrobot|W̃ ) from the BGMM, and samples
a robot movement from it. This seems like a reasonable baseline which already uses the
correlations in the observed robot movements, and samples meaningful robot movements
that are close to the observed demonstrations.

In Fig. 5.6, we show the performance of our method compared to this baseline, averaged over
20 experiments, and starting from 5 or 10 randomly sampled initial demonstrations. We can
observe that our method presents a clear improvement over the baseline in both cases. Namely,
the baseline deteriorates the task cost across the iterations, whereas our method permits to reduce
the task cost, as observed in Fig. 5.5 (the mean task cost is reduced by around 20% after 10
autonomous trials in both cases). The deterioration of the task cost with the random approach
can be explained by the fact that sampling from the marginal distribution of the robot movements
at each iteration might end up with samples that are quite far from the original distribution, hence
not useful for the task.

5.5.4 Choice of learning modality

Here, we show the usefulness of choosing actively the learning modality at each iteration of the
learning process. Our results, averaged over 20 experiments, start with 2 initial demonstrations
(randomly sampled). In Fig. 5.7, we show which learning modalities are chosen by our method
during the learning process. We can see that, for the first 5 iterations, the imitation learning
strategy is almost always preferred, while afterwards the two learning modalities are selected with
about the same probability. On average, the intrinsically-motivated learning modality is chosen
with a probability of 36%. Leveraging this knowledge, we introduce a baseline which simply
chooses the intrinsically-motivated learning strategy in a random manner with a probability 0.36,
and imitation learning otherwise. Note that this baseline is already quite good, as it involves the
information of the optimal probability of selecting the intrinsically-motivated strategy obtained
with our method. The results are shown in Fig. 5.8. We observe that our method outperforms
this baseline in the beginning of the learning process (at iteration 5), but gives similar results
later in the training process. This suggests that our method for choosing the learning modality is
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Figure 5.6 – Evaluation of intrinsically-motivated learning strategy (task cost in logarithmic scale).
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Figure 5.7 – Example of a learning process in which the learning strategy is selected at each step based on
the proposed active learning method.
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Figure 5.8 – Evaluation for the choice of the learning strategy.
(Blue: Random choice between Imitation Learning (IL) and Intrinsically-motivated Learning (IML), with
probability 36% of choosing IML. Orange: Active choice of the learning modality. Green: Selecting
always imitation learning. Red: Selecting always imitation learning, but using the same number of
demonstrations as the active arbitration strategy (Orange boxplot). Purple: Selecting always intrinsically-
motivated learning modality.)

useful for the investigated task, especially in the beginning of the learning process. In Fig. 5.8,
we also show the performance of two additional baselines choosing always the same learning
modality. We can see that choosing always intrinsically-motivated learning results in very poor
learning. This is because two initial demonstrations are not sufficient to be able to generate
meaningful movement variations. This is consistent with the fact that imitation learning should
be preferred in the beginning of the learning process, as our method has automatically discovered
(see Fig. 5.7). We also observe in Fig. 5.8 that choosing actively the learning modalities results
in a task cost on par with only imitation learning across the whole learning process, which is a
nice result because it means that we can reduce the number of demonstrations by 36% without
suffering from a performance degradation, and therefore reduce the human burden of providing
demonstrations. A fairer comparison is to compare our method against only imitation learning
with the same number of demonstrations IV, which we also plotted in Fig. 5.8. We can see that
our method outperforms this baseline at iterations 15 and 20 by around 15%. This therefore
motivates the meta-level arbitration capability of our framework for orchestrating the different
learning modalities.

IVNamely 0, 5, 8, 10, 13 demonstrations at iterations 0, 5, 10, 15, 20.
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5.6 Conclusion

In this chapter, we used the Bayesian representation of robot movements extending the framework
of probabilistic movement primitives that we presented in previous chapter. With this Bayesian
representation, we proposed three active learning criteria leveraging the knowledge of the model
uncertainties (epistemic uncertainties) that permit two different learning modalities (imitation
learning and intrinsically-motivated learning) as well a principled method for arbitrating between
them in an open-ended manner. To the best of our knowledge, our work is the first to integrate
those three aspects.

We showed the robustness of our approach with a waste throwing task with a 7-DoF simulated
Franka Emika Panda robot. We studied the usefulness of each of our active learning algorithms
by comparing them to alternative baselines, and showed that in all experiments, our algorithms
give the best performance.

The fundamental element of our method lies in that we model the joint distribution of the
movement. By doing so, we can compute several forms of conditional distributions (in our case,
quantifying the effect of a specific robot movement on the object for intrinsically-motivated
learning, or the robot movement needed to bring the object to a desired final position for imitation
learning). Also, as intrinsically-motivated learning and imitation learning are based on the same
joint model of the movement, we have shown that we can compare these very different learning
modalities quantitatively.
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6 Summary and future work

Learning from Demonstration has emerged as a promising framework for robotics democratiza-
tion, enabling non-expert users to easily (re)program robots. In this thesis, we have proposed
learning methods addressing some of the open questions currently limiting the potential of LfD
applications.

First, we have focused on the usual need for users to align demonstrations and to appropriately
choose the type of basis functions. By relying on Fourier series, which can approximate any
signal, the user does not have to care anymore about providing an adequate set of basis functions,
rich enough to represent the demonstrations, and small enough to permit statistics to be performed
efficiently. Such task is indeed non-trivial for users, even if they are expert. Also, such framework
removes the need to align demonstrations, which usually has to be done either by the user or by a
separate algorithm that may introduce other sources of errors and whose result should be checked
by the user. We believe that this is therefore a useful framework that takes a step towards LfD’s
ultimate goal: enabling non-expert users to program robots. We have successfully demonstrated
the usefulness and applicability of this method on rhythmic robotic tasks involving complex
patterns.

Typical LfD frameworks leverage the variability observed in the demonstrations to be able to
adapt/generalize to new situations that were not demonstrated. It is therefore crucial to provide
demonstrations that present a wide variety of variations of the task to be learned. It is, however,
not trivial to quantify what constitutes a good demonstration from the point of view of the robot,
especially for non-expert users with no knowledge about the underlying LfD algorithms. That’s
why we proposed a robot-centric active learning method in Chapter 4. Our method extends
the framework of probabilistic movement primitives with a Bayesian view. Such Bayesian
representation permits to quantify what constitutes a useful demonstration in terms of the current
uncertainties of the model about it. We have demonstrated the superiority of this approach with
respect to the state of the art, and its usefulness both in simulation and on a real robot. We have
shown that our active learning method permits to achieve better generalization capabilities for a
given number of demonstrations. We therefore believe that such a framework could permit to
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learn more complicated tasks than a standard passive LfD framework.

By choosing actively the demonstrations to show, more complicated skills can be learned. But
the number of demonstrations a user is willing to give is low (researchers typically target below
20), which can make some tasks that, e.g., require a lot of precision, or involve very diverse
movements to perform depending on the situation, difficult to learn purely from demonstrations.
In the same way that humans do not learn from a single learning modality, we have shown that
it is beneficial to combine learning from demonstrations with other learning modalities. We
have proposed in third chapter an active learning method involving several learning modalities:
learning from demonstrations, intrinsically-motivated learning, as well as their arbitration. We
have built upon the Bayesian movement representation proposed in Chapter 4 and proposed two
new active learning schemes relying on the uncertainties captured by the Bayesian model: an
active intrinsically-motivated learning criterion and a way to actively choose between imitation
learning and intrinsically-motivated learning. We have shown the applicability of our approach
on a complex simulated waste throwing task that involves two different types of movements (non-
dynamic motion when the final location is in the robot workspace, dynamic motion otherwise).

As a conclusion, we have proposed in this thesis methods to learn representations and strategies
that reduce the workload of users when programming robot by demonstrations.

6.1 Possible research directions

We now discuss the potential research directions that could be considered for future work.

6.1.1 Fourier movement primitives for discrete motions

Our method based on Fourier decomposition presented in Chapter 3 has only been tested on
rhythmic movements so far. We believe that, due to the theoretical properties of the Fourier
decomposition, it could be also be interesting for discrete (point-to-point) motions. Typical
approaches need to align such demonstrations using a separate algorithm such as Dynamic Time
Warping [92]. Indeed, performing statistics on non-aligned demonstrations might result in very
poor performance. A basic way to use Fourier movement primitives for discrete motions could
follow the following steps:

1. Make sure demonstrations have the same length T (linearly interpolate them if not)

2. Symmetrize the demonstrations to signals of length 2T (where the first half is the demon-
stration and the second the time-reversed demonstration)

3. Perform statistics on the Fourier decomposition of those periodic signals

We believe that such approach could better deal with misalignments than standard basis functions.
Though our approach proposed in Chapter 3 can easily be extended to discrete motions, the
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usefulness, generalizability and adaptability to this new use case remains to be demonstrated.
Also, the method we proposed for making statistics in the Fourier domain assumes that the signals
considered have the same length. Several ways to transform demonstrations of different lengths
to periodic signals of the same length could be considered, and their relevance for the goal of
making statistics would have to be studied. Also, note that the method we proposed for adapting
to new situations would probably not be suited for discrete movements. Standard conditioning
would probably perform better in this case, so there would be a need to overcome the numerical
problems that arose when conditioning on the high-dimensional Fourier domain, for instance
using only a subset of Fourier coefficients I, or by performing dimensionality reduction on the
Fourier domain. This might also lead to better statistics in the Fourier domain.

6.1.2 Quantifying the number of demonstrations required

Our Bayesian movement representation approach proposed in Chapter 4 proposes an active
learning criterion for choosing the most informative demonstration based on the epistemic
uncertainties. One important question remains however open: how many demonstrations are
required for a given task? We have shown in Figures 4.7, 4.8, 4.9 that the reduction of the
epistemic uncertainties was indeed correlated with a reduction of the task cost, and hence with
task performance. One possible way to quantify how many demonstrations are required would be
to define a threshold in terms of epistemic uncertainties after which the robot stops asking for
demonstrations. For instance, if the reduction of the epistemic uncertainties for the last demo(s)
was too small, the learning can be stopped. While being a very simple criterion, a closer look at
Figures 4.7 and 4.8 shows us that this might not work properly. Indeed, in those 2 experiments
the epistemic uncertainties decreased almost linearly with the number of demonstrations, while
the task cost had reached a plateau. This suggests that, even though they are correlated, epistemic
uncertainties and task performance are not linearly dependent, hence the latter criterion might not
be very relevant. We therefore believe that quantifying when enough demonstrations have been
provided for the task to be learned is not trivial, and could be addressed in future work.

6.1.3 Considering additional learning modalities

We have focused in this thesis on imitation learning and intrinsically-motivated learning. We
believe that it would be beneficial to consider other learning modalities, first at the level of the
interaction with the user. Our active learning strategies maximize the usefulness of demonstrations
by requesting specific ones to a user. The cognitive load of the user might be even more reduced
if we were to consider other forms of interaction:

• Partial demonstrations

INote that the Fourier basis functions provide a notion of task complexity inherently. Indeed, we could try and
represent the movements using only small frequencies, and gradually increase the granularity of the movement learned
by adding basis functions of higher and higher frequencies
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While in our pouring and throwing experiments this might not be relevant, providing full
demonstrations is cumbersome and partial demonstrations could definitely be an interesting
alternative. For instance, for tasks where only the final state matters, it might be more
informative to have more demonstrations of possible final states than full demonstrations.
Learning from both full and partial demonstrations should be possible by adding in the
optimization problem a term related to the partial demonstrations as such:

θ = arg max
θ

(
log p(X full|θ) + log p(Xpartial|θ)

)
. (6.1)

For solving this optimization problem, given that partial demonstrations are similar to
missing data, one might need to consider the more general Hierarchical Bayesian Model
learning procedure and not its simplification, as discussed in Section 2.2.

Choosing the most informative partial (e.g., final state) demonstration could be done
exactly as we have proposed, by considering the marginal distribution over the time portion
considered. In the same way that epistemic uncertainties could not be compared directly
for imitation learning and intrinsically-motivated learning, they might not be directly
comparable for full and partial demonstrations. The same approach as in Chapter 5 could
be considered for choosing between those learning modalities: the one which gives the
highest expected epistemic uncertainties reduction.

• Human feedback
One could consider learning from human feedback instead of demonstrations, as it might be
less cumbersome for a user to indicate if an executed trajectory is valid or not with a binary
feedback. Learning could then be done by maximizing the likelihood/posterior probability
of valid robot executions while minimizing the one of incorrect ones, similarly to what
has been proposed in [56] for learning from demonstrations of what not to do. Another
alternative for incorporating human feedback might be to have the robot demonstrating two
trajectories, and the user choosing which one is the best. It could notably be interesting to
try and adapt the framework of [102] to our Bayesian movement representation.

Another promising direction would be to consider additional robot learning modalities requiring
no user, in order to have a richer set of learning modalities from which to choose:

• Reinforcement learning
As discussed in Chapter 2, designing a reward function that does not lead to suboptimal
behavior is not trivial. We believe that if reinforcement learning was combined with
other learning modalities (e.g., learning from demonstrations), this difficulty would be
greatly alleviated as the other learning modalities would provide additional guidance.
Extending our Bayesian framework for dealing with this learning modality might therefore
be of interest. A reinforcement signal could provide a rich guidance for the robot to
autonomously explore, that might be more directed than the intrinsically-motivated reward
rewarding curiosity we have proposed in Chapter 5.
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A potential way to go could be to adopt a Bayesian Optimization approach [50] to rein-
forcement learning. Indeed, evolution strategies for robot reinforcement learning have been
widely used in the literature, see [133] for some pointers.

One way to go that would exploit our Bayesian movement representation could be to
model the joint distribution of the robot trajectory along with the reward p(w, r) with a
BGMM. This would still be compatible with our framework, because by marginalizing
out the reward this induces a joint distribution of the robot movements, as proposed in our
framework. Finding the robot trajectory that would minimize the reward could then be done
by choosing an acquisition function for the epistemic part of the conditional distribution
pep(r|w), such as the commonly used expected improvement criterion [50].

Overall, we believe that our Bayesian framework is generic and could be used for diverse learning
modalities. While the most suitable learning modalities are probably problem-dependent, we
believe that an interesting avenue for future work lies in designing new learning modalities, and
arbitrating between them.

As the number of learning modalities will increase, it might be desirable to consider a human
cost for each learning modality. In Chapter 5, our arbitration mechanism between imitation
learning and intrinsically-motivated learning relied solely on the expected reduction of epistemic
uncertainties. It might be relevant to weigh this with the human cost associated to each learning
strategy, in order to take into account in the active arbitration mechanism that some learning
modalities require more effort from the human user.

6.1.4 Model-based learning approaches

In this thesis, we have focused on model-free learning approaches. The models developed rely
on the modeling of the distribution of the robot trajectories. We have shown that this could be
successfully applied to diverse tasks. As discussed in Chapter 2, the choice between model-free or
model-based learning approaches is problem-dependent. For the pouring experiment considered
in Chapter 4, it seems clear that model-free approaches are a more parsimonious description of
the task than model-based approaches that would try to model the dynamics of the fluid, which
is very complex and is actually not necessary to know to execute the task. For other tasks, it
might be the opposite. Let us consider for instance a simplified pushing task where an object
moves along with the robot if the robot is sufficiently close, and stays still otherwise. For such
task, the description of the underlying environment dynamics is pretty simple and definitely more
parsimonious than a model-free approach encoding all of the movements to perform based on the
initial and desired final position of the object.

Model-based approaches usually rely on a probabilistic description of the underlying models, as
it provides more robustness than learning a single model. Typical approaches used in robotics
consider Gaussian Processes for learning this distribution of models, which can be used for
reinforcement learning [36] or imitation learning [40]. We believe that the Bayesian Gaussian
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Chapter 6. Summary and future work

Mixture model used throughout the thesis could be an interesting alternative to GPs for dynamics
learning, as it could provide the following advantages:

• Possiblity to separate aleatoric/epistemic uncertainties, which could help for avoiding
regions of high noise/aleatoric uncertainty, or for designing curious behaviors by rewarding
regions of high epistemic uncertainty (see for instance [130] and [124] for model-based
active exploration and [28] for an illustration of why separating aleatoric and epistemic
uncertaintites in model-based reinforcement learning is important).

• Potentially a better modelling of tasks with contacts. The discontinuities involved in
tasks with contacts is a current challenge for model-based learning approaches. BGMMs
might be better suited to represent such discontinuities than GPs that assume very smooth
functions.

• Deriving controllers from the learned model might be easier because conditioning in a
BGMM results in a mixture of linear systems. Such property might also be helpful for
designing feedback controllers.

• The covariance prior and mean prior can be chosen appropriately to avoid unstable dy-
namics far from the training data. For instance, by putting the mean prior to zero one can
enforce that we expect nothing to happen in the environment when far from the training
data.

The latter properties remain to be tested and verified and are an interesting topic for future work.
Also, methods bridging model-based and model-free principles might benefit from both worlds,
and could be worth considering.
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