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Reconstruction of image sequences from ungated
and scanning-aberrated laser scanning microscopy

images of the beating heart
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Abstract—Fluorescence laser-scanning microscopy is a well-
established imaging technique in biology, available in many
imaging facilities to investigate structures within live animal
embryos such as zebrafish. Laser scanning microscopes (LSM)
are limited when used to study dynamic heart morphology or
function. Despite their ability to resolve static cardiac structures,
the fast motion of the beating heart introduces severe artifacts in
the scanned images and gating the acquisitions to the heartbeat is
difficult to implement on traditional microscopes. Furthermore,
although alternative high-speed imaging instruments exist, they
are not widely available (due to cost or hardware complications),
putting dynamic cardio-vascular imaging off-limits for many
researchers. Here, we propose a method that allows imaging
the beating heart on conventional LSMs. Our approach takes
a set of images containing scanning aberrations, each triggered
at an arbitrary time in the cardiac cycle, and assembles an image
sequence that covers a single cardiac heartbeat. The steps are:
(i) frame sorting by solving a traveling salesman problem; (ii)
heartbeat duration estimation; and (iii) scan-delay compensation
via space-time resampling. We characterize the performance of
our method on synthetic data under several light intensities and
scanning speeds. We further illustrate our method’s applicability
on experimental images acquired in live zebrafish larvae, and
show that the reconstruction quality approaches that of fast,
state-of-the-art microscopes. Our technique opens the possibility
of using LSMs to carry out studies of cardiac dynamics, without
the need for prospective gating or fast microscopes.

Index Terms—Computational microscopy, laser scanning mi-
croscopy, confocal microscopy, fast microscopy, scanning aberra-
tion compensation, combinatorial optimization, traveling sales-
man problem, image and video sampling, cardiac imaging,
zebrafish imaging,

I. INTRODUCTION

In vivo microscopy is an essential tool to study organ
development at the cellular level in embryos of animal models.
In zebrafish, whose embryos and larvae are mostly transparent,
most organs can be directly viewed under a light microscope.
In particular, it is possible to observe the developing zebrafish
heart, whose early developmental stages are very similar to
the ones in humans. Nevertheless, high-resolution and depth-
resolved cardiac imaging are hampered by the rapid beating
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of the heart. This limitation is especially important when
acquiring images with a laser-scanning microscope (LSM;
e.g. a confocal LSM, two-photon LSM, etc.). Laser scanning
microscopy techniques, which allow optical sectioning, are
widely used because of the many advantages they offer.
These include high spatial resolution, possibility of acquiring
images in arbitrary regions of interest, common availability
of LSMs in imaging centers, and existence of many estab-
lished and LSM-compatible sample mounting protocols. The
limitation of LSMs, when imaging the heart, is the scanning
procedure, which has contradicting requirements. The speed
should ideally be high enough to avoid compromising the
temporal resolution of heartbeats, yet slow enough to collect
dim light and achieve acceptable signal-to-noise ratio (SNR).
Naive imaging of the zebrafish heart leads to aberrations of
two forms: first, the slow scanning speed creates scanning
aberrations because the heartbeats during the acquisition of
a single image (Fig. 1(a)); second, the variable time spent in
between frames (to write the data) leads to images captured
at arbitrary phases of the cardiac cycle (Fig. 2(a)).

There are various ways to avoid scanning artifacts when
imaging a fast-moving sample but none of them offers simul-
taneously the molecular insights possible with fluorescence
microscopy, high enough spatial and temporal resolution, com-
patibility with a wide range of sample mounting protocols, and
availability in most core imaging facilities. For example, the
scan speed could be increased, such as demonstrated in optical
coherence tomography (OCT) [1], where heart morphology
and function in non-transparent embryos (both in avians [2],
[3] and mammals [4]) is possible. However, in OCT, the scan
speed is primarily limited by the instrument (mirror scan speed
and light source intensity) whereas in fluorescence imaging,
it is the number of available fluorophores that can emit light,
which is the limiting factor, and hence faster scanning severely
affects the SNR. For example, fluorescence LSMs equipped
with a resonant scanner [5] can offer sufficient temporal and
spatial resolution to image fast cells [6] but the faster scanning
speed requires that the samples be very bright and that emitted
photon losses be minimized as the pixel dwell time (the
time spent by the scanner on a single point) is lower. High-
performance point scanning confocal microscopy systems that
combine high-speed scanners and light-efficient collection
approaches [7] are sometimes available to researchers but they
remain costly. Line scanning confocal microscopes [8], [9]
and spinning disk microscopes [10], [11] allow imaging at
high speeds yet at the cost of less regional scanning flexibility
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Fig. 1. Summary of acquisition and proposed reconstruction procedure. (a)
Artifacts arise when a fast-moving object is imaged via slow scanning (one
line at a time). Each row in the resulting frame (right) comes from a different
cardiac contraction phase. (b)–(e) Our reconstruction procedure consists of: (b)
collect multiple aberrated frames, which can be represented as slanted planes
in space-time; (c) sort the frames according to increasing cardiac phase; (d)
estimate the heartbeat period and produce a dense cardiac cycle; (e) resample
the data on a uniform space-time grid that covers one heartbeat. See also
Supplementary Movie 1 for Steps (a) and (b).

and crosstalk in thicker samples compared to point scanning
systems. Light sheet microscopy [12]–[15] satisfies the spatial
and temporal resolution requirements for cardiac imaging but
is not always available, in particular at imaging centers that
have only few instruments; since the cost of purchasing a
reliable turn-key microscope is high (ranging from tens to
hundreds of thousands of USD or Euros), LSMs are a common
first choice as they cover the needs and applications of many
users (Table I). Indeed, LSMs offer exquisite sensitivity and
spatial resolution, optical sectioning capabilities in a wide
range of fluorescent samples, possibility to scan only small
regions of interest (ROI), compatibility with a variety of
mounting techniques, and widespread options for both single
and multi-photon excitation. While purchasing or building a
new microscope dedicated specifically to a cardiac imaging
project (e.g. a light-sheet microscope) offers the best quality
images at high speed, it will only be a sensible investment for
researchers who image the heart regularly and can dedicate
major funds to purchasing and maintaining such a microscope,
or who have the skills to assemble a more cost effective version
on their own [16], [17]. If LSM images of the heart were
not severely corrupted by scanning artifacts, the possibility of
using already existing (LSM) resources at a core facility would
therefore be a practical, versatile, and economical alternative.

In this paper, we consider the problem of enabling such an
alternative. Specifically, we aim at developing a computational
method that takes a set of scanning-aberrated LSM images
of the beating heart as input (as obtained, e.g., by use of
an unmodified, off-the-shelf commercial LSM) and returns
an image sequence (movie) with a faithful representation of
the beating heart geometry covering one heartbeat (Fig. 1).
Although, challenges of imaging the heart on slow devices
have been considered in the past, we are not aware of methods

that directly address the problem at hand.

A. Related work

Cardiac phase sorting methods have been considered in
the past. Zhang and Pless [19] sorted cardiopulmonary MRI
images according to the cardiac and respiratory phases by
projecting the images on a low-dimensional manifold [20],
and used level sets to segment the images. Kellman et al.
[21] rebinned MRI images according to cardiac phase, with
the phase determined with ECG timing data. In free-breathing
MRI, Feng et al. [22] extracted the motion signal from differ-
ent coils to extract estimations of the cardiac and respiratory
frequencies, and then sort the acquired data according to the
cardiac and respiratory phases. In OCT, Liu et al. [3] pooled
OCT images from multiple sequences of continuous and
undistorted heartbeats to obtain higher framerate sequences
by determining their relative phases. Similarly, Happel et al.
[23] increased the frame rate in OCT using the string-length
method [24], [25]. Approaches based on the string-length
method assume that data are collected in a strictly sequential
fashion and with known timestamps, which we do not assume
here. Tralie and Berger [26] created high temporal resolution
movies of periodic subjects by estimating the period of the
signal then the phases within a sliding window. We recently
proposed a cardiac phase sorting method (based on a traveling
salesman problem (TSP) formulation) to recover the cardiac
phase of a series of still images of a beating heart [27]. A
similar TSP approach, albeit using different distance metrics
and boundary conditions, has been proposed by Hanslovsky et
al. [28] to sort out-of-order electron microscopy image stacks.
Despite the ability of the above cardiac imaging methods to
increase the framerate given instantaneous snapshots, none
of them tackles the problem of compensating for aberrations
introduced by scanning. Methods that compensate for scanning
aberrations have been developed separately in other contexts,
including for de-interlacing in television [29]. In the field of
microscopy, Surgon et al. [30] have proposed a method to
reconstruct a single frame without aberrations given a series
of un-gated images. Nevertheless, this method falls short of
reconstructing entire sequences, which is necessary to study
cardiac dynamics.

B. Contributions

In this paper we present a fully computational method
to recover cardiac heartbeat series from scanning-aberrated
snapshots, with only minimal knowledge of the imaging device
characteristics and without the need for additional hardware or
hardware modifications, making our method well-suited for
post-processing images acquired on a wide range of LSMs,
even from devices that do not allow low-level acquisition
adjustments by the user (a common limitation of commercial
LSMs). We formulate the image reconstruction problem as a
combined sorting and space-time unshearing problem, whose
free parameters are unknown (cardiac phase, timestamps, or
cardiac heart-beat frequency).

We propose to solve this image reconstruction problem
by splitting it into two variational problems to recover the
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TABLE I
COMPARISON OF OPTICAL SECTIONING-CAPABLE MICROSCOPY METHODS (CONVENTIONAL LASER SCANNING MICROSCOPY (LSM), FAST LSM

(AIRYSCAN [18]), LIGHT-SHEET MICROSCOPY, AND LSM COMBINED WITH OUR PROPOSED RECONSTRUCTION METHOD). MORE STARS (*) INDICATE
PREFERRED METHOD. OUR PROPOSED APPROACH EXTENDS THE USE RANGE OF WIDELY AVAILABLE LSMS TO CARDIAC IMAGING.

Accuracy of cardiac Sample preparation Flexible ROI Multi-photon options Cost Availability

shape in images and mounting Imaging

LSM * Standard **** **** $$$ ****

Fast LSM **** Standard **** ** $$$$ **

Light Sheet **** Non-standard * ** $$$$/$$ a **

LSM + our method ** to **** b Standard **** **** $$$ ****

aCommercial light-sheet microscopes are very expensive, but do-it-yourself options [16], [17] can be more affordable if skills and time are available.
bDependent on cardiac phase and cell velocity

unknown parameters, followed by data resampling. Specif-
ically, we cast the problem of retrieving the images’ un-
known phases as a shortest path search problem with periodic
boundary conditions to match the cyclical nature of the car-
diac heartbeat and with a pixel-wise similarity criterion as
a distance metric, an approach whose efficacy we already
demonstrated for sorting unaberrated cardiac images [27].
Following sorting we formulate the second problem as a space-
time shearing problem whose unknown spacing parameter we
recognize to coincide with the unknown cardiac period. Again,
we use a variational approach to determine the unknown
parameter, based on a minimum image difference criterion
between adjacent, resampled slices. In addition to detailing
the method, we characterize the algorithm on synthetic data,
demonstrate its applicability on experimental microscopy data,
and qualitatively compare the reconstruction to experimental
data acquired with two highspeed modalities.

Given the novelty of the reconstruction problem and
method, we have characterized and validated our proposed
approach using different datasets and settings. First, we recon-
structed synthetically generated data (with and without noise
corruption) for which the ground-truth signal was known, then
quantitated the reconstruction accuracy as a function of the
main free parameters. Next we carried out reconstructions
on experimentally acquired images of the beating heart in
zebrafish larvae, acquired on a (slow) confocal LSM, and
compared our reconstructed images to those obtained via
direct fast imaging methods (fast confocal LSM and light-
sheet microscopy), suggesting that our method can reliably
reconstruct the geometry of the beating heart (with some
limitations).

The paper is organized as follows. In Section II, we provide
a formal description of the imaging model and problem. In
Section III, we propose a sorting solution based on a TSP
solver and a compensation for scanning artifacts. In Section
IV, we evaluate our method on synthetic and experimental
data. In Section V, we discuss our findings. Finally, we
conclude in Section VI.

II. MODEL AND PROBLEM DEFINITION

We consider a time-varying two-dimensional image whose
intensity at spatial location (x, y) and time t we denote by
f(x, y, t). The image intensity varies periodically with a period
T , such that, for any t ∈ R, we have:

f(x, y, t) = f(x, y, t+ T ). (1)

We further define a uniformly-sampled image series f that
covers the duration T of one heartbeat:

f [k, `, n] = f (k∆x, `∆y, n∆t) , (2)

where ∆x and ∆y are the pixel width and height, respectively,
k = 0, . . . ,K−1 and ` = 0, . . . , L−1 are the row and column
indices, respectively, n = 0, . . . , N−1 denotes the time frame
index, and ∆t = T

N denotes the time interval between frames.
We denote by g[k, `, n], k = 0, . . . ,K−1, ` = 0, . . . , L−1,

and n = 0, . . . , N − 1, the discrete image series measured by
the scanning microscope, which we model by:

g[k, `, n] = f(k∆x, `∆y, tn + s``), (3)

where s` is the vertical scanning rate (in units of time per
row, where we assume that the lateral scanning, which is fast
compared to the vertical scanning rate, is instantaneous) and
the tn’s are the times at which the corresponding frames g[:
, :, n] are triggered . These starting times occur at increasing,
but arbitrarily-spaced times:

t0 < . . . < tn < . . . < tN−1, tn ∈ R. (4)

Given the above definitions, the image reconstruction prob-
lem is to obtain an estimate f̃ of the uniformly sampled
image sequence f given the sheared measurements g and
knowledge of the microscope’s vertical scan speed s` (but
without knowledge of the underlying heartbeat period T nor
the starting times tn).

III. PHASE SORTING, PERIOD COMPLETION AND
ESTIMATION METHOD

To reconstruct a uniformly sampled image series of the
beating heart over one period from the scanning-aberrated data
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(b)

(a)

(c)

Fig. 2. Sampling model for scanning, true and approximated frame phase
distribution. (a) The scanning acquisition results in sheared images g[k, `, n],
(diagonal dots, one image line corresponds to one dot), which can span
multiple periods T of the original signal. Acquisition is triggered at arbitrary
times tn with corresponding phases φn. (b) Frames sorted according to their
true (but unknown) cardiac phase. Wrapping the data to a single period results
in a dense sampling of the space-time for one heart-beat. Note that given the
stochastic nature of the start times tn, the phases are not evenly distributed
over the heartbeat. (c) While our sorting procedure produces reliable sorting,
it does not provide the phase positions, which we approximate as equispaced.
We investigate the error introduced by this approximation in Fig. 4(a).

that we measure, we proceed in three steps, which can be
summarized as follows: first, we sort the scanning-aberrated
frames g (Fig. 1(a) and (b)) so that the starting times tn are in
order of increasing cardiac phase (see Section III-A, Fig 1(c));
next, we estimate the duration T of one heartbeat (see Section
III-B, Fig 1(d)) such that the pixels in the sorted frames can
then be assigned to their position in the cardiac phase space;
finally, we resample the phase-ordered scanning-aberrated data
on a uniform grid to obtain the final estimate f̃ (see Section
III-C, Fig 1(e)). Note that, in [27], only the special case where
the vertical scanning rate is instantaneous was considered, i.e.
s` = 0, and the problem therefore limited to sorting frames.

A. Sorting scanning-aberrated images according to cardiac
phase

We follow the phase-sorting method described in [27], and
define the cardiac phases φn of the nth frame g[:, :, n], as the
wrapping operation φn = WT (tn) = tn + mT , m ∈ Z, s.t
φn ∈ [0, T ). The task of sorting the frames is equivalent to
finding a permutation σ : {0, . . . , N − 1} → {0, . . . , N − 1},
m 7→ n = σ(m) such that the phases φσ(0), . . . , φσ(N−1) are
in increasing order:

φσ(0) ≤ · · · ≤ φσ(N−1). (5)

Given a sequence of images g, we denote by gσ the phase-
ordered (but still scan-sheared) frame sequence obtained by
applying the permutation σ to g:

gσ[:, :,m] = g[:, :, n]

∣∣∣∣
n=σ(m)

, m = 0, . . . , N − 1. (6)

We assume the cardiac cycle to be a closed repeating cycle
and the images corresponding to adjacent phases in the cycle
to be similar. We further assume that each cardiac phase
produces a unique image (symmetrical patterns are excluded).
We formulate the phase-ordering as a minimization problem,
with image difference as a similarity criterion, so that this
problem boils down to a classical combinatorial optimization
problem. To do so, we define the cost of a given candidate
permutation σ′ (with σ′(t0) = 0) as:

C(g, σ′) =
N−2∑
m=0

d
(
gσ
′
[:, :,m],gσ

′
[:, :,m+ 1]

)
+d
(
gσ
′
[:, :, N − 1],g[:, :, 0]

)
,

(7)

where the frame-wise distance operator d(·, ·) between two 2D
frames a and b is defined as:

d(a,b) =
K−1∑
k=0

L−1∑
`=0

|a[k, `]− b[k, `]|. (8)

Given that the distance is symmetrical, permutations that lead
to a minimal cost come in pairs:

{σ̃T , σ̃} = arg min
σ′∈SN−1

C(g, σ′), (9)

where σ̃ is the ordering that satisfies Eq. (5), and σ̃T the same
permutation in reverse order.

Given an N × N (symmetrical) table D whose entries
Dj,k = d(g[:, :, j],g[:, :, k]) contain the frame-wise distances
between all frame pairs, we can recognize that Problem (9)
is an incarnation of the TSP: the permutations we seek
correspond to finding a path that visits each image (and comes
back to the starting image) while minimizing the distance
traveled between adjacent images.

In order to solve this problem efficiently and robustly,
we spatially-average and downsample each frame g[:, :, n],
n = 0, . . . , N − 1 before computing the distance table D.
Since there are (N − 1)! possible frame permutations (N is
the number of frames and the first frame is fixed) exploring
all combinations would be prohibitively expensive. Instead,
we use the TSP solver package Concorde [31] with the linear
programming solver QSopt [32]. The computational time and
complexity of the Concorde solver was discussed in [33], and
shown to follow a function of the form a ·b

√
N , with a = 0.21

and b = 1.24194 [34], which is still exponential, but grows
much slower than (N−1)!. We solve the problem of choosing
between σ̃ and the reverse permutation σ̃> in the next step.

B. Estimation of the heartbeat period

Although the previous step produces a sorted series of
images, the scanning artifacts remain. In order to compensate
for them, we estimate the heartbeat period, which specifies the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCI.2019.2948772

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. ?, NO. ?, MONTH 2019 5

spacing of frames in space-time. Concretely, the phase-ordered
images, gσ , are related to the underlying continuous signal f
via:

gσ̃[k, `,m] = f(k∆x, `∆y, tσ̃(m) + s``) (10)

= f
(
k∆x, `∆y,WT

(
tσ̃(m) + s``

))
(11)

= f
(
k∆x, `∆y,WT

(
WT

(
tσ̃(m)

)
+ s``

))
,
(12)

where Equation (11) results from the periodicity of f and
Equation (12) from a property of the wrapping operation. In
Equation (12), we recognize the phase φ̃m = WT (tσ̃(m)) of
the mth frame of the ordered stack, which we substitute therein
to obtain:

gσ̃[k, `,m] = f
(
k∆x, `∆y,WT

(
φ̃m + s``

))
. (13)

We next approximate the (unknown) phase as:

φ̃m ≈
Tm

N
. (14)

This approximation, illustrated in Fig. 2, leads to the following
expression:

gσ̃[k, `,m] ≈ f
(
k∆x, `∆y,WT

(
Tm

N
+ s``

))
. (15)

The rationale behind the approximation in Eq. (14) is that
we assume the starting phases to follow a uniform random
distribution within one heartbeat, i.e. φm ∼ U([0, T )), which
stems from the stochastic nature of data write times to disk
and (slight) variability in the heartbeat. Provided sufficient
frames are available, such an assumption is reasonable. We
have evaluated the accuracy of approximating the true phases
by equispaced phases in Section IV-A (specifically, see Fig. 3).

The final step before we can exploit Eq. (15) to reconstruct
images of the beating heart is to estimate the heartbeat period
T , which is unknown. To do so, we assume a candidate period
T ′ for T and invert Eq. (13) to obtain fT ′ , a uniformly sampled
(without scanning aberration) version of f :

fT ′ [k, `, n] = gσ̃
[
k, `,WN

(
n−

(
s`N

T ′
`

))]
. (16)

Since the time index in the right-hand-side can be non-
integer, we interpolate the data between successive time points.
Specifically, we use a cubic B-spline model with periodic
boundary conditions [35].

Next, to obtain the estimate T̃ of the underlying period T ,
we minimize the sum of the differences between neighboring
rows ` for reconstructions fT ′ obtained from different values
of the candidate period T ′:

T̃ = arg min
T ′

(
K−1∑
k=0

L−2∑
`=0

N−1∑
n=0

∣∣∣∣fT ′ [k, `, n]− fT ′ [k, `+ 1, n]

∣∣∣∣
)
.

(17)
If the period resulting in the minimal cost is smaller than 0,

then the best estimated permutation is σ̃T , and the time points
need simply to be mirrored with respect to time.

In practice, we used an implementation (from the Python
package SciPy) of the Nelder-Mead simplex method [36] to

minimize the expression in Eq. (17).

C. Scan-aberration compensation via resampling

Finally, Equation (16), evaluated for the optimal estimate
T ′ = T̃ , provides our estimate of f in Eq. (2):

f̃ = fT̃ . (18)

IV. EXPERIMENTS

We have characterized the accuracy of our method and
evaluated its applicability in practice, which we detail in the
following sub-sections.

A. Expected error due to non-gated, non-uniform sampling

We first investigated the error that can be expected from
the approximation in Eq. (14). Under the assumption that the
starting times of the image acquisitions are stochastic and
unrelated to the heartbeat (a reasonable assumption given that
slight irregularities in the heart-beat are common and that we
empirically observed the image write-times to the disk to be
stochastic), we compared the error we make by calculating
the differences between the actual phases and the regularly-
spaced phases that we impose on the ordered sequences during
reconstruction. The assumption here is that there is no error in
the ordering of the frames (an aspect that we study separately
in Section IV-B3). For a given number of frames, we computed
the differences between the left-hand side and the right-hand
side of Eq. (14), which corresponds to the integral of the
absolute difference between realizations of the true phase
curves and the linear approximation (see Fig. 3 inset A, B, C).
We repeated the experiment, drawing phases from a uniform
distribution, i.e. φn ∼ U([0, N)), and for a varying number of
frames, N ∈ {10, 20, 30, ..., 300}. We observed that the error
decreases as the number of frames increases (Fig. 3).

B. Method characterization on synthetic data

We next characterized the performance of the full recon-
struction pipeline with respect to scan speed and number of
frames on synthetic data.

1) Simulation framework for synthetic heart and scanning
microscope: We simulated a beating heart (as previously
described in [25]) and the LSM acquisition process by re-
sampling data generated on a uniform grid. To simulate a
beating heart f(x, y, t), we produced synthetic time-series
data f∗[k, `, n], where k = 0, . . . , 255, L = 0, . . . , 255,
and n = 0, . . . , 2999. The images featured a periodically
contracting ring, with period T = 6π, which avoided sampling
the exact same images over several periods when simulating
the scanning artifacts. This sampling protocol represents a non-
gated acquisition process, where each image is acquired at a
different phase.

To simulate the line scanning acquisition process, we de-
fined the heartbeat-to-frame scanning rate ratio r = s`L

T (with
units of number of beats per frame (bpf)). With these units,
the simulated data can be expressed, based on Eq. (3), as
g[k, `, n] = f∗[k, `, t + `rT

L + nrT ] , where t ∈ U [0, T ) is
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a random starting point in the period. At constant acquisition
rate, r increases when the heartbeat increases, while at a con-
stant heart rate, an increase in r corresponds to a decrease in
the scanning speed. This simulation allowed us to investigate
the influence of two imaging parameters: the number of frames
N and the heartbeat-to-frame scanning rate ratio r. We first
fixed the heartbeat-to-frame scanning rate ratio r and varied
N . Then, we fixed the final number of frames N and varied
r. See Supplementary Movie 2 as an illustration.

2) Noise simulation: To make our simulation more realistic,
we considered each pixel i to be a realization of a Poisson
process whose parameter we set to the noise-free pixel value fi
(in the range 0 to 1) times a global λ level (proportional to the
product of photon emission rate and detector dwell time), such
that the probability of measuring k photons on a particular
pixel was pi(k) = e−λfi (λfi)

k

k! . We simulated data with three
global parameters, λ = 1, λ = 10, and λ = 100, which on a
pixel with noise-less intensity fi = 1, leads to measuring (on
average) 1, 10, and 100 photons, respectively.

3) Evaluation of sorting accuracy: To characterize the
accuracy of the frame-sorting method that uses the TSP solver
with the image-based distance, we carried out the following
experiments. We averaged and downscaled the simulated data
by a factor 4, then sorted the downscaled data according to
the solution of the TSP solver. We next inspected if the known
ground truth phases attached to each frame were in proper
sequence. Specifically, to quantify the sorting accuracy we
defined the score:

E [n] =


1 φσ̃(n) < φσ̃(〈n+1〉N )

1 φσ̃(n) = φmax and φσ̃(〈n+1〉N ) = φmin

−1 otherwise,
(19)

where φmin and φmax are the minimal and maximal ground
truth phases, respectively and 〈n〉N = n mod N . When
correctly sorted, the phases should be in a strictly increasing
or decreasing order, with a single jump between the minimal
and maximal phases φmin and φmax and we defined the overall
sequence sorting score as follows:

Ē =

∣∣∣∣∣ 1

N

N−1∑
n=0

E [n]

∣∣∣∣∣ , (20)

with 0 ≤ Ē ≤ 1, where a low score expresses poor sorting
and a high score a correct sorting (the score does not penalize
an inverted overall direction of the sorting). We additionally
quantified this sorting score by measuring the error magnitude,
i.e. the frame positional error as a percentage of the number
of frames N .

First we studied the influence of the number of frames on the
sorting accuracy by varying N ∈ {10, 20, . . . , 300}, keeping
the heartbeat-to-frame scanning rate ratio fixed to r = 2

√
2 bpf

(Fig. 4). In the noiseless case, the average sorting score does
not vary much as the number of frames increases. Although the
sorting score decreases with higher noise levels (λ = 1, λ =
10) the relative phase error induced remains low (Fig. 4(b)).

Next, we set N = 100 and varied the heartbeat-to-frame
scanning rate ratio r ∈ {0.5

√
2 bpf,

√
2 bpf, . . . , 9.5

√
2 bpf}

Fig. 4(a). The quality of the reconstruction decreases as the
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Fig. 3. Accuracy of the equispaced phases approximation. Mean distance
between true and equispaced (approximated) phases assuming phases follow
a uniform random distribution over the interval of a cardiac period and that
sorting is perfect. Insets A, B, and C show the true phase as a function of
the frame and the deviation from the equispaced phase assignment (diagonal)
when the number of frames is 10, 100, and 300, respectively (10 realizations
shown in each case).

number of heartbeats per frame r increases. This indicates that
while a slow scanning speed (r large) may be acceptable, the
reliability of the sorting method is best when the scanning
speed is fast (r is small).

4) Characterization of the accuracy of the period deter-
mination method: In order to characterize the accuracy with
which we can estimate the period of the heartbeat, we calcu-
lated the normalized difference between the estimated period
T̃ and the ground truth period T :

ET̃ =
|T − T̃ |
T

. (21)

Similarly to Section IV-B3, we considered first a fixed scan
rate ratio r and varied N , then we fixed N and varied r (Figs
4(c) and 4(d), respectively). We observed that increasing the
number of images N (Fig. 4(c)) increases the accuracy of
the heartbeat period estimation with a lower variability as
we repeated the experiment with multiple realizations of the
starting phases. Decreasing the scanning speed (increasing r)
improves the accuracy of the heartbeat period estimation, with
less variability as the experiment is repeated over multiple
realization of the random starting phases of the frames. We
observe that the estimation is robust to photon-count parameter
as low as λ = 10, with the method becoming unreliable for
λ = 1.

5) Evaluation of the overall accuracy of the proposed
reconstruction method: To quantify the end-to-end quality of
our entire reconstruction procedure we calculated the intersec-
tion over union (IOU [37]) index between ground truth and
reconstructed images. The IOU index gives a quantification of
the image overlap, or in our case a quantification of the overall
reconstruction quality. As the IOU requires binary images,
we applied the reconstruction parameters (phase ordering and
period estimation) to the noise-free data equivalent to our noisy
datasets. We used the mean of the images as a threshold.

For medium to high photon counts (λ = 10, 100, no noise),
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Fig. 4. Accuracy of the frame sorting and period estimation procedures. (a)
Simulated data with decreasing levels of Poisson noise (Section IV-B2), and
without noise . The upper row shows data with a heartbeat-to-scanning rate
ratio r of 2

√
2, and the lower row of 8

√
2. (b)–(c) Accuracy of the frame

sorting procedure (see Eq. (20)) based on synthetic image data when (b)
r = 2

√
2 bpf is fixed while the number of frames N varies and (c) N = 100

is fixed and r varies. The lines represent the mean over 10 realizations of
the simulated movies, and the shadings the standard deviation. Darker colors
indicate a higher level of noise, i.e. a lower value of λ. (d)–(e) Phase position
error as a percentage of period when (d) r = 2

√
2 bpf is fixed while N varies

and (f) N = 100 frames is fixed and r varies. (f)–(g) Positional error as a
percentage of number of frames N (f) r = 2

√
2 bpf is fixed while N varies

and (g) N = 100 frames is fixed and r varies. (f) The vertical shading for
N ∈ [0, 19] indicate low reliability.

increasing N improves the overall reconstruction quality (Figs.
5(a) and 5(c)). In high-noise conditions (λ = 1) the reconstruc-
tion quality becomes variable as N increases, in agreement
with the worsening sorting and phase estimation performance
at these low light conditions (Fig. 5). As the scan rate ratio
r is increased, the overall reconstruction quality decreases
slightly (Figs. 5(b) and 5(d)). However, this result assumes
that it is possible to keep the photon count constant as the
scanning speed is increased. In practice, a slower scanning
rate, leads to longer dwell times and proportionally larger
photon counts (at constant excitation intensity). To illustrate

Fig. 5. The image reconstruction quality (IOU) on simulated data compared
to ground truth (a)–(b). Reconstruction quality when: (a) the heartbeat-to-
frame scanning rate ratio r = 2

√
2 bpf is fixed while the number of frames

N varies and (b) the number of frames N = 100 is fixed and r varies. Each
line corresponds to the mean of one level of noise, over 10 realizations, and the
shadings the standard deviation. (c) High acquisition speed data, r = 2

√
2

25
,

λ = 1 versus lower speeds acquisition, r = 2
√
2, λ = 25, and r = 8

√
2,

λ = 100, from left to right. The upper row is the acquired data, the lower
row is the reconstructions. See also Supplementary Movie 11.

the benefits of using slower scan rates (higher r), we compared
the reconstructions obtained by simultaneously slowing the
scanning rate (r = 2

√
2/25, 2

√
2, 8
√

2) and proportionally
increasing the photon counts (λ = 1, 25, 100, Fig.5(c) and
Supplementary Movie 10). Reconstructions show that the
shape of the synthetic heart is recovered in all cases, but
that the main benefit of a longer dwell-time—the associated
higher photon count—can be reaped by compensating the
accompanying scanning artefacts with our proposed method.

6) Evaluation of the reconstruction time: We timed the
reconstructions on a Debian GNU/Linux 9.9 Operating Sys-
tem, with an Intel Core i7-5930K 3.50GHz CPU, and 32GB
RAM (see Fig. 6). Within the probed range of frames, we
observed that the reconstruction time increases linearly with
the number of frames and stays constant as the heartbeat-to-
frame scanning rate ratio increases. As shown in a detailed
example in Section IV-C, the resampling step is the most time
consuming, and scales linearly with the data size. The sorting
step scales exponentially with the data size as mentioned in
Section IV-A but contributes less to the overall computational
cost.
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Fig. 6. The computation reconstruction time increases with (a) the number
of frames N , rather than (b) the number of beats per frame r.

C. Reconstruction of a beating heart sequence from experi-
mental measurements

1) Methods: In order to evaluate the potential of our
method for biological applications using standard LSMs, we
acquired data in live samples. We bred transgenic zebrafish
(Tg(myl7:GFP) [38] and Tg(myl7:membranemCherry) [39]),
which express fluorescent proteins in the heart (green and red
fluorescent protein, respectively, in the muscle cells of the
entire heart) according to standard procedures [40]. All pro-
cedures were previously authorized by the Veterinary Office
of the Canton of Bern, Switzerland, for conformity. We grew
the zebrafish embryos in E3 medium and added PTU (0.003%
1-phenyl-2-thiourea) to avoid pigmentation when the embryos
reached an age of 24 hours post fertilization (hpf). At an age
of 36 hpf, we removed the chorion surrounding the embryos
with forceps and anesthetized the embryos with Tricaine at
0.08 mg/ml, pH 7. We embedded the embryos with the ventral
side down on a glass bottom dish in 1% low melting agarose
(Promega). We imaged the heart on a Zeiss LSM880 inverted
confocal microscope with an LD C-Apochromat 40×/1.1 NA
water immersion objective lens.

2) Qualitative evaluation on multiple samples: We imaged
the hearts of Tg(myl7:GFP) (Fig. 8, Supplementary Movie
3) in single direction scanning mode and the hearts of
Tg(myl7:membranemCherry) in both single (Fig. 9, Supple-
mentary Movies 5–9) and bi-direction (Fig. 7, Supplementary
Movie 4) scanning modes. The reconstructions allow recov-
ering the sequential beating of the heart, with atrium and
ventricle beating distinctively one after the other (Fig. 7 and
Supplementary Movie 4).

In order to evaluate the practical potential of our method
on a multi-channel data set, we further imaged the transgenic
Tg(myl7:membranemCherry)) zebrafish and simultaneously
collected fluorescence emission and transmitted light. The
duration to scan a full frame of 1024×1024 pixels was 1270
ms/frame, with a corresponding duration to scan a line of
s` = 1.24 ms. We acquired N = 100 images. Based on
those numbers and our method, we estimated the period to be
T̃ = 0.33 seconds, which corresponds to 1

T̃
= 3.0 heartbeats

per second. The reconstructed sequence of 100 images, which
covers one heartbeat, therefore has a virtual frame rate of 300
Hz. For this dataset, the whole reconstruction took 1 minute
and 9 seconds: it took 3.4 seconds to load the data (in CZI
format); calculating the distance table D, finding the TSP

0.000 ms est.

Raw Reconstructed

a

(a) (b)

A

P

R L

A

P

R L

0

0.635

1.270
[s]

a

a

v

Fig. 7. This dataset features both chambers of the beating heart. The images
were acquired in transmission (gray) and fluorescence (cyan) simultaneously.
(a) Raw frame: several heartbeats are co-mingled. In particular the atrium
(marked by ‘a’) a single chamber of the heart, appears as two separate cham-
bers. Both the atrium and the ventricle (marked by ‘v’) show deformations
due to the slow acquisition. (b) Reconstructed heart. The atrium is properly
shaped. The contracted ventricle is out of the field of view in this frame (full
sequence in Supplementary Movie 4). A: anterior, P: posterior, L: left, R: right.
Scale bar is 50µm. Additional reconstructions can be seen in Supplementary
Movies 7–9

solution, and sorting the data took 3.1 seconds; estimating
the period took 2.1 seconds; resampling took 41.3 seconds;
finally, saving the data both to MP4 and OME formats took
21.7 seconds. This reconstruction was performed on a Debian
GNU/Linux 9.9 Operating System, with an Intel(R) Core(TM)
i7-5930K CPU 3.50GHz, and 32GB RAM.

D. Reconstruction independence on scanning direction

To verify that the reconstructions were not biased by the
mounting orientation with respect to the scanning direction,
we acquired two movies of the Tg(myl7:GFP) zebrafish heart
with the scan-field rotated by 0 and 90 degrees (see Figs. 8(a)
and 8(b), respectively). We super-imposed both reconstructed
datasets (Fig. 8(c)), in the green channel for one scan-field
orientation and in the purple channel for the 90-degree rotated
orientation. Discrepancies in the reconstructions are visible
whenever the signal is not white, which occurs predominantly
in the fastest phases of the cardiac cycle as can be seen in
Supplementary Movie 3.

E. Comparison to state-of-the-art fast microscopes

In order to compare our method with the fastest (commer-
cially) available microscopes, we carried out the following
experiments. First, we took advantage of the fact that the
LSM we used (Zeiss LSM880) was equipped with an Airyscan
module, which permits scanning at high speed and allowed us
to do a direct comparison (on the same sample) with standard
LSM (Fig. 9(d)-(f)).

In addition, we acquired images with a Leica TCS SP8
microscope in both LSM and light sheet mode. To do so,
we prepared a U-shaped capillary on plasticine in a glass
bottom MatTek dish. Subsequently, we immersed a zebrafish
larva at 3 dpf in 1% low melting agarose and mounted it into
the capillary, ventral side up. We acquired the images in the
light sheet mode. We removed the larva from the capillary and
mounted it ventral side down in 1% low melting agarose in a
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Est. 8.613 ms

(a) (b) (c)

myl7:GFP myl7:GFP

myl7:GFP

Fig. 8. Reconstruction is independent of scan field orientation. (a) Top:
single-direction, row-first scanning. Bottom: Raw scan frame acquired prior
to reconstruction has artifacts: arrows indicate pinching of the membrane
that is due to presence of multiple phases of the heartbeat in one frame
(scanning artifact). (b) Top: scan-field is rotated by 90 degrees. Bottom:
Similar scanning artifacts are visible (arrows). (c) Composite frame of the
reconstructed movies obtained from the original and rotated scan-field data,
in the green and purple channels, respectively. Predominantly white areas
show consistent reconstruction and independence from scan direction. See
also Supplementary Movie 3. Scale bar is 20µm.

ReconstructedRaw

Est. 078 ms
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00:00:00

(a) (b) (c)

v

v

a

a

(d) (e) (f)

0

[s]
1.27
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Raw Airyscan
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Fig. 9. These datasets feature both chambers of the beating heart. In (a)
and (d) several heartbeats are co-mingled. Both the atrium (marked by ‘a’)
and the ventricle (marked by ‘v’) show deformations due to the slow confocal
microscope acquisition. (b) and (e) show reconstructed hearts. The atrium and
ventricle are properly shaped. (full sequences in Supplementary Movies 5 and
6). (c) Data acquired with a light sheet microscope. There are no deformations
in this image, as an entire plane in acquired at once. (f) Data acquired with a
confocal equipped with an Airyscan. The Airyscan system allows much faster
acquisitions, avoiding deformations. A: anterior, P: posterior, L: left, R: right.
Scale bar is 20µm

glass bottom dish. We then acquired the confocal LSM images
of the same larva in a similar position (Fig. 9(a)-(c)).

Fig. 9 and Supplementary Movies 5 and 6 show that the
reconstructions with our method from data from a slow LSM
yield comparable quality reconstruction during the slow phases
of the heartbeat, with artifacts remaining when the motion of
the heart is at its fastest.

V. DISCUSSION

Our method addresses the problem of reconstructing
scanning-aberrated images with minimal knowledge of the

experimental process, to ensure applicability with a wide
range of microscopes (closed commercial or custom-built).
Specifically, our method does not require gating the micro-
scope to the heartbeat. Although demonstrated as feasible on
custom microscopes, gating requires an additional layer of
experimental complexity [41] and is difficult to implement
on commercial microscopes, which forbid low-level user in-
tervention during the acquisition process. We also note that
although the arbitrariness in the timestamps is not purposeful,
as it naturally arises from slow variations in the heartbeat on
the sample side or communication lags on the acquisition side,
the lack of perfect periodicity is also an advantage as it limits
the risk of stratified sampling, which could provide only partial
coverage of the cardiac phases.

The first step of our method sorts the frames, which then
cover one single period with a higher (virtual) time sampling
density. The underlying assumption is that the phase is drawn
from a uniform distribution. We further assume that the sorted
phases are equally spaced. In [27], we observed that the
discrete signal f [k, `, n] (Eq. (2)) had to be asymmetric for the
sorting to be successful. Here, since the scanning aberrations
encode the movement direction in the images, all images are
by construction asymmetric. Our investigation of the uniform
distribution with equally-spaced and deterministic samples
approximation (Fig. 3), showed that it is less error-inducing
as the number of frames N increases. We determined that this
error becomes acceptable when N > 100, as the maximal
difference error becomes less than 5%, meaning that there is
less than 5% difference between the non-uniform time position
after sorting and the uniform time position. If the number of
frames is lower, N < 100, then the time difference between
two successive sorted frames will have more than 5% maximal
error and lead to important reconstruction artifacts, or even
make reconstruction impossible (which we further discuss
below). Our choice of using a TSP solver allowed us to find
reliable solutions in a very short time (around a second for
100 frames). The sorting error depends on noise, (Fig. 4(a),
Fig. 4(b)), but although the number of sorting errors increases,
the phase errors remains low (Fig. 4(c), Fig. 4(d)).

The second step estimates the signal period. We observed
that acquiring more images leads to a better period estimation
and lower variance as we repeat the experiments over multiple
realization of the simulated data (Fig. 4(e)). However, very
noisy data lead to an increase in period estimation error as
N increases, especially over approx. N = 150 frames. The
sorting accuracy for data with λ = 1 is below 75% when
N > 150. Even if the phase position errors are small (less than
2%), the accumulation of errors leads to an increasing error
in period estimation; for λ = 10 the estimated period error is
30% at most, and for λ = 100 is around 10%. For fewer than
N = 100 frames, the standard deviation of the error increases
and reconstructions are less reliable for all levels of noise.
As r increases, the mean and standard deviation drop very
quickly (Fig. 4(f)). The error on the estimated period decreases
from around 20-40%, when r = 1.8, to below 5% for all
noise levels, when r > 9. There is a trade-off to find between
the number of frames and the heartbeat-to-framerate ratio. A
higher number of heartbeats per frames with a low noise level
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lead to a better reconstruction than a noisy data acquired with
less heartbeats per frame. A high level of noise with a very fast
scanner would not need to be reconstructed (4(a) upper left),
but the data will have a very low SNR. That could easily be
improved with a slower scanning speed (i.e. higher heartbeat-
to-frame ratio r), that would allow for a higher SNR with a
high reconstruction accuracy.

The overall accuracy (Fig. 5) is better when the number
of frames N is high, and the scan rate ratio r is high. The
overall accuracy as a function of the scan rate ratio r seems
to be mainly limited by the sorting step (Fig. 4(b)), since
the estimated period error decreases with higher scan rate
ratios (Fig. 4(d)). The overall accuracy is better with a lower
noise, and that translates to a slower scanning rate. Data can
be acquired with a high scanning speed (Fig. 5(c), upper-
left image), without any visible scanning aberration in the
data. In that case, the data do not need to be reconstructed
to compensate for scanning artifacts, but they are very noisy.
When slowing the scanning speed, the data becomes scanning-
aberrated but also less noisy ((Fig. 5(c) upper-middle and -
right). The reconstruction quality increases with longer inte-
gration times (Fig. 4(b)–(g), Supplementary Movie 10).

Coarse image structures appear sufficient to provide the
necessary information to sort and estimate the heartbeat period
and we can therefore average and downsize raw images for
processing, which both reduces image noise (improving the
reconstruction accuracy) and computation time. In practice we
used a downsizing factor of 4 for a minimal image size of
64×64 pixels, which is sufficient for a good reconstruction,
but for raw images whose size is less than 256×256, recon-
struction becomes less reliable.

Our method assumes that the cardiac motion is both spa-
tially and temporally cyclic and deviations from this assump-
tion lead to reconstruction artifacts. While our method could
be used in perturbation experiments that maintain a regular
heartbeat (e.g. perturbations that slow or accelerate the heart-
beat yet maintaining it stationary [42], [43]) it would not be
applicable to study the effect of more general perturbations or
diseased hearts that exhibit severe arrhythmia.

VI. CONCLUSION

In this paper we proposed a method to reconstruct image
series of the beating heart from scanning-aberrated microscopy
images. The method relies on a fast TSP solver to sort images
according to a minimal frame-to-frame image difference and
we use a spatial difference criterion to compensate for scan-
ning aberrations.

We characterized the method on synthetic data, and showed
that data acquired at a frame rate up to 4 heartbeats per
period (equivalent to a duration to scan a full image of about
a second per frame in the case of the beating heart of a
zebrafish larva) for 100 frames allows over 75% reconstruction
accuracy (IOU, noise up to λ = 10). This accuracy can be
improved by increasing the number of collected frames (at the
cost of a longer overall image acquisition time). We showed
that our method allows reconstructing data with a virtual
framerate of up to 300 Hz. We demonstrated that the method is

applicable in practice on data from a standard confocal LSM,
providing reconstruction quality similar to that of state-of-the-
art fast microscopes in the slower phases of the heartbeat
(with remaining artifacts in the faster phases). We foresee
that this reconstruction method could be applied to other
point- or line-scanning microscopy modalities (in particular,
for multi-photon imaging, where alternatives to point scanning
are even fewer). Our simulations provide guidelines on the
critical parameters (number of frames and scanning speed)
to be adjusted and an experimental procedure to verify the
validity of a reconstruction, by varying the sample orientation
with respect to the scanning direction. Future work could
include extensions for sub-pixel estimation of frame positions
and automatic detections of arrhythmias, where our method
would not be applicable.
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[34] H. H. Hoos and T. Stützle, “On the empirical time complexity of finding
optimal solutions vs proving optimality for Euclidean TSP instances,”
Optim. Lett., vol. 9, no. 6, pp. 1247–1254, Aug. 2015.

[35] M. Unser, “Splines: a perfect fit for signal and image processing,” IEEE
Signal Process. Mag., vol. 16, no. 6, pp. 22–38, Jun. 1999.

[36] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.
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