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ABSTRACT

COVID-19 is a respiratory system disorder that can disrupt the
function of lungs. Effects of dysfunctional respiratory mechanism
can reflect upon other modalities which function in close coupling.
Audio signals result from modulation of respiration through speech
production system, and hence acoustic information can be modeled
for detection of COVID-19. In that direction, this paper is address-
ing the second DiCOVA challenge that deals with COVID-19 detec-
tion based on speech, cough and breathing. We investigate modeling
of (a) ComParE LLD representations derived at frame- and turn-level
resolutions and (b) neural representations obtained from pre-trained
neural networks trained to recognize phones and estimate breathing
patterns. On Track 1, the ComParE LLD representations yield a best
performance of 78.05% area under the curve (AUC). Experimental
studies on Track 2 and Track 3 demonstrate that neural represen-
tations tend to yield better detection than ComParE LLD represen-
tations. Late fusion of different utterance level representations of
neural embeddings yielded a best performance of 80.64% AUC.

Index Terms— COVID-19 identification, breathing pattern es-
timation, phoneme recognition, ComParE features, BoAW

1. INTRODUCTION

Corona virus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome Coronavirus 2 (SARS-CoV-2) is primarily a
respiratory infection, which has affected the lives of millions of peo-
ple all over the world. The world health organization (WHO) has
announced COVID-19 a pandemic on March 2020 [1]. To detect
COVID-19, several diagnostic routines based on collecting saliva or
blood from the patients have been effective. However, these tests are
slow and take considerable time to produce results. Cough sounds
and speech based diagnosis of COVID-19 has gained interest ow-
ing to the ease of recording the signals. Recently, a database of
cough sounds obtained over more than 20, 000 participants, from a
range of age groups, gender, ethnicity and COVID-19 status, has
been collected to facilitate detection of virus using audio signals
[2]. Similar efforts are taking place in the research community [3,
4, 5]. In the speech community, two challenges as part of Inter-
speech 2021, namely, Interspeech 2021 ComParE challenge [6] and
DiCOVA challenge [7] have been organized in that direction.

In one of the earliest studies, modeling of spectral parameters
such as, spectral centroid, spectral roll–off, and zero crossing rate
along with MFCCs and functionals in a Recurrent Neural Net-
work (RNN) based– and Long Short Term Memory (LSTM) based–
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framework to detect the presence of COVID-19 [8]. The system
was found to yield a higher classification accuracy for cough and
breathing sounds compared to speech. In the Interspeech 2021
ComParE challenge, openSMILE features were found to yield better
detection when compared to deep neural network based systems
on the COVID-19 Speech Sub-Challenge, while on the COVID-
19 Cough Sub-Challenge data augmentation together with transfer
learning using pre-trained audio networks was found to yield bet-
ter detection. Klump et al [9] studied the phonetic patterns in
COVID-19 speech using deep acoustic model. They observed that
the distinct patterns found can not be solely attributed to COVID-
19. In [10], it was found that modeling of features obtained from
autoregressive predictive coding neural network together with data
augmentation improves cough-based COVID-19 detection. Other
directions include investigation of auditory motivated features [11],
combination of different spectral feature representations [12] and
modeling of breathing pattern information in cough [13].

In recent years, neural network based methods have emerged
which can learn information in a task dependent manner from raw
speech waveform directly [14, 15, 16, 17, 18]. In this paper, we ques-
tion: whether embeddings of such pre-trained neural networks with-
out any form of adaptation can be effectively employed for COVID-
19 detection? If successful, such methods can potentially serve as
alternate means of finding representations that discriminate between
COVID and non-COVID speech, while providing some form of ex-
plainability through the tasks on which those networks are trained.
More precisely, as part of the second DiCOVA (DiCOVA-II) chal-
lenge [19], we investigate modeling of embeddings learned by neural
networks trained (a) to classify phones and (b) to estimate breathing
patterns, and compare them against modeling of hand-crafted par-
alinguistic features, namely, ComParE low level descriptors (LLDs)
which have been found useful for COVID-19 detection [6, 20, 21].
We also analyze the top ranking LLDs and relate them to the infor-
mation captured by the raw waveform neural networks.

The rest of the paper is organized as follows. Sec. 2 describes the
features derived and classification framework utilized for our pro-
posed method. Sec. 3 describes our experimental setup. We further
present our results and analysis in Sec. 4. Sec. 5 presents the conclu-
sion to the paper.

2. PROPOSED METHOD

Fig. 1 illustrates the proposed neural embeddings based approach.
In this approach, frame level neural embeddings are extracted from
pre-trained neural networks. A fixed length utterance-level repre-
sentation is obtained from these embeddings, either by computing
the functionals that derive first order and second order moments,
or by obtaining a bag-of-audio-word (BoAW) representation. The



fixed length representation is finally classified by using an ensemble
classifier. The selection of the ensemble classification techniques
was conducted in a similar manner, as presented by one of the best
performing techniques during Interspeech 2020 ComParE challenge
[22]. This enables us to compare in a systematic manner the neural
embeddings against ComParE LLD representations.

Raw Waveform

Ensemble classifiers (RF, AB, GB)

Pre-trained Neural Network
(BPE/PHR)

Functionals (mean, std) Neural embeddingsBoAW 

Fig. 1: The proposed neural embedding-based method for COVID-
19 detection. Mean and std denote the first order and second order
moments used as functionals. RF denotes Random forest [23], AB
denotes Ada Boost [24] and GB denotes Gradient Boosting [25].

As mentioned in Sec. 1, we investigate neural embeddings ex-
tracted from,

1. Convolutional neural networks (CNNs) trained to model raw
waveform for the task of phone classification in the context
of speech recognition. One of the motivations behind us-
ing such an embedding is that COVID-19 infection affects
speech production. As pointed earlier, in [9] it was found that
there exist distinct phonetic patterns in COVID-19 infected
speech. Although the authors conclude that those patterns
may not solely attribute to COVID-19 infection, it is still
worth pursuing the idea.

2. CNNs trained to model raw waveform for breathing pattern
estimation. The main motivation behind that is that COVID-
19 infection can adversely affect the functioning of respi-
ratory system. As respiration process is intrinsic to speech
production, breathing pattern information could be useful.
In [13], such idea was pursued with modeling of estimated
breathing patterns from cough in an encoder-decoder frame-
work. In this work, we do not model the output breathing
patterns but rather we model the neural embeddings extracted
from an intermediate layer.

3. EXPERIMENTAL SETUP

In this section, we first present the DiCOVA-II challenge dataset and
the experimental protocols. Next, we present the extraction of dif-
ferent fixed length representations, and finally the classifiers trained
to detect COVID-19 infection.

3.1. Database and protocols

The data for the DiCOVA-II challenge [19] is derived from the
Coswara dataset [3]. Speech, cough, and breathing sound record-
ings from 956 subjects are organized in a five fold cross–validation
setting for development studies. Among these, 172 subjects were
reported as tested positive for COVID-19 with mild to moderate
symptoms or asymptomatic while the remaining 773 were reported
as healthy with symptoms such as cold, cough, or fever, or with
pre–existing respiratory conditions such as asthma. In addition, a
blind test fold with 471 audio segments is provided to evaluate and
report the performance of systems realized for the challenge.

The data is organized for four separate Tracks, following the
same protocol. The data for the first Track includes 4.6 hours of
breathing sound recordings. The second Track includes 1.7 hours
of cough sound recordings, and the third Track includes 3.9 hours
of speech recordings. There is no independent data for the forth
Track and fusions of the systems from either of the previous Tracks
is considered for evaluating the performance over this Track.

The audio and speech signals in the dataset were resampled at
16 kHz, to derive features for our experiments. We used the pre–
designed protocol across five folds to report our system on the de-
velopment (Dev) set. We further accumulate the data across all folds
for training to evaluate our system on the Test set.

3.2. Extraction of fixed-length feature representations

We developed systems with different feature representations, namely,
1. Interspeech–2013 ComParE LLDs-based: The modeling of

the LLDs was recently investigated as part of Interspeech–
2021 ComParE sub-challenges for COVID-19 detection [6].
ComParE LLDs set with 65 frame level features and their
65 ∆ coefficients, denoted as CMPL, are extracted. Fixed
length representations are obtained by two methods: (a)
by applying functionals over low–level acoustic descrip-
tors (CMPL) related to energy–, spectral behaviour–, and
voicing–based information, resulting in 6373 dimensional
fixed length feature vector denoted as CMPF and (b) by
extracting a BoAW representation of CMPL with two sepa-
rate codebooks size of 50; the first for static and the second
for ∆ LLDs combined 100 dimensional representation de-
noted as BoAW (CMPL) . The features are normalized to
have zero median value. This normalization is done using
the median and interquartile range between the 1st quartile
(25th quantile) and the 3rd quartile (75th quantile). After
this normalization, the statistical outliers are removed. We
investigated these features for Track 1, Track 2 and Track 3.

2. Embedding from phone recognition neural network: we used
an off-the-shelf CNN-based neural network that models raw
waveform to classify phones. This network consists of ten
convolutional layers followed by one hidden layer with 1024
nodes and an output layer. It was originally trained on AMI
corpus [26]. Frame-level neural embeddings of 1024 di-
mensions, denoted as PHR, are extracted before activations
of hidden layer and two different length representations are
obtained (a) by computing functionals (mean and standard
deviation) of the frame-level neural embeddings denoted as
fµσ(PHR), and (b) by extracting a BoAW representation of
PHR with a codebook size of 100 denoted as BoAW (PHR).
We investigated these features only on Track 2 and Track 3,
as Track 1 only contains breathing recordings.

3. Embedding from breathing pattern estimation neural net-
work: we used an off-the-shelf CNN that estimates breathing
pattern at the output by taking three seconds of speech signal
as input. This network consists of four convolution layers,
one hidden layer with 10 nodes and one output unit. This net-
work was originally trained on the Philips database [27] with
mean squared error loss. More details about the network can
be found in [18, 28]. Frame-level neural embeddings of 10
dimensions, denoted as BPE, are extracted before activations
of hidden layer and two different length representations were
obtained (a) by computing functionals (mean and standard
deviation) of the frame-level neural embeddings denoted as
fµσ(BPE), and (b) by extracting a BoAW representation of



BPE with a codebook size of 100 denoted as BoAW (BPE).
We investigated these features only on Track 3 for the follow-
ing reasons. Track 1 contains only breathing recording. Track
2 contains cough recordings. In a previous investigation car-
ried out as part of the Interspeech 2021 ComParE challenge,
we observed that the breathing pattern during cough is con-
siderably different from the breathing pattern during speech
production. Further investigation was needed to ascertain the
utility of the information extracted.

We used openSMILE toolkit [29] for extraction of CMPL and
CMPF . We used openXBOW toolkit [30] for BoAW representa-
tion generation.

3.3. Classification

We used ensemble classification technique to train a classifier. Ran-
dom Forest (RF) [23], Ada Boost (AB) [24], and Gradient Boost
(GB) [25] were the ensemble classifiers used in our studies. To select
the most robust ensemble classification technique, the grid search
methodology, with AUC as optimization criterion, integrated in the
Scikit-learn [31] toolkit, was used.

Tuning of hyperparameters for ensemble based classifiers was
performed over the Train and Dev folds defined as per the challenge
protocol. During grid search for classifier optimization, the follow-
ing parameters were tuned for RF: number of estimators {500, 1000,
2000}, maximal number of features {“auto”, “sqrt”, “log2”}, crite-
rion {“gini”, “entropy”}, and minimal samples leaf {1, 2, 4}. For
most of the cases, RF classifier yielded the best performance. The
AB classifier gave comparable yet lower performance for experi-
ments on the Dev set, and hence the results in the next Sec. 4 are
presented only for RF classifier.

In addition to the framework with standalone features and clas-
sifiers, two fusion methods were also implemented to improve upon
individual scores, namely, Early Fusion (EF) which is feature level
combination of fixed length representations within a classification
framework, and Late Fusion (LF), where the output probabilities
from different systems are averaged before making decision.

4. RESULTS AND ANALYSIS

Evaluation scores for our best performing systems for different
tracks of the DiCOVA-II challenge are presented in Tab. 1. As
per the challenge protocol, the metrics used for evaluation are the
AUC and the sensitivity on the Test set in percentage (%). The
reported sensitivity is obtained at a specificity of 95%. For each
track, the results for the given baseline system in the challenge is
also reported. The baseline classification system uses a bidirectional
LSTM (BLSTM) network to model log Mel spectrogram [19].

Our system for Track 1, based on the ComParE features, per-
forms comparable to the baseline across the Dev set. For the Test
set, the best performing system is realized by a LF of RF scores ob-
tained using two sets of ComParE features. Even though the AUC
on the Test set is lower compared to the reported baseline system,
our proposed system obtains considerably better sensitivity.

On Track 2 and Track 3, the ComParE feature based systems
give lower performance when compared to neural embeddings PHR
based systems. PHR embeddings yield the best systems. In terms
of fixed length representations, for PHR on Track 3, we observe that
although both functionals and BoAW representations yield similar
performance (also see Fig. 3), BoAW representation yields better
sensitivity. A late fusion of the scores obtained with the two rep-
resentations marginally increases the AUC on the Test set, however

Table 1: Results obtained for different systems over Dev and Test
set of the DiCOVA-II challenge. The results are expressed in AUC
metric and the sensitivity of the systems on the Test set at specificity
of 95%. The systems noted as [I], [II], [III], and [IV] were used in
fusion method for Track 4.

System Dev
(%)

Test
(%)

Sensitivity
(%)Feature Classifier

Track 1
CMPF RF 77.83 76.78 30.0
BoAW (CMPL) RF 73.58 74.52 31.67
CMPF , BoAW (CMPL) [I] LF 77.56 78.05 43.33
BASELINE BLSTM 77.25 84.50 31.67

Track 2
BoAW (PHR) RF 70.06 74.19 30.0
fµσ(PHR) RF 70.54 72.87 26.67
CMPL RF 66.09 66.68 16.67
fµσ(PHR), BoAW (PHR) [II] LF 71.32 74.63 31.67
BASELINE BLSTM 75.21 74.89 36.67

Track 3
BoAW (PHR) [III] RF 77.37 80.08 41.67
fµσ(PHR) RF 76.33 79.3 26.67
BoAW (BPE) RF 68.93 73.49 21.67
fµσ(BPE) RF 68.44 — —
BoAW (CMPL) RF 70.38 75.59 15.0
EF(fµσ(PHR), fµσ(BPE)) [IV] RF 76.67 79.1 28.33
EF(BoAW (PHR), BoAW (BPE)

, BoAW (CMPL)) RF 77.47 79.95 33.33

fµσ(PHR), BoAW (PHR) LF 77.59 80.64 36.67
BASELINE BLSTM 80.16 84.26 43.33

Track 4
[III], [IV] LF 77.79 80.51 40.0
[I], [IV] LF 80.09 78.05 43.33
[I], [II] LF 77.93 78.05 43.33
BASELINE LF 81.67 84.70 55.0

does not contribute to the sensitivity. Similar observations can be
noted for Track 2 except that late fusion of these representations
slightly increases both AUC and sensitivity on the test set.

Looking into the system performances for Track 4, it appears
that the classifiers trained using breathing sounds are more promi-
nent when fused with systems trained with cough and speech signals.
The fused systems in Track 4 has higher AUC compared to system
from Track 2 and comparable AUC to the best system from Track 3.

4.1. Analysis of neural embedding based systems

Figure 2 shows the cumulative frequency response of the first convo-
lutional layer for PHR CNN and BPE CNN. It can be observed that
the PHR network emphasizes around the formant frequency regions
in speech, while the emphasis of the BPE network is significantly to-
wards the lower frequency region. In other words, they are modeling
different information from the speech signal.

Fig. 3 shows the ROC plot for both feature sets of PHR– and
BPE– based networks for Track 3. It can be seen that the PHR neu-
ral embeddings consistently yield better system than BPE neural em-
beddings. One of the reason for that could be that the participants
may not have had severe COVID issues for the differences w.r.t non-
COVID participants to be very apparent at BPE embedding level.

4.2. Analysis of LLD-based systems

In order to analyze the discriminability of the features used for our
studies, we estimated their respective importance in achieving the
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0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

BoAW(PHR), (AUC = 0.77)
f (PHR), (AUC = 0.76)
BoAW(BPE), (AUC = 0.69)
f (BPE), (AUC = 0.69)
Chance
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desired classification performance. This analysis improves our com-
prehension towards the significance of a certain feature for identi-
fying COVID-19 positive cases in a given audio modality. Tab. 2
presents an overview of the most important features for each track,
based on an importance scores generated by the RF-based classifier.

For all the tracks, the auditory spectra coefficients obtained us-
ing RASTA filtering (audSpec:Rfilt) and their deltas (∆) establish
as one of the most discriminative LLDs. For Track 1, coefficients
obtained as the third quartile of these features prove significant for
classification. For Track 2, an extended list of functionals prove sig-
nificant with features capturing primarily the spectral shape. For
Track 3, speech specific features such as MFCC and spectral band
energy prove discriminatory for the task.

5. SUMMARY AND FUTURE WORK

In this paper, we investigated modeling of neural embeddings ex-
tracted from raw waveform modeling neural networks, pre-trained
for phone classification and breathing pattern estimation, for the
task of COVID-19 infection detection. More precisely, these em-
beddings were modeled as fixed length representations through
application of functionals and BoAW, similar to modeling of hand-
crafted LLDs for paralinguistic speech processing. Our investi-
gations on DiCOVA-II challenge showed that neural embeddings
extracted from phone classification neural network, i.e. PHR, can
yield better systems than hand-crafted LLD-based systems and BPE
embedding-based systems. On Track 3, we observed that, although
BPE embedding-based system yields slightly lower performance

Table 2: LLDs and functionals exhibiting highest discriminability
for each track (most representative, non-redundant features).

LLDs functional
Track 1

∆ audSpec Rfilt 3rd quartile
voicing parameters LP–gain
magnitude spectra RollOff

∆ magnitude spectra variance

Track 2
audSpec Rfilt regression coefficients,

centroid, 2nd quartile
∆ Pitch contour regression coefficients
∆ RMSenergy extremums

band energy magnitude spectra extremums
magnitude spectral slope regression coefficients

Track 3
audSpec Rfilt regression coefficients, 1st quartile

mfcc peak behavior , percentiles
∆ audSpec Rfilt peak behavior

∆ magnitude spectra moments

than LLD-based system, it yields considerably better sensitivity.
Taken together our studies demonstrate that modeling neural em-
beddings from neural networks trained on auxiliary or other speech
tasks for COVID-19 infection detection is a promising direction
and can replace hand-crafted features.

In our studies, despite the neural networks being trained on aux-
iliary data and tasks, we found that the proposed neural embedding
based systems were comparable to the baseline system on Track 2
and somewhat inferior to the baseline system in Track 3. This sug-
gests that there is room for further improvements.

Our future work will focus in that direction: (a) by investigating
adaptation of the investigated pre-trained neural networks on target
data for COVID-19 detection and (b) by investigating pre-trained
neural networks that focus on other aspects of speech production
such as, voice source [32].
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