
On Breathing Pattern Information in Synthetic Speech

Zohreh Mostaani1,2 and Mathew Magimai.-Doss1

1Idiap Research Institute, Martigny, Switzerland
2 Ecole polytechnique fédérale de Lausanne, Switzerland

{zohreh.mostaani, mathew}@idiap.ch

Abstract
The respiratory system is an integral part of human speech pro-
duction. As a consequence, there is a close relation between
respiration and speech signal, and the produced speech sig-
nal carries breathing pattern related information. Speech can
also be generated using speech synthesis systems. In this pa-
per, we investigate whether synthetic speech carries breathing
pattern related information in the same way as natural human
speech. We address this research question in the framework of
logical-access presentation attack detection using embeddings
extracted from neural networks pre-trained for speech breathing
pattern estimation. Our studies on ASVSpoof 2019 challenge
data show that there is a clear distinction between the extracted
breathing pattern embedding of natural human speech and syn-
thesized speech, indicating that speech synthesis systems tend
to not carry breathing pattern related information in the same
way as human speech. Whilst, this is not the case with voice
conversion of natural human speech.
Index Terms: Breathing pattern estimation, Synthetic speech,
Neural network, Presentation attack detection

1. Introduction
Speech production system is a combination of several physi-
ological systems such as respiratory system, oral system, and
nervous system. There is a close relation between respiration
and speech since the lungs provide the necessary energy to pro-
duce sounds by pushing air through the vocal folds. There have
been studies on the relation between speech and respiration.
Winkworth et. al. investigated the association between lin-
guistic factors and lung volumes during read speech [1]. Other
studies show that the type of speech can affect the breathing
pattern [1, 2, 3]. The breathing can also shape the speech [4].
In recent years, it has been shown that it is possible to predict
breathing patterns from speech signals [5].

Besides natural speech produced by humans, advances
in speech technology also have made it possible to generate
speech. Text-to-speech synthesis (TTS) methods have evolved
over time. For a long time concatenative TTS [6] and statistical
parametric TTS [7] were the main methods of generating speech
from text but recently there has been a shift towards deep learn-
ing based methods [8, 9]. The speech generated by deep learn-
ing based methods are reportedly very natural sounding and in
some cases are indistinguishable from human speech.

A research question that arises is: whether synthetic speech
carries breathing related information in the same way as natural
human speech? Besides scientific curiosity, answer to this re-
search question is of potential interest to other complementary
research directions, such as, (a) TTS systems can be used to
fake identity, e.g. presentation attack on automatic speaker ver-
ification systems [10] and (b) TTS is being explored for synthe-
sizing speech with pathological conditions to develop objective

pathological speech methods [11]. In pathological speech such
as dysarthric speech, breathing phenomenon is intrinsically re-
lated to impaired speech production [12, 13]. This paper aims
to address the aforementioned research question by leveraging
two different research directions, namely, speech-based breath-
ing pattern estimation and detection of logical-access presenta-
tion attack.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces our study design. Section 3 and Section 4
present the experimental setup and the results with analyses.
Section 5 finally concludes the paper.

2. Study design
In recent years, with advances in deep learning, speech-based
breathing pattern estimation methods have emerged. In these
methods, either raw waveform or short-term spectral feature is
input and the output of the neural network predicts breathing
signal. Nallanthighal et al. used a Convolutional Neural Net-
work (CNN) and a Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN) with log Mel Spectrogram of speech as
input to predict the breathing signal [14, 15]. Approaches with
raw speech waveform as input to CNN or RNN have been also
developed for predicting breathing signals [5, 16, 17]. In [5],
it was demonstrated that breathing signals can be estimated in
a cross-database or cross-domain manner, e.g., training on one
database and testing on another database.

In this work, we build upon these advances to investigate
the aforementioned research question using pre-trained breath-
ing pattern estimation neural networks. However, one issue is
that to evaluate the output breathing pattern we need a refer-
ence breathing pattern to compare to, which in the case of hu-
man speech production can be measured through sensors but
not in the case of synthetic speech. In recent works, it has
been demonstrated that pre-trained breathing pattern estima-
tion neural networks can be employed for other speech tasks
such as, speech-based COVID detection [18, 19]. In [18], a
pre-trained encoder network is used to estimate breathing pat-
terns from the speech signal, which is then passed to a decoder
network for COVID detection from cough audio. In [19], it
has been demonstrated that neural embeddings extracted from
pre-trained breathing pattern estimation neural networks could
be used for COVID detection. We take inspiration from these
works to recast the research question as: whether natural hu-
man speech and synthetic speech can be distinguished based on
embeddings extracted from pre-trained breathing pattern esti-
mation neural networks. The underlying hypothesis being that:
should synthetic speech exhibit breathing pattern information
similar to natural human speech then the two speech signals
will not be easily distinguishable.

Figure 1 illustrates our framework. The breathing pattern
embeddings (BPE) extracted from a pre–trained neural network



are used to train a binary classifier, natural versus synthetic
speech. We investigate two classification approaches. In the
first approach, frame level neural embeddings are classified us-
ing a multi layer perceptron (MLP). The output class probabil-
ities are averaged over the utterance and a decision is made.
In the second approach, the embeddings are aggregated using
functionals (mean, standard deviation) or bag-of-audio-words
(BoAW) representation to obtain an utterance-level fixed length
representation and then classified using classifiers such as, sup-
port vector machine (SVM) and random forest (RF).

Raw Waveform Pre-trained Neural Network
(BPE)

Neural embeddings

SVM, RFFunctionals (mean, std) BoAW 

MLP

Figure 1: Framework to distinguish natural human speech and
synthetic speech based on breathing pattern embeddings.

To investigate this question, we leverage from the auto-
matic speech verification community’s effort in developing anti-
spoofing methods to detect logical-access attacks generated us-
ing TTS systems and voice conversion (VC) systems through
organization of ASVspoof challenge [20, 21]. Besides well-
defined protocols and employing state-of-the-art approaches to
generate logical-access attacks, the ASVSpoof challenge pro-
vides the means to systematically investigate the research ques-
tions. First, there are two types of TTS systems [21]: (a) syn-
thetic speech purely generated using neural models trained on
speech and textual data (neural TTS) and (b) synthetic speech
generated by concatenating segments of natural human speech
waveforms (concatenative synthesis). Second, there are also
attacks generated through voice conversion alone (VC-alone).
The VC-alone system takes a natural human speech signal as
input and converts it to the target speaker’s voice by altering the
source and system information. So, as a by-product, it allows us
to investigate whether such alterations done on a single speaker
speech affect the breathing pattern related information.

3. Experimental setup
This section first presents the ASVSpoof 2019 database and
protocol. Next presents extraction of neural embeddings us-
ing pre-trained breathing pattern estimation neural networks,
and finally the development of binary classifiers (natural human
speech vs. synthetic speech).

3.1. Database and protocols

We used the ASVSpoof2019 challenge [21] database for our
investigation. The ASVSpoof2019 challenge provides presen-
tation attacks for two use case scenarios: logical-access (LA)
and physical-access (PA). Our investigation focused on the LA
scenario in which attacks are generated using TTS and VC tech-
nologies. The database includes three sets, namely training, de-
velopment, and evaluation which comprise of speech from 20
(8 male, 12 female), 10 (4 male, 6 female) and 48 (21 male, 27
female) speakers respectively. The training set includes 2580
bonafide and 22800 spoofed utterances while the development
set comprises 2548 bonafide and 22296 presentation attacks.

The evaluation set includes 7355 bonafide and 63882 presen-
tation attacks.

The database includes bonafide and presentation attacks
generated by 17 different TTS and VC systems. From these sys-
tems, 6 are considered as known attacks which are the only pre-
sentation attacks present in the training and development sets.
The remaining 11 are considered unknown attacks. The 11 un-
known attacks and 2 of the known attacks comprise presenta-
tion attacks available in the evaluation set. The VC systems use
neural-network-based and spectral-filtering-based approaches
[22]. Concatenation-based and neural-network-based systems
are used for TTS systems with different vocoders [8, 23]. The
TTS-VC systems use various waveform generation methods
such as Griffin-Lim [24] and generative adversarial networks
[25] among others.

In all our experiments, we followed the protocols as per
ASVSpoof2019 challenge, i.e., the training and development
sets are used for training the binary classifiers and evaluation
is carried out on the evaluation set. We use equal error rate
(EER) and area under the receiver operating characteristic curve
(AUC) as the evaluation measures.

3.2. Neural embeddings based feature representation

In our previous work, we had developed CNN-based breathing
pattern estimation neural network that maps raw speech signal
to breathing pattern [5, 26]. The CNNs consist of four convo-
lution layers, one hidden layer with ten nodes and one output
unit. The architecture of the networks is summarized in Table
1. These CNNs were trained on two different databases: (a)
Philips databases [14] consisting of read speech and (b) UCL
Speech Breath Monitoring (UCL-SBM) database consisting of
conversational speech, provided as part of Interspeech 2020
ComParE challenge [16]. Besides different databases, differ-
ent CNNs were trained with different lengths of speech input (2
seconds - 4 seconds) and different loss functions. In that study,
we found that the performance of the CNNs in breathing pat-
tern estimation were comparable. So, for the present study, we
chose two CNNs each trained on Philips database and UCL-
SBM database with mean squared error loss function, one with
2 seconds speech as input and the other with 3 seconds speech
as input. Figure 2 shows the estimated breathing pattern output
by the 3 seconds input CNN pre-trained on the Philips database
for a bonafide speech, VC attack, TTS attack and TTS VC at-
tack from the ASVSpoof2019 database. When extracting the
10-dimensional neural embeddings from the hidden layer (be-
fore activations), for the utterances with duration of shorter than
twice the size of the input window (i.e., 2 seconds or 3 seconds),
we simply repeated the whole utterance and included them in
our study to avoid changing the ASVSpoof2019 challenge pro-
tocol. This is acceptable as we are not interested in extraction
of breathing patterns in an absolute sense.

As mentioned earlier, the neural embeddings are modeled
by different classification techniques. In the case of the MLP
classifier, no further processing was needed. In the case of fixed
length representation using functionals, denoted as fµσ(BPE),
utterance level mean and standard deviation were computed
and concatenated to obtain a 20-dimensional representation. In
the case of BoAW-based fixed length representation, denoted
as BoAW (BPE), we used the openXBOW toolkit [27] with a
codebook size of 100 to obtain 100 dimensional BoAW repre-
sentation.



Table 1: Breathing pattern estimation CNN architecture

Components Details

4

Convolution
batch normalization

activation (Relu)
max-pooling

number of filters in convolution
layers: 128-256-512-512

kernel size: 30-10-4-3
kernel strides: 10-5-2-1.

strides of max-pooling layers: 2-3-1-1

1
Hidden layer

batch normalization
activation (Tanh)

number of nodes: 10

1 output (Linear) number of nodes: 1
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Figure 2: Estimated breathing pattern with a CNN pre-trained
on Philips database with input speech window length of 3 sec-
onds for different examples from ASVSpoof2019 database with
natural and synthetic speech.

3.3. Classification framework

Three different classifiers were trained with the features ob-
tained from the CNNs as explained in 3.2. The 10-dimensional
frame level embeddings denoted as BPE were classified using
an MLP with two fully connected layers. The input layer con-
sisted of 10 nodes. The first and second hidden layers consisted
of 128 and 64 nodes, respectively. The MLP was trained using
the binary cross entropy loss function and the Adam optimizer
[28] with a learning rate of 0.001. The system was implemented
using Pytorch [29] framework.

The utterance level embeddings denoted as fµσ(BPE) and
BoAW (BPE) were modeled by an SVM with linear kernel and
a random forest classifier (RF). The grid search methodology
integrated in the Scikit-learn [30] toolkit with AUC as optimiza-
tion criterion was used to find the optimized parameters on the
development data. The SVM was tuned for different values of
the regularization parameter C. For RF classifier, the parameters
for grid search were as following: number of estimators {50,
500, 1000, 2000}, maximal number of features {“auto”, “sqrt”,
“log2”}, criterion {“gini”, “entropy”}, and minimal samples
leaf {1, 2, 4}. In all cases we used the StandardScalar method
of Scikit-learn for normalizing the data.

4. Results and analysis
Table 2 shows the AUC and EER in percentage on the evalu-
ation set for the features obtained from CNNs pre-trained on
both Philips and UCL SBM databases. The system perfor-
mance over all the samples in the evaluation set is presented
under the column “All”. The results under the other columns
are reported over a subset of the evaluation data with all the
bonafide files and only specific types of presentation attacks,
namely VC, TTS, and TTS VC.

Table 2: The AUC and EER in percentage on the evaluation set
for embeddings obtained from CNNs pre-trained on the Philips
and UCL SBM database with input speech window length of
3 seconds and 2 seconds. Column “All” presents the system
performance over all the evaluation data while the results un-
der other columns are reported over a subset of evaluation data
with all the bonafide files and only the presentation attacks with
the type mentioned as the title of the column. VC stands for
voice conversion, TTS for Text-to-speech, and TTS VC is a com-
bination of the two.

Features Classifier Measure All VC TTS TTS VC

Embeddings from CNN pre-trained on Philips database
3 seconds speech input

BPE MLP AUC 90.35 59.92 99.4 99.7
EER 16.88 42.75 2.53 1.32

fµσ(BPE)
SVM AUC 89.51 59.42 98.42 98.78

EER 16.98 43.54 4.29 3.48

RF AUC 90.65 62.44 98.93 99.54
EER 17.02 41.02 4.22 2.6

BoAW (BPE)
SVM AUC 89.35 61.43 97.54 98.17

EER 17.69 41.62 7 6.01

RF AUC 90.86 62.72 99.16 99.62
EER 17.69 40.04 4.14 2.5

2 seconds speech input

BPE MLP AUC 84.56 47.94 95.08 96.63
EER 21.5 51.59 10.89 8.72

fµσ(BPE)
SVM AUC 87.52 57.92 95.85 97.7

EER 20.08 44.39 10.63 7.49

RF AUC 89.15 56.68 98.61 99.55
EER 18.23 45.41 5.25 2.7

BoAW (BPE)
SVM AUC 88.18 52.17 98.91 99.18

EER 19.28 48.57 4.24 2.97

RF AUC 88.04 51.14 99.01 99.34
EER 19.51 48.46 4.61 3.2

Embeddings from CNN pre-trained on UCL SBM database
3 seconds speech input

BPE MLP AUC 90.02 58.33 99.43 99.73
EER 17.27 43.65 2.56 1.65

fµσ(BPE)
SVM AUC 90.23 59.86 99.2 99.66

EER 17.48 42.96 3.62 2.35

RF AUC 90.76 60.85 99.64 99.93
EER 17.29 41.77 1.6 0.59

BoAW (BPE)
SVM AUC 90.11 58.32 99.58 99.8

EER 17.29 44.44 2.75 1.74

RF AUC 90.5 60.11 99.49 99.9
EER 17.07 42.62 2.46 0.63

2 seconds speech input

BPE MLP AUC 89.84 60.24 98.42 99.41
EER 17.48 43.14 5.56 3.08

fµσ(BPE)
SVM AUC 88.07 58.28 97.25 96.45

EER 18.97 43.92 8.67 9.44

RF AUC 88.48 54.97 98.55 98.46
EER 18.71 47.1 5.85 6.25

BoAW (BPE)
SVM AUC 89.25 55.91 99.21 99.34

EER 17.69 45.79 3.53 3.03

RF AUC 90.01 57.92 99.62 99.7
EER 17.19 43.72 2.49 2.44

When the whole evaluation set is taken into consideration



(i.e., “All” column), it can be observed that irrespective of the
database on which the CNNs are trained, input speech length
window or type of classifier, the AUC ranges between 84.56%
and 90.86% and the EER ranges between 16.88 % and 21.5 %.
Looking into the results segregated in terms of the attack types
reveals that TTS and TTS VC can be classified relatively easier
based upon BPE than VC. We achieve AUCs as high as 99.64%
and 99.93% with EERs as low as 1.6% and 0.59% for TTS and
TTS VC attacks, respectively, while a best AUC of 58.32% and
EER of 44.44% is achieved for VC attack. The performance for
VC is close to the chance level.

We observe the same trend whether we classify a single
BPE frame through an MLP and aggregate the output proba-
bilities or first aggregate the BPE into an utterance level fixed
length through computation of first order and second order
statistics or BoAW representation and then classify with SVM
or RF. So, to get an insight into the BPE space, we generated a
T-SNE [31] projection visualization for fµσ(BPE) features ex-
tracted from CNNs with 3 seconds speech input pre-trained on
Philips and UCL SBM databases. Figure 3 presents the T-SNE
projection. It can be observed that in both cases the samples
from bonafide and VC are grouped together (blue circles and
orange crosses) and TTS and TTS VC are grouped together
(green squares and red pluses). Furthermore, even though the
distribution is different between the embeddings extracted from
the two CNNs, there is a good separation between the two
groups. It is worth mentioning that the T-SNE projections with
2 seconds input CNNs also yielded the same observations (not
presented due to space limitations). The T-SNE visualizations
reaffirm the observations made from the results presented in the
table above.
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Figure 3: TSNE projection of fµσ(BPE) embeddings extracted
from CNNs pre-trained on (a) Philips and (b) UCL SBM
database with 3 seconds input speech.

We further analyzed the AUC and EER per attack on the
evaluation set by computing median value for AUC and EER
obtained with both Philips and UCL SBM CNNs trained with
3 seconds speech input. Table 3 presents median values along
with the range of EER and AUC per attack and contrasts with
the median EER reported in the ASVSpoof2019 challenge for
all the systems in [21]. It can be observed that the systems in
ASVSpoof2019 challenge have yielded high EER on attacks
A10 (TTS), A13 (TTS VC) and A17 (VC). In our case, high
EERs are only observed for VC attacks. It can be also noted
that on some attacks, namely, A10, A13, A14 and A15, the me-
dian EERs in our study are lower than the median EER obtained
in ASVSpoof2019 challenge.

Table 3: The median values for the AUC and EER for our sys-
tems and the median values for the EER of the systems presented
in ASVSpoof2019 challenge. The values are presented in per-
centage. The numbers in brackets are the range of EER for our
systems.

Attack type Our study ASVSpoof2019
AUC EER EER [21]

A07 TTS 99.75 1.48 [0.38 - 5.39] 0.02
A08 TTS 98.65 4.76 [2.38 - 7.55] 0.09
A09 TTS 99.3 3.31 [0.45 - 12.36] 0.06
A10 TTS 99.74 1.39 [0.74 - 5.44] 12.21
A11 TTS 99.68 1.64 [0.79 - 5.35] 0.59
A12 TTS 98.85 4.6 [1.6 - 10.13] 3.75
A13 TTS VC 99.75 1.31 [0.31 - 7.22] 12.41
A14 TTS VC 99.67 2.13 [0.73 - 4.82] 2.88
A15 TTS VC 99.68 1.79 [0.53 - 4.78] 3.22
A16 TTS 99.32 3.27 [1.69 - 5.37] 0.02
A17 VC 52.96 48.07 [42.93 - 51.22] 15.93
A18 VC 61.82 41.51 [38.9 - 45.38] 5.59
A19 VC 65.8 38.25 [35.66 - 39.74] 0.06

5. Conclusions
In this paper, we investigated whether synthetic speech carry
breathing pattern related information in the same way as nat-
ural human speech. We investigated this question by conduct-
ing a study on ASVSpoof2019 challenge to distinguish between
bonafide speech and attacks generated through TTS, combi-
nation of TTS and VC, and VC using breathing pattern em-
beddings estimated using networks pre-trained on two different
databases, one with read speech and one with conversational
speech. Our results and analyses consistently showed that at-
tacks based on TTS speech and TTS VC speech can be detected
in a highly accurate manner when compared to attacks based on
VC-alone. This indicates that, irrespective of the TTS approach
i.e. whether concatenative synthesis or neural TTS, the gener-
ated synthetic speech tends to not carry breathing pattern related
information in the same way as natural human speech. Fur-
thermore, the findings also indicate that the alterations done to
the natural human speech signal during voice conversion is not
strongly altering the breathing pattern related information. Our
future work will further investigate this point along with inves-
tigations on HMM-based TTS [7] and Diphone synthesis [32].
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