
FACE RECONSTRUCTION FROM DEEP FACIAL EMBEDDINGS
USING A CONVOLUTIONAL NEURAL NETWORK

Hatef Otroshi Shahreza∗†, Vedrana Krivokuća Hahn∗, and Sébastien Marcel∗‡
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†École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
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ABSTRACT
State-of-the-art (SOTA) face recognition systems generally use
deep convolutional neural networks (CNNs) to extract deep fea-
tures, called embeddings, from face images. The face embeddings
are stored in the system’s database and are used for recognition
of the enrolled system users. Hence, these features convey im-
portant information about the user’s identity, and therefore any
attack using the face embeddings jeopardizes the user’s security
and privacy. In this paper, we propose a CNN-based structure to
reconstruct face images from face embeddings and we train our
network with a multi-term loss function. In our experiments, our
network is trained to reconstruct face images from SOTA face
recognition models (ArcFace and ElasticFace) and we evaluate
our face reconstruction network on the MOBIO and LFW datasets.
The source code of all the experiments presented in this paper is
publicly available so our work can be fully reproduced.

Index Terms— embedding, face reconstruction, face recogni-
tion, template inversion

1. INTRODUCTION

Face recognition systems are widely used and have become a pop-
ular authentication tool in recent years. State-of-the-art (SOTA)
face recognition systems are based on deep convolutional neural
networks (CNNs) which extract features, called “embeddings”,
from face images. In the enrollment stage, these deep features are
extracted and stored in the database of the face recognition system,
and later, in the recognition stage, new features are extracted from
the user’s face and are compared with the reference embeddings
which are stored in the system’s database. Hence, the face em-
beddings contain information about a user’s identity. While most
attacks against face recognition systems threaten the security of
these systems [1, 2, 3], a template inversion attack jeopardizes
the privacy of the users as well. In a template inversion attack,
the adversary gains access to the system database and tries to
invert the templates (embeddings) stored within to reconstruct the
underlying face images. Then, the adversary can enter the system
by injecting the reconstructed face image as a query to the system.
Moreover, the adversary may be able to obtain privacy-sensitive
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Fig. 1: Sample face images from the FFHQ dataset (first row)
and their corresponding reconstructed face images from ArcFace
(second row) and ElasticFace (third row) embeddings. The values
indicate cosine similarity between the original and reconstructed
image embeddings. The decision thresholds corresponding to
FMR = 10−3 are 0.37 and 0.41 for ArcFace and ElasticFace,
respectively, on the MOBIO dataset.

information about the users from the reconstructed face images.
For instance, Fig. 1 shows sample face images from the FFHQ [4]
dataset and their reconstructed versions from ArcFace [5] and Elas-
ticFace [6] embeddings using our face reconstruction network. As
this figure shows, the reconstructed face images reveal important
information about the user’s identity, such as race, age, and gender.

Different methods have been proposed in the literature to re-
construct face images from deep templates [7, 8, 9, 10, 11, 12].
Considering the amount of knowledge about the face recognition
model, these methods can be categorized into whitebox (where the
model and its parameters are known) and blackbox (where there
is no information on the internal functioning of the model). Zh-
moginov and Sandler [7] considered whitebox face reconstruction
and proposed a gradient-ascent-based approach to reconstruct face
images using the face recognition model and regularization terms.
They also trained a deconvolution neural network to generate face
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Fig. 2: Block diagram of the proposed face reconstruction method

images. Cole et al. [8] used a multi-layer perceptron (MLP) to es-
timate landmark coordinates and a CNN to generate face textures.
Then, they used differentiable warping to generate reconstructed
faces. In the blackbox scenario, they trained their MLP and CNN
separately, and then reconstructed the face image using the warp-
ing function. However, in the whitebox scenario, they used the
warping function in the training and used an additional loss us-
ing the face recognition model to minimize the distance between
embeddings extracted from the original and reconstructed face
images. Mai et al. [9] considered the blackbox scenario and pro-
posed two CNNs based on two new blocks, NBNet-A and NBNet-
B, to reconstruct face images. Duong et al. [10] used bijection
learning and proposed a generative adversarial network (GAN)
to reconstruct face images. They proposed their method based on
a whitebox scenario, though in the blackbox scenario, they used
distillation of knowledge to train a student network from the face
recognition model. However, they did not report details (and also
did not publish source code) on the network structure and training
process for their student network. Vendrow and Vendrow [11]
considered the blackbox scenario and proposed a greedy random
optimization over the latent space of StyleGAN [13]. Then, using
a hill climbing approach, they find a latent vector which synthe-
sizes an image that has embedding close to the target embedding.

In this paper, we consider a whitebox template inversion
attack against SOTA face recognition systems. We propose a
convolutional neural network to reconstruct face images from
face embeddings and train our network with a multi-term loss
function. We train our network for two SOTA face recognition
models, ArcFace [5] and ElasticFace [6], and evaluate our trained
face reconstruction networks on the MOBIO [14] and LFW
[15] datasets. Our experiments show that the proposed network
improves the face reconstruction performance in terms of an
adversary’s success attack rate.

The rest of the paper is organized as follows. In section 2,
we describe our proposed face reconstruction method. Then, in
section 3, we describe our experiments and discuss our results.
Finally, the paper is concluded in section 4.

2. PROPOSED METHOD

In this section, we describe our proposed method for the recon-
struction of face images from face embeddings. First, we explain

how to generate our training data in section 2.1. Then, we describe
our network structure in section 2.3, and finally we describe our
loss function in section 2.2. Fig. 2 illustrates the block diagram
of the proposed method.

2.1. Training Data

To train our face reconstruction network, we need a dataset of face
images and their corresponding embeddings. To generate such
a dataset, let us consider a dataset I={Ii}Ni=1 containing N face
images. We can generate our training dataset D={(ei,Ii)}Ni=1

by extracting face embeddings from all face images in I, where
ei=F(Ii) indicates the face embedding extracted from image Ii
using face recognition model F(.).

2.2. Loss Function

Let (e,I)∈D denote a (face embedding, face image) pair in our
training dataset D, and Î the face image reconstructed from the
face embedding e using our face reconstruction network. We train
our network with a multi-term loss function including:

• Mean Squared Error (MSE): To reduce reconstruction
error of the generated face, we use the Mean Squared
Error (MSE) loss term using the square of ℓ2-norm of the
reconstruction error:

LMSE(̂I,I)= ||̂I−I||22 (1)

• Dissimilarity Structural Index Metric (DSSIM): In addition
to MSE of the reconstructed face, we maximize the Similar-
ity Structural Index Metric (SSIM) [16] of the reconstructed
image, to maximize the reconstruction quality. To this end,
we optimize the DSSIM loss term [17] as follows:

LDSSIM(̂I,I)=
1−SSIM(̂I,I)

2
(2)

• ID loss: In addition to the above loss terms, we minimize
the distance between the embeddings extracted from the
reconstructed face Î and original face I. To this end, we
minimize the square of the ℓ2-norm of the difference
between the extracted features:

LID(̂I,I)= ||F (̂I)−F(I)||22 (3)
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Fig. 3: Structure of the proposed face reconstruction network

We use a weighted summation of the aforementioned loss
terms as our total loss:

L=LMSE+αLDSSIM+βLID, (4)

where α and β are hyperparamters. We experimentally found
that α= 0.1 and β = 0.005 perform the best and we use these
values for our final loss function. We train our face reconstruction
network using the Adam [18] optimizer with the initial learning
rate of 10−3, and we decrease the learning rate by a factor of 0.5
every 10 epochs.

2.3. Network Structure

To reconstruct a face image from its corresponding embedding, we
can use a deconvolutional neural network (e.g., [7, 9]). However,
because deconvolution acts as upsampling it may generate a noisy
result and insufficient details [9]. For this reason, we propose
a new block using 3 cascaded convolutional layers with a skip
connection, after each deconvolutional layer. In the proposed
network, convolution layers are supposed to learn the residual and
to enhance the deconvolution output.

We build our network using 6 of the proposed blocks with 512,
256, 128, 64, 32, 16 filters, respectively. For the deconvolution
and convolution layers in our blocks, we use kernels of sizes 4 and
3, respectively. In addition, we use Batch Normalization [19] and
a rectified linear unit (ReLU) after each deconvolution and con-
volution operation in our blocks. Finally, we use a convolutional
layer with a kernel of size 3 and a sigmoid activation function, to
generate the reconstructed face image. Fig. 3 depicts the general
structure of our face reconstruction neural network.

3. EXPERIMENTS

In this section, we describe the experiments used to evaluate the
performance of our face reconstruction network. First, in section
3.1 we describe our experimental setup. Next, we evaluate the
performance of our reconstruction network in section 3.2 Finally,
we provide an ablation study in section 3.3.

3.1. Experimental Setup

To evaluate the reconstruction performance of the proposed
face reconstruction network, as stated in section 1, we train the
network on two SOTA face recognition models, ArcFace [5] and

ElasticFace [6]. For each model, we generate a training dataset
as described in section 2.1, using the FFHQ [4] dataset and we
train our face reconstruction network with the multi-term loss
function proposed in Eq 4. Then, we evaluate the trained face
reconstruction networks on the MOBIO [14] and Labeled Faced
in the Wild (LFW) [15] databases. To evaluate the trained face
reconstruction network, we first build a face recognition system.
Next, we consider the scenario where the adversary gains access
to the system’s database and aims to reconstruct face images from
the enrolled face embeddings, then enter the system by injecting
the reconstructed image as a query to the system. Hence, we
evaluate the performance of our face reconstruction network in
terms of an adversary’s Success Attack Rate (SAR) in entering the
system using the reconstructed face images of the corresponding
embeddings stored in the system’s database.

The FFHQ [4] dataset consists of 70,000 high-quality face
images and contains variations in terms of age, ethnicity, and
gender. We use a random 90% portion of this dataset to generate
the training dataset for our face reconstruction network, and
we use the remaining 10% for validation. The MOBIO dataset
is a bimodal dataset including face and audio data taken with
mobile devices from 152 people. In our experiments, we use
the development subset of the mobio-all protocol1. The LFW
database includes 13,233 images of 5,749 people, where 1,680
people have two or more images. We use the View 2 protocol2 in
our experiments. It is also worth mentioning that the studied face
recognition models (ArcFace and ElasticFace) are trained using
the MS-Celeb-1M [20] dataset.

We use the Bob3 toolbox [21, 22] and PyTorch package in our
implementations. The source code of our experiments is publicly
available to help reproduce our results4.

3.2. Performance Evaluation

As described in section 3.1, we trained our network to reconstruct
face images from ArcFace and ElasticFace embeddings. Fig. 1
illustrates sample face images from the validation set of the FFHQ
dataset. Fig. 4 also shows the histogram of scores between embed-
dings extracted from the original and reconstructed face images, as

1The implementation of the mobio-all protocol for the MOBIO dataset is
available at https://gitlab.idiap.ch/bob/bob.db.mobio

2The implementation of View 2 protocol for the LFW dataset is available at
https://gitlab.idiap.ch/bob/bob.db.lfw

3https://www.idiap.ch/software/bob/
4Source code: https://gitlab.idiap.ch/bob/bob.paper.

icip2022_face_reconstruction

3
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Fig. 4: Histogram of scores (negative cosine distance) evaluated
on the MOBIO dataset: a) ArcFace b)ElasticFace.

Table 1: Face reconstruction performance (SAR) of our network
for embeddings extracted from the ArcFace and ElasticFace
models, as well as the recognition performance (TMR) of each
model, at FMR = 10−2 and FMR = 10−3 on the MOBIO and
LFW datasets (the values are reported in percentage).

Model Dataset FMR=10−2 FMR=10−3

TMR SAR TMR SAR

ArcFace MOBIO 100.00 100.00 100.00 100.00
LFW 99.70 96.67 96.63 94.90

ElasticFace MOBIO 100.00 100.00 100.00 98.10
LFW 96.96 95.21 94.60 91.78

well as scores of genuine and zero-effort impostor pairs, evaluated
on the MOBIO dataset. Table 1 also reports the performance of our
face reconstruction network in terms of SAR as well as the recog-
nition performance of each model in terms of True Match Rate
(TMR) at different False Match Rate (FMR) decision threshold
configurations. As this table shows, the face images reconstructed
using our network are highly likely to be recognized as face im-
ages coming from genuine (enrolled) users, when employing a
face recognition system based on ArcFace or ElasticFace.

3.3. Ablation Study

In this section, we investigate the effect of our network struc-
ture and loss function on the reconstruction performance of our
method. To this end, we use embeddings of the ArcFace model
and report our ablation study on the MOBIO and LFW datasets.

Network Structure To evaluate the effect of our network
structure, we use our loss function and train similar networks
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Fig. 5: Effect of network structure on face reconstruction
performance using ArcFace embeddings evaluated on a) MOBIO
and b) LFW datasets.
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Fig. 6: Effect of loss function on face reconstruction performance
using ArcFace embeddings evaluated on a) MOBIO and b) LFW
datasets.

based on NBNet-A [9], NBNet-B [9], and typical deconvolution
blocks. Fig. 5 compares the reconstruction performance of
these networks in terms of SAR for different values of the face
recognition system’s FMR. As this figure shows, the proposed
network in general outperforms the other networks, particularly
when the ArcFace-based face recognition system (which is being
attacked) operates at a lower FMR.

Loss Function To evaluate the effect of our loss function, we
train our network structure with the different loss terms from Eq.
4. Fig. 6 compares the reconstruction performance of networks
trained with different loss functions in terms of SAR for different
values of the system’s FMR. As this figure shows, the DSSIM
and ID loss terms enhance the reconstruction performance. In
particular, the ID loss significantly improves the SAR.

4. CONCLUSION

In this paper, we proposed a CNN-based structure to reconstruct
face images from face embeddings and trained it with a multi-term
loss function. We used 3 convolution layers (with a skip connec-
tion) after each deconvolution layer to enhance the deconvolution
output by learning the residual. We evaluated our proposed face
reconstruction network for two SOTA face recognition models
(ArcFace and ElasticFace) on the MOBIO and LFW datasets. Our
experiments show that the reconstructed face images are highly
likely to be recognized (as the face images of enrolled system
users) by the face recognition system.
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