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Abstract
The ICML Expressive Vocalizations (ExVo)
Multi-task challenge 2022, focuses on understand-
ing the emotional facets of the non-linguistic vo-
calizations (vocal bursts (VB)). The objective of
this challenge is to predict emotional intensities for
VB, being a multi-task challenge it also requires
to predict speakers’ age and native-country. For
this challenge we study and compare two distinct
embedding spaces namely, self-supervised learn-
ing (SSL) based embeddings and task-specific su-
pervised learning based embeddings. Towards
that, we investigate feature representations ob-
tained from several pre-trained SSL neural net-
works and task-specific supervised classification
neural networks. Our studies show that the best
performance is obtained with an hybrid approach,
where predictions derived via both SSL and task-
specific supervised learning are used. Our best
system on test-set surpass the ComPARE baseline
(harmonic-mean of all sub-task scores i.e., 𝑆𝑀𝑇𝐿)
by a relative 13% margin.

1. Introduction
It is well known that human speech is a rich source of emo-
tional signals (Darwin, 1872), apart from verbal-speech hu-
mans also express emotions through non-verbal expressive
vocalizations (ExVo) such as laughter, cries and gasp (Ba-
chorowski et al., 2001; Simon-Thomas et al., 2009). In the
past two decades there has been a tremendous surge of inter-
est in speech emotion recognition (SER) research (Schuller,
2018), for there are several applications of SER in the field
of affective computing to human-computer interfaces. Typ-
ically, speech emotion studies have been conducted on hu-
man verbal speech, recorded from dyadic communications
to acted or scripted scenarios (Burkhardt et al., 2005; Busso
et al., 2008; Engberg & Hansen, 1996). However, literature
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on modelling/quantifying the non-verbal ExVo aspects for
the emotion recognition (ER) is sparse. Modeling ExVo
could help in filling the research gaps in speech emotion
research and may help in improving the current SER sys-
tems, hence, understanding these non-verbal ExVo becomes
important. ICML ExVo 2022 challenge (Baird et al., 2022)
for the first time provides the HUME-VB corpus (Cowen
et al., 2022) which allows the modelling of granular emotion
characteristics of vocal bursts (VB). This corpus enables to
make a distinction between the emotion of a VB, for exam-
ple the VB for laughter could have emotion like amusement,
awkwardness, and triumph associated to it. Similarly, VB
for gasps could elicit emotions like awe, excitement, fear,
and surprise, and VB for cries may produce emotions like
distress, horror, and sadness.

In this paper, we focus on the first track of the challenge,
ExVo Multi-Task learning. Taking inspirations from re-
cent works on the use of embeddings from the pre-trained
networks for various speech procession tasks including par-
alinguistic tasks (Keesing et al., 2021; Yang et al., 2021;
Mostaani et al., 2022; Srinivasan et al., 2022), we investi-
gate the utility of neural embeddings for speakers’ emotion
intensity, native country and age estimation. In that regard,
as illustrated in Figure 1, we compare two types of neural
embedding extraction approaches: (a) neural embeddings
extracted from neural networks trained in self-supervised
learning (SSL) setting and (b) neural embeddings extracted
from neural networks trained on auxiliary out-of-domain
tasks such as, SER, phone classification and on in-domain
ExVo challenge task.

Figure 1. Proposed neural embedding based approaches for ExVo
Multi-task learning.

The paper is structured as follows. Section 2 describes our
experimental setup, derived features and multi-task learn-
ing framework. We present our results and the analysis in
Section 3. Section 4 concludes the paper.
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2. Experimental Setup
In this section we present the ExVo 2022 challenge dataset
and the experiment protocols. Next we present the fixed-
length feature representation obtained through the ap-
proaches we defined in Section 1, and finally the multi-task
learner block trained for the task at hand.
2.1. Database and Protocols
The ExVo competition dataset (Cowen et al., 2022) con-
tains 59,201 recordings of VB from 1,702 speakers, with
approximately 37 hours of 16-bit audio sampled at 16kHz
(we used single channel for our study). The recordings were
collected from four different countries, namely- USA, China,
Venezuela, and South Africa from the speakers with age
ranging between 18 to 39 years old. The data was collected
at speakers’ own home from a microphone hence the data
is considered ‘in-the-wild’. Each VB has intensity scores
(ranging from [0, 100]) corresponding to 10 different classes
of emotion: amusement, awe, awkwardness, distress, excite-
ment, fear, horror, sadness, surprise and triumph. These
scores were averaged across 85 raters and further were nor-
malised to a range from [0, 1]. For the ExVo Multi-Task
challenge, the data was split equally into 3 sets - train, vali-
dation and test, where labels were provided corresponding
to train and validation set only. Each team had five trials
to evaluate the developed systems. The predictions were
evaluated based on task-specific metrics:

1. Concordance Correlation Coefficient (CCC): for the
emotion recognition task. Calculated for every emo-
tion, the overall CCC is defined as the mean of the
coefficients.

2. The Mean Absolute Error (MAE): is calculated for the
age detection.

3. The Unweighted Average Recall (UAR): is reported for
the native country classification task.

The overall prediction score is the Harmonic mean, defined
as follows, 𝑆𝑀𝑇𝐿 = 3

(1∕𝐶𝐶𝐶+𝑀𝐴𝐸+1∕𝑈𝐴𝑅) . We followed
the protocols as set by the organizers to train and evaluate
our systems.

2.2. Extracting neural embedding-based fixed-length
feature representations

For deriving SSL embeddings, we make use of the following
publicly available state-of-the-art (SOTA) pre-trained SSL
systems like: Wav2Vec2 (Baevski et al., 2020), HuBERT
(Hsu et al., 2021), and WavLM (Chen et al., 2021). These
systems are among the top three performing networks for the
SUPERB challenge (Yang et al., 2021), a SSL benchmark
challenge for the speech processing tasks.

The task-specific embeddings were derived using pre-trained
supervised networks. To enrich the study we took several
systems, three out-of-the-domain trained systems and four

systems trained on ExVo data that is in-domain trained net-
work. The out-of-domain task-specific trained systems and
the motivation to consider them are as following:

(1) Raw (SER): We used an off-the-shelf CNN network that
was trained on IEMOCAP (Busso et al., 2008) dataset to
classify four emotion categories namely anger, happy, sad,
neutral in an end-to-end fashion by taking 250ms of raw-
speech signal as input. This system is chosen since its trained
for SER task on sub-segmental speech (typically 250ms) and
may help with ExVo ER sub-task. The network comprises
of four convolution layers followed by one hidden layer with
ten nodes and an output layer corresponding to four emo-
tion classes with a softmax activation function, while the
other layers are followed by a ReLU activation. The network
was trained in a speaker-independent manner and fetched
an unweighted average recall (UAR) of 57.4%. Using this
network frame-level neural embeddings of dimension 10, are
extracted before the activation of last hidden layer. A fixed-
length utterance-level feature representation is obtained by
computing functionals (mean and standard deviation) of the
frame-level neural embeddings, denoted by Raw(SER). This
makes the Raw(SER) embedding of dimension 20 (10 mean
+ 10 std).
(2) Zff (SER): The system is similar to the above mentioned
network in all the aspects (like input signal duration, training
dataset, architecture, etc.) but instead of raw-speech wave-
form the network is trained on speech signal after filtering
it through a zero frequency filter (Zff) (Murty et al., 2009)
which models the speech-source related information, and
here the input signal is zff-waveform. This model was cho-
sen since it has been shown to improve the performance for
paralinguistic tasks like, depression detection (Dubagunta
et al., 2019) and dementia detection (Cummins et al., 2020)
when compared to only speech signal. The model achieved
an UAR of 48.4% on a four class emotion classification task
on IEMOCAP dataset. Similar to the above system we de-
rive utterance-level embeddings denoted by Zff(SER) with
dimension 20.
(3) Raw (ASR): We took an off-the-shelf CNN based net-
work that models raw-waveform for phone classification.
The network consists of 10 convolutional layers followed
by a fully connected layer with 1024 nodes and an output
layer. The network was originally trained on AMI corpus
(Carletta, 2007). The frame level neural embeddings of di-
mension 1024 are converted to fixed-length utterance-level
embeddings using functionals (mean and std), denoted by
Raw(ASR). The final embedding dimension is 2048 (1024
for mean + 1024 for std). Since this system was trained
on a conversational dataset, the embeddings might capture
country specific articulation which may help with the ExVo
country recognition sub-task. Also, emotion information
has been found to be carried at phonetic level (Vlasenko
et al., 2011; Yuan et al., 2021).
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Systems Classifier UAR WAR
Raw(ExVo)-ER Softmax 28.51 43.97
Zff(ExVo)-ER Softmax 20.79 34.32

Raw(ExVo)-CR Softmax 43.70 50.01
Zff(ExVo)-CR Softmax 45.65 51.46

Table 1. Classification based performance on ExVo validation-set
in terms of UAR and Weighted average recall (WAR). Abbrevia-
tions: ER - emotion recognition, CR - country recognition

(4) Raw/Zff(ExVo)-ER: We developed an end-to-end sys-
tem which takes 250ms of raw (/zff)-waveform as input. The
system was trained for a ten-class classification task using
the ExVo data. We followed a hard-label approach, for each
ExVo audio file we picked the categorical emotion based on
the highest score provided by the raters to the corresponding
emotion category. The network comprises of four convolu-
tional layers followed by a fully connected layer with ten
nodes and an output unit consisting of ten emotion classes.
The output layer had softmax activation, while all the layers
had ReLU activation. To train the neural network we split
the train-set into training-subset and cross-validation sub-
set in 90:10 ratio, this cross-validation subset was used for
hyperparameter tuning. The ExVo provided validation set
was used for inference. This training method made sure that
the network trained for generating embeddings is trained
in a speaker-independent fashion as per the baseline proto-
cols (Baird et al., 2022). The networks were trained using
cross-entropy loss with stochastic gradient descent. The
learning rate was halved, in the range 10−1 to 10−6, between
successive epochs whenever the validation-loss stopped re-
ducing. We used Keras deep learning library with tensorflow
backend.
(5) Raw/Zff(ExVo)-CR: These systems are similar to the
above mentioned system in all aspects apart from the fact
that these have been optimised for the country-labels of
ExVo data and were trained for a four-class classification
task hence the output unit of the network consist of four
country labels, the only architecture difference when com-
pared to Raw/Zff(ExVo)-ER.
For both of these in-domain task-specific trained systems,
the frame-level neural embeddings of dimension 10, are
extracted before the activation layer of the fully-connected
layer. A fixed-length utterance-level representation is ob-
tained by computing functionals (mean and standard devi-
ation) of the frame-level neural embeddings, denoted by
Raw/Zff(ExVo)-ER and Raw/Zff(ExVo)-CR for (4) and (5)
respectively. This makes these embeddings of dimension
20 (10 mean + 10 std) each. For the purpose of analysis we
provide the hard-classification based results for these four
systems in Table 1 trained to classify emotions and country
using the ExVo multi-task dataset.

2.3. Multi-task learner
For a fair comparison and analysis of our derived embed-
dings to the challenge baseline features and results, we used

Systems Dims. Config. Emo-CCC Cou-UAR Age-MAE 𝑆𝑀𝐿𝑇
ExVo Baseline on Validation-data

COMPARE 6373 Sys.1 0.416 0.506 4.222 0.349 ± 0.003
DEEP SPECTRUM 4096 Sys.1 0.369 0.456 4.413 0.322 ± 0.003

Self-Supervised (Pre-trained) on Validation-data
WAVLM 2048 Sys-1 0.523 0.542 4.094 0.382 ± 0.006
WAVLM 2048 Sys-2 0.548 0.536 4.008 0.390 ± 0.009
HUBERT 2048 Sys-1 0.513 0.508 3.864 0.385 ± 0.004
HUBERT 2048 Sys-2 0.518 0.508 3.782 0.391 ± 0.010

WAV2VEC2 1536 Sys-1 0.390 0.379 3.903 0.330 ± 0.008
WAV2VEC2 1536 Sys-2 0.385 0.376 3.895 0.328 ± 0.005

Raw-Wav (Pre-trained for ASR and SER) on Validation-data
RAW (SER) 20 Sys-1 0.078 0.342 3.909 0.153 ± 0.004
RAW (SER) 20 Sys-2 0.084 0.332 4.032 0.158 ± 0.004
ZFF (SER) 20 Sys-1 0.083 0.320 4.021 0.156 ± 0.021
ZFF (SER) 20 Sys-2 0.087 0.335 3.897 0.163 ± 0.003

RAW (ASR) 2048 Sys-1 0.370 0.477 4.210 0.333 ± 0.002
RAW (ASR) 2048 Sys-2 0.392 0.465 4.179 0.338 ± 0.005

Raw-Wav trained systems on Validation-data
RAW (EXVO)-ER 20 Sys-1 0.454 0.331 3.953 0.327 ± 0.006
RAW (EXVO)-ER 20 Sys-2 0.469 0.328 3.805 0.334 ± 0.005
ZFF (EXVO)-ER 20 Sys-1 0.385 0.330 3.886 0.315 ± 0.007
ZFF (EXVO)-ER 20 Sys-2 0.386 0.333 3.868 0.317 ± 0.006

Early Fusion Experiments on Validation-data
RAW (EXVO)-ER +ZFF (EXVO)-ER 40 Sys-1 0.380 0.335 3.888 0.316 ± 0.009
RAW (EXVO)-ER + ZFF (EXVO)-ER 40 Sys-2 0.387 0.334 3.880 0.317 ± 0.008

RAW (EXVO)-ER +RAW (ASR) 2068 Sys-1 0.440 0.480 4.159 0.352 ± 0.003
RAW (EXVO)-ER +RAW (ASR) 2068 Sys-2 0.452 0.488 4.144 0.357 ± 0.003

RAW (EXVO)-ER + WAVLM 2068 Sys-1 0.546 0.542 4.150 0.383 ± 0.006
RAW (EXVO)-ER + WAVLM 2068 Sys-2 0.556 0.522 4.057 0.386 ± 0.004

Hybrid Experiments on Validation-data
RAW (EXVO)-ER + RAW (EXVO)-CR 40 Sys-1 0.454 0.437 3.953 0.355
RAW (EXVO)-ER + RAW (EXVO)-CR 40 Sys-2 0.469 0.437 3.805 0.365
RAW (EXVO)-ER + ZFF (EXVO)-CR 40 Sys-1 0.454 0.456 3.953 0.359
RAW (EXVO)-ER + ZFF (EXVO)-CR 40 Sys-2 0.469 0.456 3.805 0.369

Table 2. Experimental results based on validation set. Abbrevia-
tions: ER - emotion recognition, CR - country recognition.

the ExVo Multi-task baseline network (Baird et al., 2022)
for that takes the fixed length representations as input and
generates the predictions. The multi-task baseline model
is a neural-network with two hidden layers, with 128 neu-
rons in the first hidden layer followed by 64 neurons in the
second layer, with leaky-ReLu activation used for both the
layers. Adam optimization method (Kingma & Ba, 2014)
is used for training the network, three loss-functions are
used (1) the Mean Squared Error (MSE) for the age and
emotion detection sub-task and (2) the cross-entropy loss for
the native-country prediction sub-task. The mean of these
loss functions is calculated for the target. We developed
systems with two different configurations: (a) ‘Sys-1’ where
the network configuration is same as the organizers, and
(b) ‘Sys-2’ where we doubled the number of neurons in the
hidden layers that is 256 neurons for the first hidden and 128
neurons for the second.

Beside studying the embeddings individually, we also inves-
tigated (a) early fusion of the embeddings by concatenating
the fixed-length representations and (b) hybrid system where
predictions of different systems are fused to generate the final
output for evaluation.

Systems Dims. Config. Emo-CCC Cou-UAR Age-MAE 𝑆𝑀𝐿𝑇
ExVo Baseline on Test-data

COMPARE 6373 Sys-1 0.427 0.473 4.502 0.335
DEEP SPECTRUM 4096 Sys-1 NA NA NA 0.305

Proposed systems on Test-data
WAVLM 2048 Sys-2 0.546 0.52 4.389 0.3684"

RAW (EXVO)-ER 20 Sys-2 0.472 0.321 4.160 0.319
RAW (ASR) 2048 Sys-2 0.387 0.413 4.469 0.3167

RAW (EXVO)-ER + RAW (AMI) 2068 Sys-2 0.461 0.412 4.493 0.3301
HYBRID 2068 Sys-2 0.546 0.52 4.160 0.379"

Table 3. Experimental results of five selected systems on test-set.
(") indicate the systems outperforming the baseline results.
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3. Results and Analysis
Evaluation scores on validation-data are provided in Table 2
whereas scores for the test-data based on five preferred sys-
tems are presented in Table 3.

3.1. Result analysis
SSL embeddings: It can be observed from Table 2 that
WavLM and HuBERT provide the best overall results
(𝑆𝑀𝐿𝑇 ), where WavLM performs better for Emotion and
country sub-task whereas HuBert scores well on the age
sub-task, Sys-2 configuration enhance the performance for
both these cases. Wav2Vec2 optimises well for the age
subtask but is inferior for others and Sys-2 configuration
degrades its overall performance.
Out-of-domain task-specific embeddings: In Table 2, the
Raw/Zff(SER) shows overall inferior performance, but beats
the baseline for the age sub-task, where Zff(SER) Sys-1
works particularly well on the age sub-task. Raw(ASR)
performs equivalent to Wav2Vec2 for emotion sub-task and
shows superior performance for the country sub-task. The
overall score for Raw(ASR) are comparable to the baseline
score where it beats the DeepSpectrum and even Wav2Vec2
from the SSL sub-group.
In-domain task-specific embeddings: Raw(ExVo)-ER
outperforms the baseline ComPARE features, for emotion
and age sub-task in both validation and test set but does not
perform well on the country sub-task. But from Table 1 it
can be observed that Raw(ExVo)-CR and Zff(ExVo)-CR in
particular outperforms the baseline method for the country
sub-task on the validation-set.
Early-fusion based embeddings: From the result of
Raw(ExVo)-ER + Raw(ASR) in Table 2 it could be
observed that these embeddings complement each other.
When fused this system provides superior overall score than
the baseline, and Sys-2 configuration further improves the
performance while for other cases early-fusion doesn’t offer
much benefits.
Hybrid systems: task specific predictions, emotion and
age from Raw/Zff(Exvo)-ER and country predictions from
Raw/Zff(ExVo)-CR yields an overall score that outperforms
the validation-set baseline, and reduces the overall score-gap
with the best performing SSL system.

As Sys-2 configuration systematically yielded improvements
on the validation set, we evaluated the systems on the test
set using that configuration. From Table 3, it can be ob-
served that the trends on the test set is similar to the trends
observed on the validation set. The WavLM system yields su-
perior performance for emotion and country sub-task while
Raw(ExVo)-ER yields superior performance for the age task.
Furthermore, in the hybrid approach, it can be observed that
combination of the outputs of the two system yields the best
system, which outperforms the ComPARE baseline score
(𝑆𝑀𝐿𝑇 ) with a relative 13% margin.

3.2. Filter analysis
The cumulative frequency response of the first convolutional
layer for all the task-specific supervised networks are pre-
sented in Figure 2. From Figure 2(a), it is interesting to
observe that the frequency response of out-of-domain pre-
trained network - Raw(ASR), and in-domain trained network-
Raw(ExVo)-ER, follows a similar trend that emphasizes on
a wide frequency range and the 𝑆𝑀𝐿𝑇 score for these net-
works are comparable as well, whereas for Raw(SER) the
filter emphasise is more on 1000-4000 Hz frequency re-
gion. For Raw(ExVo)-CR the trend shifts more towards
high frequency. For Zff Figure 2(b) the trend is always to-
wards the lower frequency specially for Zff(SER) whereas
for Zff(ExVo)-ER/Cr there is some emphasis given to higher
frequency ranges as well.

Figure 2. Cumulative frequency response of the first convolution
layer for task-specific networks. (a) Raw (𝑥) and (b) Zff (𝑥) ; 𝑥
denotes the task.

4. Conclusion
We investigated different neural embeddings for the ICML
ExVo-2022 Multi-task learning challenge. Our investiga-
tions showed that SSL-based representations typically yield
better overall score(𝑆𝑀𝐿𝑇 ) than feature representations ob-
tained by training neural networks in a task-dependent man-
ner. The improvements are largely observed in terms of
Emo-CCC and Cou-UAR. When comparing out-of-domain
task-dependent feature representation, we observe that repre-
sentations obtained from neural network trained to classify
phones yields better system than neural network trained
for SER. Interestingly, we observed that in-domain task-
dependent feature representation learning, i.e., Raw(ExVo)-
ER tends to capture information similar to the phone classi-
fication task network and yields comparable system. Finally,
our studies demonstrated that task-specific networks opti-
mise well for the tasks. They can surpass the systems based
on hand-crafted features and can complement SSL feature
representations.
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