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Abstract

We present a neural implementation of the all pass warp (APW) previously used for vocal tract length normalisation.
This includes an efficient back-propagation, which can easily be integrated in modern neural network frameworks. The
APW offers a low-dimensional control to alter the spectrum, which by design generalises over different speakers. We
investigate the APW in two tasks required for future dialogue or translation agents, and provide a fairly thorough
literature review for both: 1) Zero-shot speaker adaptation to allow keeping the source speaker identity with very small
amounts of data. Experiments show increased speaker similarity and prove that the APW increases the generalisability
of a multi-speaker model. 2) Emotional speech synthesis to translate or produce affective cues. To the best of our
knowledge this is the first attempt on emotional speech synthesis with an APW. While the APW is not able to increase
expressiveness or audio quality, our analysis shows that the warping correlates with the level of valence in the emotion.
This work should enable future research on emotion translation during machine translation.
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1. Introduction

Text to speech synthesis (TTS) has become ubiquitous
in recent years, mainly in the context of agents associated
with mobile telephony. Coupled with (automatic) speech
recognition (ASR), the technology enables hands free ac-
cess to information, often including translation between
languages. As the underlying dialogue managers evolve,
we are interested in general in enabling an appropriate
evolution of TTS to enable higher level functions. In par-
ticular, we want to enable affective TTS, where expression
and emotion can be conveyed. There are at least two clear
cases where this is desirable: The simplest is in speech to
speech translation, where one would like the translation
of an utterance in L2 to reflect the emotion and expres-
sion that were conveyed in L1. This involves the ability to
recognise, translate and reproduce such affective cues. The
translation case also requires that the synthetic voice be
adapted to match the identity of the L1 speaker. The sec-
ond, more difficult, case is that of dialogue agents. For in-
stance, if either party has misunderstood the other, it may
be appropriate to repeat with carefully chosen emphasis; if
a human participant becomes angry or frustrated, it may
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be appropriate for an agent to react more sympathetically.
This all requires control of affect.

Affect is certainly influenced by prosody. Normally
taken to be pitch, energy and duration, each of these el-
ements is one-dimensional. Certainly a translation agent
can detect and reproduce them; it is reasonable to sup-
pose that a dialogue agent could also produce these cues.
However, it is known (see, e.g., Vlasenko et al., 2011) that
spectral features are also warped when conveying certain
emotions. Spectra are multi-dimensional and hence more
difficult to handle.

Our goal in this paper is to show that an all-pass warp
(APW) is a strong candidate to provide the spectral warp-
ing required in emotional speech synthesis. The APW is
known in the field for its application to vocal tract length
normalization (VTLN). VTLN originated in ASR to com-
pensate for the fact that the vocal tract length of different
speakers varies (it is longer in males than in females) with
an inversely proportional effect on the formant frequen-
cies (Cohen et al., 1995; Zolnay et al., 2005; Giuliani and
Gerosa, 2003; Jaitly and Hinton, 2013). Reciprocally, the
warp can be used to synthesise speech of different speak-
ers (Sundermann and Ney, 2003; Saheer et al., 2012). The
APW arises because a spectral warp can be cast as a linear
transformation in the cepstrum (Pitz and Ney, 2005).

In principle, then, the APW is capable of implement-
ing the speaker-dependent warping required by speech to
speech translation, and the affect-dependent warping re-
quired for dialogue. The former case was demonstrated in
a preliminary version of this paper (Schnell and Garner,
2019) at SSW, some content of which is repeated here.
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The contributions of this work are

1. an implementation of the APW as a neural network
component. The component can be added to a neu-
ral network as easily as adding a linear layer. It
allows efficient forward and backward propagation.
The input to the component is the explicit warping
value, which allows external control during inference.
The additional control is lacking in related work us-
ing speaker embeddings extracted by reference en-
coder networks.

2. a completion of the study of utilizing the APW in
multi-speaker systems. In the preliminary version
of this paper (Schnell and Garner, 2019) we have
already investigated multi-speaker TTS and few-shot
speaker adaptation. Here we investigate the APW in
zero-shot speaker adaptation to complete the study.

3. an investigation of using an APW for emotional TTS.
To the best of our knowledge this has not been done
before.

We will explain the tasks of contribution 2. and 3. in
detail in the following.

In a first group on Zero-shot speaker adaptation,
we aim to develop TTS systems which are able to synthe-
sise speech of a speaker unseen during training with very
small amounts of data from that target speaker. They are
of special interest when designing personalised voice as-
sistants with data recorded by non-experts. We had pre-
viously demonstrated that a time-dependent APW layer
leads to better speaker-adaptation performance for small
amounts of adaptation data (~25 seconds, also called few-
shot adaptation). We hence expect it to perform equally
well in the zero-shot scenario. In this context we investi-
gate encoder-decoder models (new paradigm) which form
the current state-of-the-art in TTS.

In a second group on Emotional TTS, we attempt to
synthesise speech with different emotions. Today’s voice
assistants are still mostly limited to neutral speech and
more expressive styles have only been explored recently
(Aggarwal et al., 2020; Skerry-Ryan et al., 2018). While
it is possible to generate speech of a specific style with
a sufficient amount of recordings of that style, it is too
expensive and time consuming to record a database for
each style and multiple languages. Techniques to improve
the generalisability of models trained on limited data are
needed. Inspired by research on emotion recognition we
show that some emotions cause a formant shift on the
investigated emotional database. We expect the APW to
be helpful because it is an efficient control for formant
shifting which by design generalises over all speakers.

The paper is presented as four main parts: We begin
in section 2 with a literature review on the different as-
pects related to this work covering all-pass warp methods
in TTS, and notably style transfer. In sections 3 and 4
we detail a common VTLN implementation in form of a
bilinear transformation (i.e. a non-complex all pass warp)
and show how it can be integrated as a back-propagatable

component in a modern neural network framework. In
section 5, we present the first group of experiments above.
This is a low-risk experiment in that a-priori we know that
the APW is capable of doing speaker adaptation; here we
attempt a “difficult” scenario. The second group of exper-
iments on emotional TTS is presented in section 6. This is
a higher risk case; we are not aware of previous attempts
to do emotion adaptation using an APW.

2. Related Work

This section covers related work in zero-shot speaker
adaptation, affective speech synthesis, and the all pass
warp transformation in a three-fold way. In the first part
we describe zero-shot and few-shot speaker adaptation meth-
ods for adapation data with and without transcriptions.
The second part gives a list of recent unsupervised meth-
ods to achieve affective speech synthesis. The last part
describes work related to our proposed all pass warp layer,
which has been used only for multi-speaker systems so far.

2.1. Few- & Zero-shot Speaker Adaptation

Few- & zero-shot speaker adaptation means to create
a TTS system which sounds like one or multiple target
speakers unseen during training, while using only a very
short amount of adaptation data for each of the target
speakers. The boarder between zero- and few-shot adap-
tation is blurred, but few-shot adaptation methods usu-
ally require multiple transcribed observations of the tar-
get speaker and involve a fine-tuning step, i.e. change the
network weights. Zero-shot adaptation usually relies on
a single observation without transcription. Thus current
research distinguishes whether the adapation data is tran-
scribed or not. Transcribed data allows to fine-tune the
whole, or parts, of the model (sometimes referred to as
meta-learning). For example, it allows to learn a speaker
embedding for the target speakers. When no transcription
is available models rely on extracting the speaker identity
from the adapation data through a reference encoder net-
work. Acoustic features are extracted from the adapation
data and form the input of the reference encoder, which
generates speaker embeddings. Those embeddings differ in
their granularity from global, over clustered, to frame-level
embeddings.

2.1.1. Not transcribed adapation data

Jia et al. (2018) use a Tacotron 2 (Shen et al., 2018)
plus WaveNet combination with speaker encoder network.
The speaker encoder network is trained on external not
transcribed data in a speaker verification task. Then the
speaker embedding is obtained from an intermediate repre-
sentation at the end of the network (d-vector approach). In
the speaker verification task a database with 18k speakers
is used. While still good, the results show slight degrada-
tion of signal quality on embeddings extracted from unseen
speakers compared to speakers seen during training. The
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authors report high speaker similarity and signal quality
for unseen speakers, but in an ablation study they found
that both quickly drop when using less speakers when
training the speaker encoder network. The results show
a significant drop in speaker similarity from 18k to 8.4k to
1.2k speakers.

Cooper et al. (2020) use a speaker encoder network
pre-trained on a speaker verification task in combination
with a Tacotron (Wang et al., 2017) variant (Yasuda et al.,
2019). They investigate using the speaker embedding as
input to: 1) the attention, 2) the attention and the pre-net,
3) the attention, pre-net, and post-net. They report vari-
ant 2) to achieve the best results. Additionally, they com-
pare an x-vector approach with statistical pooling to learn-
able dictionary encodings (clustered embeddings), where
they find the latter (with three clusters) to be most per-
formant.

In contrast to both works, we train a reference en-
coder network to produce speaker embeddings and do not
use a pre-trained model. We also only input the refer-
ence embeddings to the attention, because we use a paral-
lel decoder without pre-net (see section 5.3.4). However,
the method we propose would likely benefit from speaker-
embeddings from a pre-trained model as well, but its proof
lies beyond the scope of this work.

2.1.2. Transcribed adapation data

Chen et al. (2019) reuse the same speaker encoder
network as in Jia et al. (2018) but combine it with a
CNN-based model to capture missing residual information
helpful for TTS but not speaker verification. Instead of
Tacotron 2 they use the original WaveNet with linguis-
tic features, fundamental frequency (F0), and speaker em-
bedding input. F0 and durations are predicted by clas-
sical LSTM-based networks (Zen et al., 2016) of the old
paradigm. The study compares three variants where the
first two involve meta-learning and thus transcriptions:
1) speaker embeddings from a look-up-table trained on
the adaptation data, 2) learn the speaker embedding as
in 1) then fine-tuning of the whole model (10% of the
data is used as validation set for early stopping), 3) use
the speaker embedding from the speaker encoder network.
Best results are obtained with variant 2), suggesting that
fine-tuning is preferable in the presence of transcription.
Variant 3) shows some degradation in speaker similarity.
We did not experiment with the WaveNet architecture in
this work.

2.2. Affective Speech Synthesis

Since the publication of Tacotron with Global Style To-
kens (GST) (Wang et al., 2018) the research community
has worked extensively on unsupervised methods, which
are especially useful for affective speech synthesis as af-
fective databases are rare and too small for training big
end-to-end TTS models. Additionally the creation of big-
ger affective corpora is expensive and annotating emotions

error prone. We provide a list of unsupervised methods in
the following. The primary objective of all these works
is to extract rich (partly also interpretable) latent repre-
sentations of speaking styles/emotions/affect to use them
during the speech generation process. For the experiments
on emotional speech synthesis in this work we do not rely
on any of those methods but on simple trained emotion
embeddings. We argue that all of the unsupervised meth-
ods can be used with our proposed APW layer and richer
latent representation will only be beneficial for it. Whether
richer representations decrease the relative benefit of our
proposed layer, because the TTS models become better in
general, is an open research question.

2.2.1. Global Style Tokens

Tacotron with Global Style Tokens (GST) (Wang et al.,
2018) uses a reference encoder to compress the prosody of
a variable length audio signal into a fixed-length vector
which is called reference embedding. Then an attention
module is used to compute a similarity measure between a
set of randomly initialized embeddings (the elements in the
set are called global style tokens) and returns the weights
to combine the global style tokens to a style embedding.
The style embedding is used by the decoder for condi-
tioning at every timestep. The style tokens are jointly
trained with the model driven only by the reconstruction
loss from the Tacotron decoder. At inference time the
style encoding can either be extracted from any other au-
dio signal or manually selected by a combination of global
style tokens. The experiments show that a GST model
yields interpretable embeddings that can be used to con-
trol and transfer style. It also decomposes various noise
and speaker factors when trained on unlabelled noisy data.

Lee and Kim (2019) extended the GST model further
by using frame-level style embeddings. They tested the
performance of these style embeddings on the text encoder
and speech decoder side. To map the frames from the
reference speech to the text encoder frames another dot-
product attention layer is used. For the speech decoder the
length of the reference audio has to match the length of the
generated speech. The size of the style embedding was two
or four. Any bigger sizes resulted in overfitting presum-
ably because the network was simply copying the reference
audio to the output. They found that the low dimensional
style embeddings contain entangled pitch, amplitude, and
speed information and thus allow fine-grained frame-level
control while inference. The model showed voice conver-
sion abilities for a song.

Reference encoders to extract speaker or emotion em-
beddings have been proposed in various other works as well
(Arik et al., 2018; Nachmani et al., 2018; Choi et al., 2020;
Skerry-Ryan et al., 2018; Lian et al., 2019; Klimkov et al.,
2019; Gururani et al., 2019; Battenberg et al., 2019; Bian
et al., 2019; Whitehill et al., 2020). While all of them (the
ones above included) achieve good results in multi-speaker
scenarios and also allow zero-shot adaptation, they only
offer limited control. The populating of the embedding
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space is not restricted and linear interpolation between
known speaker/emotion embeddings is not guaranteed to
provide high quality results. Carfully designed interpola-
tion techniques are required. Um et al. (2020) propose a
method to control the intensity of an emotion in a GST
model on a single-speaker database. Firstly they extract
a representative embedding vector of each emotion cate-
gory which maximizes the inter-category distance to the
closest and farthest other category while minimizing the
intra-category distance. Secondly, they propose a non-
linear interpolation function to vary the emotion intensity
from neutral speech to full emotional speech.

The APW we propose here is an alternative to the
techniques listed in this section 2.2.1. While we also use
a reference encoder similar to Tacotron GST to approach
the zero-shot scenario, the proposed APW does not rely
on it, but instead provides a low-dimensional control (the
level of warping). In contrast to the reference embeddings,
which do not reveal an obvious structure, the control of the
APW is interpretable and allows linear interpolation with
guaranteed high audio quality by design.

2.2.2. Variational Auto-Encoders

Akuzawa et al. (2018) combined VoiceLoop (Taigman
et al., 2018) with a VAE reference encoder and showed
that the quality of the generated speech exceeds that of
the vanilla model. The model allows to sample new styles
from the prior in the latent space as well as style transfer
by encoding a given reference. The analysis in a similar
work of Zhang et al. (2019) revealed that several dimen-
sions of the latent space could independently control style
attributes such as pitch-height, local pitch variation, and
speed. Thus they argued that the VAE has disentangled
interpretable features in the latent dimensions. A simple
control of these variables remains non-trivial. While we
do use a similar VAE reference encoder in our model, we
do not aim to use it as a control of speaker or style.

2.3. All Pass Warp

All pass warp transformations have successfully been
used before in multi-speaker speech synthesis systems. Sun-
dermann and Ney (2003) clustered the source and target
speaker’s speech by frequency spectra of period-synchronous
frames into artificial phonetic classes. To perform voice
conversion for each source class the most similar target
class is determined. For each class the warping parame-
ters are selected which minimize the Euclidean distance of
all warped source frames to all target frames.

Speaker adaptation from an average model with a sin-
gle speaker-dependent warping selected by line search was
proposed in (Eichner et al., 2004).

Shah et al. (2018) trained two deep neural networks
(DNNs) to imitade the VTLN and reverse VTLN step
for each speaker. To estimate the unknown normalized
features the authors propose an iterative unsupervised al-
gorithm: 1. Train a speaker-independent Gaussian Mix-
ture Model (GMM), 2. estimate the warping parameters

with Maximum Likelihood Estimation (MLE) between in-
put features and predicted normalized features, 3. retrain
the GMM with warped input features, 4. repeat step 2
and 3 five times. In contrast to our work they only train
a DNN to behave like a VTLN (implicit), but they do not
provide a neural network component that explicitly im-
plements it. It also means that at no point in the model
the warping parameter is computed and thus cannot be
controlled.

Previous work at our laboratory has already demon-
strated speaker adaptation in the mathematical framework
of hidden Markov models. Speaker specific warping pa-
rameters were estimated with the expectation maximiza-
tion (EM) algorithm with grid (Saheer et al., 2010) and
Brent’s search (Saheer et al., 2012) for different classes
which are based on a regression task tree developed from
decision tree questions. The proposed VTLN adaptation
led to faster adaption that is more natural than uncon-
strained linear transformations.

The work closest to ours is that of Kotani et al. (2017).
They predict a time-dependent linear conversion matrix
and bias with two DNNs. In more recent work (Kotani and
Saito, 2019) they perform voice conversion with a weighted
sum of linear transformations on acoustic features. The
conversion matrix and bias of each linear transformation
are jointly computed from a mean and full-covariance ma-
trix which are predicted by a mixture density network. For
predicting the latter the Cholesky decomposition is used.
This forms an explicit relation between conversion matrix
and bias, however, they do not constrain the matrix to be a
VTLN warping matrix, thus the benefit of a small parame-
ter space, i.e., a single time-dependent warping parameter,
is lost.

3. Preliminaries

The all pass warp technique we present is inspired by a
well known technique for speaker adaptation in ASR and
TTS: vocal tract length normalization (VTLN). It stems
from the fact that a key difference between speakers is the
length of their vocal tract. The difference in length results
in a shift of the formant frequencies. This shift equals a
linear transformation, i.e. a warping, in the cepstral do-
main (Pitz and Ney, 2005). Usually an N × N warping
matrix A pre-multiplies N mel-cepstral coefficients to pro-
duce their warped representation. As in previous work we
use a bilinear transform to generate Aα (it only depends
on a single warping parameter α). The APW is also key
to the mel generalised cepstrum (MGC) of Tokuda et al.
(1994). The element in the k-th row and l-th column can
be computed in two ways, 1) recursively (Oppenheim and
Johnson, 1972; Saheer et al., 2010) by

Ak,l =


αk if l = 0

0 if l > 0, k = 0

Ak−1,l−1 otherwise,

+α[Ak,l−1 −Ak−1,l]

(1)
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or 2) explicitly (equation (15) in Pitz and Ney (2005)) by

Ak,l =
1

(l − 1)!
×

l∑
n=

max(0,l−k)

(
l

n

)
(k + n− 1)!

(k + n− l)!
(−1)n

added︷ ︸︸ ︷
+l + kα2n+k−l, (2)

where we extended the formula by the part marked added
to get results valid for negative alphas as well. A qualita-
tive representation of the warping matrix Aα can be seen
in Figure 1.

Figure 1: Qualitative representation of a VTLN warping matrix for
a bilinear transform (left: α = 0.1, right: α = 0.2).

Warping a mel-cepstral coefficient vector x = (c1, . . . , cN )T ,
or its extended version with deltas (∆) and double deltas
(∆2) of a single frame is as simple as equation 3 and 4.

xα = Aαx, (3) xα
∆xα
∆2xα

 =

 Aα 0 0
0 Aα 0
0 0 Aα

 x
∆x
∆2x

 . (4)

When we turn α into a time-dependent parameter we can-
not speak about VTLN any more as the vocal tract length
of a speaker does not change while speaking. The termi-
nology that describes the presented transformation best is
an all pass warp.

4. Neural Network Implementation

In preliminary work (Schnell and Garner, 2019) we
have developed an implementation1 in the PyTorch frame-
work which we will describe again here. On the one hand,
we found that any recursive structure based on equation
1 does not allow efficient training. Even caching the Au-
tograd computational graph of the forward pass leaves us
with the high overhead of a recursive backward propa-
gation. On the other hand, computing Aα directly with
equation 2 recomputes many factorials each time. We pro-
posed an efficient implementation that splits the constant
and variable parts of equation 2. Equation 2 can be repre-
sented by the sum of multiplications of constants with the

1Code available at https://github.com/idiap/IdiapTTS.

2N -polynomial map of α which isα = (1 α α2 α3 . . . α2N ).
We designed this sum as the dot-product of the polyno-
mial map vector α along the third dimension of a constant
matrix A3D, which has the size (N x N x 2N).

Ak,l =
1

(l − 1)!

l∑
n=

max(0,l−k)

(
l

n

)
(k + n− 1)!

(k + n− l)!
(−1)n+l+kα2n+k−l

= A3D
k,lα,

A3D
k,l,2n+k−l =


1

(l−1)!

(
l
n

) (k+n−1)!
(k+n−l)! (−1)n+l+k if l-k ≤ n ≤ l,

n ≥ 0

0 otherwise.

(5)
The matrix A3D is computed once when the layer is

created. The forward pass consists of three steps:

1. Compute the polynomial map α (most efficiently by
using cumprod)

2. Compute Aα = A3Dα with the dot-product along
the third dimension

3. Compute one frame of warped mel-cepstrum coeffi-
cients x̃ = Aαx

The above three step computation can be efficiently par-
allelized across all time frames and the whole batch by us-
ing the batched version of the matrix-matrix and matrix-
vector multiplication. This is commonly implemented in
modern matrix computation frameworks. Only step 1 con-
tains a sequential operation, however, it is only sequential
for a single frame and can be parallelized across frames.
Additionally as the size of α is only 2N with usually
N <= 60 the computational cost is small. As we rely
only on PyTorch tensor implementations the gradient is
computed automatically by Autograd. With increasing
number N of mel-cepstral coefficients our implementation
becomes unstable due to high factorials in A3D and small
polynomials in α. A comparison with a matrix computed
recursively with equation 1 reveals that up to N = 35 the
error of our implementation is < 10−8 for values inAα and
< 10−5 for the gradients based on floating point precision.
The error quickly explodes for higher values of N . Moving
the computation into log-space does not solve the problem
as it compensates the error caused by the high factorials
but increases the error caused by the small polynomials.
We advise using double precision computation for N > 35.

4.1. Memory Consumption

Even though PyTorch’s Autograd computes the gradi-
ent automatically, we can look at the differential opera-
tions needed to estimate the required memory consump-
tion. Assume that we have received the gradient ∂L

∂x̃ = ∆x̃

of the loss w.r.t. the warped features x̃. We can now
back-propagate through the three steps above:
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Step 3
∂L

∂x
=
∂L

∂x̃

∂x̃

∂x
= ∆x̃ ∗AT

α , (6)

∂L

∂Aα
= ∆x̃ ∗ x = ∆Aα , (7)

Step 2
∂L

∂α
= ∆Aα

∗A3D = ∆α, (8)

Step 1

∂L

∂α
= ∆α·

(
0 1 2α . . . (2N − 1)α2N−2

)
. (9)

Looking at the memory we have to consider tensors
cashed by Autograd and gradients flowing backwards. We
denote T for the length of the sequence, B for the batch
size and N for the number of mel-cepstrum coefficients.
Cached values are Aα (T ×B ×N ×N), x (T ×B ×N),
A3D (N × N × 2N), and α (T × B × 2N). Gradients
are ∆x̃ (T × B × N), ∆Aα (T × B × N × N), and ∆α

(T × B × 2N). As N � TB the overall memory com-
plexity is O(TBN2)× 4 bytes for floating point precision.
In previous work (Schnell and Garner, 2019) we reported
memory problems when using our all pass warp layer. We
have since improved our implementation to achieve mini-
mal memory overhead.

4.2. Model Integration

We integrate our proposed all pass warp layer into TTS
neural network architectures by simply stacking it on top
(Figure 2). We denote the neural network that generates
acoustic features without warping as the pre-net. To gen-
erate a warping matrix we first have to predict a warping
value α on a frame-wise basis (α above). We use the out-
put of the penultimate layer of the pre-net as one of the
inputs to a fully-connected layer with a single output neu-
ron. The other inputs to the layer can be embeddings
that influence the warping. In our previous work we have
used speaker embeddings concatenated with the penulti-
mate pre-net layer output to use the all pass warping layer
for speaker adaptation. We will use the same configura-
tion in the zero-shot speaker adaptation experiments. Ad-
ditionally, we will use it with emotion embeddings to per-
form the emotion adaptation experiments. The activations
are passed through a tanh non-linearity and scaled to be
in a range that makes sense for the task. We have used
a scale of 0.2 in previous work because any higher warp-
ings result in very unnatural speech. Our implementation
allows multiple alpha layers that each predict an alpha
value. Performing two all pass warp transformations with
warping factors αi and αj is equivalent to a single all pass
warp with a warping factor of

α =
αi + αj
1 + αiαj

. (10)

Our implementation combines multiple warping factors
with equation 10 first and then builds a single warping ma-
trix to minimize computation. However, the experiments
in this work do not include multiple warpings.

Textual featuresSpeaker Emb

BAP LF0 V/UV MGC

+

α

A
P
W

Pre-Net

tanh

+scale

Aα

Emotion Emb

Figure 2: Network structure with an APW layer. The α parameter is
estimated per frame from the pre-network. The layer also has access
to some embeddings that influence the warping. The figure shows
the embedding for a multi-speaker emotional TTS system.

5. Experiment: Zero-shot speaker adaptation

In this experiment we investigate the use of an APW
in a modern encoder-decoder model for zero-shot speaker
adapation on WSJCAM0. Our hypothesis is that the
APW can play off its abilities in the zero-shot adaptation
scenario, because it generalises over speakers by design. At
the same time we want to prove its effectiveness with mod-
ern encoder-decoder models of the new paradigm, which
we were lacking in our preliminary work (Schnell and Gar-
ner, 2019). We expect to see a positive effect in new
paradigm encoder-decoder models as well, even though
they itself have better speaker adaptation capabilities com-
pared to the old paradigm models. We stress that, the
system being constrained essentially to vocal tract nor-
malisation, we have no hypothesis that it will outperform
other more capable techniques. Rather, we use difficult
speaker adaptation as a proof that the system is capable
of doing what VTLN is known to do, before applying it to
the core problem of emotion adaptation.

5.1. WSJCAM0 database

We use the big British English database WSJCAM0
(Fransen et al., 1994), because it resembles the same style
as the database we use in the other experiment (section 6).
We use only the head-mounted close-talking microphone
recordings of the training set consisting of 92 speakers with
90 utterances each. The audio was recorded at 16 kHz. To
compensate for loudness differences we use a loudness nor-
malization technique (Equation 11) to normalize all sam-
ples to an average root-mean squared value of RMS = 0.1.

x̃ = x ∗
√

T ∗RMS2∑T
(x− xmean)2

. (11)
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We also found background noise to degrade performance
in some of the recordings. To reduce the noise we use a
single channel spectral enhancement scheme (Cauchi et al.,
2015) to pre-process the entire database.

5.2. Features

We use Festival (Black et al., 1998) to extract phone
sequences from text, and HTK (Woodland et al., 1994)
to compute forced-alignments with context-independent
Hidden-Markov-Models. From the aligned phoneme se-
quences we generate question labels with 425 text-derived
binary and numerical features normalized to [0.01, 0.99]
and duration labels where we sum the duration of the
five states per phoneme to get phoneme durations. We
use the WORLD vocoder (Morise et al., 2016) (D4C edi-
tion (Morise, 2016)) for the extraction of log F0 (LF0),
30-dimensional MGC, and one Band Aperiodicity (BAP)
at 5 ms frame step. We interpolate LF0 before training
and add a binary V/UV flag to represent voicing informa-
tion. We perform mean/variance normalization for all but
V/UV. In all experiments waveforms are generated with
the WORLD vocoder. We were not able to produce better
waveforms with a WaveNet vocoder (van den Oord et al.,
2016) based on synthetic WORLD vocoder features.

5.3. Model architecture

We use a state-of-the-art encoder-decoder architecture
inspired by Tacotron2 (Shen et al., 2018). It consists of
a text-encoder, a reference encoder, an attention mecha-
nism, and a decoder. We describe all modules in detail in
the following.

5.3.1. Text-Encoder

The text-encoder is the same as in Tacotron2 but its
inputs are 128-dimensional phoneme embeddings. It con-
sists of three convolutional layers each containing 512 fil-
ters with shape 5 × 1, followed by Rectified Linear Unit
(ReLU) activation and batch normalisation. The last con-
volution is followed by a bi-directional LSTM with 128
units in each direction. This network should model the
question labels of the old paradigm, thus providing con-
text information at each step.

5.3.2. Reference encoder

We use a similar reference encoder as in the Tacotron
GST paper (Wang et al., 2018) followed by a VAE as in
(Battenberg et al., 2019). It consits of six CNN layers
with a 3× 1 kernel, 2× 2 stride, ReLU non-linearity, and
batch norm. The layers have 32, 32, 64, 64, 128, and 128
filters respectively. In contrast to other work we use 1D
convolutions because the MGCs are already low dimen-
sional and we do not want to blur frequencies together.
The convolutional layers are followed by a unidirectional
GRU where we take the last state as input to the VAE. A
linear layer predicts the 128-dimensional mean µ and log-
arithmic variance log σ2 of a diagonal Gaussian posterior.

The speaker embedding is produced by sampling from the
posterior (reparametrization trick of Kingma and Welling
(2014)).

5.3.3. Fixed Attention

A major difference of our model is that we used “Fixed
Attention”, which means that we build the attention ma-
trix from ground truth duration information generated in
the forced-alignment step. Watts et al. (2019) have re-
cently shown that this does not significantly deteriorate
the overall synthesis quality. We mainly use it to speed
up convergence and reduce the computational cost. We
broadcast concatenate the speaker encodings from the ref-
erence encoder with the text-encoder outputs and use the
fixed attention matrix to select an input for the decoder
side. We use the word ”select” here to emphasize that
each row in the fixed attention matrix is one-hot.

5.3.4. Autoregressive Decoder

The autoregressive decoder-RNN consists of one fully
connected layer of 512 ReLU units followed by a stack
of two uni-directional LSTM layers with 1024 units each.
Its output is projected through a linear transformation to
predict the target acoustic features. As we use a fixed
attention matrix we do not need a “stop token” predic-
tion. The decoder-RNN predicts a chunk of five frames at
a time. We found that this was necessary to achieve good
audio quality. Its previous prediction is passed through
an audio-encoder (often referred to as pre-net) containing
two fully connected layers of 256 hidden ReLU units and
a single uni-directional LSTM with 1024 units. We found
that this additional LSTM layer (compared to Tacotron2)
greatly improves the performance of our model. It can be
seen as moving the recurrent part of the attention network
into the text-encoder. We also interpret the loop of acous-

tic output
audio-encoder−−−−−−−−−→ hidden representation

decoder-RNN−−−−−−−−→
linear projection−−−−−−−−−−→ acoustic output as an auto-encoder, thus
both networks (the decoder-RNN and the audio-encoder)
should mirror each other or at least have similar capabili-
ties.

Our preliminary experiments showed an incompatibil-
ity of the autoregressive decoder with the APW. The APW
assumes that the pre-net outputs MGCs of an average
voice which are warped by the APW to the target speaker
identity. The autoregressive nature of the decoder requires
it to feed the generated acoustic features back to the pre-
net. As the model generates the next chunk of MGCs from
the pre-net input, that input has to be the average voice.
This is impossible during training because teacher forc-
ing uses the target speaker features as input. We found
that an autoregressive decoder trained in this configura-
tion generates a warping with a “loading” phase before it
reaches the desired warping over the chunk. In Figure 3
the autoregressive decoder outputs a chunk of five frames
per decoder step. In each step the warping starts from
near zero, then changes quickly for two frames, and then
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remains rather stable for the remaining two frames. We
assume this is caused by the teacher forcing target which
is very close to the target features in the next frame. Thus
it does not require much warping to adapt it to the tar-
get voice in the first frame. Over the remaining frames
of the chunk the network learned to predict an average
voice and combine it with a warping. During inference the
autoregressive input is not perfect and the loading phase
deteriorates the audio quality. Instead we are using a par-
allel decoder (described in the following section 5.3.6) for
our experiments which still outperforms the old paradigm
models (details in section 6.2).

Figure 3: Predicted warping value of an autoregressive decoder which
predicts a chunk of five frames per step. Each chunk shows a ”load-
ing” phase, where the first frame receives nearly no warping, then
the warping raises quickly to a stable value for the last three frames.
This behaviour shows the incompatibility of the APW with autore-
gressive decoders. Additionally the plot shows ground truth V/UV
(grey, hatched upwards) and predicted V/UV (red, hatched down-
wards).

5.3.5. Post-net

The predicted acoustic features are passed through a
post-net to predict an additive residual to smooth the over-
all reconstruction. We interpret it as the Maximum Likeli-
hood Parameter Estimation (MLPG) step when predicting
∆ and ∆∆ features. We use the same post-net architec-
ture as in Tacotron2. Five convolutional layers with 512
filters with a shape of 5 × 1, followed by TanH activation
on all but the last layer, and batch norm.

5.3.6. Parallel Decoder

Assuming an external duration model generating the
correct alignments allows us to remove the iterative at-
tention mechanism. This in turn opens up experiments
with non-autoregressive models necessary because of the
incompatibility of the APW with autoregressive models.
We investigate a parallel decoder structure recently used in
Karlapati et al. (2020); Qian et al. (2019). Details are not
given in Karlapati et al. (2020) thus we rely on the param-
eters in Qian et al. (2019). The parallel decoder consists
of three 5× 1 convolutional layers with 512 channels with
ReLU activation followed by batch norm. Instead of three
LSTM layers we use three bidirectional GRU layers with

1024 neurons to allow looking ahead. We use 50% dropout
in the convolutional layers as in Tacotron and 10% dropout
in the recurrent layers. As in the literature we do not use
a post-net with this decoder.

5.3.7. APW model

We stack the APW with an alpha range of ±0.2 on the
parallel decoder similar to Figure 2. We pass the output of
the last bidirectional GRU layer together with the speaker
embedding to the APW layer. We compare this model
(referred to as APW in the results) with the parallel de-
coder model without the APW (referred to as the baseline
system) in the zero-shot speaker adaptation task.

5.4. Training

The model is trained with an L1 loss on the predicted
acoustic features and a KL term on the VAE parameters
to push them towards a uniform Gaussian posterior. To
prevent posterior collapse we only take the KL term into
account every 200 steps starting after a warmup phase
of 25k steps. We train the model for 320 epochs (~160k
steps) starting with a learning rate of 1E−4 in teacher
forcing mode with the Adam optimiser (β1 = 0.9, β2 =
0.999, ε = 1E−8, no weight decay). We use a plateau
learning rate scheduler to reduce the learning rate by a
factor of 0.1 on validation loss plateaus. Because we rely
on fixed attention (see section 5.3.3) the model generates
features aligned with the target so that we can compute the
validation loss without teacher forcing for more accurate
results.

5.5. Zero-shot adaptation

For zero-shot adaptation we use speakers unseen during
training from the test set of WSJCAM0. For each speaker
we use the first sample (in alphabetic order) as input to the
reference encoder. We assume that the reference sample
is not transcribed, thus we do not apply any fine-tuning
to the model. We then synthesise the remaining samples
with oracle durations.

5.6. Subjective evaluations

To evaluate the impact of the APW we conduct two
subjective listening tests. In the first test we ask listeners
about their preference in terms of audio quality between
the baseline and the APW model. In the second preference
test listeners have to rate which of the models is closer to
the same sample generated by copy synthesis in terms of
speaker similarity. Both tests include a “no preference”
option.

The WSJCAM0 test set contains five male and eight
female speakers. We limit the listening test to samples be-
tween two and five seconds and a maximum of five samples
per speaker (based on alphabetic order). Based on these
two conditions we are left with two male speakers with four
samples, one male speaker with two samples, and two male
speakers with a single sample. We select a subset of five
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female speakers (again first in alphabetic order) with the
same distribution. The resulting listening test consists of
12 male and 12 female samples from five different speakers
each. 45 listeners rated nine randomly selected samples in
each of the tests.

The results show slight improvements in speaker simi-
larity at the cost of audio quality (Table 1). The improve-
ment in speaker similarity is more prominent for female
speakers (+7.2%) which also show a smaller gap in audio
quality (−1%). We found that the warping is especially
used to generate female voices (Figure 4), which also shows
that the warping is indeed used for speaker adaptation.
For male speakers the improvement is smaller (+5.2%) and
comes a the cost of a bigger audio quality drop (−4.1%).
The drop in audio quality is not surprising. When the
prediction comes closer to the target speaker it is moving
further away from the training speakers and the exposure
bias manifests itself in a drop of audio quality. The APW
proves itself to increase the generalisability of the model
in terms of speaker similarity.

Table 1: Preference test on speaker similarity and audio quality for
zero shot speaker adaptation on WSJCAM0 test speakers with 45
listeners and 9 samples per gender.

Speaker similarity
Baseline APW Same

female 22.1 29.3 48.6
male 25.7 30.9 43.4

combined 23.8 30.1 46.1

Audio quality
Baseline APW Same

female 29.3 28.3 42.4
male 36.1 32.0 31.9

combined 32.5 30.1 37.4

male female

0.00

0.05

0.10

0.15

al
ph

a

Figure 4: Use of alpha per gender on the test test.

6. Experiment: Emotion Adaptation

This work is based on the observation that some emo-
tions cause a shift of the first formant mean frequency. The
emotion recognition community has shown that the anal-
ysis of vowel’s formant frequency position allows detection
of high arousal emotions in German (Vlasenko et al., 2011)
and French (Bozkurt et al., 2011). We want to explicitly
model this shift with the proposed APW, because it is
an effective low-dimensional control for formant shifting.
While we can offer the controllability through the APW,
a-priori we do not know whether the model will be able
to infer the correct locations to apply the formant shift
from the textual input. Our hypothesis is that if it can,
we expect it to improve the generalisability of emotional
TTS models when trained on limited emotional data and
thus improve audio quality and expressiveness.

6.1. Database SAVEE

The Surrey Audio-Visual Expressed Emotion (SAVEE)
database (Haq et al., 2008) is an audio-visual British En-
glish database with sentences from TIMIT phonetically-
balanced for each emotion. For each emotion three com-
mon, two emotion-specific, and ten generic sentences (dif-
ferent for each emotion) were taken from TIMIT. For neu-
tral the three common and 2∗6 emotion-specific sentences
were additionally recorded, giving 30 neutral sentences in
total. Four male (postgraduate students and researchers)
acted in seven different emotions (neutral, anger, disgust,
fear, happiness, sadness, and surprise) resulting in a total
of 480 utterances. The audio was recorded at 44.1 kHz.
We do not use the visual information of the database. In
SAVEE the recordings of speaker ’KL’ are significantly
quieter than those of the other three speakers which can
have a negative effect on the training of a TTS system.
Thus we use the same loudness normalisation and back-
ground noise reduction technique as on WSJCAM0 (com-
pare section 5.1). We work with the same input and output
features as described in section 5.2, but we also compute
dynamic features. For mean/variance normalisation the
parameters of the WSJCAM0 database are used, which
facilitates transfer learning described below.

As we base our work on the observation that some emo-
tions cause a formant shift, we first analyse if this shift
is also observable in the SAVEE database. We use the
PRAAT speech analysis software (Boersma and Weenink,
2017)2 to extract the first and second formant (F1 and
F2) for vowel phonemes for the six different emotion (Fig-
ure 5). We draw the vowel triangle between the phonemes
/ii/, /oo/, and /a/. The light grey triangle corresponds to
neutral speech. One can see that for most emotions parts
of the triangle were shifted. We see the same F1 shift
for angry speech as reported in Vlasenko et al. (2011).

2In combination with https://github.com/mwv/praat_

formants_python.
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Figure 5: Analysis of the first and second formant frequency in Hz of vowel phonemes for the six different emotions. Light grey corresponds
to the vowel triangle of neutral speech.

These observations show that emotions also caused a for-
mant shift in English and that the SAVEE database is a
suitable choice for our experiment.

6.2. Model architecture

Preliminary experiments showed that encoder-decoder
models are not able to generate emotional speech from the
limited amount of SAVEE data. Due to their high capac-
ity they quickly overfit the training data before adapting
to the new speaking styles. Thus we are investigating only
an RNN-baseline model of the old paradigm here. We use
a commonly known RNN-based speech synthesis system
(Zen et al., 2013) as the baseline system which has been
used as well in recent studies of emotional speech synthesis
(Lorenzo-Trueba et al., 2018; Henter et al., 2018). Henter
et al. (2018) has compared supervised training of the base-
line system with unsupervised training of VQ-VAE-based
(van den Oord et al., 2017) models on a Japanese single-
speaker emotional database (Barra-Chicote et al., 2010).
They found that the unsupervised learned representations
achieve a slightly higher Mean-Opinion-Score (MOS) of
0.13 in terms of perceived speech quality. Thus we be-
lieve it is still valuable to report results on the selected
baseline system irrespective of the presence of newer VAE
or encoder-decoder models. This RNN-baseline has two
fully-connected layers with ReLU activation and 1024 neu-
rons, three BiLSTM layers with 512 neurons, and a final
97 dimensional output layer. 5% dropout is applied in all
but the final layer. All layers have a speaker and emotion
embedding concatenated to their input.

We compare the RNN-baseline to the same model with
an APW layer stacked on top. We will refer to this model
as RNN-APW from here on. The RNN-APW architec-
ture can be described well by Figure 2. All but the last

97 dimensional output layer are contained in the ”Pre-
Net” block, thus the last layer of the pre-net is an LSTM.
The output of the LSTM is concatenated with the emo-
tion embedding and passed to the APW layer. Giving the
emotion embedding only to the APW layer does not work
because other features like LF0 need to change with the
emotion as well. Instead emotion and speaker embeddings
are given to all layers in the pre-net. In contrast, the APW
only receives the emotion embedding and the intermediate
representation generated by the last layer of the pre-net.
No speaker information is explicitly given to the APW to
prevent it from speaker adaptation.

6.3. Training

To train a modern TTS system the SAVEE database
does not provide a sufficient variety of words, i.e. it is too
small. Thus we first pre-train on the WSJCAM0 database
(database details in section 5.1) to obtain a good TTS
system. We train the model with a batch size of 16 for 35
epochs with early stopping and a learning rate of 0.001.
The learning rate is reduced by a factor of 0.1 on validation
loss plateaus.

We split the emotion adaptation into two steps: adap-
tation to SAVEE neutral and adaptation to SAVEE emo-
tional. As we are only interested in the impact of the APW
on emotional TTS, we add it only in the second step.

First, starting from a pre-trained model on WSJCAM0,
we adapt only to the neutral part of the SAVEE database.
This allows the model to learn the unseen speaker iden-
tities and differing environmental conditions. We follow
a three step transfer learning procedure inspired by Chen
et al. (2019). At first we train only the speaker embed-
ding (10 epochs, lr=0.001), then we train the whole model
(10 epochs, lr=0.001), at last we train the whole model
with a reduced learning rate (10 epochs, lr=0.0001). In
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Figure 6: Normalised warping of the eight phonemes, which are most affected by valence, for the different emotions. The warping is
mean/variance normalised with the warping on neutral speech to remove the positioning effect described above. The red line indicates the
average warping over all eight phonemes. p-values of a two-sided t-test are displayed when p > 0.05.

each step we use early stopping and continue with the best
model. A batch size of 16 is used in all steps. Training
only the speaker embedding does not give good results. We
assume it is because the recording conditions of the two
databases are different. Environmental conditions like mi-
crophone noise and reverberations are consistent through-
out all speakers of the same database and thus can be en-
coded in the network weights. Adapting to a new database
is therefore only possible by fine-tuning the whole model.
The resulting model is capable of synthesising the four
SAVEE speakers in neutral speech. This model forms the
starting point for the second step: the adaptation to the
emotional part of the SAVEE database. We compare two
models on this task: 1) the unaltered RNN-baseline and 2)
RNN-APW, where we add the APW with an alpha range
of ±0.1. We adapt both models with the same three stage
transfer learning procedure as above, but this time using
the entire SAVEE database.

6.4. Results

We find that the RNN-APW model gives slight im-
provements for a few samples, but in general does not out-
perform the RNN-baseline. We observe that the model is
not making much use of the warping. We have tried to
encourage the model to make better use of the warping
with the following techniques:

• Different alpha ranges (±0.02, ±0.05, ±0.2): Con-
vergence might be better when the range matches
the maximum warping useful for emotion adapta-
tion so that the predictions are further away from
the steep part of the TanH.

• Speaker embedding as additional input: With addi-
tional speaker information the APW should be able
to predict a speaker and phoneme dependent warp-
ing.

• Scale alphas during inference: The predicted warp-
ing value gives an unprecedented control to change
the cepstrum. To increase the effect of the warp-
ing we scaled it globally by up to 1000%. However,
we found that the scaling did not result in more af-
fective speech, but instead became unnatural after
about 500% scaling. Sparser scaling might give the
desired effect but we currently do not have a method
to predict the right positions for it.

• Higher learning rate for APW layers: Directly after
initialization, the APW brings only more distortion
in the cepstrum for neutral speech. A faster training
of the APW layers should make them useful much
quicker so that the model does not converge to the
“no warping” local optimum.

• Gradient scaling at alpha: By increasing the gradi-
ent at the alpha prediction stage the rest of the net-
work receives more gradient from the APW branch,
so that it adapts more to it.

• Use APW for speaker and emotion adaptation: The
amount of emotional data might not be sufficient to
learn to use the APW for formant shifting. Instead
the APW can already be used for speaker adapta-
tion (in the first adaptation step), then, when adding
emotional samples (in the second adaptation step),
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the already known technique for speaker adaptation
can be used in a smaller quantity for emotion adap-
tation.

However, none of the techniques has changed the con-
verged model positively. Some have degraded the signal
quality instead. Given the essentially negative result, we
do not have a hypothesis that our model would outperform
other techniques in adaptation performance. Instead, we
attempt to understand what the transform has and has
not learned in order to charactersise the technique and to
know where to direct future research.

6.5. Statistic analysis of the warping per phoneme

Even though the APW does not improve the model,
we found that the warping is still partly used. In this
section we take a closer look on the statistics of the warp-
ing on a per-phoneme-basis. We found that even neutral
samples receive some warping. From the phoneme align-
ments we can collect the warping values per phoneme and
analyse them in a violin plot (Figure 7). The warping on
neutral samples seems to position the phonemes within the
vowel triangle (compare Figure 5). It can be observed that
phonemes as /o/, /oi/, /oo/, and /ou/ are warped nega-
tively, moving them down to the lower left corner of the
triangle, while /a/, /aa/, and /ai/ receive positive values.
This indicates that a part of the warping is used for the
phoneme positioning within the vowel triangle.

@@@ra aa ai e ei eir i i@ ii iy o oi oo ouow u uh ur uuuw
0.03

0.02

0.01

0.00

0.01
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neutral

Figure 7: Warping per vowel phoneme for neutral speech on SAVEE.

However, we also observe emotion dependent patterns,
which we analyse in the following. Emotions can be rep-
resented as categories, but also in a continuous space of
valence and arousal. Arousal is often explained as alert-
ness or “level of activity”. Valence corresponds to the at-
tractiveness/averseness of something. Thus high valence

emotions are positive emotions, e.g. happiness/joy. We
do not find correlation between the level of arousal and
level of warping. It is well known (Goudbeek et al., 2009;
Banse and Scherer, 1996; Johnstone and Scherer, 2000)
that arousal manifests itself primarily in a change of F0
mean, variance, and range. We compute the F0 statis-
tics per emotion and mean-variance normalise them w.r.t.
neutral (Figure 8). We see the expected higher mean, vari-
ance, and range for the high arousal emotions (anger, fear,
happiness, surprise). This shows that arousal manifests it-
self in F0.
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Figure 8: F0 statistics mean/variance normalised w.r.t. neutral for
the six emotions (a: anger, d: disgust, f: fear, h: happiness, n:
neutral, sa: sadness, su: surprise). High arousal emotions (anger,
fear, happiness, surprise) show higher F0 mean, variance, and range.

To investigate correlation between the warping an the
level of valence in the emotion we group the categorical
emotions into low (anger, disgust, sadness, fear) and high
(happiness, surprise) valence emotions and compute how
much vowel phonemes are affected in terms of mean F1
shift compared to neutral (Figure 9 left). We then compute
for which phonemes the difference in mean F1 is the most
between low and high valence emotions (Figure 9 right).
From those phonemes we select the eight with the highest
difference (/i@/, /@@r/, /aa/, /ei/, /@/, /oo/, /ow/) and
study their received warping. If the warping correlates
with valence, we expect to see the most warping difference
on these eight phonemes.

Indeed, we see that the average warping of all eight
phonemes (red line in Figure 6) corresponds to the level of
valence in the emotion. We observe high warpings for the
high valence emotions, but small or negative values for the
low valence emotions. The differences are statistically sig-
nificant (the p-value is displayed in the figure if it exeeds
0.05 in a two-sided t-test). The warpings are normalised
w.r.t. the warping on neutral, so that the phoneme posi-
tioning warping, described above, is not visible.

From our analysis we conclude that the warping is used
to position the phonemes within the vowel triangle and
also correlates with the level of valence in the emotion,
even though it does not improve the overall model perfor-
mance. From the analysis we develop the hypothesis that
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the APW can be used to increase the valence in an utter-
ance, but the model is not able to predict it at the correct
points in the utterance. This shortcoming is rooted in an
independent problem. While the emotion of an utterance
is not present in every word/phoneme, the database la-
bels the whole utterance as one emotion. The model now
has to infer which parts are actually emotional, which is
impossible from the limited amount of data.

7. Conclusion

We set out to characterise a neural all pass warp (APW).
We made two hypotheses for that matter: 1) The APW by
design generalises over different speakers, thus we expected
that it would improve the generalisability of multi-speaker
models, leading to improved speaker similarity and/or au-
dio quality in a zero-shot speaker adaptation task. This
hypothesis was demonstrated; listening tests showed su-
perior speaker similarity at a small cost of audio quality.
2) Emotions cause a formant shift, which can be mod-
elled explicitly with the APW. We expected to improve
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