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ABSTRACT

Automatic recognition of human emotion has a wide range of appli-
cations and has always attracted increasing attention. Expressions
of human emotions can apparently be identified across different
modalities of communication, such as speech, text, mimics, etc.
The ‘Multimodal Sentiment Analysis in Real-life Media’ (MuSe) 2021
challenge provides an environment to develop new techniques to
recognize human emotions or sentiments using multiple modalities
(audio, video, and text) over in–the–wild data. The challenge en-
courages to jointly model the information across audio, video and
text modalities, for improving emotion recognition. The present
paper describes our attempt towards the MuSe–Sent task in the
challenge. The goal of the sub–challenge is to perform turn–level
prediction of emotions within the arousal and valence dimensions.
In the paper, we investigate different approaches to optimally fuse
linguistic and acoustic information for emotion recognition sys-
tems. The proposed systems employ features derived from these
modalities, and uses different deep learning architectures to explore
their cross–dependencies. Wide range of acoustic and linguistic
features provided by organizers and recently established acoustic
embedding wav2vec 2.0 are used for modeling the inherent emo-
tions. In this paper we compare discriminative characteristics of
hand–crafted and data–driven acoustic features in a context of emo-
tional classification in arousal and valence dimensions. Ensemble
based classifiers were compared with advanced supervised autoend-
coder (SAE) technique with Bayesian Optimizer hyperparameter
tuning approach. Comparison of uni– and bi–modal classification
techniques showed that joint modeling of acoustic and linguistic
cues could improve classification performance compared to individ-
ual modalities. Experimental results show improvement over the
proposed baseline system, which focuses on fusion of acoustic and
text based information, on the test set evaluation.
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1 INTRODUCTION

Emotions are quintessential elements of communication among hu-
mans, and are expressed in different ways across several modalities.
Speech is one of the prime modes to convey the expression of emo-
tions, and hence their recognition in the acoustic content of signal
is gaining popularity in speech application areas. Human emotions
are paralinguistic phenomena which manifest distinctively over
varying temporal and spectral characteristics. Due to limitations
with representation and processing, extraction of human emotions
using traditional acoustic signal analysis method is challenging.
Recent trends have witnessed a growing interest in the field of mul-
timodal emotion recognition, which attracts extensive use of deep
neural networks (DNNs) to exploit the contrast between speech,
textual, and physiological modalities [1–7]. Speech and text based
modeling methods are more popular among all modalities for the
task of emotion recognition, as they imbibe prosodic and semantic
information, while giving significant improvements [8]. Studies
have been performed towards appropriate annotation of words
with emotion specific tags in arousal and valence dimensions [9].
Several studies have also been made on sentiment analysis over
videos, most of which utilize an automatic transcription pipeline,
followed by a concept extraction module, which leads to extraction
of emotions [10, 11]. Other studies, focused on fusing biological
signals with speech features to model the emotional state, rely on
the Long Short–term memory (LSTM)–Recurrent neural network
(RNN) model with attention mechanism to model contextual depen-
dencies [12]. Physiological signals have also been employed in an
end–to–end framework to derive arousal and valence states using
convolutional and recurrent layers [13]. To explore the efficacy
of proposed methods, cross–corpora studies have been performed
to examine the dependence of factors such as, emotion type, nor-
malization methods, languages, and speakers, towards emotion
recognition [14]. Considering significant results with combining
the linguistic and acoustic information towards the task of depres-
sion detection [15, 16], the present study explores different ways
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of fusion of speech and textual information for categorical sensing
emotions ’in the wild’ scenarios.

Multimodal Sentiment Analysis (MuSe) 2021 challenge [17] mo-
tivates towards integrating knowledge across audio–visual signals,
text, and physiology disciplines to attempt the challenges in emo-
tion recognition using multiple modalities. The challenge poses the
tasks of classification and regression towards emotion, physiologi-
cal emotion and stress and sentiment recognition. The current paper
targets the task Multi–modal Sentiment in–the–wild classification
(MuSe–Sent) sub–challenge to recognise emotions in the arousal
and valence dimensions. The challenge introduces a gold standard
fusion method, Rater Aligned Annotation Weighting (RAAW), for
continuous annotations, to improve the inter–rater agreement and
minimize the variance in annotator reaction times. The challenge
encourages unification of disciplines via fusion and exploit the
co–dependencies across different modalities. The challenge gives
late fusion results, obtained by aggregating the predictions from
different models trained individually on different feature set. The
baseline systems employ a LSTM–RNN based architecture to ex-
ploit the sequential information in the features. The LSTM–RNN
network is followed by a feed–forward layer which appropriately
gives sequence of logits, or single–valued prediction for regression
and classification tasks, respectively. Open source tools are used
to derive a wide–range of feature set for building a variety of base-
line systems. The features obtained across different modalities are
aligned with their labels using the Montreal Forced Aligner (MFA)
tool.

In this work, we build multiple systems for predicting emotional
state in the arousal and valence dimensions from linguistic and
acoustic cues. In addition to baseline feature provided by organizers
we utilize advanced wav2vec2 embedding, popularly used in state–
of–the–art ASR systems. Also, in order to map sequential data
into fixed–length acoustic feature vectors, we use Bag-of-Audio-
Words for acoustic feature modeling. We compare the modeling
of emotions using these features based on ensemble classifier and
supervised autoencoder (SAE).

Our major contributions to the challenge in this paper are as
follows:

• compare hand–crafted features and data driven DNN–based
acoustic embeddings in a context of acoustic information
based emotion recognition

• evaluating multiple feature representation techniques for
mapping frame–level to turn–level feature space

• compare ensemble classification methods with supervised
auto encoder (SAE) technique for emotion–recognition with
turn–level features

• selection of the most robust uni–modeling techniques for the
proposed feature space

• evaluating early– and late–fusion techniques for boosting
uni–modal classification techniques, combining evidences
from linguistic and acoustic based information.

The rest of the paper is organized as follows. Sec. 2 describes
the feature representations derived from the linguistic and acoustic
modalities, utilized in the subsequent studies. The section also de-
scribes themethods used to create different modules in the proposed
systems. Sec. 3 explains the dataset, evaluation metrics, methods

utilized to create proposed systems, and the experimental setup of
the baseline and proposed systems. Sec. 4 gives the results obtained
using different methods and systems. Sec. 5 gives a conclusion to
the paper.

2 METHODS

The section describes the acoustic and linguistic feature set, de-
rived from audio signals and the corresponding text transcriptions,
respectively. The section further discusses machine learning ar-
chitectures and principles, given in the baseline paper as well as
proposed in the current study, towards the task of emotion recog-
nition.

2.1 Features representation

2.1.1 Acoustic features. For modeling the acoustic information
for emotion classification in arousal and valence dimensions, we
decided to utilize hand crafted features provided with openSmile
toolkit [18] and state–of–the–art acoustic embeddings.

LLDs and LLDs x functionals: a set of hand crafted features
extracted on frame and turn level. Low–level descriptors (LLDs) ob-
tained from the signal, based on the Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS) [19], are extracted using the open–source
openSmile toolkit [18]. The parameter set eGeMAPS comprises
of 88 LLDs characterizing the frequency, energy, and spectral and
temporal behavior, of the signal. It is a minimal set of hand-crafted
features, reflecting on physiological changes in voice production,
and has proven effective for automatic voice analysis tasks [20].
The eGeMAPS parameters represent frame–level features, and addi-
tional mapping is required to extract segment level features. Along
with this, we use the ComParE [21] hand crafted turn–level feature
set. This set comprises of 6373 static features resulting from the
computation of functionals (statistics) over low–level descriptor
(LLD) contours.

Wav2vec2 features: we investigated framework for deriving
feature set based on self-supervised learning of representations
from raw audio data. The embedding framework has shown sig-
nificant potential while pre–training on unlabeled data for speech
recognition systems [22]. Recent studies have shown that wav2vec2
embeddings can effectively be used for robust emotion recognition
from speech [23].

2.1.2 Linguistic features. The semantic information in the available
transcriptions for the audio information, is captured using Bert
features.

Bert: set of natural language processing (NLP) features, to map
the sequential information in the transcriptions provided with the
challenge. Transformer language model, namely Bidirectional En-
coder Representations from Transformers (BERT) [24], which have
already been successfully used for a variety of NLP tasks, are used
to learn semantic representations from the text. BERT pre–trains
its deep representations on context of unlabelled text, and further
fine–tunes them on a broad selection of down–streaming NLP tasks.
The context–based representations are preserved, while yielding
one feature vector per word. The features are derived from the
last four BERT layers resulting in a 768 dimensional feature vector
analogous to the study in [25]. This is in contrast to static word
embeddings which give one vector per word independent of the
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Figure 1: The supervised autoencoder (SAE) network architecture. Acoustic or linguistic features are used as input to the SAE.

The target “y" is used to determine the supervised loss. The classification layer outputs the arousal/valence levels.

context. For MuSe–Sent, the base variant of BERT, pre-trained
on English texts, is used.

2.1.3 Turn-level features generation. Considering that most fea-
tures used in our study incorporate a frame–level information we
decided to employ several mapping techniques for generating turn–
level features

Bag-of-Audio-Words (BoAW): In order to capture the sequen-
tial information into fixed length feature vectors we used the BoAW
approach. These features have successfully been applied for various
speech applications such as, acoustic event detection and speech–
based emotion recognition [26, 27]. Audio chunks are represented
as histograms of acoustic LLDs, after quantization based on a code-
book. In our experimental study we used 100 and 50 samples per
codebook and kmean++ clustering for codebook generation. The
openXBOW toolkit is used for deriving BoAW representation [28].

Functional mapping For mapping word level BERT embed-
dings onto turn–level segments we decided to use a short list of
functionals. We applied 3 functional: average, mean and standard
deviation to map sequential information into fixed–length repre-
sentation. Hence a 768 × 3 = 2304 dimensional vector is used as
feature vector for NLP based techniques, henceforth referred as to
BERT funct.

2.2 Machine learning techniques

To select the most robust machine learning technique for emo-
tion classification we used set of state–of–the–art ensemble clas-
sification methods: RandomForest, AdaBoost and GradientBoosting.
The main goal of ensemble classification is to optimally weigh
the predictions of multiple base estimators, realised with different
architectures and learning algorithms, in order to improve general-
izability/robustness over a single estimator. As alternative machine
learning technique we utilize the supervised autoencoder network,
which has shown considerable generalization abilities for natural

language processing tasks [29]. The overall architecture of the pro-
posed SAE is shown in Fig. 1. The following subsections briefly
describes the components of training the SAE.

2.2.1 Supervised Autoencoder (SAE). SAE is an autoencoder (AE)
network where a supervised loss is imposed across the representa-
tion layer [30]. For networks with single hidden layer, the super-
vised loss operates upon the output layer, while for deeper AEs,
the supervised loss component is added to the bottleneck or the
innermost layer. A combination of the supervised loss and the
reconstruction loss effectively captures the underlying patterns
in the input data, along with improving upon modeling accuracy
of the input representation. The representations are learned in a
lower dimensional space 𝑘 from input x with dimension 𝑑 using
the transformation F 𝜖 R𝑑×𝑘 . The reconstruction learns an inverse
transformation𝑊𝑟 𝜖 R

𝑘×𝑑 along with the transform𝑊𝑝 𝜖R𝑘×𝑚 to
predict the target 𝑦. The SAE network combines the reconstruction
loss 𝐿𝑟 (𝑊𝑟 , 𝐹𝑥𝑖 , 𝑥𝑖 ) (where 𝑥𝑖 is training sample) and the supervised
loss 𝐿𝑝 (𝑊𝑝 , 𝐹𝑥𝑖 , 𝑦𝑖 ) (where 𝑦𝑖 is target) to improve generalization
while minimizing the reconstruction error. The objective function
is given as

1
𝑡

𝑡∑
𝑖=1

[
𝐿𝑝 (𝑊𝑝 , 𝐹𝑥𝑖 , 𝑦𝑖 ) + 𝐿𝑟 (𝑊𝑟 , 𝐹𝑥𝑖 , 𝑥𝑖 )

]
=

1
𝑡

𝑡∑
𝑖=1

[
∥𝑊𝑝𝐹𝑥𝑖 − 𝑦𝑖 ∥22 + ∥𝑊𝑟 𝐹𝑥𝑖 − 𝑥𝑖 ∥22

]
. (1)

The supervised loss aims to focus the representation learning to-
wards task oriented representations. SAE has successfully been
employed for several engineering tasks, such as image encoding
and classification, and language identification [29, 31].



2.3 Fusion techniques

In order to find appropriate combination of acoustic and linguistic
cues processing for robust bi–modal emotion recognition early
(𝐸𝐹 ) and late fusion (𝐿𝐹 ) techniques were used. In the case of 𝐿𝐹
techniques, weighted majority voting (𝑊𝑀𝐴) with two different
implementations:

• simple weights concept 𝐿𝐹𝑆𝑊 : posteriors obtained with
two different classification techniques were averaged, and
the class with highest posterior is selected as predicted out-
put.

• combinedweights concept𝐿𝐹𝐶𝑊 : posteriors obtainedwith
two different classification techniques are weighted and av-
eraged. Weights are determined by class–level classification
performance in terms of 𝑓 1 score. The highest weighted
posterior is selected as predicted output.

Hence, prior knowledge bout the prediction performance of the
classifier is needed the second concept have been used for the
evaluations on the test set.

3 EXPERIMENTAL SETUP

The section introduces the dataset and evaluation metric used for
the study. A brief description of the baseline systems provided with
the challenge is also presented in the section. A further description
of the proposed methods and techniques is also presented.

3.1 Dataset

The MuSe–Sent sub–challenge uses the Multimodal Sentiment
Analysis in Car Reviews (MuSe–CAR) dataset which contains al-
most 40 hours of multimodal data, annotated with the correspond-
ing emotions. The dataset was created in–the–wild with the goal of
Multimodal Sentiment Analysis. The dataset comprises of a selec-
tion of videos from YouTube along with metadata information about
the speaker’s age, nativity, dialect, camera shot range and angles,
scene settings, and additional noise and settings. The dataset is
automatically transcribed at word level using the Google Cloud
speech API, and Amazon Transcribe, for verbal and non–verbal
(laughter, music, etc.) elements. The transcriptions include the dura-
tional timestamps for words, and appropriate punctuation. Further
annotation of the data for the emotion dimensions, speaker charac-
teristics, and topics and entities, is performed manually. Software
tools, such as ELAN and DARMA are used to annotate multimodal
data for categorical information, and continuous emotions, respec-
tively. The challenge requires to predict among 5 sentiment classes
for the valence and arousal emotion dimensions, at a segment level.
The continuous dimensional are mapped to categorical representa-
tions for emotion for either dimensions based on the unsupervised
clustering of time–series features extracted from the input data.
Separate clustering techniques were applied for arousal and valence
dimensions. The classes are identified using numeric labels in a
range 0..4 used in MuSe–Sent, and do not correspond to the degree
of emotional expression in arousal or valence dimensions, but to
the cluster centroids. The ground truth is created by mapping a
continuous space of annotated emotions to a categorical representa-
tion, via unsupervised clustering over time–series features obtained
over segments of data. Tab. 1 gives the partitions of data utilized
for training.

Table 1: Distribution of instances across training and de-

velopment sets, in valence and arousal dimensions for the

MuSe–Sent sub–challenge, for different classes (cl)

Arousal Valence

cl Train Devel Test cl Train Devel Test
0 612 249 – 0 528 71 –
1 534 135 – 1 552 159 –
2 312 96 – 2 1178 458 –
3 1255 388 – 3 1112 405 –
4 1494 467 – 4 837 242 –
Σ 4207 1335 1260 Σ 4207 1335 1260

3.2 Evaluation metrics

The classification task MuSe–Sent is evaluated in terms of f1
score (macro), an evaluation measure commonly used for class–
imbalanced data. The ultimate goal of the challenge is to reach the
highest possible average 𝑓 1 score over all 5 classes.

3.3 Baseline systems

The challenge provides baseline systems which can be used to
evaluate the classification performance of features and networks
for emotion dimensions. Time–series acoustic features are derived
at segment level from the input data. These features are further
normalized, and transformed to a denser space using PCA, to ob-
tain 5 clusters. Single channel audio is extracted from the video
recordings, and acoustic features are extracted using openSMILE
and DeepSpectrum tools. For acoustic data, handcrafted features
( eGeMAPS acoustic parameter set, comprising of 88 dimensional
features), deep features ( 4096 dimensional DeepSpectrum features,
based on convolutional neural networks (CNNs) ), and VGGish
features (128 dimensional embeddings, obtained from log spectro-
grams), are derived. Textual features, derived over the annotations
in the dataset using a Transformer language model, are also used
in contrast to acoustic features. The BERT method, pretrained on
context of unlabelled text, is used to derive a 768 dimensional fea-
ture vector. The acoustic and linguistic features are fused in an
early/late manner to achieve a desirable classification across va-
lence and arousal emotion dimensions.

The baseline systems are designed using a Long Short–Term
Memory (LSTM)–RNN based architecture, with a hidden state di-
mensionality within the range ℎ = {32, 64, 128}. Different systems
with LSTM–RNN layers (𝑛) varying in 𝑛 = {1, 2, 4} are trained.
The learning rate is varied across 𝑙𝑟 = {0.001, 0.005, 0.01}. The
sequence obtained from the final LSTM–RNN layer is connected
to a feed–forward layer to obtain a target classification label. The
features are aligned with the labels and are provided as a part of the
MuSe–Car sub–challenge. Repetition of features over a duration
length and zero–padding to frames with unavailable features is ap-
propriately done. The organizers mentioned that the best possible
score (𝑓 1 = 38.27) for emotional arousal prediction could be ob-
tained just with deep representation BERT features, which captures
context–based representation per word (for more details see Tab 2).



Table 2: 𝑓 1 scores obtained on the development set for uni-

modal techniques and baseline systems. Abbreviations: rb-

reported in baseline paper, o-obtained, Aro - arousal, Val -

valence, Comb - combined

MuSe–Sent

Features Classifier Aro Val Comb

Baseline systems

DeepSpectrum(rb) LSTM 33.5 30.2 31.9
DeepSpectrum(o) LSTM 23.2 19.2 21.2
eGeMAPS(rb) LSTM 36.0 32.9 34.5
eGeMAPS(o) LSTM 20.2 22.0 21.1
Bert(rb) LSTM 38.3 32.7 35.5
Bert(o) LSTM 23.3 16.3 19.7

Proposed systems

BERT funct ensemble 31.2 31.9 31.5
BoAW(Bert) ensemble 33.1 30.3 31.7

BoAW(eGeMAPS) ensemble 33.9 30.1 32
BoAW(Wav2vec2) ensemble 32.7 31.1 31.9
BoAW(eGeMAPS) SAE 34.1 32.6 33.4
BoAW(Wav2vec2) SAE 32.7 31.1 31.9
BoAW(Bert)+
BERT funct SAE 35.1 30.8 32.9
ComPaRE SAE 35.3 31.2 33.2

3.4 Proposed systems

To improve upon the DNN based baseline systems in the base-
line paper, we experiment with a variety of acoustic features and
classification techniques. While attempting towards MuSe–Sent
task, we focus on using turn–level features for emotion recognition.
Hence, during first stage of our experimental study we extended
the set of acoustic features obtained by data–driven LLDs, with
wav2vec2– and turn–level functional feature set(ComParE). Af-
terwards, we implemented 𝐵𝑜𝐴𝑊 and functional mapping to the
linguistic and acoustic features to derive turn–level feature repre-
sentation. Two different configurations of BoAW codebook based
representations were evaluated: 50 codebook vectors extracted with
random sampling approach, and 100 codebook vectors generated
with k–mean++. For mapping word–level BERT feature into turn–
level representation in addition to BoAW concept we used func-
tional mapping concept.

The next challenge for us to select an appropriate machine learn-
ing technique for processing turn-level features. We chose to com-
pare the results obtained with a set of ensemble based classifiers
on one hand, and supervised autoencoder on the other. To select
the most robust ensemble classification techniques, the grid search
concept integrated in sklearn package was used. Tuning of hyper-
parameters for ensemble based classifiers was conducted within
10 fold cross–validation experiments on the training set. The best
configuration of the ensemble based classifiers was selected for ex-
periments conducted over partitions for training and development
sets, given by organizers.

The basic SAE architecture described in Fig. 1, is implemented
in PyTorch. Considering sufficient number of training samples, up

to 1000 epochs were used to tune the network parameters. To op-
timize the SAE architecture we optimize from a range of hyper
parameters as follows. The number of hidden layers: 1–5, learning
rate: 10−5–10−2, weight decay: 10−6–10−3 and activation functions:
‘relu’, ‘sigma’. Optimization of the SAE architecture was conducted
during training for each input feature set. We assume, that SAE
based classification techniques could provide a more stable classifi-
cation performance for in-balanced data sets like MuSe 2021 Sent
challenge.

3.4.1 Bayesian Optimizer (BO) . In the case of SAE, there are many
hyperparameters related to model design and optimization. AE
training and performance often benefit from hyperparameter tun-
ing to avoid over– and under–fitting. BO is a state-of-the-art hyper-
parameter optimization algorithm which has achieved competitive
performance on several optimizations benchmarks [32, 33]. BO
is a technique based on Bayes theorem, and works by building a
probabilistic model of the objective function, called the surrogate
function. This function is then searched efficiently with an acquisi-
tion function before candidate samples are chosen for evaluation
on the actual objective function.

Considering wide diversion of feature representation techniques
we also applied early fusion for acoustic and linguistic features dur-
ing selection of the most robust uni-modal classification technique.
Posteriors obtained with the most robust uni-modal classifiers were
used for late fusion of concepts introduced earlier.

4 EXPERIMENTAL STUDY

The section describes the results obtained using baseline systems
provided with the challenge. The section further discusses the con-
fusion matrices obtained using the proposed features and networks.
Considering the fact that the cardinality of classes is not related
to the emotional degree, the vicinity of classes in the confusion
matrices do not reflect close emotional level. The section finally
describes the 𝑓 1 scores on test dataset, obtained using fusion of
best techniques.

4.1 Baseline systems

We implemented the baseline systems provided with the challenge
using the suggested protocol. It is to be noted that the baseline re-
sults reported by the challenge paper couldn’t be recreated with the
given systems. We attempted to follow the experimental protocol
as guided by the challenge paper, but found different scores. Tab. 2
gives the 𝑓 1 scores obtained using the baseline systems (o), along
with the scores reported in the baseline paper (rb), using the given
features and systems.

4.2 Uni–modal systems

We further trained and evaluated our methods for the MuSe–Sent
sub–challenge training and development datasets. For our experi-
ments, we focused on features from acoustic and linguistic modali-
ties. Following the train–development partitioning that has been
obtained over the original data set, we processed 4207 samples for
training, and 1335 samples for validation.

During first experimental phase we compared k–mean++ (100
vectors codebook) and random sampling (50 vectors codebook) for
turn–level BoAW representation with ensemble based classification
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Figure 5: Confusion matrix for arousal prediction on the de-

velopment set for 𝐸𝐹 of acoustic and linguistic features us-

ing SAE classifier

techniques. We find out that k–mean++ based BoAW provides better
turn level representation. Hence, in the following experimental
study we decided to use 100 dimensional BoAW feature vector for
BERT, eGeMAPS andwav2vec2 feature representations. During the
second experimental phase, we find out that hand–crafted features
outperforms data–driven DNN based wav2vec2 features, over both
ensemble and SAE based techniques. Hence we decided to proceed
with hand–crafted features for the proposed acoustic based system
evaluated on test set.

Figure 6: Confusionmatrix for valence prediction on the de-

velopment set for 𝐸𝐹 of acoustic and linguistic features us-

ing SAE classifier

We performed emotion classification for arousal and valence
dimension using linguistic features derived using Bert, and BERT
funct, and acoustic features derived using eGeMAPS, over the
MuSe–Sent development set. Fig. 2 gives the confusion matrix
obtained using BERT funct features for prediction of emotion
classes in arousal dimension. A comparison of confusion matrix
obtained with BoAW representation derived over BERT (Fig. 3)
shows that the corresponding fixed length representation improves
upon the weightage across the diagonal of the confusion matrix.



Table 3: 𝑓 1 scores obtained on the development set for early- and late-fusion with combined audio and text analysis.

MuSe–Sent

Conf# Fusion Audio analysis Text analysis Arousal Valence Combined

Features Classifier Features Classifier

1 𝐿𝐹𝑆𝑊 BoAW(eGeMAPS) ensemble BoAW(BERT)+BERT funct SAE 36.3 31.5 33.9
2 𝐸𝐹 ComPaRE SAE BERT funct SAE 35.2 31.4 33.3
3 𝐸𝐹 BoAW(eGeMAPS) SAE BoAW(BERT)+BERT funct SAE 36.8 30.9 33.9
4 𝐿𝐹𝑆𝑊 BoAW(eGeMAPS) ensamble BoAW(BERT)+BERT funct SAE 36.5 31.8 34.2
5 𝐿𝐹𝑆𝑊 ComPaRE SAE BERT funct SAE 35.4 31.7 33.6
6 𝐿𝐹𝑆𝑊 BoAW(eGeMAPS) SAE BoAW(BERT)+BERT funct SAE 36.9 31.3 34.1

The BoAW based representation, however, does lead to increased
confusion between few classes, but overall results in higher f1. In
order to combine discriminative characteristics of the BERT and
BERT funct we decided to combine those two types of linguistic
features representation with early fusion (EF) approach. Hence,
results presented in Tab. 2 proves that combination of BoAW and
Functional based representation could improve overall 𝑓 1 score
for text based emotion recognition system. Confusion matrix for
the BoAW(eGeMAPS) (Fig. 4) shows that pure acoustic modeling
with representations obtained using eGeMAPS features could not
provide a good average f1 score distributed over all 5 classes.

Also, considering results presented in the Tab 2 one could see
that SAE approach provides better distribution of class–level 𝑓 1
scores in comparison with ensemble based techniques. Based on
results presented in Tab 2 we selected the set of the most robust
uni-modal classification techniques namely:

• audio information representation based on ComParE set,
BoAW(eGeMAPS) with SAE and Adaboost (ensemble) clas-
sifiers,

• linguistic information representation using BoAW(BERT)
with SAE classifier, and early fusion of BoAW(BERT) + BERT
funct with SAE.

Expressions of human emotions can apparently be identified
across different modalities of communication, such as speech, text,
mimics. In this talk, I’ll describe methods used for fusion linguis-
tic and acoustic information during participation in ‘Multimodal
Sentiment Analysis in Real-life Media’ (MuSe) 2021 challenge. In
our experimental study, just linguistic and acoustic information
was used. Selection of optimal suprasegmental features represen-
tation, machine learning techniques and fusion techniques will be
presented. Overview of knowledge-based acoustic feature repre-
sentation and corresponding toolkits will be provided. Finally, the
proposed multimodal system with fused acoustic and linguistic
information channels achieved 3rd place for Arousal and Valence
18th (out of 60 participants and 181 submissions).

4.3 Bi–modal systems

For improving upon the performances with baseline systems (Sec-
tion 3.3), and uni–modal systems (Section 4.2), we experimented
with joint modeling of acoustic and linguistic modalities. A bal-
anced fusion of performances over these modalities is expected to
yield even weightage across the diagonal of confusion matrices.

Early fusion (𝐸𝐹 ) for openSmile and BERT features have been used
to explore the ability of bi–modal modelling towards overall classi-
fication performance. Confusion matrices for 𝐸𝐹 based system with
openSmile and BERT features are presented in Figs. 5 and 6. As can
be noted from the figures, early fusion of acoustic and linguistic
features could improve diagonal representation for overall 𝑓 1 score,
compared to modeling only the acoustic information (Fig 4).

As a final step of out experimental study, we applied𝐿𝐹𝑆𝑊 in pair-
wise manner to top performing uni–modal modeling techniques.
Posteriors probabilities generated with SAE based classifier and
ensemble based technique were used to determine 𝐿𝐹𝑆𝑊 and 𝐿𝐹𝐶𝑊
components, and hence the predicted output.

The f1 scores obtained using the 𝐿𝐹 techniques for bi–modal
modeling on the development set are given in Tab. 3. The scores
illustrate significant improvement f1 performance with the joint–
modeling of different modalities. Among the classifiers used, SAE
gives better performance in discriminating among 5 classes, as
compared to ensemble classifiers. Finally, considering the results
obtained with bi–modal fusion of good performing linguistic and
acoustic based emotion classifiers, we chose the techniques giving
highest 𝑓 1 scores for test set evaluation. During final trial for MuSe
2021 Sent challenge we use late fusion technique with weighted
average posteriors. The systems chosen for evaluation of test set
are given in Tab. 3.

As noted from the Table 4 the best average 𝑓 1 score for arousal
prediction was obtained with 𝐿𝐹𝑆𝑊 for bi-modal modeling with
supervised auto encoder and BoAW(eGeMAPS) and combined NLP
feature set representation with BoAW(BERT) and BERT Funct. For
valence dimentionality prediction the best performance was ob-
tained with lafe fusion technique with complex weights approach.

5 CONCLUSIONS

In this paper, we studied multiple systems for predicting emo-
tional state in the arousal and valence dimensions using linguistic
and acoustic information. We extended investigations with acous-
tic feature representations with wav2vec2 and hand–crafted fea-
tures (ComParE). Our experimental results showed that wav2vec2
acoustic embeddings do not provide any noticeable gain over the
hand–crafted features for emotion specific information. In further
experiments, we experimented with uni–modal systems by using
an ensemble of classifiers to obtain improvement in performance.
Bi–modal systems are further experimented with the top perform-
ing uni–modal factors. We illustrated that the functional mapping



Table 4: 𝑓 1 scores obtained on the test setwith optimized con-

figurations. Abbreviations: 𝐴 - audio,𝑇 - text, 𝐿𝐹 late fusion,

𝑆𝑊 simple weights, 𝐶𝑊 combined weights

MuSe–Sent

Fusion Config Valence Arousal Combined

Baseline

best 𝐿𝐹 A+T - 30.29 32.87 31.6
Bert - 31.90 30.63 31.27

DeepSpectrum - 27.26 33.16 30.21
eGeMAPS - 25.80 31.97 28.89

Proposed

𝐿𝐹𝑆𝑊 6 27.92 33.68 30.8
𝐿𝐹𝑆𝑊 3 25.04 30.85 27.94
𝐿𝐹𝑆𝑊 3 26.75 32.78 29.77
𝐿𝐹𝑆𝑊 4 24.16 28.92 26.54
𝐿𝐹𝐶𝑊 6 28.01 32.53 30.27

concept in combination with bag-of-audio-words representation
improves the NLP based classification performance. With our exper-
iments over classifiers, we observed that supervised autoencoder
provides better generalization over acoustic and linguistic feature
space, given an unbalance of class instances in MuSe 2021 data set.

Bi–modal approaches are devised with fusing the best perform-
ing systems in the uni–modal approach, which lead to improvement
in performance. Presented experimental results show that combin-
ing acoustic and linguistic information processed with BoAW ap-
proach captures significant amount information related to arousal
and valence emotional dimensions. With the proposed late fusion
technique we were able to outperform the performance of baseline
(fusion of text and audio information) systems for arousal and va-
lence dimensions. The optimal system ranked 3𝑟𝑑 among all the
participants for the task of arousal state classification. However,
performance for emotion state classification in the valence dimen-
sion couldn’t reach a benchmark. The submission was placed rank
18, with the overall rank 16 among all entries. We are planning to
continue our work on more advanced audio and NLP based tech-
niques in order to improve classification performance for valence
emotional modality. Hence further studies are being planned to
improve the techniques to give a good combined performance.
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