
On-demand compute reduction with stochastic wav2vec 2.0

Apoorv Vyas 1,2,∗, Wei-Ning Hsu 3, Michael Auli 3, Alexei Baevski 3

1Idiap Research Institute, Switzerland
2Ecole Polytechnique Fédérale de Lausanne, Switzerland

3Meta AI
avyas@idiap.ch, {wnhsu,michaelauli,abaevski}@fb.com

Abstract
Squeeze and Efficient Wav2vec (SEW) is a recently pro-

posed architecture [1] that squeezes the input to the transformer
encoder for compute efficient pre-training and inference with
wav2vec 2.0 (W2V2) models. In this work, we propose stochas-
tic compression for on-demand compute reduction for W2V2
models. As opposed to using a fixed squeeze factor, we sample
it uniformly during training. We further introduce query and
key-value pooling mechanisms that can be applied to each trans-
former layer for further compression. Our results for models
pre-trained on 960h Librispeech dataset and fine-tuned on 10h
of transcribed data show that using the same stochastic model,
we get a smooth trade-off between word error rate (WER) and
inference time with only marginal WER degradation compared
to the W2V2 and SEW models trained for a specific setting. We
further show that we can fine-tune the same stochastically pre-
trained model to a specific configuration to recover the WER
difference resulting in significant computational savings on pre-
training models from scratch.
Index Terms: self-supervision, speech recognition, wav2vec2

1. Introduction
Self-supervised pretraining [2, 3, 4, 5, 6, 7, 8, 9] is a power-
ful technique that enables learning useful representations from
untranscribed audio. Pre-trained models can subsequently be
fine-tuned on a downstream task with supervised data such as
automatic speech recognition.

Currently, wav2vec 2.0 (W2V2) [2] is one of the most
well performing self-supervised learning approaches. W2V2
model comprises a convolutional front-end and a transformer
encoder that learns representations from raw audio data using
contrastive learning. However, the quadratic complexity of self-
attention computation together with the long sequences encoun-
tered in speech results in high computational requirements for
training as well as high latency for inference.

Recently, [1] improves the W2V2 architecture for efficient
training and inference. The proposed SEW architecture modi-
fies the convolutional feature extractor to improve latency. They
also introduce squeezing mechanism that downsamples the con-
volutional front-end output from 50Hz to 25Hz. This reduces
the computation for the transformer encoder. The output of the
encoder is upsampled with a linear layer to produce output at
50Hz. One downside to SEW is the WER degradation for sen-
sitive applications.

We propose to overcome this limitation with stochastic pre-
training and fine-tuning for W2V2 models. Deep neural net-
works with stochastic depth using layerdrop and block drops
have previously been explored in [10, 11, 12, 13] for efficient

* work done during internship at Meta AI

inference. In this work, we introduce stochastic compression
for on-demand compute reduction for W2V2 model. Stochastic
compression enables training a single model that can support
a number of operating points with a smooth trade-off between
WER and inference latency.

As opposed to training with a fixed squeezing factor, at
each iteration, we sample a squeezing factor S from {1 . . . Sf}.
Given the squeezing factor S, we compress the input to the
transformer encoder by this factor. Similar to SEW, the out-
put of the transformer encoder is upsampled to the original
sequence length using a linear layer. In addition to this, for
each transformer layer, we also introduce a stochastic pooling
mechanism that could be independently applied to queries and
keys-values in a decoupled fashion. In contrast to the squeez-
ing mechanism, we do this without introducing any additional
learnable parameters.

We show that stochastic pre-training and fine-tuning pro-
vides a smooth trade-off between WER and inference time with
only marginal performance degradation compared to the non-
stochastic variants. We further show that by fine-tuning the
same stochastically pre-trained model to a specific configura-
tion (operating point), we can get the same accuracy as the cor-
responding non-stochastic model. This removes the need for
pre-training multiple models, resulting in significant computa-
tional savings.

2. Our Method
We start with a brief background on the Squeeze and Efficient
W2V2 (SEW) model introduced in [1]. We then discuss the
proposed query and key-value mean-pooling to further reduce
the context length for the transformer layer. We finally present
the proposed stochastic compression for W2V2 training.

2.1. Squeeze and Efficient Wav2vec (SEW)

Wu et. al. [1] propose two main architectural changes to the
W2V2 architecture. First, they introduce compact wave fea-
ture extractor (WFE-C) that replaces the original W2V2 con-
volutional feature extractor (WFE-O). WFE-O uses the same
number of channels in all layers of its convolutional extractor.
WFE-C starts with a small number of channels c and doubles
the channel when the sequence length is downsampled by 4
times. WFE-C distributes the forward and backward pass com-
putation more evenly across layers resulting in a similar WER
as WFE-O while being much faster. In this work, we always
use WFE-C-c64-I1 as the compact feature extractor. We refer
the readers to section 4.4 of [1] for more details.

Next, they introduce Squeezed Context Networks to re-
duce the length of input sequence to the transformer encoder.
As shown in Fig. 1b, they introduce a squeezing mechanism via
a downsampling layer at the output of the convolutional encoder



CNN Feature Encoder

Features (50Hz)

Transformer

Output (50Hz)

(a) wav2vec 2.0

CNN Feature Encoder

Features (25Hz)

Transformer

Output (50Hz)

Downsample

Upsample

(b) SEW

Figure 1: Comparing (a) original W2V2 and (b) SEW model
architecture with a squeezing factor of 2.

to reduce the output rate from 50Hz to 25Hz. The downsam-
pled sequence reduces the memory and computational time for
the transformer encoder. The upsampling layer at the output of
transformer encoder produces outputs at 50Hz for contrastive
loss computation.

2.2. Basic Notations

We start by introducing basic definitions that we will later use
to define query and key-value mean pooled attention. Let us
denote the queries as Q ∈ RN×Dk , keys as K ∈ RS×Dk ,
and values as V ∈ RS×Dv , where N and S denotes the query
and key sequence lengths respectively. Dk and Dv denote the
embedding dimensions for keys and values respectively. The
attention output V ′ ∈ RN×Dv is given as follows:

A(Q,K, V ) = V ′ = softmax

(
QKT

√
Dk

)
V. (1)

Let us also define the mean-pooling or downsampling oper-
ator D(X,Sp) that takes as input a sequence X ∈ RN×Dx and
a pooling factor Sp to output another sequence Xp ∈ RNp×Dx

where Np = ⌈ N
Sp

⌉. Here ⌈a⌉ denotes the ceil operation. Note
that we may need to pad the signal appropriately. The i-th out-
put Xp

i is given by:

Xp
i =

Sp∑
j=1

X(i∗Sp)+j

Sp
∀i ∈ {1, . . . , Np}. (2)

Finally, let us define the upsampling operator U(Xp, Su)
that takes as input a sequence Xp ∈ RNp×Dx and an upsam-
pling factor Su to output another sequence X ∈ RN×Dx where
N = (Np ∗ Su). The i-th output Xi is given by:

Xi = Xp

⌊ i
Su

⌋ ∀i ∈ {1, . . . , N}, (3)

where ⌊a⌋ denotes the floor operation.

2.3. Query and Key-Value Mean Pooled Attention

The upsampling layer in the SEW architecture introduces some
additional parameters to the W2V2 model. In contrast to this,
we introduce query and key-value mean pooling during self-
attention computation which can be applied independently to

Table 1: Model hyper-parameters and pre-training times in
hours for base (B) and large (L) models. Sf refers to possi-
ble squeeze factors, Sq and Sk refer to the possible query and
key-value pooling factors. E and D refer to the model dimen-
sion and the number of layers (depth) in transformer respec-
tively. We estimate the pre-training times (PT) for 400K steps
for models trained on 8 NVIDIA V100 GPUs.

Model Sf Sk Sq E D PT (hr)
W2V2-B 1 1 1 768 12 117
W2V2-L 1 1 1 1024 24 172 1

SEW-B 2 1 1 768 12 83
SEW-L 2 1 1 1024 24 115

St-SEW-B {1,2} {1,2} {1,2} 768 12 100
St-SEW-L {1,2} {1,2} {1,2} 1024 24 140

each layer with no additional parameters. This allows for finer
control over the compression at each transformer layer.

Let us denote the query pooling and key-value pooling fac-
tors as Sq and Sk respectively. Given Sq and Sk, we first com-
pute the mean pooled queries, keys, and values as follows:

Qp = D(Q,Sq), (4)
Kp = D(K,Sk), (5)
Vp = D(V, Sk). (6)

The output V ′ ∈ RN×Dv for the pooled attention is:

V ′
p = A(Qp,Kp, Vp), (7)

V ′ = U(V ′
p , Sq). (8)

2.4. Stochastic Compression

In contrast to SEW models, where the squeezing factor re-
mains fixed during pre-training and fine-tuning, at each itera-
tion, we sample the squeezing factor uniformly from the set
{1, . . . , Sf}. Similarly, for each transformer layer we also sam-
ple the query and key-value mean pooling factors from the sets
{1, . . . , Sq} and {1, . . . , Sk} respectively.

3. Experiments
3.1. Models

We conduct experiments with W2V2, SEW, and our proposed
stochastically compressed (St-SEW) models with 12 and 24 en-
coder layers. For all models, we use WFE-C-c64-l1 as the
feature extractor. In Table 1, we describe the main hyper-
parameters for different classes of models. Note that we can
view W2V2 and SEW models as special cases of the stochastic
models with a specific setting of squeezing and pooling factors.

3.2. Pre-training

We pre-train models on 960h of Librispeech [14] dataset. We
use the same hyperparameters as W2V2 base [2]. To reduce
the computational requirements, our models are trained with 8
NVIDIA V100 GPUs using Fairseq [15] and PyTorch [16]. We
double the maximum tokens per batch and set gradient accumu-
lation steps to 4 to simulate 64 GPUs as used in [2].

1Estimated time. The model is unstable and pre-training diverged.



3.3. Fine-tuning

We add a linear layer to the top of the transformer encoder and
fine-tune the model for 20K steps using the CTC objective
[17] on the 10h subset of the Librispeech dataset. We use
the dev-other for model selection during fine-tuning. For
stochastically pre-trained models, we consider the following
two strategies for fine-tuning:

Stochastic Fine-tuning In this setting, we fine-tune stochas-
tically by sampling the squeezing and pooling factors similar
to pre-training. During validation, we use randomly selected
values for Sf , Sk, and Sq . This model allows for a smooth
trade-off between WER and inference time for different settings
of squeeze and pooling factors used during inference.

Deterministic Fine-tuning In this setting, we fine-tune the
model for a fixed configuration of squeeze and pooling factors.
In contrast to stochastic fine-tuning, this model can only be in-
ferred with the selected configuration. However, we find that
this gives better WER. Note that, for each configuration, we
fine-tune the same stochastically pre-trained model resulting in
significant computational savings as pre-training typically re-
quires more computational resources and time.

3.4. Evaluation

Similar to [1], we consider the following metrics: pre-training
time, inference time, and word error rate (WER) for model effi-
ciency. We report inference times (in seconds) on dev other split
using CTC greedy decoding on NVIDIA V100 with FP32 oper-
ations. We use the 4-gram language model (LM) and wav2letter
decoder [18] for decoding with language model (LM). Similar
to [1], we do not tune hyper-parameters when decoding with
LM. We use the default LM weight 2, word score -1, and beam
size 50.

3.4.1. Inference with Stochastic Models

For our proposed stochastically pre-trained models fine-tuned in
stochastic or deterministic settings, we provide inference time
and WER for various configurations of squeeze, query and key-
value pooling factors.

4. Results
In the following, we first analyze the performance of stochastic
W2V2 model for different query and key-value mean-pooling
choices. We then discuss the trade-offs for the stochastically
trained W2V2 model against the original W2V2 and SEW mod-
els. Finally, we present the WER results for Base and Large on
the clean and other parts of the Librispeech test sets.

4.1. How much query and key-value pooling?

We consider (a) {1, 2, 3} and (b) {1, 2} as the two choices of
key-value and query pooling sets to analyze the WER and infer-
ence time trade-offs for base models pre-trained for 100K steps.

In Table 2, we present the pre-training time (PT) for each
of these models. We can see that the pre-training time for both
(a) and (b) is quite similar. Both of these are faster than the
W2V2-B model and slower than the SEW-B model. This is ex-
pected because we occasionally sample the squeeze and pooling
factors as 1 in which case the computation time for our model
would be higher than that of SEW-B model.

Table 2: Comparing pre-training time for different choices of
query and key-pooling factors for St-SEW-B models trained for
100K steps

Model {Sf ,Sk,Sq} PT (hours)

W2V2-B {1},{1},{1} 29.2
SEW-B {2},{1},{1} 20.7
St-SEW-B-1-2 {1,2},{1,2},{1,2} 24.9
St-SEW-B-1-2-3 {1,2},{1,2,3},{1,2,3} 24.6

12 14 16 18 20 22 24
Inference Time (s)

24

26

28

30

W
E

R
 (%

)

W2V2-B

SEW-B

1-1-1
1-2-1

1-1-2
1-2-22-1-1

2-2-1

2-2-2

1-1-1

1-2-1
1-1-21-2-2

2-1-1

2-2-1
2-2-2

W2V2-B SEW-B St-SEW-B-1-2 St-SEW-B-1-2-3

Figure 2: We compare the different query and key-value pool-
ing options for St-SEW-B models trained for 100K steps. The
numbers near the datapoints denote the inference configuration
in the order: squeeze (Sf ), key-value pooling (Sk), and query
pooling (Sq) factors. We can see that using pooling factors of
{1, 2} results in a better performance trade-off.

In Fig. 2, we present the inference time and WER trade-offs
for different models. We plot the WER obtained on dev-other
split when the same model is then inferred with different val-
ues for squeeze (Sf ), key-value (Sk) and query pooling (Sq)
pooling factors indicated on the figures as triplet in the order
Sf -Sk-Sq . We also train the W2V2-B and SEW-B models for
comparison. We can see that the model trained with pooling
factors sampled from {1, 2} outperforms the model that sam-
ples pooling factors from {1, 2, 3}. We also see that the perfor-
mance for this model is similar to the non-stochastic W2V2-B
and SEW-B models. In all subsequent experiments, we always
choose the query and key-value pooling factors from {1, 2} .

4.2. On-demand compute reduction inference

In this section, we compare the WER and inference time
trade-offs for Base and Large models. We pre-train each
model for 400K steps followed by fine-tuning on the 10h tran-
scribed subset of Librispeech dataset. We use St-SEW-B-Ft and
St-SEW-L-Ft to denote the stochastic pre-trained models fine-
tuned in deterministic setting as discussed before. We evaluate
the inference time and WER for the following configurations of
(Sf ,Sk,Sq) factors: (a) (1,1,1), (b) (2,1,1) (c) (2,2,1) (d) (2,2,2).
We select (1,1,1) and (2,1,1) to compare against the W2V2 and
SEW models respectively. We then increase the query and key
pooling to further increase the overall compression resulting in
faster inference. We skip results for the (2,1,2) as it is very sim-
ilar to (2,2,1).

Fig. 3 shows the WER and inference-time for Base and
Large models evaluated on the dev-other portion of the Lib-
rispeech dataset. For Base models, the same stochastically fine-



12.5 15.0 17.5 20.0 22.5 25.0
Inference Time (s)

16

17

18

19

20

W
E

R
 (\

%
)

W2V2-B

SEW-B

1-1-11-2-1
1-2-22-1-1

2-2-1

2-1-2
2-2-2

1-1-1

2-1-1

2-2-1
2-1-2

2-2-2

(a) Base Model

20 25 30 35 40 45
Inference Time (s)

13

14

15

16

W
E

R
 (\

%
)

SEW-L
1-1-1

1-2-11-2-2

2-1-1

2-2-1
2-2-2

1-1-1

2-1-1

2-2-1
2-2-2

(b) Large Model

W2V2 SEW St-SEW St-SEW-Ft

Figure 3: WER and inference time tradeoff for different Base and Large models. The numbers near the datapoints denote the configura-
tion used during inference in the following orders: (Sf -Sk-Sq). We see that the stochastically trained model provides a smooth trade-off
between WER and inference times. Fine-tuning the pre-trained to a specific configuration of interest improves the WER significantly.

tuned (St-SEW) model performs only marginally worse than
W2V2 and SEW models when inferred using the corresponding
configurations. There is a bigger performance difference in the
case of Large models especially when Sf = 2 during inference.
However, the difference in performance can be recovered, if we
fine-tune the models to specific configurations (St-SEW-L-Ft).
Depending on the application requirements, we can choose dif-
ferent operating points (configurations) for an on-demand com-
pute reduction for a smooth trade-off in WER.

For Large models, we find that W2V2-L pre-training is un-
stable and diverges quickly. In contrast to this the stochastic
model pre-training and fine-tuning is stable. We always use
post-layer norm for Transformer encoder. In [2], for stable pre-
training, Large models are trained with pre-layer norm and con-
volutional front-end with extra normalization layers resulting in
significantly higher training time and inference latency.

4.3. Test Set Evaluation

Table 3: Inference times and WER result for base models on
other and clean test sets. We report the WER obtained using
greedy decoding as well as 4-gram LM (in parenthesis).

Inference (Sf ,Sk,Sq)

Model 1,1,1 2,1,1 2,2,1 2,2,2

Inference times (dev other)

(a) W2V2-B 23.9 - - -
(b) SEW-B - 13.6 - -
(c) St-SEW-B 23.5 14.0 13.3 12.6

Word Error Rate Results (test clean)

(d) W2V2-B 9.5 (5.0) - - -
(e) SEW-B - 10.2 (4.9) - -
(f) St-SEW-B 9.7 (5.1) 9.8 (5.2) 11.0 (5.4) 11.4 (5.4)
(g) St-SEW-B-Ft 9.4 (5.0) 10.0 (4.9) 10.8 (5.1) 11.2 (5.2)

Word Error Rate Results (test other)

(h) W2V2-B 16.7 (10.7) - - -
(i) SEW-B - 17.6 (10.8) - -
(j) St-SEW-B 16.8 (11.0) 17.3 (11.3) 19.0 (11.6) 19.9 (11.8)
(k) St-SEW-B-Ft 16.5 (10.8) 17.3 (10.8) 18.5 (11.3) 19.3 (11.7)

We present the WER obtained by Base and Large models on
the clean and other portion of the Librispeech test sets. From
Table 3, we see that similar to dev other, the WER for St-SEW-B
model is very close to W2V2 and SEW models in the corre-

sponding configurations. We also see that fine-tuning to specific
configurations (St-SEW-B-Ft) gives slightly better WER.

Table 4 presents the results for Large models where we find
that St-SEW-L does not perform as well when the squeeze factor
is set to 2. We suspect that the randomly selected values for Sf ,
Sk, and Sq during validation may cause the selected model to
be better for some configurations than other. However, we again
see that for St-SEW-L-Ft models, the performance is very close
to that of the SEW-L model.

Table 4: Inference times and WER result for large models on
other and clean test sets. We report the WER obtained using
greedy decoding as well as 4-gram LM (in parenthesis).

Inference (Sf ,Sk,Sq)

Model 1,1,1 2,1,1 2,2,1 2,2,2

Inference times (dev other)

(a) SEW-L - 22.0 - -
(b) St-SEW-L 41.7 22.9 21.3 20.1

Word Error Rate Results (test clean)

(c) SEW-L - 8.8 (4.6) - -
(b) St-SEW-L 8.5 (4.8) 10.2 (5.1) 10.4 (5.4) 9.8 (5.1)
(c) St-SEW-L-Ft 8.4 (4.7) 8.9 (4.5) 9.6 (4.7) 9.8 (4.8)

Word Error Rate Results (test other)

(d) SEW-L - 13.9 (9.1) - -
(e) St-SEW-L 13.6 (9.3) 16.2 (10.1) 16.6 (10.1) 16.3 (10.2)
(f) St-SEW-L-Ft 13.4 (9.1) 14.1 (9.1) 15.2 (9.5) 15.7 (9.9)

5. Conclusion
We proposed a stochastic compression technique for compute
reduction during W2V2 pre-training as well as for on-demand
compute reduction during inference. We show that stochasti-
cally pre-trained and fine-tuned models provide multiple oper-
ating points with smooth performance trade-off for different ap-
plications. We further show that fine-tuning the stochastically
pre-trained model to a specific configuration provides the same
WER as a model pre-trained and fine-tuned from scratch for the
same configuration.

Currently, we use the same squeeze and pooling factors for
all utterances. In future, we will explore techniques to adap-
tively choose the compression factors depending on the input
utterance to improve the WER and inference time trade-off.



6. References
[1] F. Wu, K. Kim, J. Pan, K. J. Han, K. Q. Weinberger, and Y. Artzi,

“Performance-efficiency trade-offs in unsupervised pre-training
for speech recognition,” 2021.

[2] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” in Proceedings of the international conference on Neural
Information Processing Systems (NeurIPS), 2020.

[3] Y.-A. Chung, W.-N. Hsu, H. Tang, and J. Glass, “An unsuper-
vised autoregressive model for speech representation learning,” in
Interspeech, 2019.

[4] A. T. Liu, S.-W. Li, and H. yi Lee, “Tera: Self-supervised learning
of transformer encoder representation for speech,” 2020.

[5] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning
with contrastive predictive coding,” 2019.

[6] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec:
Unsupervised pre-training for speech recognition,” in Interspeech,
2019.

[7] W. Wang, Q. Tang, and K. Livescu, “Unsupervised pre-training
of bidirectional speech encoders via masked reconstruction,” in
Proceedings of ICASSP, 2020.

[8] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdi-
nov, and A. Mohamed, “Hubert: Self-supervised speech represen-
tation learning by masked prediction of hidden units,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2021.

[9] A. Baevski, W. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli,
“data2vec: A general framework for self-supervised learning in
speech, vision and language,” 2022.

[10] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. Davis, K. Grauman,
and R. Feris, “Blockdrop: Dynamic inference paths in residual
networks,” 2018.

[11] A. Fan, E. Grave, and A. Joulin, “Reducing transformer depth on
demand with structured dropout,” in International Conference on
Learning Representations, 2020.

[12] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger,
“Deep networks with stochastic depth,” in European Conference
on Computer Vision, 2016.

[13] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethink-
ing the value of network pruning,” in International Conference on
Learning Representations, 2019.

[14] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in Proceedings of ICASSP, 2015.

[15] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grang-
ier, and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” in Proceedings of NAACL-HLT 2019: Demonstra-
tions, 2019.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in
Proc. of NeurIPS, 2019.

[17] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of
the 23rd International Conference on Machine Learning, 2006.

[18] V. Pratap, A. Hannun, Q. Xu, J. Cai, J. Kahn, G. Synnaeve,
V. Liptchinsky, and R. Collobert, “Wav2letter++: A fast open-
source speech recognition system,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2019.


