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Abstract: Optical projection tomography (OPT) is a powerful tool for biomedical studies. It
achieves 3D visualization of mesoscopic biological samples with high spatial resolution using
conventional tomographic-reconstruction algorithms. However, various artifacts degrade the
quality of the reconstructed images due to experimental imperfections in the OPT instruments.
While many efforts have been made to characterize and correct for these artifacts, they focus on
one specific type of artifacts, whereas a comprehensive catalog of all sorts of mechanical artifacts
does not currently exist. In this work, we systematically document many mechanical artifacts.
We rely on a 3D description of the imaging system that uses a set of angular and translational
parameters. We provide a catalog of artifacts. It lists their cause, resulting effects, and existing
correction methods. Then, we introduce an automatic calibration algorithm that is able to recover
the unknown system parameters fed into the final 3D iterative reconstruction algorithm for a
distortion-free volumetric image. Simulations with beads data and experimental results on a
fluorescent textile fiber confirm that our algorithm successfully removes miscalibration artifacts
in the reconstruction.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Conventional optical microscopy such as confocal microscopy is limited to the imaging of
relatively thin samples. This limitation can be partially overcome with optical projection
tomography (OPT) which was invented by Sharpe in 2002 [1]. Over the years, OPT has become a
mature tool for the production of high-resolution 3D images of biological samples at mesoscopic
scale [2,3] in a brightfield [4,5] or fluorescence [6–9] configuration. OPT is widely used in a
variety of applications, such as the mapping of the distribution of proteins in embryos [1,10],
the localization of metastases in lymph nodes [9], the display of vascular networks and amyloid
depositions in the mouse brain model to study Alzheimer’s disease [2], and the imaging of the
spatial arrangement of intestinal villi [3].

Since OPT is a tomographic-imaging technology, it falls into the same category as X-
ray computed tomography (CT), single-photon electron computed tomography and electron
tomography [1]. The contrast mechanism that these technologies rely upon is either the attenuation
or the emission function of rays of light. For OPT, the rays follow optical straight lines that are
geometrically only approximately straight. They project the 3D inner structure of the sample onto
a 2D detector plane. The mathematical tool to describe such a straight-ray projection is the Radon
transform [11]. The associated inverse problem is to reconstruct the 3D volume from the set of
2D projections acquired at various spatial positions of the sample. The discrete inversion formula
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of the Radon transform, the filtered backprojection (FBP) algorithm, is efficiently implemented
and widely used in practice [3,9,12].

While OPT achieves high-resolution 3D imaging at a relatively low cost [13,14], the recon-
structions often suffer from artifacts that impact the quality of the images due to several types of
model mismatch. Among them, mechanical errors in the imaging system play a non-negligible
role, especially in low-cost OPT systems [13]. The most common type of mechanical error is an
offset of the rotation axis which results in a misaligned center of rotation during the experiment.
This typically leads to distortions including double edges [7] or circles [15] in the reconstruction,
depending on the type of sample. Many 2D methods have been proposed to address this issue,
including maximum variance of a reconstructed slice under a set of guesses of the true rotation
[7,9], sinogram unification of both fluorescent and bright-field OPT [15], center of mass or image
registration [16], and total-variation regularization [17]. These 2D methods assume that the
tilt of the rotation axis is negligible. Their extension to small tilt angles introduces a height
dependence of the rotation axis [9,13]. For larger tilt angles, a method to account for tilt in 3D is
still missing. Another type of mechanical error that has not been well studied is the angular errors
of the rotation motor, which will result in seagull-shaped artifacts for point-like objects, as we
show in Section 2. Artifacts may also arise due to optical effects. For example, the assumption
that optical straight paths coincide with geometric ones need to be abandoned, thus requiring
variations of the conventional Radon transform [6,18–20]. Other types of model mismatch such
as mismatches in the refractive index [21–23], illumination fluctuations [7], spatial or temporal
variations of the sensitivity of the detectors, their linearity, and background noise [7,21] can lead
to various distortions as well, degrading the reconstruction quality.

In this paper, we first strive to provide a comprehensive catalog of many types of mechanical
artifacts as a reference for OPT practitioners to assist them to calibrate their experiments. We rely
on point-like objects (a very popular tool in the characterization of OPT setups) to demonstrate
the cause and resulting appearance of each artifact. Then, we introduce a 3D auto-calibration
algorithm to remove the artifacts due to mechanical errors listed in our catalog, for the convenience
of OPT experimentalists.

This paper is organized as follows. In Section 2, we first describe the imaging geometry of
OPT using a set of system parameters (angles and shifts). We point out typical places where
the most critical mechanical errors occur. Then, we present a catalog of artifacts along with a
detailed description of the three most common types of mechanical errors. In Section 3, we
introduce a 3D forward model that characterizes all sorts of mechanical errors and a corresponding
joint-reconstruction-calibration algorithm at coarse scale. It is able to recover the unknown set
of characterizing angles including the rotation and tilt angles. The refined system parameters
are then fed into the 3D reconstruction algorithm to achieve an image without miscalibration
artifacts at a finer scale. Results on both simulated measurements of beads and experimental data
of a fluorescent textile fiber are presented to validate our algorithms.

2. Characterization of mechanical artifacts

2.1. Common OPT geometry and reconstruction algorithms

The general OPT geometry is illustrated in Fig. 1. A 3D sample is placed in a rotating cylinder
and imaged on a camera. This camera records 2D projections of either the absorption of the
sample (transmission OPT) [18] or its emitted fluorescence (emission OPT) [6,24]. These
tomographic projections, not considering more intricate models of light propagation, are enabled
in reason of the very low numerical aperture of the OPT imaging system, in sharp contrast
with conventional optical microscopy. The sample is rotated around the axis of the cylinder for
tomographic reconstruction.

We place the sample in a 3D coordinate system (O − xyz) (Fig. 2). In an ideal setup [10], the
center of the cylinder is at O while the rotation axis would be perfectly parallel to the z-axis. In
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Fig. 1. Diagram of OPT. The light that passes through or is emitted by the sample gets
imaged on a CCD camera using a lens system. In this ideal configuration, a slice of the
sample perpendicular to the rotation axis corresponds to the information in the temporal
sequence recorded by a row of pixels on the CCD camera.

our refined model, the center of the sample cylinder is at G and its orientation is described by the
three angles θ = (ϕ,ψ1,ψ2) for a rigid-body rotation. The P-dimensional vector ϕ = (φ1, . . . , φP)
represents the set of P rotation angles around the rotation axis, one for each captured projection.
The tilted rotation axis is described by the remaining two angles ψ1 and ψ2 which are scalars
that represent the out-of-plane and in-plane tilt, respectively, common to all views. The detector
plane is described by a 2D coordinate system (O′ − ξη) that is perpendicular to the optical axis.

�

Fig. 2. OPT imaging system with mechanical errors. (The lens system is omitted here
for simplicity.) The cylinder represents the tilted sample that rotates around its orientation
axis. The center of the cylinder is translated to G. The detector plane is described by a
2D coordinate system (O′ − ξη) perpendicular to the optical axis (y axis). The projection
of O and G in the detector plane are O′ and G′, respectively. The angle ψ1 represents the
out-of-plane tilt angle between the orientation axis of the sample and the z-axis direction
(gray vertical arrow). The rotation angle ψ2 represents the in-plane tilt angle of the detector
plane around the optical axis.

Many reconstruction algorithms are available for OPT, from FBP [19,25] to optimization-based
methods [20,26]. They mainly come from the field of CT, a canonical tomography application
using X-rays with a similar parallel-beam geometry [27]. In the simplistic model where the
rotation axis is assumed to be aligned with the z-axis and when the in-plane tilt vanishes, one
horizontal plane of the sample corresponds to one line of the camera. Many reconstruction
algorithms thus operate on camera images line by line, reconstructing the object plane by plane.
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A mismatch between the geometry of the setup and that assumed by the reconstruction
algorithm obviously impact the quality of the final reconstruction. This induces artifacts that have
been reported previously in the literature, along with dedicated procedures to correct for them.

2.2. Previously reported artifacts and correction techniques

It may occur that the center of rotation (COR) G is off-center, which is a common issue for OPT
experiments. The consequences depend on the direction of this translation mismatch. A constant
shift in the x-axis direction (parallel to the detector plane) has been reported in both OPT [7,15]
and X-ray CT [16]. It will result in a constant shift in the 2D projections generating ringing
artifacts: each bright point in the sample will be imaged into a circle after OPT reconstruction.
For example, Tang et al. reported circles in the imaging of a zebrafish embryo [15]. Due to
the finite depth-of-focus in OPT, these circles may take different flavors. Walls et al. observed
a so-called double-edge artifact while imaging the cardiac region of a mouse embryo [7] and
Donath et al. observed tuning-fork artifacts of a point object [16]. A shift in the y axis (the
direction of light propagation) will result in out-of-focus blur artifacts due to limited depth-of-field
that is unique to OPT [18].

Different methods are available to correct for an off-center COR in both OPT and the field
of X-ray CT. Walls et al. proposed a heuristic method that calculates the variance of each
reconstruction of a 2D slice using a range of assumed shift values in a sinogram: the shift value
that produces the maximum variance serves as a close guess for the true shift [7]. This method is
fast to implement and yields satisfactory reconstructions when the volume is not too sparse; it is
commonly used as a preprocessing step by OPT practitioners [3]. The center-of-mass method is
another popular method to determine the center position in OPT. It is based on the property that
the center of mass of the object is projected onto the center of mass of the sinogram. Hence, a
shift of the object will result in a corresponding shift of the center of mass in the sinogram. This
constant shift is found by solving a linear system [16]. Other methods such as image registration
[16] and methods that take advantage of the symmetrical structure of certain samples [14] are
also used in OPT but with limitations because they require a priori information.

The tilt of the rotation axis in 3D can be described by a combination of the out-of-plane and
in-plane tilt. Only in-plane tilts of a small angle have been studied. With this assumption, each
transverse slice of the sample still approximately corresponds to a row of pixels on the camera;
then, the compensation of the 3D tilt reduces to the 2D problem of finding the true center of
rotation for each slice. This is done using the same techniques as for dealing with an off-center
COR. For example, Torres et al. [9] used the maximum-variance method [7] to find the COR at
two different heights. They then performed a linear regression to obtain the COR shift at any
intermediate horizontal plane.

Previous techniques are dedicated to the correction of a single type of mechanical artifact.
To the best of our knowledge, there has been no description of the effect of other tilt angles.
Moreover, the tilt-correction strategy is limited to small tilt angles, and no robust correction
method has been proposed yet.

2.3. Catalog of mechanical artifacts

The geometry of OPT is described by the three-dimensional coordinates G(xG, yG, zG) of the center
of the cylinder center and the angles θ = (ϕ,ψ1,ψ2). In this parameterization, all parameters are
fixed during an OPT acquisition except the rotation angles ϕ. To characterize different mechanical
imperfections, we introduce a catalog of the imaging artifacts that result from a mismatch between
the “true” value and the value assumed at reconstruction for each of the parameters of out
refined model. This catalog can be useful for experimentalists to identify artifacts they may
encounter in the reconstructions, so as to correct for them either experimentally (re-calibration)
or computationally. We summarize in Table 1 the results with references to previous works when
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relevant, accompanied with visualizations shown in Fig. 3 based on numerical simulations using
point-like beads, a popular tool to characterize OPT systems.

Fig. 3. Artifacts in the reconstruction of simulated beads due to a controlled mismatch
the geometric parameters of our refined model and the simplistic geometry assumed by
traditional reconstruction methods. (a)-(b) Circle artifacts due to a constant shift of −4
pixels (a) and 8 pixels (b) of the COR in the x direction. (c)-(d) Seagull artifacts due to
a negative (c) and positive (d) random accumulative error with maximum amplitude 0.03
degrees in the rotation angles. (e)-(p) Various artifacts due to the tilt of the rotation axis.
(e)-(h) Reconstruction at slice 192 (64 slices below the central slice). (i)-(l) Reconstruction
at slice 256 (central slice in z-axis). (m)-(p) Reconstruction at slice 384 (128 slices above the
central slice). The intensities of images are normalized and saturated for better visualization.

The numerical simulation is done using Tomosipo, a convenient and versatile tomographic
toolbox for 3D simulations and reconstructions of any geometric setup [30]. We use a ground-truth
object of 10 scattered beads of size 63 pixels in the FOV with their centers on the same plane
perpendicular to the z axis. This object is placed in a cube of size 5123 pixels. The number of
rotation angles is 1200 over the range of 0 to 360 degrees to generate a set of 2D projections.
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Table 1. Table of setup-related imaging artifacts and their dependence on the field
of view (FOV) and on height (location along the z axis).

Error Visual clues
Dependence

Reference
FOV z

Translation
x axis Circle, double edge

No No
[7,14–16,28]

y axis Out-of-focus blur [18,24,29]

z axis None N/A

Tilt of rotation axis
Out-of-plane ψ1 Various

Yes Yes
N/A

In-plane ψ2 Various [9,13]

Rotation angle Accumulative Seagull Yes No N/A

The location of this plane was moved along the z axis to observe the dependence of a certain type
of mechanical artifacts on the z location. We added different types of errors in the geometry of
the forward model to simulate a realistic imperfect OPT system. Then, we used the standard FBP
algorithm which corresponds to a generic imaging geometry with no correction of mechanical
errors.

Shifts along the x-axis (orthogonal to the axis of rotation and light propagation) result in circle
artifacts. The size of artifacts is uniform across the FOV; however, their severity, as is indicated
by the radius of the circle, depend on the absolute value of the shift. The larger it is, the bigger
the circle artifacts will be (Fig. 3(a) and 3(b)). This characterization can be applied to any object,
by considering it as a sum of point-like elements. For continuous samples, their borders will
appear as double edges as reported in previous OPT experiments [7]. Shifts along the y-axis
(direction of light propagation) cause an out-of-focus blur when parts of the sample move out
of the depth-of-field of the imaging system. Shifts along the z axis (rotation axis) cause an
overall shift of the reconstruction in the z direction, but do not generate artifacts as long as the
object is still within the field of view of the camera. Random vibrations may also blur the final
reconstruction. They can be included in our framework as a projection-dependent translation
error. This is different from the offset of the rotation axis that corresponds to a systematic error
shared across all projections.

The tilt angles ψ1 and ψ2 generate artifacts of different shapes, especially when the mismatch
is not small. To study the impact of the tilt of the rotation axis in different directions and levels of
severity, as well as its dependence on the vertical location along z axis, we moved the z location
of the beads to three different transverse slices: slice 256 (central slice), slice 192 (64 slices
below the central slice), and slice 384 (128 slices above the central slice). We added errors in the
two tilt directions described previously with two values: 5 and 10 degrees. The result is shown in
Fig. 3(e) – 3(p).

The first two columns of images of the second to the fourth rows in Fig. 3 show that an
out-of-plane tilt results in various artifacts that appear more severe close to the boundary of the
image. The next two columns of images of the second to the fourth rows in Fig. 3 show that
in-plane tilt in general leads to more severe artifacts of various shapes compared to the other
direction. The dependence of the size of the artifacts on the location along the vertical direction
is stronger than that of the tilt in the other direction. The central slice shows the least artifacts
in the third row of Fig. 3, while slices far away from it show bigger artifacts in the second and
last row of Fig. 3. As the tilt angle increases, the artifacts get stronger if we compare the first
two columns or the last two columns of the tilt images in Fig. 3. We notice the circle artifacts
in Fig. 3(g), 3(h) and 3(o) which indicate that, when the impact of the tilt is small, it can be
approximated by a shifted COR problem. In the case of a relatively large unknown tilt, such
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an approximation does not hold anymore, as seen in Fig. 3(p). To the best of our knowledge,
correction for the tilt in 3D has not been studied yet.

The last parameter describing our refined OPT geometry is the set of rotation angles ϕ. On
one hand, since each rotation angle is different for each camera image, a random mismatch on
this angle does not induce artifacts but introduces noise that degrades the image quality. On the
other hand, a miscalibration of the rotation motor may introduce a positive or negative drift in
the rotation angle, which accumulates over time. We simulated this kind of model mismatch and
observed seagull-shaped artifacts in the reconstruction (Fig. 3(c) and 3(d)). Depending on the
sign of the random accumulative error, the seagull is either “flying” toward or outward the center
of the image. The size of the seagull in each transverse slice depends on the distance of the bead
relative to the boundary of the object. The closer to the boundary, the bigger the seagulls will be
while the bead located at the exact center of the slice appears unaffected since it coincides with
the rotation axis (Fig. 3(c) and 3(d)).

In Section 3, we introduce an automatic calibration algorithm to correct for the mechanical
errors presented in Table 1. We start with a 3D forward model that fully characterizes our refined
OPT geometry, including the 3D tilt that is out of reach of existing 2D methods. Then, we
formulate the calibration of the system parameters as a multiscale joint reconstruction-calibration
optimization problem. This multiscale scheme allows us to overcome the memory bottleneck of
3D models and helps us to accelerate the calibration. Once the system is calibrated, we are able
to reconstruct an artifact-free volume.

3. Automatic calibration of mechanical artifacts

In this section, we propose a computational framework that automatically calibrates the parameters
of our refined model of an OPT imaging system. This framework is able to detect the model
mismatch between the simplistic forward model and the measurement data. It outputs a set of
calibrated system parameters and allows us to improve the reconstruction of the 3D volume. We
first show how to characterize the three types of mechanical errors mentioned in Section 2.3.
Then, we present our multiscale joint reconstruction-calibration algorithm and show how to
remove the artifacts in both simulated and experimental data.

3.1. Forward model and characterization of mechanical errors

The coordinate system to describe the OPT geometry is the same as described in Fig. 2. When
there exist mechanical errors in the system, we describe the angular errors as the perturbation
vector δ = (δϕ , δψ1 , δψ2 ). The actual angles θ = θ∗ + δ can be expressed as a sum of the error
vector δ and the ideal angle vector θ∗ = (ϕ∗,ψ∗1 ,ψ∗2) that characterizes a simplistic OPT system:
equidistant rotation angles ϕ∗ between 0 and 360◦ and ψ∗1 = ψ

∗
2 = 0. In addition, translation

error of the sample is described by a 2D vector t = (t1, t2) ∈ R2 in the detector plane.
We omit optical effects and complex PSF models to keep the forward model computationally

efficient, as is done in most OPT experiments. This omission is often acepted in the focal-sheet-
scanning OPT setup [31]. To fully characterize the mechanical errors, we adopt the 3D X-ray
transform Pθ that provides a mathematical description of the straight-ray projections of a sample
at any 3D pose [32] as

bθ, t(v) = Pθ {f }(v − t) + n, (1)

where the compactly supported function f (u) ∈ L2(R3), u = (x, y, z) represents the 3D sample to
be reconstructed. The measurement in the detector plane is bθ, t(v) for a location v = (ξ, η), a
given sample orientation θ, and a shift vector t. The additive random noise is n. To numerically
implement the forward model, we discretize Eq. (1) under a sampling framework described in
[33] and obtain the following linear system. The details of the derivation of Eq. (2) and the
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construction of the matrix H(θ, t) are provided in Supplement 1.

b = H(θ, t)c + n, (2)

Algorithm 1. Automatic Calibration

Calibration at coarse scale

(64X64X64) pixels

Update volume Update system parameters

Initial guess

angles θ0  

shifts t0

Calibrated

angles θopt

shifts topt

Reconstruction at finer scale

(256X256X256) pixels

Fig. 4. Workflow of the multiscale calibration-reconstruction algorithm. We first
perform a joint reconstruction-calibration at coarse scale. We then use the calibrated
mechanical parameters for the final high-resolution reconstruction.

Algorithm 1 Automatic Calibration

Require: 𝜽0, 𝒕0, b, 𝜆 > 0
1: 𝜽 = 𝜽0, 𝒕 = 𝒕0

2: while 𝜽 and 𝒕 not converged do
3: c← arg min

c∈R𝑁
{∥H(𝜽 , 𝒕)c − b∥22

}
4: (𝜽 , 𝒕) ← arg min

𝜽∈R𝑃+2 , 𝒕∈R2

{∥H(𝜽 , 𝒕)c − b∥22
}

5: end while
6: return 𝜽 and 𝒕

where b, n ∈ R𝑀𝑃 are the measurement and noise vectors of 𝑃 projections and where the243

system matrix H(𝜽 , 𝒕) ∈ R𝑀𝑃×𝑁 is a function of system parameters 𝜽 and 𝒕. The 3D volume is244

represented by a finite-dimensional coefficient vector c ∈ R𝑁 using the optimized Kaiser-Bessel245

window functions that are well suited for tomographic settings [34]. This choice of basis is246

convenient to compute analytic gradients for the tilt angles and shifts [32].247

3.2. Multiscale Calibration-Reconstruction Algorithm248

The measurement data generated by a real OPT experiment usually has a very large size. For249

instance, current cameras can acquire OPT images up to size 20482 pixels with pixel size less250

than 1𝜇m per projection [3]. Moreover, the rotation motor can achieve a step angle as precise251

as 0.3 degrees, resulting in 1200 projections. This means the storage of the vector b can take252

up to several tens of gigabytes. 3D reconstruction and calibration on such large datasets are253

either infeasible memory-wise on GPU or infeasible speed-wise on CPU. We thus propose the254

multiscale scheme illustrated in Fig. 4 to overcome the computational bottleneck. We first255

downsample the original measurement data to a computationally feasible scale and then run our256

automatic calibration algorithm at coarse scale. The inverse problem here is formulated as:257

c∗, (𝜽∗, 𝒕∗) ∈ arg min
c,𝜽,𝒕

{
1
2
∥H(𝜽 , 𝒕)c − b∥22

}
. (3)

The reconstruction pipeline is detailed in Algorithm 1. It consists of the recovery of the coefficient258

vector c by solving the optimization problem in Step 3 and calibrating the system parameters 𝜽259

and 𝒕 by solving another optimization problem in Step 4 in alternating fashion. We start with260

an initial guess for the system parameter 𝜽0 and 𝒕0 = (0, 0) that corresponds to a perfect setup.261

Inspired by the observations of Section 2.3, which indicate that the radius of the circle artifacts is262

directly related to value of the shift, we shift the projections over the range of values estimated263

from the severity of the artifacts, apply the FBP algorithm to observe the evolution of the circle264

artifacts in the reconstruction, then choose the value such that the circle artifacts are sufficiently265

suppressed as the initial guess for the value of the shift. This allows us to attain a relatively266

where b, n ∈ RMP are the measurement and noise vectors of P projections and where the
system matrix H(θ, t) ∈ RMP×N is a function of system parameters θ and t. The 3D volume is
represented by a finite-dimensional coefficient vector c ∈ RN using the optimized Kaiser-Bessel
window functions that are well suited for tomographic settings [34]. This choice of basis is
convenient to compute analytic gradients for the tilt angles and shifts [32].

3.2. Multiscale calibration-reconstruction algorithm

The measurement data generated by a real OPT experiment usually has a very large size. For
instance, current cameras can acquire OPT images up to size 20482 pixels with pixel size less
than 1µm per projection [3]. Moreover, the rotation motor can achieve a step angle as precise
as 0.3 degrees, resulting in 1200 projections. This means the storage of the vector b can take
up to several tens of gigabytes. 3D reconstruction and calibration on such large datasets are
either infeasible memory-wise on GPU or infeasible speed-wise on CPU. We thus propose the
multiscale scheme illustrated in Fig. 4 to overcome the computational bottleneck. We first
downsample the original measurement data to a computationally feasible scale and then run our
automatic calibration algorithm at coarse scale. The inverse problem here is formulated as:

c∗, (θ∗, t∗) ∈ arg min
c,θ,t

{︃
1
2
∥H(θ, t)c − b∥22

}︃
. (3)

The reconstruction pipeline is detailed in Algorithm 1. It consists of the recovery of the
coefficient vector c by solving the optimization problem in Step 3 and calibrating the system
parameters θ and t by solving another optimization problem in Step 4 in alternating fashion. We
start with an initial guess for the system parameter θ0 and t0 = (0, 0) that corresponds to a perfect
setup. Inspired by the observations of Section 2.3, which indicate that the radius of the circle
artifacts is directly related to value of the shift, we shift the projections over the range of values
estimated from the severity of the artifacts, apply the FBP algorithm to observe the evolution of
the circle artifacts in the reconstruction, then choose the value such that the circle artifacts are
sufficiently suppressed as the initial guess for the value of the shift. This allows us to attain a
relatively close initial guess for t in a fast manner, which is crucial for the convergence of the
calibration algorithm. Such a set of θ and t serves as a good initial guess for the calibration
algorithm, which is important to avoid local minima since 3 is a nonlinear optimization problem.

The alternating process is repeated until the system parameters are well refined. The calibrated
system parameters are then used to reconstruct an artifact-free 3D image by running an extra
Step 3 in Algorithm 1 at a finer scale, as described in Fig. 4.

https://doi.org/10.6084/m9.figshare.21552120
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Fig. 4. Workflow of the multiscale calibration-reconstruction algorithm. We first perform
a joint reconstruction-calibration at coarse scale. We then use the calibrated mechanical
parameters for the final high-resolution reconstruction.

3.3. Results on simulated and experimental data

To validate Algorithm 1, we simulate the ground truth as a 3D cube of size 5123 pixels in which
we have randomly inserted 150 fluorescent beads. A positive constant accumulative error of 0.05
degrees in the rotation angles and a constant shift of 8 pixels along the x axis are added to the
forward model to simulate a set of 300 projections of realistic OPT measurements. Then, we
downsampled the measurements to a coarse scale of (128 × 128 × 300) pixels using the Matlab
function imresize with bicubic interpolation and applied Algorithm 1. The initial guess was set
as described in Section 3.2. The reconstruction step of the algorithm is implemented using the
GlobalBioIm library, an open-source library that provides easy-to-use computational modules for
solving inverse problems in computational bio-imaging [35]. The calibration step uses functions
from the Cryo-Em-Refinement library [32].

In total, 10 global rounds of joint reconstruction-calibration were used, each of which composed
of only 30 iterations of reconstruction and 6 iterations of calibration to avoid overfitting in
the presence of model mismatch. After having obtained the calibrated system parameters, we
reconstructed the 3D volume at a finer scale (5123) using the FBP algorithm. In Fig. 5(a), we
show that the reconstruction without any calibration or shift correction contains both the circle
and seagull-shaped artifacts. The reconstruction with only naive shift correction (Fig. 5(b)) still
suffers from seagull artifacts due to residual model mismatch. After applying our calibration
algorithm, both the circle and the seagull artifacts are successfully removed all at once (Fig. 5(c))
and the reconstruction is very close to the ground-truth image in Fig. 5(d).

Fig. 5. (a) Reconstruction with circle and seagull artifacts at one slice (147) without
calibration. (b) Reconstruction result at slice 147 after a naive shift correction. (c) Calibrated
reconstruction at slice 147. Both the circle and seagull artifacts are successfully removed.
(d) Ground truth at slice 147. The intensities of images are normalized and saturated for
better visualization.

Despite the best effort of the experimentalists to calibrate the hardware system, the rotation
axis may still contain undesirable tilting which degrades the quality of the reconstructed OPT
images. Similar to the procedures in the simulation, we follow the steps in the flowchart in
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Fig. 6. Textile fiber data. (a)–(b) Snapshots of the 3D visualization of the reconstruction
results using the 2D FBP algorithm in a slice-by-slice fashion with no correction (a) and
correcting only for the center of rotation (b). (c) 3D reconstruction result using the calibrated
system parameters. The intensities of images are normalized and saturated for better
visualization.

Fig. 4 to further validate our algorithm on an experimental dataset of a fluorescent textile fiber
that contains errors in the the tilt angles. The data are acquired using a focal-sheet-scanning
OPT system [31]. It uses a lateral light-sheet illumination to reduce the out-of-focus blur in the
images, enabling the assumption of straight-ray projections for our forward model. We use 720
projections of size (256 × 256) that we downsample to a coarse scale of (64 × 64 × 720) pixels.
We used 6 global rounds of joint reconstruction-calibration, each composed of 30 iterations of
reconstruction and 5 iterations of calibration.

The 3D visualization of the reconstruction result of the fiber with an out-of plane tilt angle of
approximately 4 degrees is displayed in Fig. 6. Without any correction, the reconstruction shows
multiple ghost artifacts due to a combination of misaligned COR and tilt of the rotation axis in
Fig. 6(a). The severity of these ghost shadows are reduced after naive shift correction, as seen in
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Fig. 7. Convergence and accuracy. (a) Evolution of the cost function of the reconstruction
calculated based on 3 during the calibration process with (solid) and without (dashed)
calibration. (b) The calibrated in-plane tilt angle against the true in-plane tilt angle for 4
different values indicated by the triangles. The dotted line represents y = x. The closer the
triangles are to this line, the closer the calibrated angles are to the true angles.
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Fig. 6(b) but the top and middle parts of the reconstructed fiber still suffer from ghost shadows.
The 3D reconstruction using the calibrated system parameters output by Algorithm 1 effectively
removes all the shadows and achieves an artifact-free image. The evolution of the cost function
during the joint reconstruction-calibration is displayed in Fig. 7(a) and shows a 73% reduction
of the cost compared to the uncalibrated configuration. After 6 global rounds, the calibration
algorithm found an out-of-plane tilt angle of 3.7 degrees which is very close to the controlled 4
degrees. This further confirms that the calibration manages to reduce the model mismatch due to
tilt. Additionally, we repeat this process for four different tilt angles and display the results of tilt
calibration in Fig. 7(b). All four scenarios of different magnitudes and directions of tilt angles
led to success as the calibrated angle is very close to the controlled true value.

4. Conclusion

We presented a comprehensive study of certain geometrical artifacts in a poorly calibrated OPT
imaging system. We summarized our results in the form of a catalog by combining existing
results on the shifted center of rotation and our own contribution on the 3D tilt of the rotation
axis and the inaccurate rotation angles. In doing so, we are able to explain the various types of
mechanical artifacts, its appearance, cause, and properties, as well as the associated correction
methods. This catalog serves as a reference for OPT practitioners to gain insight into their
experimental setup and help them better calibrate their hardware system. To fill the vacancy of a
versatile computational method to account for all types of mechanical artifacts, we propose an
automatic calibration algorithm. It is based on a refined 3D mathematical model of the OPT
imaging geometry that is able to characterize mechanical errors in the system. Moreover, the
algorithm adapts to the large-size measurement datasets of OPT by performing the calibration
on a coarse scale to overcome the computational bottleneck, while the final reconstruction of
the 3D volume is achieved on a finer scale. Our multiscale calibration scheme has first been
validated on the synthesized bead data where we simulate the shifted center of rotation and
the imprecise rotation angles then successfully remove the resulting artifacts. We have further
applied our algorithm on an experimental dataset of a fluorescent textile fiber that suffers from a
tilted rotation axis, managing to detect the model mismatch and recover the true tilt angle. In the
visualization of the final reconstructed volume, the associated artifacts are taken care of and we
obtain a clean 3D image. In practice, to further improve the quality of the image, regularization
may be introduced in the final reconstruction. In principle, our automatic geometric calibration
framework can be adapted to other tomographic modalities, for instance, transmission OPT,
optical coherence refraction tomography [36] or optical diffraction tomography [37].
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