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ABSTRACT  populations  within  a  country.  However,  people  are  more  sedentary  
in  the  post-pandemic  world  with  the  prevalence  of  remote/hybrid  
work/study  settings,  making  detecting  simple  activities  less  mean-
ingful  for  context-aware  applications.  Hence,  the  understanding  
of  (i)  how  multimodal  smartphone  sensors  and  machine  learning  
models  could  be  used  to  detect  complex  daily  activities  that  can  
better  inform  about  people’s  daily  lives,  and  (ii)  how  models  gen-
eralize  to  unseen  countries,  is  limited.  We  analyzed  in-the-wild  
smartphone  data  and  ∼216K  self-reports  from  637  college  students  
in  fve  countries  (Italy,  Mongolia,  UK,  Denmark,  Paraguay).  Then,  
we  defned  a  12-class  complex  daily  activity  recognition  task  and  
evaluated  the  performance  with  diferent  approaches.  We  found  
that  even  though  the  generic  multi-country  approach  provided  an  
AUROC  of  0.70,  the  country-specifc  approach  performed  better  
with  AUROC  scores  in  [0.79-0.89].  We  believe  that  research  along  

Smartphones  enable  understanding  human  behavior  with  activity  
recognition  to  support  people’s  daily  lives.  Prior  studies  focused  
on  using  inertial  sensors  to  detect  simple  activities  (sitting,  walk-
ing,  running,  etc.)  and  were  mostly  conducted  in  homogeneous  
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the lines of diversity awareness is fundamental for advancing hu-
man behavior understanding through smartphones and machine 
learning, for more real-world utility across countries. 

CCS  CONCEPTS  
• Human-centered computing → Empirical studies in ubiqui-
tous and mobile computing; Smartphones; Empirical studies 
in HCI; • Social and professional topics → Geographic char-
acteristics; Cultural characteristics. 

KEYWORDS  
passive sensing, smartphone sensing, context-awareness, diversity-
awareness, model generalization, activity recognition, complex ac-
tivities of daily living, behavior recognition, distributional shift, 
domain shift 

1  INTRODUCTION  
The feld of activity recognition has gained substantial attention 
in recent years due to its usefulness in various domains, including 
healthcare [113], sports [138], transportation [79], and human well-
being [70]. For instance, ftness-tracking mobile health applications 
enable users to access activity-specifc metrics [110, 138]. Similarly, 
smart home systems can make changes to the environment (e.g., 
lighting, temperature) based on the information gathered about 
people’s activities [64, 80]. Context awareness, a key aspect of 
mobile phone user experience, is enabled with the integration of 
activity recognition [85, 125]. 

Traditionally, sensor-based activity recognition relied on custom 
sensors attached to the body [23]. While this approach is efective 
for small-scale studies, it is often challenging to scale up. The cost 
and maintenance required for these sensors can make them both 
expensive and obtrusive, reducing the motivation to use them. The 
alternative approach of using commercial wearables is not immune 
to these challenges, and these devices are often perceived as niche 
or abandoned after a short period of usage [25, 76]. This is where 
the presence of smartphones comes in handy. In the United States, 
85% of adults and 96% of young adults own a smartphone, making it 
easier to target a broader audience [17]. Research in mobile sensing 
has revealed the potential of smartphone data for activity recogni-
tion [70, 113]. The widespread ownership and unobtrusive nature 
of smartphones make them an attractive solution to traditional 
sensor-based activity recognition. However, there is still a need to 
understand how multiple sensing modalities in smartphones can 
be utilized for complex daily activity recognition. Additionally, the 
generalization of complex daily activity recognition models across 
diferent countries remains an under-explored area of research. 

Assi and Meegahapola et al. 

Recognizing complex daily activities is important. In the activity 
recognition literature, multiple types of activities have been consid-
ered, each at diferent granularity levels [33, 99]. Coarse-grained or 
simple activities like walking, sitting, or cycling are repeated uni-
tary actions directly measurable from a proxy (e.g., inertial sensor 
unit). Fine-grained complex activities, or activities of daily living 
(ADL), are built on top of simple activities, but convey more specifc 
contextual information [92, 99, 126]. For example, eating, studying, 
working, and movie watching entail participants sitting. Such activ-
ities can not be measured by inertial sensor units alone [9, 12, 73] 
and need a more holistic multimodal sensing approach that captures 
a wide range of contexts and behaviors that build on top of simple 
activities [99]. Further, recognizing such complex daily activities 
could: (i) allow tracking the digital well-being of individuals in a 
more fne-grained manner (e.g., providing a breakdown of time 
spent eating, resting, attending a lecture, and studying, instead of 
just sitting [12, 109]); (ii) provide context-aware user experiences 
and notifcations by understanding user behavior better (e.g., not 
sending phone notifcations when a person is studying or attending 
a lecture, suggesting products while a user is shopping [75]); and 
(iii) allow better content recommendation (e.g., recommending mu-
sic based on the current daily activity such as working, studying, or 
shopping [125]), where complex activities can be more informative 
and valuable than simpler ones. However, even though inertial, 
location, or WiFi/Bluetooth data have been used separately for ac-
tivity recognition [92, 99], prior work has not exhaustively studied 
complex daily activities by using multimodal smartphone sensing 
data. 

The use of multimodal smartphone sensing data in machine 
learning models could provide a more comprehensive picture of 
complex daily activities when compared to using single modalities. 
This is especially relevant in light of the Covid-19 pandemic, which 
has brought about a signifcant shift in daily habits and activities 
[112, 135]. The lockdown measures enforced to slow the spread of 
the virus resulted in a decrease in physical activity and an increase 
in sedentary behavior, particularly among young adults. This shift 
is evident in changes to smartphone use patterns [56, 95, 98], which 
can impact the efectiveness of location-based activity recognition 
methods in a remote/hybrid work/study setting where individuals 
tend to remain sedentary for extended periods of time. Hence, the 
importance of inertial and location sensors as predictive features 
could diminish due to sedentary behavior. This underscores the 
importance of incorporating fne-grained multimodal sensing fea-
tures to accurately characterize the complex daily activities of these 
emerging lifestyles through smartphones. However, there is cur-
rently little understanding of which smartphone sensing features 
are systematically useful in characterizing diferent complex daily 
activities. 

Taking a few steps back, we can also consider the “country” 
dimension and its infuence on smartphone usage. Country difer-
ences can afect smartphone usage in diferent world regions [66]. 
For example, it could be socially frowned upon to take a call at a 
formal restaurant in Japan, while people in Europe could leave a 
movie theater to check their phone [15]. It has been shown that 
people in Japan tend to be more reticent than in Sweden about talk-
ing on the phone in public transportation or, more generally, about 
being loud in public [8]. Another study about smartphone addiction 

https://doi.org/10.1145/3544548.3581190


               

            
         

           
          

         
            
          

          
      

         
         

     
           

        
         

         
           

            
       
        
         

        
         

         
         

     

         
           

   
         
         

      
        

            
      

         
  

         
        

          
          

         
         

          
         

      
         

           
          
          

            
               

              
               
               

             
          

          
      

         
              

         
        

           
          

           
         

       
        
        

        
         

          
           
         

           
         

         
          
       

   
        

           
          

       
             

       
         
         

           
         

           
        

        
       

         
           

          
   

             
          

        
          

       
          

         
 

            
          
           
        

             
            

Complex Daily Activities, Country-Level Diversity and Smartphone Sensing 

among young adults in 24 countries found that the rigidity of social 
norms and obligations highly infuenced smartphone usage [86]. In 
addition to how people use the phone, prior work also discussed 
how passively sensed behavioral data about people difer in many 
countries [3]. These diferences across countries constitute a form 
of diversity, which is a growing area of interest in computing and 
AI research [27] 1. From a machine learning point-of-view, a diver-
sifed system contains more information and can better ft various 
environments [43]. More generally, diversity-aware machine learn-
ing aims to improve the model’s representational ability through 
various components such as input data, parameters, and outputs 
[43]. Concretely, country-level, diversity-aware activity recogni-
tion should try to understand the efect of the country diversity 
of smartphone users, on inference model performance. However, 
the understanding of how country diversity afects the smartphone 
sensing pipeline (from collected data to model performance) is lim-
ited, as previous work aimed at quantifying such efects has been 
scarce [52, 70, 89], due to reasons including, but not limited to, lo-
gistical difculties in conducting longitudinal smartphone sensing 
studies with the same protocol in diverse countries. 

Our work uses a set of experimental approaches (country-specifc, 
country-agnostic, and multi-country, described in Table 1), and 
model types (population-level and hybrid, described in Section 5). 
With the support of rich multimodal smartphone sensing data col-
lected in multiple countries under the same experimental protocol, 
we address three research questions: 
RQ1: How are complex daily activities expressed in diferent coun-
tries, and what smartphone sensing features are the most useful in 
discriminating diferent activities? 
RQ2: Is a generic multi-country approach well-suited for complex 
daily activity recognition? To which extent can country diferences 
be accurately modeled by country-specifc approaches? 
RQ3: Can complex daily activity recognition models be country-
agnostic? In other words, how well do models trained in one or 
more countries generalize to unseen countries? 

In addressing the above research questions, we provide the fol-
lowing contributions: 
Contribution 1: We examined a novel smartphone sensor dataset 
and over 216K self-reports (including complex daily activities) col-
lected from 637 college students in fve countries (Denmark, Italy, 
Mongolia, Paraguay, and the United Kingdom) for over four weeks. 
To represent each activity self-report, we extracted around 100 fea-
tures by processing multimodal smartphone sensor data (Table 3). 
Moreover, we defned 12 complex daily activity classes based on 
participant responses, prevalence, and prior work. The list includes 
sleeping, studying, eating, watching something, online communi-
cation and social media use, attending classes, working, resting, 
reading, walking, sports, and shopping. On the one hand, we found 
that similar features are most informative for all countries for spe-
cifc activities (e.g., sleep, shopping, walking). On the other hand, 

1While we acknowledge that cultures can be multidimensional and exist in tension 
with each other and in plurality within the same country [131], some prior studies in 
mobile sensing, psychology, and sociology have used “culture” as a proxy to refer to 
the country of data collection [47, 52, 89, 118]. However, in this study, for consistency, 
we use “country” (a more specifc geographic region) as the unit of analysis that could 
afect phone usage behavior and sensing data. We also used the term “geographic” 
rarely, when appropriate and when referring to regions (i.e., Europe). 
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for some other activities, the most informative features vary across 
countries. Interestingly, however, they remain approximately simi-
lar across geographically closer countries. For example, the "sport" 
activity has the use of "health & ftness apps" as a top feature across 
European countries. However, the feature was not prominent in 
Mongolia and Paraguay, where such physical activity-related app 
usage is lower. This divide is also visible in the “watching some-
thing” activity, which is infuenced by the use of entertainment 
apps in European countries, and not in the other two countries. 
Contribution 2: We defned and evaluated a 12-class complex 
daily activity inference task with country-specifc, country-agnostic, 
and multi-country approaches (Table 1). We also used population-
level (not personalized) and hybrid (partially personalized) models 
to evaluate how model personalization afects performance within 
and across countries. We show that the generic multi-country ap-
proach, which directly pools data from all countries (a typical ap-
proach in many studies), achieved an AUROC of 0.70 with hybrid 
models. Country-specifc models perform the best for the fve coun-
tries, with AUROC scores in the range of 0.79-0.89. These results 
suggest that even though multi-country models are trained with 
more data, models could not encapsulate all the information to-
wards better performance, possibly due to the averaging efect of 
diverse behaviors across countries. The country-specifc approach 
consistently worked better. 
Contribution 3: With the country-agnostic approach, we found 
that models do not generalize well to other countries, with all AU-
ROCs being below 0.7 in the population-level setting. With hybrid 
models, personalization increased the generalization of models 
reaching AUROC scores above 0.8, but not up to the same level as 
country-specifc hybrid models. Moreover, even after partial person-
alization, we observed that models trained in European countries 
performed better when deployed in other European countries than 
in Mongolia or Paraguay. This shows that in addition to country 
diversity, behavior and technology usage habits could be what me-
diates the performance of models in diferent countries. In light of 
these fndings, we believe that human-computer interaction and 
ubiquitous computing researchers should be aware of machine 
learning models’ geographic sensitivities when training, testing, 
and deploying systems to understand real-life human behavior and 
complex daily activities. We also highlight the need for more work 
to address the domain shift challenge in multimodal mobile sensing 
datasets across countries. 

To the best of our knowledge, this is the frst study that focuses 
on the use of multimodal smartphone sensing data for complex 
daily activity recognition, while examining the efect of country-
level diversity of data on complex activity recognition models with 
a large-scale multi-country dataset, and highlighting domain shift-
related issues in daily activity recognition, even when the same 
experimental protocols are used to collect data in diferent coun-
tries. 

The paper is organized as follows. In Section 2, we describe the 
related work and background. Then, we describe the dataset in 
Section 3. In Section 4, we present the descriptive and statistical 
analysis regarding important features. We defne and evaluate in-
ference tasks in Section 5 and Section 6. Finally, we end the paper 
with the Discussion in Section 7 and the Conclusion in Section 8. 

https://0.79-0.89


            

Terminology  

 Complex  Daily  Activity 

Description  
 Based  on  prior  studies  that  looked  into  complex  activities  of  daily  living  [54,  92,  99],  we  defne  these 

 as  activities  that  punctuate  one’s  daily  routine;  that  are  complex  in  nature  and  occur  over  a non-
 instantaneous  time  window;  and  that  have  a  semantic  meaning  and  an  intent,  around  which context-

 aware  applications  could  be  built. 

 Country-Specifc 
 This  approach  uses  training  and  testing  data  from  the  same  single 

 model  without  leveraging  data  from  other  countries.  As  the  name 
 to  each  country  (e.g.,  a  model  trained  in  Italy  and  tested  in  Italy). 

 country.  Each  country 
 indicates,  these  models 

 has 
 are 

 its  own 
 specifc 

 Country-Agnostic 

 This  approach  assumes  that  data  and  models  are  agnostic  to  the  country.  Hence,  a  trained  model  can  be 
 deployed  to  any  country  regardless  of  the  country  of  training.  There  are  two  types  of  country-agnostic 

 phases: 
 (Phase  I)  This  phase  uses  training  data  from  one  country  and  testing  data  from  another  country.  This 

 corresponds  to  the  scenario  where  a  trained  machine  learning  model  already  exists,  and  we  need  to 
 understand  how  it  would  generalize  to  a  new  country  (e.g.,  a  model  trained  in  Italy  and  tested  in 

 Mongolia). 
 (Phase  II)  This  phase  uses  training  data  from  four  countries  and  testing  data  from  the  remaining  country. 

 This  corresponds  to  a  scenario  where  the  model  was  already  trained  with  data  from  several  countries, 
 and  we  need  to  understand  how  it  would  generalize  to  a  new  country  (e.g.,  a  model  trained  with  data 
 from  Italy,  Denmark,  UK,  and  Paraguay,  and  tested  in  Mongolia). 

 Multi-Country 

 This  one-size-fts-all  approach  uses  training  data  from  all  fve  countries  and  tests  the  learned  model  in 
 all  countries.  This  corresponds  to  the  setting  in  which  multi-country  data  is  aggregated  to  build  one 

 single  generalized  model.  However,  this  is  also  how  models  are  typically  built  without  considering 
 aspects  such  as  country-level  diversity. 
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Table  1:  Terminology  used  in  this  study  for  training  and  testing  approaches  and  target  classes.  

2  BACKGROUND  AND  RELATED  WORK  

2.1  Mobile  Sensing  
In  prior  work,  researchers  have  collected  and  analyzed  mobile  sens-
ing  data  to  understand  various  attributes  of  a  particular  population.  
Depending  on  the  study,  that  goal  can  be  put  under  coarse  cate-
gories  such  as  behavior,  context,  and  person-aspect  recognition  
[70].  Behavior  recognition  is  aimed  at  understanding  user  activities  
broadly.  Person  aspect  recognition  looks  into  understanding  demo-
graphic  attributes  (e.g.,  sex,  age,  etc.),  psychology-related  attributes  
(e.g.,  mood,  stress,  depression,  etc.),  and  personality.  Finally,  con-
text  recognition  identifes  diferent  contexts  (e.g.,  social  context,  
location,  environmental  factors,  etc.)  in  which  mobile  users  operate.  

Regarding  behavior  recognition,  there  are  studies  that  aimed  to  
capture  binary  (sometimes  three)  states  of  a  single  complex  activ-
ity/behavior  such  as  eating  (e.g.,  eating  meals  vs.  snacks  [9],  overeat-
ing  vs.  undereating  vs.  as  usual  eating  [74]),  smoking  (e.g.,  smoking  
or  not  [67])  or  drinking  alcohol  (e.g.,  drinking  level  [5,  90],  drinking  
or  not  [100]).  Another  study  used  the  action  logs  of  an  audio-based  
navigation  app  to  predict  its  usage  and  understand  what  drives  user  
engagement  [60].  Then,  regarding  person  aspects,  the  MoodScope  
system  [57]  inferred  the  mood  of  smartphone  users  with  a  multi-
linear  regression  based  on  interactions  with  email,  phone,  and  SMS,  
as  well  as  phone  location  and  app  usage.  Servia-Rodriguez  et  al.  
[108]  observed  a  correlation  between  participants’  routines  and  
some  psychological  variables.  They  trained  a  deep  neural  network  
that  could  predict  participants’  moods  using  smartphone  sensor  
data.  Additionally,  Khwaja  et  al.  [52]  developed  personality  models  
based  on  random  forests  using  smartphone  sensor  data.  Finally,  

context  recognition  is  aimed  at  detecting  the  context  around  be-
haviors  and  activities.  [72]  used  sensing  data  from  Switzerland  and  
Mexico  to  understand  its  relation  to  the  social  context  of  college  
students  when  performing  eating  activities.  More  specifcally,  they  
built  an  inference  model  to  detect  whether  a  participant  eats  alone  
or  with  others.  Similarly,  [71]  examined  smartphone  data  from  
young  adults  to  infer  the  social  context  of  drinking  episodes  us-
ing  features  from  modalities  such  as  the  accelerometer,  app  usage,  
location,  Bluetooth,  and  proximity.  In  this  case,  context  detection  
is  two-fold:  it’s  based  on  the  number  of  people  in  a  group,  and  
on  their  relationship  to  the  participant  (e.g.,  alone,  with  another  
person,  with  friends,  with  colleagues).  Similarly,  mobile  sensing  
studies  attempted  to  infer  other  contexts,  psychological  traits,  and  
activities  by  taking  behavior  and  contexts  sensed  using  smartphone  
sensors  as  proxies  [26,  49,  70].  

One  common  aspect  regarding  most  of  these  studies  is  that  they  
were  done  in  the  wild,  focused  on  two  or  three-class  state  inference,  
and  sensing  is  not  fne-grained  (i.e.,  using  behavior  and  context  
as  proxies  to  the  dependent  variable).  This  paper  follows  a  similar  
approach  with  a  dataset  captured  real  life,  using  multimodal  smart-
phone  sensor  data,  and  taking  behavior  and  context  as  proxies  for  
our  dependent  variable.  However,  in  this  study,  the  target  attribute  
entails  a  12-class  daily  activity  recognition  problem  that  is  complex  
and  novel  compared  to  prior  work.  In  addition,  we  are  interested  
in  examining  model  performance  within  and  across  fve  countries,  
with  and  without  partial  personalization.  
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2.2  Activity  Recognition  
Human activity recognition (HAR) aims to understand what people 
are doing at a given time. Large-scale datasets issued from the 
activity of smartphone users have a lot of potential in solving that 
task. This “digital footprint" has been used to re-identify individuals 
using credit-card metadata [30]: it has been shown that only 4 data 
points are required to re-identify 90% of individuals. While the 
same approach could be followed using smartphone sensing data, 
our main focus is activity recognition at a single point in time 
rather than using time series for re-identifcation. We will focus on 
two types of activity recognition techniques: wearable-based and 
smartphone-based [114]. 

2.2.1 Wearable-based HAR. In wearable-based activity recogni-
tion, the users wear sensors such as wearable accelerometers from 
which the data is analyzed and classifed to detect activities. For 
example, in healthcare, wearable-based HAR can be used to ana-
lyze gait and prevent falling or monitor physical activity and ob-
serve health outcomes [59]. The wearable-sensing trend emerged 
two decades ago and relied on custom-designed wearable sensors 
[38, 87], which were backed by encouraging fndings in health re-
search. With time, custom sensors were replaced by commercial 
ftness or activity trackers. Unfortunately, applying these fndings 
to real-world settings was rare due to the high cost of producing cus-
tom sensors, the difculty distributing devices to a broad audience, 
and their unpopularity among some users [25]. This restricted most 
studies using wearables to performing experiments in a controlled 
environment or in the wild with smaller populations. However, 
wearable-based HAR models that could recognize simple activities 
are currently deployed across many commercial wearable devices. 

2.2.2 Smartphone-based HAR. With the popularity of smartphones 
in the past two decades, the problems of wearable-based HAR were 
solved. Reality Mining [35] is a pioneering study in the feld of 
mobile sensing: it showed the utility of mobile sensing data in a 
free-living setting. In smartphone-based activity recognition, peo-
ple do not need to use wearable sensors. Instead, the system relies 
on a smartphone that is always on and stays closer to its user. Smart-
phones replace wearable devices as the former contains multiple 
sensors such as an accelerometer, gyroscope, GPS, proximity, or 
thermometer. Nevertheless, smartphones capture data at multiple 
positions (e.g., a pocket, hand, or handbag), which introduces a bias 
in sensor measurements as they are position-dependent [130]. 

Regardless of the device used, most prior activity recognition 
tasks have been done in lab-based/controlled settings where accu-
rate ground truth capture is possible [113]. The prime goal of such 
studies is to increase the accuracy of activity recognition models 
with precise ground truth and sensor data collection (e.g., by placing 
sensors on fxed body positions, recording ground truth with videos, 
etc.). However, these studies are hard to scale and do not capture the 
real behavior of participants, and this is especially true for complex 
daily activities [99]. For example, a person’s behavior when study-
ing, working, or shopping in an unconstrained environment can 
not be replicated in a lab. On the other hand, some studies are done 
in the wild [55, 99], where the ground truth and sensor data collec-
tion might not be that precise but allow capturing complex daily 
activities in a naturalistic setting. Our study is similar, where our 
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intention  was  to  take  a  more  exploratory  stance,  build  country-level  
diversity-aware  models,  and  compare  their  performance  within  and  
across  diferent  countries.  

2.3  Activity  Types  
One crucial diference across existing studies is in the selection of 
activities. A majority of studies work towards the recognition of 
simple activities. For example, Straczkiewicz et al. [113] classifed 
activities into groups such as posture (lying, sitting, standing), mo-
bility (walking, stair claiming, running, cycling), and locomotion 
(motorized activities). Laput and Harrison [54] called such activi-
ties coarse or whole-body. Activities belonging to these groups are 
directly measurable from one or more proxies (e.g., inertial sensor 
unit, location). For example, when considering the accelerometer, 
each activity has a distinct pattern on the diferent axes [33]. How-
ever, they constitute a small subset of activities performed by people 
in daily lives [24, 92, 99]. 

Notice that some of the simple activities described above are 
usually part of more complex activities (e.g., sitting while eating, 
walking while shopping). Dernbach et al. [33] defned complex 
activities as a series of multiple actions, often overlapping. Along 
with Bao et al. [7], they used the same techniques to recognize both 
simple and complex activities. This results in weaker performances 
for complex activities since their structure is more complicated. 
Another approach is considering complex activities hierarchically 
by using combinations of simple activities to predict more complex 
ones. Huynh et al. [50] characterized user routines as a probabilistic 
combination of simple activities. Blanke et al. [10] used a top-down 
method that frst identifes simple activities to recognize complex 
ones. However, this requires pre-defning simple activities and map-
pings to complex activities. Some studies focus on detecting binary 
episodes of a single complex activity or a specifc action. For exam-
ple, the Bites’n’Bits study [9] examined the contextual diferences 
between eating a meal and a snack, and presented a classifer able to 
discriminate eating episodes among students. Likewise, DrinkSense 
[100] aimed at detecting alcohol consumption events among young 
adults on weekend nights. Unfortunately, such task-specifc classi-
fers will perform poorly when exposed to situations they were not 
trained on. 

In this study, we focus on a majority of complex daily activities 
(11 out of 12 and one simple activity: walking) derived by consider-
ing over 216K self-reports from college students in fve countries. In 
this context, drawing from prior studies that looked into activities 
of daily living [92, 99], for the scope of this paper, we defne com-
plex activities as "activities that punctuate one’s daily routine; that 
are complex in nature and occur over a non-instantaneous time win-
dow; and that have a semantic meaning and an intent, around which 
context-aware applications could be built". While it is impossible to 
create a classifer that could recognize all complex human activi-
ties, we believe the classifer we propose captures a wide range of 
prevalent activities/behaviors, especially among young adults. 

2.4  Diversity-Awareness  in  Smartphone  Sensing  
Research in the feld of smartphone sensing, including the studies 
mentioned above, lacks diversity in their study populations [70]. 
Regarding country diversity, with a few exceptions [52, 108], most 
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experiments were conducted in a single country or rarely two. This 
can be problematic with respect to the generalization of fndings 
since smartphone usage difers across geographic regions, which 
can lead to diferent patterns being observed in, for example, two 
populations of diferent genders or age range [31]. Khwaja et al. 
stressed the importance of diversity awareness in mobile sensing 
[52]. Moreover, experiments performed in a controlled setting usu-
ally can not accommodate many participants. While this makes the 
whole process lighter and more manageable, it also restricts the 
generalization of results to a broader free-living audience [101, 120]. 
According to Phan et al. [89], cross-country generalizability is the 
extent to which fndings apply to diferent groups other than those 
under investigation. 

Diversity awareness and model generalization are two essen-
tial aspects, as they will allow an activity recognition system to 
be deployed and to perform well across diferent user groups and 
countries [69, 102]. In computer vision research, the lack of di-
versity has been repeatedly shown for specifc attributes such as 
gender and skin color [28, 51, 93]. In natural language process-
ing and speech research, not accounting for dialects in diferent 
countries could marginalize groups of people from certain coun-
tries [91]. Hence, ignoring country diversity when developing AI 
systems could harm users in the long run by marginalizing cer-
tain groups of people [91]. In this context, smartphone sensing 
studies that consider country-level diversity are still scarce [89]. 
This could be due to the lack of large-scale datasets, logistical dif-
culties in data collection in diferent countries, and studies being 
time and resource-consuming. Khwaja et al. [52] built personality 
inference models using smartphone sensor data from fve countries 
and showed that such models perform well when tested in new 
countries. To the best of our knowledge, their study is one of the 
frst to investigate the generalization of smartphone sensing-based 
inference models across diferent countries. In our work, we focus 
on complex daily activity recognition with smartphone sensing 
and aim to uncover and examine model behavior in multi-country 
settings. 

2.5  Human-Centered  Aspects  in  Smartphone  
Usage  

Our literature review has so far focused on the technical aspects 
such as data collection or target variables. We now discuss the 
impact of smartphone usage on individuals and society, which is 
studied by various disciplines in the social sciences. Previous work 
includes the study of smartphone dependence among young adults, 
where it was found that problematic smartphone use varies by coun-
try and gender [61, 119], and those specifc activities such as social 
networking, video games, and online shopping contribute to the 
addiction [61, 86]. Another study [96] summarized fndings on cor-
relations between smartphone usage and psychological morbidities 
among teens and young adults. Excessive smartphone usage could 
lead to emotional difculties, impulsivity, shyness, low self-esteem, 
and some medical issues such as insomnia, anxiety, or depression. 
From a sociological standpoint, Henriksen et al. [48] studied how 
smartphones impact interactions in cafés and defned three con-
cepts of social smartphone practices. Interaction suspension (e.g.,
your friend goes to the bathroom), which can lead to using the 
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smartphone  to  appear  occupied  or  to  avoid  uncomfortable  situa-
tions  while  being  alone.  Deliberate  interaction  shielding  corresponds 
to  situations  where  one  suspends  an  ongoing  interaction  to  answer  
a  phone  call  or  a  text  message,  whether  it  is  an  emergency  or  just  in  
fear  of  missing  out.  Accessing  shareables,  which  leads  to  a  collective 
focus  on  shared  content  (e.g.,  pictures  or  short  videos),  giving  the  
smartphone  a  role  of  enhancing  face-to-face  social  interactions  
rather  than  obstructing  them.  Nelson  and  Pieper  [81]  showed  that  
smartphone  attachment  “inadvertently  exacerbates  feelings  of  de-
spair  while  simultaneously  promises  to  resolve  them",  thus  trapping  
users  in  negative  cycles.  

According  to  Van  Deursen  et  al.  [119],  older  populations  are  less  
likely  to  develop  addictive  smartphone  behaviors.  While  they  are  
often  associated  with  younger  generations,  smartphones  are  slowly  
gaining  popularity  among  older  generations  as  they  are  coming  
up  with  creative  ways  to  integrate  them  into  their  habits.  Miller  
et  al.  [78]  investigated  the  role  that  smartphones  play  in  difer-
ent  communities  across  nine  countries.  Through  16-month-long  
ethnographies,  they  showed  that  various  groups  of  people  have  spe-
cifc  ways  of  taking  ownership  of  their  smartphones  through  apps,  
customization,  and  communication.  For  example,  in  Ireland,  smart-
phones  are  used  by  the  elderly  in  many  of  their  daily  activities,  and  
in  Brazil,  the  usage  of  messaging  applications  for  health  have  lead  
to  the  creation  of  a  manual  of  best  practices  for  health  through  such  
applications.  More  globally,  smartphones  can  help  users  stay  in  
touch  with  their  extended  families  or  distant  friends,  a  feature  that  
has  been  particularly  important  during  the  2020  global  pandemic.  
In  this  paper,  we  attempt  to  uncover  country-specifc  smartphone  
usage  patterns  through  multimodal  sensing  data.  While  these  in-
sights  may  not  have  the  depth  that  feld  observations  provide,  they  
represent  a  starting  point  for  future  research  to  draw  upon.  

Hence,  all  while  considering  these  factors,  we  aim  to  examine  
smartphone  sensing-based  inference  models  for  complex  daily  activ-
ity  recognition  with  country-specifc,  country-agnostic,  and  multi-
country  approaches,  as  described  in  Figure  1.  

3  DATA,  FEATURES,  AND  TARGET  CLASSES  

3.1  Dataset  Information  
To address our research questions, we collected a smartphone sens-
ing dataset regarding the everyday behavior of college students for 
four weeks during November 2020, in the context of the European 
project "WeNet: The Internet of Us" 2. The study procedure is sum-
marized in a technical report [41]. The sample consisted of both 
undergraduate and graduate students. This dataset was collected 
to study the efect of the diversity of study participants on social 
interactions and smartphone sensor data. The dataset contains over 
216K self-reported activities collected from 637 college students liv-
ing in fve countries (ordered by the number of participants): Italy, 
Mongolia, the United Kingdom, Denmark, and Paraguay. All data 
were collected using Android smartphones with the same mobile 
app. Table 2 shows the distribution of participants across countries. 
Moreover, the data were collected with a protocol compliant with 

2The dataset is planned to be released for research purposes after the end of the project,
by complying with all regulations governing the data collection protocol within and 
outside the European Union. Hence, future plans for dataset access will be made 
available on the project website: https://www.internetofus.eu/ 

https://www.internetofus.eu/
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Figure  1:  High-level  overview  of  the  study.  The  study  uses  continuous  and  interaction  sensing  modalities  and  diferent  
approaches  (country-specifc,  country-agnostic,  and  multi-country)  to  infer  complex  daily  activities.  

the  EU  General  Data  Protection  Regulation  (GDPR)  and  with  each  
non-EU  country’s  rules.  In  addition,  written  approvals  from  the  
ethical  review  boards  (or  similar  entities)  were  acquired  by  each  
participating  university,  separately.  

The  frst  phase  of  the  data  collection  obtained  questionnaire  
data  about  the  participants,  their  habits,  social  relations,  individual  
practices  (e.g.,  physical  activities,  leisure),  and  skills  (personal  and  
interpersonal).  This  data  was  aimed  at  capturing  diferent  aspects  of  
diversity,  including  observable  characteristics  such  as  demograph-
ics  as  well  as  less  observable  aspects  such  as  personality,  traits,  
skills,  values,  and  relations  [103].  The  second  phase  collected  data  
through  a  smartphone  application.  Participants  flled  out  time  di-
aries  multiple  times  throughout  the  day.  Participants  were  asked  
about  their  sleep  quality  and  expectations  at  the  start  of  the  day.  
At  the  end  of  the  day,  they  had  to  report  how  their  day  went.  At  
every  hour,  they  had  to  self-report  what  they  were  doing  (current  
activity,  using  a  drop-down  list  of  34  activities),  location  (a  list  of  
26  semantic  locations),  social  context  (a  list  of  8  social  contexts),  
and  mood  (valence  was  captured  similar  to  [57]  with  a  fve-point  
scale).  The  app  continuously  collected  data  from  more  than  thirty  
smartphone  sensors,  which  can  be  broken  down  into  two  categories  
[70]:  continuous  sensing  modalities  such  as  the  simple  activity  type  
(derived  using  inertial  sensors  and  location  with  the  Google  Activity  
Recognition  API  [44]),  step  count,  location,  WiFi,  Bluetooth,  phone  
signal,  battery,  and  proximity;  and  interaction  sensing  modalities  
such  as  application  usage  time,  screen  usage  episode  counts  and  
time,  notifcation  clicking  behaviors,  and  user  presence  time.  

3.2  Deriving  Features  
The  choice  of  the  dataset’s  format  is  key  for  the  rest  of  the  study.  
A  tabular  dataset  centered  around  activities  or  events  enables  the 
handcrafting  of  a  multitude  of  sensor-specifc  features  discussed  in  

prior  literature  [16,  70,  74,  100,  108].  This  later  enables  the  use  of  
traditional  machine  learning  methods.  However,  a  temporal  dataset  
relies  mainly  on  raw  sensor  measurements  in  the  form  of  time  
series  (i.e.,  raw  accelerometer  and  gyroscope  data  in  typical  activ-
ity  recognition).  This  approach  allows  deep  learning  methods  to  
extract  and  learn  relevant  high-level  features  automatically.  Past  
research  [4,  137]  has  shown  that  using  deep  learning  techniques  
yields  better-performing  HAR  classifers.  These  studies  typically  in-
clude  simple  activities  that  are  easier  to  detect  with  inertial  sensors  
than  the  more  complex  ones  we  are  interested  in.  This  is  particularly  
important  in  remote  study/work  settings,  where  many  activities  
are  performed  while  at  home.  Therefore,  we  chose  to  perform  the  
analysis  using  a  tabular  dataset  with  the  heterogeneous  handcrafted  
features  described  below.  

We  aggregated  all  sensor  measurements  with  self-reports  to  
create  features  using  smartphone  data.  We  followed  a  time-window-
based  approach  similar  to  prior  studies  on  event-level  inferences  
[70,  108,  114].  Hence,  we  used  10  minutes  before  and  after  each  self-
report  and  aggregated  sensor  data  in  the  corresponding  20-minute  
interval 3  .  While  traditional  and  inertial  sensor-based  recognition 
of  simple  activities  attempts  to  capture  repetitive  moments  using  
deep  learning  with  a  smaller  time  window,  that  method  is  not  
applicable  here  because  we  attempt  to  capture  a  set  of  non-repetitive  
activities  that  last  longer.  In  addition,  we  consider  behavior  and  
context  sensed  with  the  smartphone  as  a  proxy  to  the  target  activity,  
similar  to  prior  ubicomp  studies  [67,  74,  108].  So,  the  corresponding  

3We  conducted  experiments  with  diferent  time  windows  between  5  minutes  and  25 
minutes.  We  did  not  go  beyond  25  minutes  because  it  would  lead  to  overlapping  sensor  
data  segments,  hence  leaking  data  between  data  points.  20-minute  window  performed  
the  best  out  of  the  examined  time  windows.  For  brevity,  we  only  present  results  with  
the  20-minute  window.  Shorter  windows  might  not  have  performed  reasonably  because  
they  do  not  capture  enough  contextual  information  to  make  the  inference.  Prior  work  
too  has  shown  that  large  time  windows  might  be  suitable  to  detect  binary  activities  
[6,  9,  71]  



            

           
         

          
    

   
      

  
     

      

        
      

University Country Participants � Age (�) % Women # of Self-Reports 
University of Trento Italy 259 24.1 (3.3) 58 116,170 
National University of Mongolia Mongolia 224 22.0 (3.1) 65 65,387 
London School of Economics UK 86 26.6 (5.0) 66 20,238& Political Science 
Universidad Católica Paraguay 42 25.3 (5.1) 60 6,998"Nuestra Señora de la Asunción" 
Aalborg University Denmark 26 30.2 (6.3) 58 7,461 
Total/Mean 637 24.0 (4.3) 62 216,254 
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Table  2:  A  summary  of  participants  of  the  data  collection.  Countries  are  sorted  based  on  the  number  of  participants.  

features generated using sensing modalities are shown in Table 3. 
More details on how each sensing modality was pre-processed can 
be found in [69]. In addition to sensor data features, we added a 
feature that describes the time period of the day when the activity 
occurred and a weekend indicator. While there is no agreement as 
to how a day could be split into morning, afternoon, evening, and 
night in the literature [82, 84, 121, 122, 124], we defned fve time 
periods: morning from 6 AM to 10 AM, noon from 10 AM to 2 PM, 
afternoon from 2 PM to 6 PM, evening from 6 PM to 10 PM, and 
night from 10 PM to 6 AM, and included it as another feature that 
could be used in training machine learning models. 

3.3  Determining  Target  Classes  
Hourly self-reports required participants to log what they were 
doing at the time by selecting an activity from a predefned list of 
thirty-four items. These items were derived based on prior work 
[40, 134]. By looking at their distribution in diferent countries (Fig-
ure 2), one can quickly notice that they are highly unbalanced. The 
remote work/study constraints during the time of data collection 
were one of the causes behind this imbalance, because activities 
such as traveling, walking, or shopping would have been more 
popular if mobility was not restricted. A closer look at the list of ac-
tivities shows that some classes are too broad in terms of semantic 
meaning. Hence, similar to prior work that narrowed down activity 
lists based on various aspects [54], we narrowed down the original 
list of activities into 12 categories to capture complex daily activities 
that are common enough in the daily lives of people, especially in 
a remote work/study setting. For example, under “hobbies”, one 
can be playing the piano or painting, and the two do not entail 
the same smartphone usage and are not common enough. Simi-
larly, “social life” is too broad, as one could be in a bar, a restaurant, 
or a park. Moreover, to mitigate the class imbalance problem, we 
decided to flter the target classes. First, classes that had similar 
semantic meanings were merged: this is the case of eating and cook-
ing, and social media and internet chatting. Classes representing a 
broad activity were removed, such as personal care, household care, 
games, and hobbies. Finally, classes that did not have enough data 
in all countries were removed, such as listening to music, movie, 
theatre, concert, and free-time study. Filler classes such as “nothing 
special” or “other” were also removed. This fltering reduced the 
number of target classes to twelve, and their updated distribution is 
shown in Figure 3. These classes entail activities performed during 
daily life that are complex in nature and have a semantic meaning 
around which context-aware applications could be built. Moreover, 

the selected activities also align with prior work that looked into 
complex daily activity recognition [99]. 

4  HOW  ARE  ACTIVITIES  EXPRESSED  IN  
DIFFERENT  COUNTRIES,  AND  WHAT  
SMARTPHONE  FEATURES  ARE  MOST  
DISCRIMINANT?  (RQ1)  

To understand the distribution of activities in each country and 
to determine the infuence of features on the target, we provide 
a descriptive and statistical analysis of the dataset in this section, 
hence shedding light on RQ1. 

4.1  Hourly  Distribution  of  Activities  
The activities we consider all seem to occur at diferent times: people 
tend to sleep at night, work during the day, and eat around noon and 
in the evening. However, not all schedules are the same, especially 
not across diferent countries [37, 39]. We reported the density 
function of each target class at diferent hours of the day in Figure 
4. In each diagram, the x-axis refers to the hour of the day, and the 
y-axis refers to the density of each activity. On an important note, 
while most activities were reported as they were being performed, 
in the case of sleeping, participants reported the activity after they 
woke up and still in bed, meaning that peaks for that activity could 
also be interpreted as “waking up”. This was later confrmed with 
many participants in all countries during post-study interviews. 
This also makes the time of the day less informative when inferring 
the sleeping activity. 

A frst look at the distribution shows the “expected” patterns, 
such as a peek of sleeping during the night or peaks around eating 
times for lunch and dinner. Notice that participants from Paraguay 
tend to sleep less than others, refecting that they start working and 
resting earlier in the day. Online communication and social media 
usage happen around noon, coinciding with a break from classes 
and lunchtime, followed by a high peak towards the end of the 
day. This is in line with prior studies that showed that depending 
on the location context and hour of the day, the use of certain 
social media applications (i.e., Twitter) could difer [32]. Moreover, 
we also observe country diferences in hourly social media and 
online communication app usage patterns as reported by users. For 
example, between noon and 6 pm, there is a dip in the usage of 
these types of apps in Italy, Paraguay, and Denmark, whereas that 
pattern is not visible in the UK. Prior work has also studied social 
media app usage and adoption-related diferences, especially across 
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Table 3: Summary of 108 features extracted from raw sensing data, aggregated around activity self-reports using a time window. 

Modality Corresponding Features and Description 
Location radius of gyration, distance traveled, mean altitude calculated similarly to prior work [16] 
Bluetooth [LE, normal] number of devices (the total number of unique devices found), mean/std/min/max RSSI (Received Signal Strength 

Indication – measure close/distant closer devices are) [100] 
WiFi connected to a network indicator, number of devices (the total number of unique devices found), 

mean/std/min/max RSSI [100] 
Cellular [GSM, WCDMA, number of devices (the total number of unique devices found), mean/std/min/max phone signal strength [100] 
LTE] 
Notifcations notifcations posted (the number of notifcations that came to the phone), notifcations removed (the number of 

notifcations that were removed by the participant) – these features were calculated with and without duplicates. 
[57] 

Proximity mean/std/min/max of proximity values [6] 
Activity time spent doing the following simple activities: still, in_vehicle, on_bicycle, on_foot, running, tilting, walking, 

other (derived using the Google Activity Recognition API [44]) 
Steps steps counter (steps derived using the total steps since the last phone turned on), steps detected (steps derived 

using event triggered for each new step) [29] 
Screen events touch events (number of phone touch events), user presence time (derived using android API that indicate 

whether a person is using the phone or not), number of episodes (episode is from turning the screen of the phone 
on until the screen is turned of), mean/min/max/std episode time (a time window could have multiple episodes), 
total time (total screen on time within the time window) [6, 57, 74] 

App events time spent on apps of each category derived from Google Play Store [57, 100]: action, adventure, arcade, art & 
design, auto & vehicles, beauty, board, books & reference, business, card, casino, casual, comics, communication, 
dating, education, entertainment, fnance, food & drink, health & ftness, house, lifestyle, maps & navigation, 
medical, music, news & magazines, parenting, personalization, photography, productivity, puzzle, racing, role-
playing, shopping, simulation, social, sports, strategy, tools, travel, trivia, video players & editors, weather, word 

Time & Day hour of the day, period of the day (morning, noon, afternoon, evening, night), weekend indicator (weekday or 
weekend) [9, 74] 

Figure 2: The original distribution of target classes before any fltering or merging was done. 

countries. As per those studies, such usage diferences could result 
from cultural characteristics within countries and from motives 
of people for using diferent apps [2, 58]. Most leisure activities 
(reading, shopping, sport, watching something) happen towards 
the end of the day, right when students have fnished their classes. 

Another activity that showed clear cross-country diferences is 
“Eating”. We can observe that Italians tend to eat later than others, 
which hints at their Mediterranean customs [117]. Italy also showed 
two clear peaks for lunch and dinner with a sharp dip in between 
the two meals. The dip is less visible in other countries, indicating 
that meals are more spread out across diferent times. Moreover, 

the dinner peaks for all countries except Mongolia were peaking 
on or after 6 pm, whereas in Mongolia, it was before 6 pm. These 
fndings suggest that the hour of the day could indicate whether 
people are eating or not—slightly diferently in Italy, Mongolia, and 
other countries. In fact, prior studies that used mobile sensors for 
studies regarding eating behavior showed that the hour of the day 
is an important feature in predicting aspects related to eating [9, 74]. 
To add to that, prior studies have also pointed out that meal times, 
frequency, and sizes too could difer between countries [21], even 
within Europe [111]. Finally, the activity “walking” had more or 
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Figure  3:  Distribution  of  target  classes  after  removing  classes  
that  are  semantically  broad  or  lack  data.  

less  similar  distributions  across  countries.  In  fact,  a  smartphone-
based  activity  tracking  study  by  Althof  et  al.  [3]  mentioned  that  
the  average  number  of  steps  walked  by  people  across  Italy,  the  UK,  
Denmark,  and  Mongolia  were  in  the  same  ballpark  (i.e.,  around  
5000-6000  daily  steps).  

4.2  Statistical  Analysis  of  Features  
To understand the importance of each smartphone sensing feature 
in discriminating each target activity from others, we reported 
in Table 4 the top three features and their ANOVA (Analysis of 
variance) F-values [53] for each activity and each country. The 
goal is to identify features that defne an activity and how those 
difer across countries. We consider each country-activity pair alone 
to fnd features that infuence the classifcation task in a binary 
setting (i.e., determining whether the participant is sleeping or not, 
studying or not, eating or not, etc.). 

The resulting features across countries for the same activity are 
diferent in most cases, highlighting the dataset’s diversity and 
each country’s cultural diferences or habits. For example, when 
studying, features regarding screen episodes dominate in the UK, 
Italy, and Denmark, while the day period appears in Italy, Mongolia, 
and Paraguay. This could mean that European students tend to 
use their phones when studying more (or less) than students from 
Paraguay or Mongolia. This divide is also visible when “watching 
something”, which is infuenced by the use of entertainment ap-
plications in Europe, but not in Paraguay or Mongolia. This efect 
could be due to the unpopularity of streaming services classifed 
as entertainment applications in the latter two countries, where 
participants might rely on alternatives. In fact, diferences in us-
ing streaming services across countries have been studied in prior 
work, highlighting diferences in usage percentages [62] and the 
relations to income level [83]. On the other hand, it could also be 
that students watch something on a medium that is not their smart-
phone. In fact, research shows that young adults aged 18-29 use 
more online media streaming services as compared to television in 
the USA [18]. However, whether similar percentages hold across 
diferent countries with contrasting cultures, income levels, and 
internet quality remains a question. While not conclusive, these 
could be the reason for entertainment apps not being indicative 
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of “watching something” in Mongolia and Paraguay, which are the 
non-European countries in this study. 

For some activities, the top three features are inherent to the 
nature of the activity. For example, “reading” in Italy has features 
corresponding to reading applications such as books, comics, news-
papers, and magazines. Other countries do not show this. The same 
observation can be made for the “sports” activity: health and ftness 
apps are one of the determining features in European countries. 
This efect could correspond to participants tracking their workouts 
using a smartphone app. 

The “walking” activity has almost the same features in all fve 
countries: steps detected and an on-foot or walking activity detected 
by the Google Activity Recognition API. This homogeneity is due 
to the nature of the activity—walking is considered a simple activity. 
This is also why shopping has some of the same features as walking 
since participants also walk when they shop. To summarize, in most 
cases, each country has diferent defning features when looking 
at the same activity. For some activities, the features found are 
inherent to the activity and are usually app categories. Finally, it is 
worth mentioning that the period of the day is an important feature, 
which matches what has been observed in Figure 4 — all activities 
do not occur at the same frequency throughout the day. 

Finally, it is worth noting that we could expect some of the 
highly informative features to change over time, with changes to 
technology use and habits of people, in diferent countries [1, 128]. 
For example, a reason for the lack of use of streaming services 
in certain countries is the lack of laws surrounding the usage of 
illegally downloaded content (e.g., Germany has strict laws about 
not using illegal downloads [97]). Changes in the laws of countries 
could change the behavior of young adults. Further, internet prices 
could also afect the use of streaming services. While bandwidth-
based and cheap internet is common in developed countries, it 
is not the same in developing nations in Asia, Africa, and South 
America, where internet usage is expensive, hence demotivating 
streaming. In addition, income levels too could infuence captured 
features a lot. For example, with increasing income levels (usually 
happens when a country’s GDP changes), young adults may use 
more wearables for ftness tracking, leading to the usage of health 
and ftness apps on mobile phones. Another aspect that could afect 
the captured behaviors is the weather condition. All fve countries 
mentioned in this study go through diferent seasons, as all are 
somewhat far from the equator. Hence, we could expect changes 
in features in diferent seasons. More about this is discussed in the 
limitations section. 

5  MACHINE  LEARNING-BASED  INFERENCE:  
EXPERIMENTAL  SETUP,  MODELS,  AND  
PERFORMANCE  MEASURES  

This study aims to perform a multi-class inference of smartphone 
sensing data to predict what participants do at a particular time. 
The input space consists of the features in the tabular dataset pre-
viously mentioned. We study the three approaches to the problem 
as summarized in Figure 1, going from country-specifc to multi-
country. 
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Figure 4: Density functions of target classes as a function of the hour of day in each country. 

Figure 5: Proportion of missing data per sensor type. 

5.1  Data  Imputation  
The frst step in preparing the dataset for inference was data im-
putation. Missing data in the context of smartphone sensing can 
occur for multiple reasons [6, 68, 108]: the device being on low-
consumption mode, the failure of a sensor, or insufcient permis-
sions from the participants. In the dataset we used, we noticed that 
most sensors have some missing values (see Figure 5). For example, 

more than 90% of GSM cellular sensor values were unavailable, 
possibly due to devices being put in airplane mode, sensor failure, 
or the phone mostly operating with LTE signals. To deal with miss-
ing values, we decided to drop features from sensors that were 
missing more than 70% of their data (refer to the dotted line on 
Figure 5) similar to prior work [100]. For the remaining features, 
and each country individually, we used k-Nearest Neighbour (kNN) 
imputation [133] to infer missing information from neighboring 
samples 4. 

5.2  Models  and  Performance  Measures  
To conduct all experiments, we used the scikit-learn [88] and Keras 
[22] frameworks, with Python. We frst trained the following two 
baseline models: one that always predicts the most frequent label 
and another that randomly predicts targets by considering the 
class distribution. This will allow us to understand if the trained 
models perform better than a randomized guess. The experiments 

4We also tried mean imputation, user-based mean imputation, most frequent value 
imputation, last observation carried forward (LOCF) imputation, in addition to kNN. 
However, we obtained the best results for inferences with kNN. In addition, using 
kNN is common in studies that used passive sensing [94, 129, 132, 136]. Hence, we 
only reported results obtained with kNN. 



            

     
          

          
           

          
             

           
          
          

           
             

             
            

          
          

              
          

          
            

          
          

           
          

          
           

            
            

           
            

          
           

          
                

           
          

          
            

          

Italy Mongolia UK Denmark Paraguay 
Feature F Feature F Feature F Feature F Feature F 
app_tools 5423 day_period 6623 day_period 1632 day_period 354 app_not-found 510 

Sleeping day_period 4439 app_not-found 3595 screen_max_episode 603 screen_max_episode 249 noti_removed_wo_dups 348 
screen_max_episode 2498 noti_removed_wo_dups 1052 screen_time_per_episode 534 screen_time_per_episode 156 notifcations_posted_wo_dups 289 
screen_max_episode 1447 day_period 683 screen_time_total 446 screen_max_episode 241 app_video players & editors 147 

Studying screen_time_total 1378 noti_removed_wo_dups 220 screen_max_episode 396 screen_time_total 225 app_not-found 84 
day_period 1146 app_photography 178 screen_time_per_episode 247 weekend 154 day_period 43 
day_period 271 day_period 518 day_period 61 proximity_std 38 app_not-found 37 

Eating app_tools 98 app_not-found 180 app_not-found 26 proximity_max 29 wif_mean-rssi 23 
app_not-found 61 activity_still 72 app_video players & editors 23 app_communication 18 wif_max-rssi 21 
app_entertainment 715 day_period 326 app_video players & editors 397 app_entertainment 151 wif_mean-rssi 51 

Watching something app_not-found 426 app_not-found 325 wif_std_rssi 85 app_not-found 59 app_lifestyle 38 
weekend 334 wif_num_of_devices 217 app_entertainment 66 notifcations_posted 58 weekend 29 
app_social 1381 touch_events 503 wif_num_of_devices 112 app_tools 64 app_tools 95 

Online comm./ Social media screen_time_total 565 screen_time_total 355 wif_connected 93 app_causal 58 proximity_max 58 
screen_max_episode 473 app_not-found 354 screen_time_total 92 screen_time_total 42 proximity_mean 48 
weekend 3167 day_period 455 weekend 357 app_not-found 119 notifcations_posted_wo_dups 148 

Attending class screen_num_of_episodes 745 weekend 289 day_period 260 notifcations_posted 104 weekend 112 
app_tools 476 app_not-found 251 screen_max_episode 70 screen_max_episode 37 screen_time_total 87 
steps_detected 271 wif_mean_rssi 1049 screen_time_per_episode 143 proximity_mean 305 activity_invehicle 441 

Working screen_time_per_episode 210 wif_max_rssi 848 proximity_mean 129 proximity_max 304 wif_num_of_devices 226 
screen_num_of_episodes 206 wif_min_rssi 633 screen_max_episode 124 proximity_std 292 activity_walking 163 
day_period 337 day_period 191 app_medical 374 notifcations_posted 22 app_photography 145 

Resting app_tools 117 screen_time_total 89 app_arcade 72 app_not-found 16 app_trivia 64 
app_educational 66 screen_max_episode 75 day_period 55 touch_events 14 app_maps & navigation 23 
app_books & reference 955 app_not-found 167 app_not-found 215 cellular_lte_min 252 app_adventure 21 

Reading app_comics 93 touch_events 122 wif_std_rssi 109 app_tools 83 app_comics 16 
app_news & magazines 93 day_period 121 wif_max_rssi 77 location_altitude 76 location_altitude 6 
activity_onfoot 3518 activity_onfoot 1582 steps_detected 376 steps_detected 285 activity_walking 25 

Walking activity_walking 3497 activity_walking 1579 steps_counter 314 activity_walking 101 activity_onfoot 25 
steps_detected 3374 steps_detected 1009 activity_walking 232 activity_onfoot 101 location_radius_of_gyration 23 
app_health & ftness 502 day_period 33 app_health & ftness 931 app_health & ftness 1248 wif_max_rssi 50 

Sport day_period 233 wif_num_of_devices 32 proximity_min 52 noti_removed 72 proximity_std 41 
notifcations_posted 132 wif_min_rssi 23 day_period 40 day_period 34 wif_mean_rssi 41 
steps_detected 283 activity_onfoot 1270 day_period 74 activity_walking 132 app_weather 86 
activity_onfoot 267 activity_walking 1269 user_presence_time 41 activity_onfoot 131 app_auto & vehicles 84Shopping 
activity_walking 265 steps_detected 504 screen_num_of_episodes 38 steps_detected 55 activity_walking 79 
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Table  4:  ANOVA  F-values  (F)  with  p-value  <  0.05 for  each  target  activity  and  each  country.  The  best  feature  is  the  frst  in  the  list.  
Comparing  F-values  are  only  valid  locally  within  the  same  activity  and  country.  

were carried out with the following model types: Random Forest 
Classifer [14] (RF), AdaBoost with Decision Tree Classifer [46], 
and Multi-Layer Perceptron neural networks (MLP) [123] 5. The 
frst two inherently leverage class imbalance, and RFs also facilitate 
the interpretability of results. Each experiment was carried out ten 
times to account for the efect of randomness. For each experimental 
setup, we reported the mean and standard deviation across the 
ten runs for the following metrics: F1 score [107], and the area 
under the Receiver Operating Characteristic curve (AUROC) [106]. 
Even though we calculated the accuracies of models, and while 
the accuracy is easy to interpret, it might not present a realistic 
picture in an imbalanced data setting. Hence, we did not include 
it in the results. The weighted macro F1 score computes metrics 
for each class and averages them following their support, resulting 
in a metric that considers label imbalance. Moreover, it takes a 
signifcant hit if one of the classes has a lot of false positives. A 
low F1 score could imply that the classifer has difculty with rare 
target classes. The AUROC score measures how well the model 
can distinguish each activity. It can be understood as an average of 
F1 scores at diferent thresholds. We also used a weighted macro 
version to account for label imbalance. 

Next, we examine results for country-specifc, country-agnostic, 
and multi-country approaches [52]. Finally, for all three approaches, 
we examine population-level, and hybrid models that correspond to 

5We initially tried out other model types such as Gradient Boosting and XGBoost in 
addition to the reported models. Results for these models were not reported considering 
their performance and page limits. All these model types are commonly used in small 
mobile sensing datasets that are in tabular format [9, 74, 77] 

Figure 6: Personalization levels used in the country-specifc, 
country-agnostic, and multi-country approaches. Population-
level corresponds to models with no personalization. Hybrid 
corresponds to models with partial personalization. 

no and partial personalization, respectively, similar to [57, 68, 69] 
(training and testing splits were always done with 70:30 ratio): 
• Population-Level model, also known as leave-k-participants-
out in country-specifc and multi-country approaches, and leave-k-
countries-out in country-agnostic approach: the set of participants 
present in the training set (≈70%) and the testing set (≈30%) are 
disjoint. The splitting was done in a stratifed manner, meaning 
each split was made by preserving the percentage of samples for 
each class. This represents the case where the model was trained 
on a subset of the population, and a new set of participants joined 
a system that runs the model and started using it. 
– In the country-specifc approach, this means that data from dis-
joint participants are in training and testing splits, and everyone 
is from the same country. E.g., trained with a set of participants 
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in Italy and tested with another set of participants in Italy who 
were not in the training set. 

– In the country-agnostic approach, this means the training set is 
from one (Phase I) or four (Phase II) countries, and the testing 
set is from a country not seen in training. E.g., For Phase I — 
trained with a set of participants in Italy and tested with a set 
of participants in Mongolia; Phase II — trained with a set of 
participants in Italy, Denmark, UK, and Mongolia, and tested 
with a set of participants in Paraguay. 

– In the multi-country approach, this means a disjoint set of par-
ticipants in training and testing without considering country in-
formation. This is the typical way of training models even when 
data are collected from multiple countries [108]. E.g., trained 
with a set of participants from all fve countries and tested with 
a set of participants in all fve countries who were not in the 
training set. 

• Hybrid model, also known as the leave-k-samples-out: the sets 
of participants in the training and testing splits are not disjoint. Part 
of the data of some participants present in the testing set (≈70%) 
was used in training the models. Testing is done with the rest of the 
data from the participants (≈30%). This represents the case where 
the model was trained on the population, and the same participants 
whose data were used in training continue to use the model. Hence, 
models are partially personalized. 
– In the country-specifc setting, this means that some data from 
participants within a country in the testing set can also be in the 
training set. This represents a scenario where personalization is 
examined within the country. E.g., trained with a set of partici-
pants in Italy and tested with another set of participants in Italy, 
whose data (70%) were also used in the training set. The rest of 
the data (30%) were used in the testing set. 

– In the country-agnostic setting, this means the training set is from 
one/more countries, and the testing set is from another country, 
where a percentage of their past data (70%) was also included in 
the training. This represents a scenario where personalization 
is examined when deployed to a new country. E.g., Phase I — 
trained with a set of participants in Italy and tested with a set of 
participants in Mongolia, whose data (70%) were also used in the 
training set. Rest of the data (30%) were used in the testing set; 
Phase II — trained with a set of participants in Italy, Denmark, 
UK, Mongolia, and tested with a set of participants in Paraguay, 
whose data (70%) were also used in the training set. The rest of 
the data (30%) were used in the testing set. 

– In the multi-country setting, this means that training and testing 
participants are not disjoint, and country information is not 
considered. This is the typical way of partially personalizing 
models even when data are collected from multiple countries. 
E.g., trained with a set of participants from all fve countries and 
tested with a set of participants in all fve countries, whose data 
(70%) were also used in the training set. The rest of the data (30%) 
were used in the testing set. 

6  INFERENCE  RESULTS  
In this section, we present the results of the experiments. First, 
we discuss results from the country-specifc and multi-country 
approaches, shedding light on RQ2. Then, the country-agnostic 
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approach is discussed by providing answers to RQ3 on model 
generalization. 

6.1  Country-Specifc  and  Multi-Country  
Approaches  (RQ2)  

Country-Specifc Approach. We consider this approach to be the 
base setting that does leverage country-level diversity in building 
separate models—each country has its own model independently 
from others. Table 5 summarizes the results of experiments follow-
ing the country-specifc approach. In the population-level setting, 
the three models perform more or less similarly, but the RFs are 
generally better based on F1 and AUROC scores. In the case of the 
hybrid models, RFs performed the best across the fve countries, 
with AUROC scores in the range of 0.79-0.89, where the lowest 
was for Mongolia, and the highest was for Denmark. Compared 
to population-level models, we can notice a substantial bump in 
performance in the hybrid models, showing the efect of personal-
ization within countries. These results suggest that random forest 
models applied to a partially personalized setting can recognize 
complex daily activities from passive sensing data with a good per-
formance. Given this conclusion, even though we got results for all 
model types for subsequent sections, we will present results only 
using random forest models. 

Multi-Country Approach. This approach aims at building a generic 
multi-country or one-size-fts-all model with the expectation that 
it would capture the diversity of all countries. All fve countries 
are present in both the training and the testing set. We, therefore, 
consider all participants of the dataset, regardless of their country, 
similar to an experiment where country-level diversity is ignored. 
Hence, we can examine population-level and hybrid models for 
a multi-country approach in this context. Further, models were 
evaluated with a dataset with an imbalanced representation from 
fve countries (multi-country w/o downsampling — MC w/o DS) 
and a balanced representation from fve countries by randomly 
downsampling from countries with more data to make it equal to 
the country with the least number of self-reports (i.e., Paraguay) 
(multi-country w/ downsampling — MC w/ DS). The results are 
shown in Figure 7 in comparison to country-specifc results. MC 
w/o DS had an AUROC of 0.71 while MC w/ DS had an AUROC 
of 0.68, indicating that training on the original data distribution 
performed better. The reason could in fact be that, more data led to 
better performance. The expectation of training with downsampled 
data was to give equal emphasis to each country, expecting that 
the model would perform well to all countries. However, the result 
indicates that it is not the case. 

These results shed light on our RQ2: learning a multi-country 
model for complex activity recognition solely using passive smart-
phone sensing data is difcult (AUROC: 0.709 with hybrid models). 
It does not yield better performance than the country-specifc ap-
proach (AUROCs of the range 0.791-0.894). This may stem from 
the data’s imbalance between countries and classes or the context 
in which the dataset was collected. Another primary reason for 
this could be behavioral diferences in data highlighted in Table 4, 
making it difcult for a model to learn the representation when the 

https://0.79-0.89


            

        
 

          
                     

                     
                     

                     
                     

 
          

                     
                     

                     
                     
                     

Baseline I Baseline II Random Forest AdaBoost MLP 
Population-Level 

F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC 
Italy 0.17 (0.000) 0.50 (0.000) 0.19 (0.001) 0.50 (0.001) 0.41 (0.001) 0.71 (0.001) 0.39 (0.000) 0.71 (0.000) 0.38 (0.002) 0.68 (0.002) 
Mongolia 0.26 (0.000) 0.50 (0.000) 0.23 (0.001) 0.50 (0.001) 0.33 (0.002) 0.62 (0.001) 0.33 (0.000) 0.63 (0.000) 0.34 (0.003) 0.61 (0.004) 
UK 0.17 (0.000) 0.50 (0.000) 0.18 (0.002) 0.50 (0.001) 0.32 (0.004) 0.63 (0.003) 0.31 (0.000) 0.59 (0.000) 0.22 (0.006) 0.56 (0.003) 
Denmark 0.25 (0.000) 0.50 (0.000) 0.24 (0.006) 0.49 (0.003) 0.32 (0.008) 0.61 (0.006) 0.34 (0.000) 0.57 (0.000) 0.25 (0.008) 0.57 (0.006) 
Paraguay 0.19 (0.000) 0.50 (0.000) 0.19 (0.006) 0.49 (0.002) 0.30 (0.004) 0.59 (0.003) 0.28 (0.000) 0.56 (0.000) 0.31 (0.009) 0.58 (0.004) 

Hybrid 
F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC 

Italy 0.17 (0.000) 0.50 (0.000) 0.19 (0.001) 0.50 (0.001) 0.63 (0.001) 0.87 (0.001) 0.40 (0.000) 0.73 (0.000) 0.51 (0.002) 0.81 (0.000) 
Mongolia 0.26 (0.000) 0.50 (0.000) 0.23 (0.002) 0.50 (0.001) 0.51 (0.001) 0.79 (0.001) 0.34 (0.000) 0.66 (0.000) 0.45 (0.002) 0.75 (0.002) 
UK 0.17 (0.000) 0.50 (0.000) 0.19 (0.003) 0.50 (0.001) 0.66 (0.001) 0.88 (0.006) 0.34 (0.000) 0.68 (0.000) 0.58 (0.003) 0.83 (0.002) 
Denmark 0.25 (0.000) 0.50 (0.000) 0.24 (0.003) 0.50 (0.002) 0.69 (0.002) 0.89 (0.001) 0.41 (0.000) 0.66 (0.000) 0.67 (0.002) 0.87 (0.002) 
Paraguay 0.18 (0.000) 0.50 (0.000) 0.19 (0.002) 0.49 (0.003) 0.61 (0.003) 0.84 (0.001) 0.30 (0.000) 0.61 (0.000) 0.58 (0.002) 0.79 (0.001) 
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Table  5:  Mean  (�̄  )  and  Standard  Deviation  (��  )  of  inference  F1-scores,  and  AUROC  scores  computed  from  ten  iterations  using  
three  diferent  models  (and  two  baselines)  for  each  country  separately.  Results  are  presented  as  �̄  (��  ),  where  �  is  any  of  the  two  
metrics.  

diversity  of  data  is  unknown.  Distributional  shifts 6    across  datasets  
from  diferent  countries  could  be  the  reason  for  this.  When  sensor  
feature  and  ground  truth  distributions  (we  discussed  ground  truth  
distributions  in  Section  4)  are  diferent  across  countries,  it  could  
lead  to  an  averaging  efect,  which  would  lead  to  worse-performing  
models  than  models  for  each  country.  Moreover,  it  is  worth  not-
ing  that  there  are  not  a  lot  of  studies  that  trained  country-specifc  
and  multi-country  models  for  performance  comparison  [89].  In  
one  of  the  only  other  studies  that  we  found  [52],  personality  trait  
inference  performance  using  smartphone  sensor  data  was  better  
when  using  country-specifc  models,  similar  to  what  we  found  for  
complex  daily  activity  inference.  Finally,  from  a  human-centered  
perspective,  recruiting  participants  to  collect  smartphone  sensing  
data  to  build  machine  learning  models  means  that—rather  than  tar-
geting  large  samples  from  a  single  country,  recruiting  a  reasonable  
number  of  participants  from  diverse  countries  could  help  deploy  
better-performing  models  to  multiple  countries.  

6.2  Generalization  Issues  with  
Country-Agnostic  Approach  (RQ3)  

We examined this research question with two phases as detailed 
in Table 1. During the frst phase, to evaluate the extent to which 
country-specifc models generalize to new countries, we tested 
models trained with a single country’s data in the other four coun-
tries separately. In the second phase, to evaluate the extent to which 
a model trained with four countries generalized to the remaining 
country, we trained with diferent combinations of countries and 
tested on the remaining country. 
• Phase I: Figure 8 summarizes results for population-level models 
and Figure 9 summarizes results for hybrid models. To allow easy 
comparison, in both fgures, the result mentioned as the perfor-
mance of a country, when tested on the same country is the result 
from Table 5. For instance, at the population-level, Italy had an 
AUROC of 0.71 according to Table 5, and this is marked in Figure 8 

6https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html# 
data-shifts 

where both Training and Testing country is Italy. Population-level 
results suggest that the country-agnostic approach tends to per-
form better in countries geographically close to the country where 
the model was originally trained. For example, the Italy model 
had an AUROC of 0.71 for the Italian populations in a population-
level setting and performed better in Denmark (AUROC: 0.69) and 
the UK (AUROC: 0.67) than it did in Mongolia (AUROC: 0.62) or 
Paraguay (AUROC: 0.62). Similar results can also be observed for 
hybrid models, where the Italian model performed better in Den-
mark and UK. This observation suggests that college students from 
countries within the same geographic region (Europe) could have 
behaviors that translate to similar smartphone usage and contexts 
during periods of doing similar activities. This is consistent with 
the observations made in the descriptive analysis above, where the 
countries that deviate from the general trends are usually those 
outside Europe. In summary, even after using the same experimen-
tal protocol when collecting mobile sensing data, we could still 
observe a distribution shift of data by the performance of models 
across geographically distant countries. 
• Phase II: The second phase looked into extending the work 
done in phase I. Instead of testing a country-specifc model in a new 
country, we were interested in testing a model already exposed 
to diverse data (e.g., from four countries) in a new country. We 
present results for random forest models (because they performed 
the best across experiments) where the training set consisted of 
data from four countries, and the testing set had data from the ffth. 
As suggested in prior studies [52], each country contributed equally 
to the training set in terms of data volume, which means we had to 
downsample the data from each country to a common count (which 
was equal to the minimum number of data points available from 
one country). Table 6 presents the results for experiments of the 
second phase. Similar to previous cases, we observed an increase in 
performance from population-level to hybrid models. More gener-
ally, and by looking at the F1 and AUROC scores, the performance 
of the hybrid models in the country-agnostic approach is lower 
than that of the same model in the country-specifc approach. This 
is somewhat expected since including data from other distributions 

https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html#data-shifts
https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html#data-shifts
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Figure 7: Mean AUROC score comparison for country-specifc and multi-country approaches with population-level and hybrid 
models. MC: Multi-Country; w/o DS: without downsampling; w/ DS: with downsampling. 

Figure 8: Mean AUROC scores obtained in the country-agnostic approach with population-level models. 

Figure 9: Mean AUROC scores obtained in the country-agnostic approach with hybrid models. 

(i.e., other countries) in the training set increases the data’s variance 
and makes it more difcult to represent all distributions accurately. 
This drop in performance could also be due to the downsampling. 
For instance, in a model where we train with four countries, in-
cluding Italy and Paraguay, Italy represents the largest portion of 
the dataset compared to Paraguay, which is the smallest. When 
reducing the number of samples in each country to that of Paraguay, 
a lot of information is lost in the other countries: the larger the 
original dataset is, the larger the loss gets. This could explain the 
low performance of country-agnostic models in Italy and Mongolia, 
especially in the hybrid setting. 

In addition, when comparing diferent modeling approaches, 

those found in Phase II (hybrid) of the country-agnostic approach, 
which was expected since the training sets are similar. However, the 
bump in performance when going from population-level to hybrid 
is less noticeable here compared to previous cases. Furthermore, 
MC w/ DS performs worse than the previous approach, with an 
AUROC of 0.68 compared to 0.71. This could be because we lose 
much data from many countries due to downsampling, reducing 
models’ representational ability. To summarize, a hybrid model 
in a country-agnostic approach can not predict complex activities 
better than its country-specifc counterpart. Furthermore, while 
more data often means better performances, this does not apply 
when the data follow diferent distributions, one per country in this 

the results with Multi-Country w/o Downsampling are similar to 



            

             
       

           
              
 

  
      
         

         
         

         
         

Population-Level Hybrid 
Test Country F1 AUROC F1 AUROC 
Italy 0.33 (0.005) 0.65 (0.006) 0.37 (0.004) 0.71 (0.002) 
Mongolia 0.30 (0.011) 0.60 (0.004) 0.37 (0.006) 0.67 (0.003) 
UK 0.29 (0.004) 0.63 (0.005) 0.47 (0.004) 0.78 (0.002) 
Denmark 0.38 (0.006) 0.65 (0.006) 0.63 (0.008) 0.86 (0.004) 
Paraguay 0.28 (0.005) 0.59 (0.006) 0.55 (0.006) 0.80 (0.008) 
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Table 6: Mean (� ̄) and Standard Deviation (�� ) of F1-scores and 
AUROC scores obtained by testing each Country-Agnostic 
model (trained in four countries) on data from a new country. 
Results are presented as � (�� ), where � is any of the two ¯ 
metrics. 

case. This suggests that each country has specifc characteristics 
that make learning one representation difcult. 

These results shed light on our RQ3: complex activity recogni-
tion models trained in specifc countries often generalize reasonably 
to other countries (especially with hybrid models). However, the 
performance is not comparable to the country-specifc approach, 
suggesting that there is still a distributional shift between countries. 
In fact, in Section 4, we discussed how the labels used in the infer-
ence (i.e., shown in Figure 4–complex daily activities such as resting, 
studying, reading, etc.) had diferent distributions across the fve 
countries. Further, the extent of the generalization often depended 
on whether countries are geographically closer (i.e., within Europe) 
or not. This result is in line with fndings from previous studies 
[52, 89] that highlighted the efect of geographic dimensions (i.e., 
country of data collection) on mobile sensing model performance. 
For example, [52] found that country-specifc models that used 
mobile sensing data as input, could perform well for the inference 
of three personality traits–Extraversion, Agreeableness, and Con-
scientiousness. Furthermore, we would also like to highlight that 
the issue regarding distributional shifts and generalization is an 
open problem in multimodal mobile sensing, as highlighted by two 
recent studies that examined similar datasets collected from the 
same country in diferent time periods [1, 128]. This is possibly due 
to behavioral changes over time leading to diferent distributions 
in sensor data and ground truth. Our results go beyond this and 
show that even if data is collected within the same time period and 
with the same protocol, distributional shifts could still occur due to 
country diferences. 

6.3  Feature  Importance  for  Complex  Daily  
Activity  Recognition  

The random forest models trained in our experiments inherently 
provide the Gini importance of the features seen during training 
[13]. In Figure 10, each set of box plots represents the distribu-
tion of feature importances for a given modality (as defned in 
Table 3) for hybrid models under the country-specifc approach 
and multi-country approach (MC w/o DS). A frst look shows that 
the multi-country distribution deviates from other countries for all 
sensing modalities. For example, one cellular feature in the model 
from Denmark is more important than the other models’ cellular 
features. The temporal, WiFi and notifcation features are more im-
portant in Paraguay than in other countries. App events are mostly 

Assi and Meegahapola et al. 

unimportant,  except  for  a  few  outliers  across  all  countries.  This  
is  reasonable  given  that  out  of  the  long  list  of  app  types  used  for  
the  analysis,  participants  frequently  used  only  a  few  types  (e.g.,  
entertainment,  social,  educational,  health  and  ftness,  etc.).  Our  
analysis  showed  that  the  outliers  here  are,  in  fact,  the  apps  used  
by  participants  the  most.  By  looking  at  the  top  whiskers  of  each  
set  of  box  plots,  the  most  predictive  features  overall  are  part  of  the  
following  modalities:  time  &  day,  wif,  app  usage,  simple  activity  
type,  and  location.  

7  DISCUSSION  

7.1  Summary  of  Results  
We examined a multi-country smartphone sensing dataset to de-
velop inference models of complex daily activities. Our primary 
goal was to seek whether reasonably performing complex daily ac-
tivity recognition models could be trained using multimodal sensor 
data from smartphones. Then, our goal was to identify diferences 
among countries visible through smartphone usage and to lever-
age these diferences to decide whether it makes sense to build 
country-specifc or generic multi-country models, and whether 
models generalize well. We believe these fndings are important 
when designing and deploying sensing and ML-based apps and 
systems in geographically diverse settings. The main fndings for 
the three research questions can be summarized as follows: 

•  RQ1:  Diferent  features  in  each  country  can  characterize  an  
activity.  Their  distributions  throughout  the  day  also  vary  between  
countries  and  seem  to  be  afected.  This  fnding  points  towards  
biases  that  could  get  propagated  if  proper  care  is  not  taken  during  
the  design  and  data  collection  phase  of  studies  involving  people  and  
smartphones.  In  Section  7.2.1,  we  discuss  this  in  more  detail  under  
a  set  of  biases:  construct  bias  [47],  sample  bias  [70],  device-type  
bias  [11],  and  bias  from  user  practices  [118].  
•  RQ2:  It  is  feasible  to  train  models  with  the  country-specifc  ap-
proach  to  infer  12  complex  activities  from  smartphone  data.  Fur-
thermore,  personalization  within  countries  increases  performance  
(AUROCs  of  the  range  0.79-0.89).  Hence,  the  country-specifc  ap-
proach  outperforms  the  multi-country  approach,  which  only  yields  
an  AUROC  of  0.71  with  hybrid  models.  However,  building  multi-
country  models  solely  from  sensing  features  is  a  non-trivial  task  
that  might  require  more  efort  with  regard  to  data  balance  and  fea-
ture  selection.  Our  results  also  show  that  the  sedentary  lifestyles  of  
the  pandemic  world  can  be  captured  with  country-specifc  partially  
personalized  machine  learning  models.  In  addition,  we  also  show  
that  multimodal  smartphone  sensors  could  be  used  to  recognize  
complex  daily  activities  that  go  beyond  binary  inferences  to  12-
class  inferences.  In  Section  7.2.2,  we  discuss  why  real-life  studies  
are  important  to  capture  complex  emerging  lifestyles;  in  Section  
7.2.3,  we  also  discuss  how  complex  daily  activities  could  be  useful  
to  design  novel  context-aware  applications.  
•  RQ3:  Under  the  country-agnostic  approach,  we  found  that  mod-
els  generalize  reasonably  to  new  countries.  However,  unsurpris-
ingly,  the  performance  is  not  as  high  as  when  the  model  was  tested  
in  the  same  country  where  it  was  trained.  Interestingly,  models  
trained  in  European  countries  performed  better  in  other  European  
countries  than  in  Paraguay  or  Mongolia.  This  issue  broadly  falls  

https://0.79-0.89
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Figure  10:  Feature  importance  of  each  feature  category  for  hybrid  country-specifc  and  multi-country  models.  

under the topic of domain shifts, which remains under-explored in 
mobile sensing literature. We elaborate more on this in Section 7.2.4. 

7.2  Implications  
Our work has implications aligned to both theoretical and practical 
aspects. 

7.2.1 Accounting for Country Biases in Study Design (RQ1). Stud-
ies using sensing data drawn from geographically diverse samples 
(i.e., diferent countries) should account for and understand the 
sources of biases that can occur at diferent stages of the study. Our 
study, and also previous studies on human behavior, sociology, and 
psychology, allow an understanding of these aspects in detail. For 
example, the following taxonomy can be used to characterize such 
biases [89]. (i) Construct bias occurs when the target is expressed 
diferently across countries, depending on countries’ norms or en-
vironmental factors [47]. For example, the “walking” activity in one 
country where physical exercise is not widespread could be labeled 
as “walking”, whereas in a country where it is an activity done for 
ftness by many people, so it could be labeled as a “sport” as well. 
Hence, some behaviors can be specifc to a particular environment 
or group of people. (ii) Sample bias concerns the comparability of 
diverse samples that can be impacted by the recruitment process 
in each country [70]. For example, if the samples in each country 
difer in age or gender, sensing data would likely not have similar 
distributions across countries. (iii) Device-type bias is due to the dif-
ferences in the devices used by participants across countries and in 
environmental factors afecting sensor measurements [11]. Devices 
worldwide are not equipped with the same software and hardware, 
and similar sensors can difer in accuracy and precision (e.g., Apple 
devices are more prominent in developed countries, whereas An-
droid phones are common in others). Finally, the (iv) bias from user 
practices arises when participants from diferent countries use their 
mobile phones diferently [118]. Examples abound: how a phone 
is physically carried could distort measurements; how sensors are 
disabled to save battery or mobile data (especially in countries 

where unlimited mobile data plans are not standard) also changes 
what is measured; and diferent motivations to use certain apps 
in diferent countries also changes the resulting logs [58]. Phan 
et al. [89] have proposed a set of mitigation strategies that aim 
to reduce biases and foster fair approaches to diversity-aware re-
search. To achieve these objectives, the authors recommend taking 
several steps during both the planning and implementation phases 
of the study. During the planning phase, researchers are advised to 
acquire knowledge about potential cross-country diferences and 
relevant environmental factors, with the assistance of local infor-
mants. Furthermore, researchers should ensure that their study 
targets are comparable across countries and that they exist in each 
country being studied. In the implementation phase, the authors 
suggest inclusive recruitment strategies that aim to make each sam-
pled country representative of a given target. These recommended 
strategies are important in promoting diversity-aware research and 
mitigating the potential for biases that can skew results. 

7.2.2 Activities Captured in Real-Life Studies (RQ2). In terms of 
theoretical implications, it is worth highlighting that the set of 
activities that we considered are complex behaviors that can not 
be typically captured during in-lab studies. Fine-grained sensing-
based activity recognition studies help increase performance on 
simple activities (e.g., walking, running, sitting, climbing stairs, etc. 
— that have a repetitive nature in sensor data) that can be captured 
in in-lab settings. In contrast, building sensing-based ML models to 
capture complex daily behaviors requires conducting real-life stud-
ies. Activities like studying, attending classes, or shopping is hard 
to replicate in lab settings. Further, while simple activities might 
not have led to diferences in model performances across countries, 
complex daily activities tightly bound with cultural, country-level, 
or geographic norms lead to diferences in behaviors, leading to 
diferences in the sensed data. In this context, prior work in the 
domain has not focused on this aspect enough, in our view. Even 
more so, we believe that studies must capture data from diverse 
communities to build models that work for all intended users. While 
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this is a challenging task, it is much needed for the feld of research 
to mature for more real-life use cases. Our study is one of the frst 
studies in this direction. 

7.2.3 Novel Applications of Context-Aware Mobile Apps (RQ2). In 
terms of practical implications, our fndings point towards adding 
context awareness to mobile applications. Current mobile appli-
cations provide context-aware services, interventions, and noti-
fcations based on location and simple activity sensing [70, 75]. 
However, a range of potential applications that go beyond the cur-
rent ofering could become feasible with complex daily activity 
recognition. For example, previously, a smartphone would only 
know that a user was sitting in a particular place. With complex ac-
tivity recognition, it would know that a user is studying, attending 
a lecture, reading, or eating, which all entail sitting. For example, if 
the student is reading, studying, or attending a lecture, automat-
ically putting the phone in silent or do-not-disturb mode might 
make sense, even though, in many cases, people forget to do so. In 
summary, complex daily activity recognition could ofer diverse 
use cases to build mobile applications around in the future. 

7.2.4 Domain Adaptation for Multimodal Mobile Sensing (RQ3). 
Another theoretical implication can be described in a machine learn-
ing sense. We discussed the challenges of generalization and domain 
shifts in our smartphone sensor dataset. We described how this shift 
afects model performance, specifcally for complex daily activity 
recognition with multimodal sensors. Although biases, distribu-
tional shifts, and model generalization have been widely studied 
in other domains such as natural language processing [36], speech 
[115], and computer vision [63], smartphone sensing studies have 
yet to receive sufcient attention [42]. We demonstrated that model 
personalization (hybrid setting) could reduce distributional shifts 
to a certain extent. In a way, according to transfer learning-related 
terms, this approach is similar to fne-tuning an already trained 
model for a specifc user to achieve model personalization [20]. 
Such strategies for personalization have been used in prior work 
[74]. However, recent research in domain adaptation has shown 
limitations in mobile sensing, particularly with regard to time series 
data [127]. The diversity of wearable device positioning poses a 
persistent issue in human activity recognition, which afects the 
performance of recognition models [19, 65]. Wilson et al. [127] 
conducted a study of domain adaptation in datasets captured from 
individuals of diferent age groups, yet the fndings are limited to 
simpler time series accelerometer data. Other works admit that 
the current lack of solutions for domain adaptation and generaliza-
tion from smartphone and wearable data presents an opportunity 
for future exploration [1, 128]. We have added to the literature by 
confrming that domain adaptation techniques are necessary for 
multi-country, multimodal smartphone sensor data. In addition, 
even on a fundamental level, approaches that allow quantifying 
cross-dataset distributional diferences for multimodal sensing fea-
tures and target labels (e.g., activity, mood, social context, etc.) 
separately, are lacking in the domain. Research on such aspects 
could allow us to better understand distributional shifts in sensor 
data, to better counter it with domain adaptation techniques in 
multimodal settings. 

7.3  Limitations  
While the dataset covers fve diferent countries from three conti-
nents, students’ behavior in other countries and continents could 
difer from what we have already encountered. In addition, even 
though we found geographically closer countries performing well 
in Europe, such fndings need to be confrmed for other regions 
where geographically closer countries could have contrasting be-
haviors and norms (e.g., India and China). Furthermore, the weather 
conditions in diferent countries during the time period of data col-
lection could be slightly diferent. All fve countries mentioned in 
this study go through diferent seasons, as all are somewhat far 
from the equator. Hence, we could expect changes in features in 
diferent seasons. However, in practical terms, collecting data in 
similar weather conditions is not feasible. 

When aggregating sensor data around self-reports, the data cor-
responding to the moment the participant was flling out the self-
report is considered a part of the activity he/she was doing at the 
time. This noise could alter the recognition task if the window’s 
size is small enough. However, even though this could afect results 
if we intended to increase model performance in a fne-grained 
sensing task, we do not believe this noise afects the results signif-
cantly regarding our fndings on diversity awareness. In addition, it 
is worth noting that the way we model our approach with a tabular 
dataset is similar to prior ubicomp/mobile sensing studies done 
in real life [70] because we do not have continuous ground truth 
labels. Hence, it restrains us from modeling the task as a time-series 
problem, which is how a majority of activity recognition studies 
[114] with continuous accurate ground truth measurements follow. 
So, the results should be interpreted with the study’s exploratory 
nature in mind. 

Further, it is worth noting that we could expect some of the 
highly informative features used in models to change over time, 
with changes to technology use and habits of people, in diferent 
countries [1, 128]. For example, a reason for the lack of use of 
streaming services in certain countries (discussed in Section 4) is the 
lack of laws surrounding the usage of illegally downloaded content 
(e.g., Germany has strict laws about not using illegal downloads 
[97]). Changes in the laws of countries could change the behavior 
of young adults. Further, internet prices could also afect the use of 
streaming services. While bandwidth-based and cheap internet is 
common in developed countries, it is not the same in developing 
nations in Asia, Africa, and South America, where internet usage 
is expensive, hence demotivating streaming. In addition, income 
levels too could infuence captured features a lot. For example, with 
increasing income levels (usually happens when a country’s GDP 
changes), young adults may use more wearables for ftness tracking, 
leading to the usage of health and ftness apps on mobile phones. 

The amount of data for each country is highly imbalanced. For 
a fair representation of each country, having the same number 
of participants and self-reports per country would ensure that a 
classifer learns to distinguish classes from each country equally. 
However, Italy and Mongolia are dominant in the current state of 
the dataset. If not done carefully, down-sampling would result in a 
loss of expressiveness and variance, making it difcult to discern 
diferent classes in a multi-country approach. Another imbalance 
is found among class labels, where activities such as sleeping or 
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studying are more frequent than others. However, this does make 
sense since we do not expect all activities to appear at the same 
frequency in a participant’s day or week. Further, we reported F1 
and AUROC scores that are preferred in such imbalanced settings. 

Finally, the dataset was collected in November 2020, during 
the Covid-19 pandemic, when most students stayed home due to 
work/study-from-home restrictions. This explains why most of 
the relevant features found in the statistical analysis are screen 
events and app events. While some relevant features are relative to 
proximity and WiFi sensors, there are very few regarding activity 
and location unless the activity corresponds to physical activities. 
This is probably an efect of a context where movements were 
highly discouraged. From another perspective, the behavior of col-
lege students from all countries during this time period refects 
remote work or study arrangements. We could expect these prac-
tices to continue for years as more universities and companies 
adopt remote work/study culture. Hence, while many prior studies 
in ubicomp used phone usage features and sensing features for 
activity/behavior/psychological trait inference tasks, our fndings 
indicate that phone usage features could be even more critical in the 
future with remote study/work settings due to sedentary behavior, 
that would limit the informativeness of sensors such as location 
and inertial sensors. 

7.4  Future  Work  
The study’s population for the dataset collection consisted of stu-
dents. Therefore, it might be worth exploring how people from 
diferent age groups use their smartphones and how their daily 
behavior is expressed through that usage. In addition to visible di-
versity, it is known that deep diversity attributes (innate to humans 
and not visible) such as personality (captured with Big Five Inven-
tory [34]), values (captured with basic values survey [45] and human 
values survey [104, 105]), and intelligence (captured with multiple 
intelligence scale [116]) could also afect smartphone sensor data 
and activities performed by people [52, 103]. Hence, investigating 
how such diversity attributes could afect smartphone-based infer-
ence models on complex activities, and other target variables, is 
worth investigating. Further, future work could investigate how the 
classifcation performance is afected when excluding the sensing 
data corresponding to the time taken to fll the self-report about ac-
tivities by participants. Finally, domain adaptation for multi-modal 
smartphone sensor data across time and countries, remains an im-
portant problem worth investigating in future work. 

8  CONCLUSION  
In this study, we examined the daily behavior of 637 students in 
Italy, Mongolia, the United Kingdom, Denmark, and Paraguay using 
over 216K self-reports and passive sensing data collected from their 
smartphones. The main goal of this study was to, frst examine 
whether multimodal smartphone sensor data could be used to infer 
complex daily activities, which in turn would be useful for context-
aware applications. Then, to examine whether models generalize 
well to diferent countries. We have a few primary fndings: (i) 
While each country has its day distribution of activities, we can 
observe similarities between the geographically closer countries 
in Europe. Moreover, features such as the time of the day or the 
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week, screen events, and app usage events are indicative of most 
daily activities; (ii) 12 complex daily activities can be recognized in 
a country-specifc and personalized setting, using passive sensing 
features with reasonable performance. However, extending this 
to a multi-country model does not perform well, compared to the 
country-specifc setting; and (iii) Models do not generalize well to 
other countries (at least compared to within-country performance), 
and especially to geographically distant ones. More studies are 
needed along these lines regarding complex daily activity recog-
nition and also other target variables (e.g., mood, stress, fatigue, 
eating behavior, drinking behavior, social context inference, etc.), to 
confrm the fndings. Hence, we believe research around geographic 
diversity awareness is fundamental for advancing mobile sensing 
and human behavior understanding for more real-world utility 
across diverse countries. From a study design sense, we advocate 
the idea of collecting data from diverse regions and populations to 
build better-represented machine learning models. From a machine 
learning sense, we advocate the idea of developing domain adapta-
tion techniques to better handle multimodal mobile sensing data 
collected from diverse countries. 
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