
Robust Face Presentation Attack Detection with

Multi-channel Neural Networks

Anjith George and Sébastien Marcel

Abstract Vulnerability against presentation attacks remains a challenging issue

limiting the reliable use of face recognition systems. Though several methods have

been proposed in the literature for the detection of presentation attacks, the majority

of these methods fail in generalizing to unseen attacks and environments. Since the

quality of attack instruments keeps getting better, the difference between bonafide

and attack samples is diminishing making it harder to distinguish them using the

visible spectrum alone. In this context, multi-channel presentation attack detection

methods have been proposed as a solution to secure face recognition systems. Even

with multiple channels, special care needs to be taken to ensure that the model gener-

alizes well in challenging scenarios. In this chapter, we present three different strate-

gies to use multi-channel information for presentation attack detection. Specifically,

we present different architecture choices for fusion, along with ad-hoc loss func-

tions as opposed to standard classification objective. We conduct an extensive set

of experiments in the HQ-WMCA dataset, which contains a wide variety of attacks

and sensing channels together with challenging unseen attack evaluation protocols.

We make the protocol, source codes, and data publicly available to enable further

extensions of the work.

1 Introduction

While face recognition technology has become a ubiquitous method for biometric

authentication, the vulnerability to presentation attacks (PA) (also known as “spoof-

ing attacks”) is a major concern when used in secure scenarios [14], [17]. These

attacks can be either impersonation or obfuscation attacks. Impersonation attacks
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attempt to gain access by masquerading as someone else and obfuscation attacks at-

tempt to evade face recognition systems. While many methods have been suggested

in the literature to address this problem, most of these methods fail in generalizing

to unseen attacks [19, 55]. Another challenge is poor generalization across differ-

ent acquisition settings, such as sensors and lighting. In a practical scenario, it is

not possible to anticipate all the types of attacks at the time of training a presenta-

tion attack detection (PAD) model. Moreover, a PAD system is expected to detect

new types of sophisticated attacks. It is therefore important to have unseen attack

robustness in PAD models.

The majority of the literature deals with the detection of these attacks with RGB

cameras. Over the years, many feature-based methods have been proposed using

color, texture, motion, liveliness cues, histogram features [11], local binary pattern

[44], [12] and motion patterns [4] for performing PAD. Recently several Convo-

lutional Neural Network (CNN) based methods have also been proposed including

3D-CNN [21], part-based models [39] and so on. Some works have shown that using

auxiliary information in the form of binary or depth supervision improves perfor-

mance [6, 22]. In depth supervision, the model is trained to regress the depth map

of the face as an auxiliary supervision. However, most of these methods have been

designed specifically for 2D attacks and the performance of these methods against

challenging 3D and partial attacks is poor [42]. Moreover, these methods suffer from

poor unseen attack robustness.

The performance of RGB only models deteriorates with sophisticated attacks

such as 3D masks and partial attacks. Due to the limitations of visible spectrum

alone, several multi-channel methods have been proposed in literature such as

[58, 17, 63, 15, 3, 8, 7, 28, 29, 23, 24, 26] for face PAD. Essentially, it becomes

more difficult to fool a multi-channel PAD system as it captures complementary

information from different channels. Deceiving different channels at the same time

requires considerable effort. Multi-channel methods have proven to be effective,

but this comes at the expense of customized and expensive hardware. This could

make these systems difficult to deploy widely, even if they are robust. Nevertheless,

well-known commercial systems like Apple’s Face ID [1] demonstrate the robust-

ness of multi-channel PAD. A variety of channels are available for PAD, e.g., RGB,

depth, thermal, near-infrared (NIR) spectra [28], shortwave infrared (SWIR) spectra

[29, 63], ultraviolet [62], light field imagery [57], hyper-spectral imaging [36], etc.

Even when using multiple channels, the models tend to overfit to attacks seen

in the training set. While the models could perform perfectly in attacks seen in the

training set, degradation in performance is often observed when confronted with

unseen attacks in real-world scenarios. This is a common phenomenon with most of

the machine learning algorithms, and this problem is aggravated in case of a limited

amount of training data. The models, in the lack of strong priors, could overfit to the

statistical biases of specific datasets it was trained on and could fail in generalizing

to unseen samples. Multi-channel methods also suffer from an increased possibility

of overfitting as they increase the number of parameters due to the extra channels.

In this work, we present three different strategies to fuse multi-channel infor-

mation for presentation attack detection. We consider early, late, and hybrid fusion
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approaches and evaluate their performance in a multi-channel setting. The joint rep-

resentation helps in identifying important discriminative information in detection of

the attacks.

The main contributions of this work are listed below:

• We present different strategies for the fusion of multi-channel information for

presentation attack detection.

• An extensive set of experiments in the HQ-WMCA database, which contains a

wide variety of attacks, using both seen and unseen attack protocols.

Additionally, the source code and protocols to reproduce the results are available

publicly1.

2 Related works

Majority of the literature in face PAD is focused on the detection of 2D attacks

and uses feature-based methods [11], [44], [4],[59], [31] or CNN based methods.

Recently, CNN based methods have been more successful as compared to feature-

based methods [41], [22], [6], [61]. These methods usually leverage the quality

degradation during ‘recapture’ and are often useful only for the detection of attacks

like 2D prints and replays. Sophisticated attacks like 3D masks [9] are more harder

to detect using RGB information alone and pose serious threat to the reliability of

face recognition systems [55].

2.1 RGB Only approaches (Feature based and CNNs)

2.1.1 Feature based approaches for face PAD

For PAD using visible spectrum images, several methods such as detecting motion

patterns [4], color texture and histogram based methods in different color spaces,

and variants of Local Binary Patterns (LBP) in grayscale [11] and color images

[12], [44] have shown good performance. Image quality based features [20] is one of

the successful methods available in prevailing literature. Methods identifying moiré

patterns [51], and image distortion analysis [66], use the alteration of the images due

to the replay artifacts. Most of these methods treat PAD as a binary classification

problem which may not generalize well for unseen attacks [48].

Chingovska et al. [13] studied the amount of client-specific information present

in features used for PAD. They used this information to build client-specific PAD

methods. Their method showed a 50% relative improvement and better performance

in unseen attack scenarios.

1 https://gitlab.idiap.ch/bob/bob.paper.cross_modal_focal_loss_

cvpr2021



4 Anjith George and Sébastien Marcel

Arashloo et al. [5] proposed a new evaluation scheme for unseen attacks. Au-

thors have tested several combinations of binary classifiers and one class classifiers.

The performance of one class classifiers was better than binary classifiers in the un-

seen attack scenario. A variant of Binarized statistical image features (BSIF), BSIF-

TOP was found successful in both one class and two class scenarios. However, in

cross-dataset evaluations, image quality features were more useful. Nikisins et al.

[48] proposed a similar one class classification framework using one class Gaussian

Mixture Models (GMM). In the feature extraction stage, they used a combination

of Image Quality Measures (IQM). The experimental part involved an aggregated

database consisting of REPLAY-ATTACK [12], REPLAY-MOBILE [14], and MSU-

MFSD [66] datasets. A good review of related works on face PAD in color channel

and available databases can be found in [60].

Heusch and Marcel [30] recently proposed a method for using features derived

from remote photoplethysmography (rPPG). They used the long term spectral statis-

tics (LTSS) of pulse signals obtained from available methods for rPPG extraction.

The LTSS features were combined with support vector machines (SVM) for PA de-

tection. Their approach obtained better performance than state of the art methods

using rPPG in four publicly available databases.

2.1.2 CNN based approaches for face PAD

Recently, several authors have reported good performance in PAD using convolu-

tional neural networks (CNN). Gan et al. [21] proposed a 3DCNN-based approach,

which utilized the spatial and temporal features of the video. The proposed approach

achieved good results in the case of 2D attacks, prints, and videos. Yang et al. [68]

proposed a deep CNN architecture for PAD. A preprocessing stage including face

detection and face landmark detection is used before feeding the images to the CNN.

Once the CNN is trained, the feature representation obtained from CNN is used to

train an SVM classifier and used for the final PAD task. Boulkenafet et al. [10] sum-

marized the performance of the competition on mobile face PAD. The objective was

to evaluate the performance of the algorithms under real-world conditions such as

unseen sensors, different illumination, and presentation attack instruments. In most

of the cases, texture features extracted from color channels performed the best. Li

et al. [38] proposed a 3D CNN architecture, which utilizes both the spatial and tem-

poral nature of videos. The network was first trained after data augmentation with

a cross-entropy loss, and then with a specially designed generalization loss, which

acts as a regularization factor. The Maximum Mean Discrepancy (MMD) distance

among different domains is minimized to improve the generalization property.

There are several works involving various auxiliary information in the CNN

training process, mostly focusing on the detection of 2D attacks. Authors use either

2D or 3D CNNs. The main problem of CNN-based approaches mentioned above is

the lack of training data, which is usually required to train a network from scratch.

One broadly used solution is fine-tuning, rather than a complete training, of the net-

works trained for face-recognition, or image classification tasks. Another issue is
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the poor generalization in cross-database and unseen attacks tests. To circumvent

these issues, some researchers have proposed methods to train a CNN using auxil-

iary tasks, which is shown to improve generalization properties. These approaches

are discussed below.

Liu et al. [41] presented a novel method for PAD with auxiliary supervision.

Instead of training a network end-to-end directly for the PAD task, they used the

CNN-RNN model to estimate the depth with pixel-wise supervision and estimate

remote photoplethysmography (rPPG) with sequence-wise supervision. The esti-

mated rPPG and depth were used for the PAD task. The addition of the auxiliary

task improved the generalization capability.

Atoum et al. [6] proposed a two-stream CNN for 2D presentation attack detec-

tion by combining a patch-based model and holistic depth maps. For the patch-based

model, an end-to-end CNN was trained. In the depth estimation, a fully convolu-

tional network was trained using the entire face image. The generated depth map

was converted to a feature vector by finding the mean values in the N ×N grid. The

final PAD score was obtained by fusing the scores from the patch and depth CNNs.

Shao et al. [61] proposed a deep convolutional network-based architecture for

3D mask PAD. They tried to capture the subtle differences in facial dynamics using

CNN. Feature maps obtained from the convolutional layer of a pre-trained VGG

network were used to extract features in each channel. The optical flow was esti-

mated using the motion constraint equation in each channel. Further, the dynamic

texture was learned using the data from different channels. The proposed approach

achieved an AUC (Area Under Curve) score of 99.99% in the 3DMAD dataset.

George et al. [22] presented an approach for detection of presentation attacks

using a training strategy leveraging both binary and pixel-wise binary loss. The

method achieved superior intra as well as cross-database performance when fine-

tuned from pretrained DenseNet blocks, showing the effectiveness of the proposed

loss function.

In [27], George and Marcel have shown that fine-tuning vision transformer mod-

els work well in both intra as well as cross-database settings. However, the compu-

tational complexity of these models makes it harder to deploy these models in edge

devices.

2.1.3 One class classifier based approaches

Most of these methods handle the PAD problem as binary classification, which re-

sults in classifiers over-fitting to the known attacks resulting in poor generalization

to unseen attacks. We focus the further discussion on the detection of unseen at-

tacks. However, methods working for unseen attacks must perform accurately for

known attacks as well. One naive solution for such a task is one-class classifiers

(OCC). OCC provides a straightforward way of handling the unseen attack scenario

by modeling the distribution of the bonafide class alone.

Arashloo et al.[5] and Nikisins et al. [48] have shown the effectiveness of one

class methods against unseen attacks. Even though these methods performed better
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than binary classifiers in an unseen attack scenario, the performance in known at-

tack protocols was inferior to that of binary classifiers. Xiong et al. [67] proposed

unseen PAD methods using auto-encoders and one-class classifiers with texture fea-

tures extracted from images. However, the performance of the methods compared to

recent CNN-based methods is very poor. CNN-based methods outperform most of

the feature-based baselines for PAD task. Hence there is a clear need for one-class

classifiers or anomaly detectors in the CNN framework. One of the drawbacks of

one class model is that they do not use the information provided by the known at-

tacks. An anomaly detector framework that utilizes the information from the known

attacks could be more efficient.

Perera and Patel [53] presented an approach for one-class transfer learning in

which labeled data from an unrelated task is used for feature learning. They used

two loss functions, namely descriptive loss, and compactness loss to learn the rep-

resentations. The data from the class of interest is used to calculate the compactness

loss whereas an external multi-class dataset is used to compute the descriptive loss.

Accuracy of the learned model in classification using another database is used as

the descriptive loss. However, in the face PAD problem, this approach would be

challenging since the bonafide and attack classes appear very similar.

Fatemifar et al. [18] proposed an approach to ensemble multiple one-class clas-

sifiers for improving the generalization of PAD. They introduced a class-specific

normalization scheme for the one class scores before fusion. Seven regions, three

one-class classifiers, and representations from three CNNs were used in the pool of

classifiers. Though their method achieved better performance as compared to client

independent thresholds, the performance is inferior to CNN-based state-of-the-art

methods. Specifically, many CNN-based approaches have achieved 0% Half Total

Error Rate (HTER) in Replay-Attack and Replay-Mobile datasets. Moreover, the

challenging unseen attack scenario is not evaluated in this work.

Pérez-Cabo et al. [54] proposed a PAD formulation from an anomaly detection

perspective. A deep metric learning model is proposed, where a triplet focal loss

is used as a regularization for ‘metric-softmax’, which forces the network to learn

discriminative features. The features learned in such a way are used together with

an SVM with Radial Basis Function (RBF) kernel for classification. They have per-

formed several experiments on an aggregated RGB-only dataset showing the im-

provement made by their proposed approach. However, the analysis is mostly lim-

ited to RGB-only models and 2D attacks. Challenging 3D and partial attacks are

not considered in this work. Specifically, the effectiveness in challenging unknown

attacks (2D vs 3D) is not evaluated.

Recently, Liu et al. [43] proposed an approach for the detection of unknown

spoof attacks as Zero-Shot Face Anti-spoofing (ZSFA). They proposed a Deep Tree

Network (DTN) which partitions the attack samples into semantic sub-groups in an

unsupervised manner. Each tree node in their network consists of a Convolutional

Residual Unit (CRU) and a Tree Routing Unit (TRU). The objective is to route

the unknown attacks to the most proper leaf node for correctly classifying them.

They have considered a wide variety of attacks in their approach and their approach

achieved superior performance compared to the considered baselines.
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Jaiswal et al. [35] proposed an end-to-end deep learning model for PAD that used

unsupervised adversarial invariance. In their method, the discriminative information

and nuisance factors are disentangled in an adversarial setting. They showed that by

retaining only discriminative information, the PAD performance improved for the

same base architecture. Mehta et al. [45] trained an Alexnet model with a combina-

tion of cross-entropy and focal losses. They extracted the features from Alexnet and

trained a two-class SVM for the PAD task. However, results in challenging datasets

such as OULU and SiW were not reported.

Recently Joshua and Jain [16] utilized multiple Generative Adversarial Networks

(GAN) for spoof detection in fingerprints. Their method essentially consisted of

training a Deep Convolutional GAN (DCGAN) [56] using only the bonafide sam-

ples. At the end of the training, the generator is discarded, and the discriminator is

used as the PAD classifier. They combined the results from different GANs operat-

ing on different features. However, this approach may not work well for face images

as the recaptured images look very similar to the bonafide samples.

2.2 Multi-channel methods

In general, most of the visible spectrum-based PAD methods try to detect the subtle

differences in image quality when it is recaptured. With the advances in sensor and

printer technology, the quality of the generated PA instruments improve over time.

The high fidelity of PAs might make it difficult to recognize the subtle differences

between bonafide and PAs. For 3D attacks, the problem is even more severe. As the

technology to make detailed masks is available, it becomes very hard to distinguish

between bonafide and presentation attacks by just using visible spectrum imaging.

Many researchers have suggested using multi-spectral and extended range imaging

to solve this issue [58], [63].

Raghavendra et al. [58] presented an approach using multiple spectral bands for

face PAD. The main idea is to use complementary information from different bands.

To combine multiple bands they observed a wavelet-based feature level fusion and a

score fusion methodology. They experimented with detecting print attacks prepared

using different kinds of printers. They obtained better performance with score level

fusion as compared to the feature fusion strategy.

Erdogmus and Marcel [17] evaluated the performance of several face PAD ap-

proaches against 3D masks using the 3DMAD dataset. This work demonstrated that

3D masks could fool PAD systems easily. They achieved HTER of 0.95% and 1.27%

using simple LBP features extracted from color and depth images captured with

Kinect.

Steiner et al. [63] presented an approach using multi-spectral SWIR imaging

for face PAD. They considered four wavelengths - 935nm, 1060nm, 1300nm and

1550nm. In their approach, they trained an SVM for classifying each pixel as a skin

pixel or not. They defined a Region Of Interest (ROI) where the skin is likely to be
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present, and skin classification results in the ROI are used for classifying PAs. The

approach obtained 99.28 % accuracy in per pixel skin classification.

Dhamecha et al. [15] proposed an approach for PAD by combining the visible

and thermal image patches for spoofing detection. They classified each patch as ei-

ther bonafide or attack and used the bonafide patches for subsequent face recognition

pipeline.

In [8] Bhattacharjee et al. showed that it is possible to spoof commercial face

recognition systems with custom silicone masks. They also proposed to use the

mean temperature of the face region for PAD.

Bhattacharjee et al. [7] presented a preliminary study of using multi-channel in-

formation for PAD. In addition to visible spectrum images, they considered thermal,

near-infrared, and depth channels. They showed that detecting rigid masks and 2D

attacks is simple in thermal and depth channels respectively. Most of the attacks can

be detected with a similar approach with combinations of different channels, where

the features and combinations of channels to use are found using a learning-based

approach.

Wang et al. [64] proposed multimodal face presentation attack detection with a

ResNet-based network using both spatial and channel attentions. Specifically, the

approach was tailored for the CASIA-SURF [70] database which contained RGB,

near-infrared, and depth channels. The proposed model is a multi-branch model

where the individual channels and fused data are used as inputs. Each input channel

has its own feature extraction module and the features extracted are concatenated

in a late fusion strategy. Followed by more layers to learn a discriminative repre-

sentation for PAD. The network training is supervised by both center loss and soft-

max loss. One key point is the use of spatial and channel attention to fully utilize

complementary information from different channels. Though the proposed approach

achieved good results in the CASIA-SURF database, the challenging problem of un-

seen attack detection is not addressed.

Parkin et al. [49] proposed a multi-channel face PAD network based on ResNet.

Essentially, their method consists of different ResNet blocks for each channel fol-

lowed by fusion. Squeeze and excitation modules (SE) are used before fusing

the channels, followed by remaining residual blocks. Further, they add aggrega-

tion blocks at multiple levels to leverage inter-channel correlations. Their approach

achieved state of the art results in CASIA-SURF [70] database. However, the fi-

nal model presented is a combination of 24 neural networks trained with different

attack-specific folds, pre-trained models, and random seeds, which would increase

the computation greatly.

2.3 Open Challenges in PAD

In general, presentation attack detection in a real-world scenario is still challenging.

Most of the PAD methods available in prevailing literature try to solve the prob-

lem for a limited number of presentation attack instruments. Though some success
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has been achieved in addressing 2D presentation attacks, the performance of the

algorithms in realistic 3D masks and other kinds of attacks is poor.

As the quality of attack instruments evolves, it becomes increasingly difficult to

discriminate between bonafide and PAs in the visible spectrum alone. In addition,

more sophisticated attacks, like 3D silicone masks, make PAD in visual spectra chal-

lenging. These issues motivate the use of multiple channels, making PAD systems

harder to bypass.

We argue that the accuracy of the PAD methods can get better with a multi-

channel acquisition system. Multi-channel acquisition from consumer-grade devices

can improve performance significantly. Hybrid methods, combining both extended

hardware and software could help in achieving good PAD performance in real-world

scenarios. We extend the idea of a hybrid PAD framework and develop a multi-

channel framework for presentation attack detection.

3 PAD Approach

We present three different strategies to fuse multi-channel information for the pre-

sentation attack detection task. Different stages of the PAD framework are described

in this section.

3.1 Preprocessing

The PAD pipeline acts on the cropped facial images. For the RGB image, the pre-

processing stage consists of face detection and landmark localization using the

MTCNN [69] framework, followed by alignment. The detected face is aligned by

making the eye centers horizontal followed by resizing them to a resolution of

224×224. For the non-RGB images, a normalization method using the median ab-

solute deviation (MAD) [47] is used to normalize the face image to an 8-bit range.

The raw images from RGB and other channels are already spatially registered so

that the same transformation can be used to align the face in the non-RGB channels.

3.2 Network Architectures for Multi-channel PAD

From the prevailing literature, it has been observed that multi-channel methods are

robust against a wide range of attacks [28, 29, 23, 24]. Broadly, there are four dif-

ferent strategies to fuse the information from multiple channels, they are 1) early fu-

sion, meaning the channels are stacked at the input level (for example, MC-PixBiS

[29]). The second strategy is late fusion, meaning the representations from different

networks are combined at a later stage similar to feature fusion (for example MC-



10 Anjith George and Sébastien Marcel

CNN [28]). A third strategy is a hybrid approach where information from multiple

levels is combined as in [49] or [25]. A fourth strategy is score level fusion where

individual networks are trained separately for different channels and score level fu-

sion is performed on the scalar scores from each channel. However, the score fusion

performs poorly compared to other methods since it does not use cross-channel

relations efficiently. The details of the fusion strategies used are presented in the

following sub-section.

3.2.1 Late Fusion: Multi-Channel CNN (MCCNN-OCCL-GMM)

Fig. 1 Block diagram of the MC-CNN network. The gray color blocks in the CNN part represent

layers which are not retrained, and other colored blocks represent re-trained/adapted layers. Note

that the original approach from [28] is depicted here: it takes grayscale, infrared, depth and thermal

data as input. The channels used can be changed depending of the available channels.

This architecture uses a late fusion strategy for combining multiple channels for

the face PAD problem. The main idea in the Multi-Channel CNN (MC-CNN) is to

use the joint representation from multiple modalities for PAD, using transfer learn-

ing from a pre-trained face recognition network [28]. The underlying hypothesis

is that the joint representation in the face space could contain discriminative infor-

mation for PAD. This network consists of three parts: low and high level convolu-

tional/pooling layers, and fully connected layers, as shown in Figure 1. As noted in

[52], high-level features in deep convolutional neural networks trained in the visual

spectrum are domain-independent i.e. they do not depend on a specific modality.

Consequently, they can be used to encode face images collected from different im-

age sensing domains. The parameters of this CNN can then be split into higher-level

layers (shared among the different channels), and lower-level layers (known as Do-

main Specific Units). By concatenating the representation from different channels

and using fully connected layers, a decision boundary for the appearance of bonafide

and attack presentations can be learned via back-propagation. During training, low-

level layers are adapted separately for different modalities, while shared higher-level

layers remain unaltered. In the last part of the network, embeddings extracted from

all modalities are concatenated, and two fully connected layers are added. The first
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fully connected layer has ten nodes, and the second one has one node. Sigmoidal

activation functions are used in each fully connected layer, as in the original im-

plementation [28]. These layers, added on top of the concatenated representations,

are tuned exclusively for the PAD task using the Binary Cross Entropy as the loss

function.

The MC-CNN approach hence introduces a novel solution for multimodal PAD

problems, leveraging a pre-trained network for face recognition when a limited

amount of data is available for training PAD systems. Note that this architecture

can be easily extended for an arbitrary number of input channels.

Later, in [24] this work was extended to a one-class implementation utilizing a

newly proposed one class contrastive loss (OCCL) and Gaussian mixture model.

Essentially, the new loss function forces the network to learn a compact embedding

for the bonafide channel, making sure that attacks are far from the bonafide attacks.

This network learned is used as a fixed feature extractor and used together with a

one-class Gaussian mixture model to perform the final classification. This approach

yielded better results in unseen attacks.

3.2.2 Early Fusion: Multi-Channel Pixel-wise Binary

Supervision(MC-PixBiS)

Fig. 2 MC-PixBiS architecture with pixel-wise supervision. Input channels are stacked before

being passed to a series of dense blocks.

This architecture showcases the use of early fusion for a multi-channel PAD sys-

tem. The Multi-Channel Deep Pixel-wise Binary Supervision network (MC-PixBiS)

is a multi-channel extension of a recently published work on face PAD using legacy

RGB sensors [22]. The main idea in [22] is to use pixel-wise supervision as an aux-

iliary supervision. The pixel-wise supervision forces the network to learn shared

representations, and it acts as a patch-wise method (see Figure 2). To extend this

network for a multimodal scenario, the method proposed in [65] was used, i.e., aver-

aging the filters in the first layer and replicating the weights for different modalities.
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The general block diagram of the framework is shown in Figure 2 and is based

on DenseNet [32]. The first part of the network contains eight layers, and each layer

consists of two dense blocks and two transition blocks. The dense blocks consist

of dense connections between every layer with the same feature map size, and the

transition blocks normalize and downsample the feature maps. The output from the

eighth layer is a map of size 14×14 with 384 features. A 1×1 convolution layer is

added along with sigmoid activation to produce the binary feature map. Further, a

fully connected layer with sigmoid activation is added to produce the binary output.

A combination of losses is used as the objective function to minimize:

L = λLpix +(1−λ )Lbin (1)

where Lpix is the binary cross-entropy loss applied to each element of the 14×14

binary output map and Lbin is the binary cross-entropy loss on the network’s binary

output. A λ value of 0.5 was used in our implementation. Even though both losses

are used in training, in the evaluation phase, only the pixel-wise map is used: the

mean value of the generated map is used as a score reflecting the probability of

bonafide presentation.

3.2.3 Hybrid (Multi-head): Cross Modal Focal Loss (RGBD-MH(CMFL))

Fig. 3 Diagram of the two-stream multi-head model, showing the embeddings and probabilities

from individual and joint branches. This can be extended to multiple heads as well.

The architecture presented here shows a hybrid approach to presentation attack

detection [25]. A multi-head architecture that follows a hybrid fusion strategy is

detailed here. The architecture of the network is shown in Fig. 4. Essentially, the

architecture consists of a two-stream network with separate branches for the com-

ponent channels. The embeddings from the two channels are combined to form the
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Fig. 4 The proposed framework for PAD. A two stream- multi-head architecture is used following

a late fusion strategy. Heads corresponding to individual channels are supervised by the proposed

cross-modal focal loss (CMFL), while the joint model is supervised by binary cross entropy (BCE).

third branch. Fully connected layers are added to each of these branches to form

the final classification head. These three heads are jointly supervised by a loss func-

tion which forces the network to learn discriminative information from individual

channels as well as the joint representation, reducing the possibility of overfitting.

The multi-head structure also makes it possible to perform scoring even when a

channel is missing at test time, meaning that we can do scoring with RGB branch

alone (just using the score from the RGB head) even if the network was trained on

a combination of two channels.

The individual branches are comprised of the first eight blocks (following the

DeepPixBiS architecture [22]) from DenseNet architecture (densenet161) proposed

by Huang et al. [33]. In the DenseNet architecture, each layer is connected to every

other layer, reducing the vanishing gradient problem while reducing the number of

parameters. We used pre-trained weights from the Image Net dataset to initialize the

individual branches. The number of input channels for the RGB and depth channels

has been modified to 3 and 1 for the RGB and depth channels, respectively. For

the depth branch, the mean values of three-channel weights are used to initialize

the weights of the modified convolutional kernels in the first layer. In each branch,

a global average pooling (GAP) layer is added after the dense layers to obtain a

384-dimensional embedding. The RGB and depth embeddings are concatenated to
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form the joint embedding layer. A fully connected layer, followed by a sigmoid

activation is added on top of each of these embeddings to form the different heads

in the framework. At training time, each of these heads is supervised by a separate

loss function. At test time, the score from the RGB-D branch is used as the PAD

score.

A cross-modal focal loss (CMFL) to supervise the individual channels is also

proposed in this work [25]. The core idea is that, when one of the channels can

correctly classify a sample with high confidence, then the loss contribution of the

sample in the other branch can be reduced. If a channel can correctly classify a

sample confidently, then we don’t want the other branch to penalize the model more.

CMFL forces each branch to learn robust representations for individual channels,

which can then be utilized with the joint branch, effectively acting as an auxiliary

loss function.

The idea of relaxing the loss contribution of samples correctly classified is simi-

lar to the Focal Loss [40] used in object detection problems. In Focal Loss, a mod-

ulating factor is used to reduce the loss contributed by samples that are correctly

classified with high confidence. We use this idea by modulating the loss factoring in

the confidence of the sample in the current and the alternate branch.

Consider the two-stream multi-branch multi-head model in Fig. 3. Xp and Xq de-

notes the image inputs from different modalities, and Ep, Eq, and Er denotes the cor-

responding embeddings for the individual and joint representations. In each branch,

after the embedding layer, a fully connected layer (followed by a sigmoid layer) is

present which provides classification probability. The variables p, q and r denote

these probabilities.

The naive way to train a model is to use BCE loss on all three branches as:

L = Lp +Lq +Lr (2)

Where each loss function is BCE. However, this approach penalizes all miss-

classifications equally from both branches.

The Cross Modal Loss Function (CMFL) is given as follows:

CMFLpt,qt =−αt(1−w(pt ,qt))
γ log(pt) (3)

The function w(pt ,qt), depends on the probabilities given by the channels from two

individual branches. This modulating factor should increase as the probability of the

other branch increases, and at the same time should be able to prevent very confident

mistakes. The harmonic mean of both the branches weighted by the probability of

the other branch is used as the modulating factor. This reduces the loss contribution

when the other branch is giving confident predictions. And the expression for this

function is given as:

w(pt ,qt) = qt

2ptqt

pt +qt

(4)

Note that the function w is asymetric, i.e., the expression for w(qt , pt) is:
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w(qt , pt) = pt

2ptqt

pt +qt

(5)

meaning the weight function depends on the probability of the other branch. Now we

use the proposed loss function as auxiliary supervision,and the overall loss function

to minimize is given as:

L = (1−λ )LCE(rt)
+λ (LCMFLpt,qt

+LCMFLqt,pt
) (6)

The value of λ was non-optimally as 0.5 for the study. When the probability of

the other branch is zero, then the loss is equivalent to standard cross-entropy. The

loss contribution is reduced when the other branch can correctly classify the sample.

i.e., when an attack example is misclassified by network CNNp, the network CNNp

is penalized unless model CNNq can classify the attack sample with high confidence.

As the w(p,q)→ 1 the modulating factor goes to zero, meaning if one channel can

classify it perfectly, then the other branch is less penalized. Also, the focussing

parameter γ can be adapted to change the behavior of the loss curve. We used an

empirically obtained value of γ = 3 in all our experiments.

4 Experiments

We have used the HQ-WMCA dataset for the experiments, which contains a wide

variety of 2D, 3D, and partial attacks, collected from different channels such as

color, thermal, infrared, depth, and short-wave infrared.

4.1 Dataset: HQ-WMCA

Fig. 5 Attacks present in HQ-WMCA dataset: (a) Print, (b) Replay, (c) Rigid mask, (d) Paper

mask, (e) Flexible mask, (f) Mannequin, (g) Glasses, (h) Makeup, (i) Tattoo and (j) Wig. Image

taken from [29].

The High-Quality Wide Multi-Channel Attack (HQ-WMCA )[29, 46] dataset

consists of 2904 short multi-channel video recordings of both bonafide and pre-

sentation attacks. This database again consists of a wide variety of attacks including

both obfuscation and impersonation attacks. Specifically, the attacks considered are

print, replay, rigid mask, paper mask, flexible mask, mannequin, glasses, makeup,
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tattoo, and wig (Fig. 5). The database consists of recordings from 51 different sub-

jects, with several channels including color, depth, thermal, infrared (spectra), and

short-wave infrared (spectra). In this work, we consider the RGB channel captured

with Basler acA1921-150uc camera and depth image captured with Intel RealSense

D415.

4.2 Protocols

We use the grand test as well as the leave-one-out (LOO) attack protocols dis-

tributed with the HQ-WMCA dataset. Specifically, in the LOO protocols, one attack

is left out in the train and development set and the evaluation set consists of bonafide

and the attack which was left out in the train and development set. This constitutes

the unseen attack protocols or zero-shot attack protocols. The performance of the

PAD methods in these protocols gives a more realistic estimate of their robustness

against unseen attacks in real-world scenarios. In addition, we performed experi-

ments with known attack protocols to evaluate the performance in a known attack

scenario.

4.3 Metrics

For the evaluation of the algorithms, we have used the ISO/IEC 30107-3 metrics

[34], Attack Presentation Classification Error Rate (APCER), and Bonafide Pre-

sentation Classification Error Rate (BPCER) along with the Average Classification

Error Rate (ACER) in the eval set. We compute the threshold in the dev set for a

BPCER value of 1%, and this threshold is applied in the eval set to compute the

reported metrics.

ACER =
APCER+BPCER

2
. (7)

4.4 Implementation details

We performed data augmentation during the training phase with random horizon-

tal flips with a probability of 0.5. The combined loss function is minimized with

Adam Optimizer [37]. A learning rate of 1×10−4 was used with a weight decay pa-

rameter of 1×10−5. We used a mini-batch size of 64, and the network was trained

for 25 epochs on a GPU grid. The architecture and the training framework were

implemented using the PyTorch [50] library.



Robust Face Presentation Attack Detection with Multi-channel Neural Networks 17

4.5 Baselines

For a fair comparison with state-of-the-art, we have implemented 3 different multi-

channel PAD approaches from literature as described in section 3.2 for the RGB-D

channels. Besides, we also introduce a multi-head architecture supervised with BCE

alone, as another baseline for comparison. The baselines implemented are listed be-

low.

RGB-DeepPixBiS: This is an RGB only CNN based system [22], trained using both

binary and pixel-wise binary loss function. This model is used as a baseline for com-

paring with multi-channel models.

MC-PixBiS: This is a CNN based system [22], extended to multi-channel scenario

as described in [29] trained using both binary and pixel-wise binary loss function.

This model uses RGB and depth channels stacked together at the input level.

MCCNN-OCCL-GMM: This model is the multi-channel CNN system proposed to

learn one class model using the one class contrastive loss (OCCL) and Gaussian

mixture model as reported in [24]. The model was adapted to accept RGB-D chan-

nels as the input.

MC-ResNetDLAS: This is the reimplementation of the architecture from [49],

which won the first prize in the ‘CASIA-SURF’ challenge, extending it to RGB-D

channels, based on the open-source implementation [2]. We used the initialization

from the best-pretrained model as suggested in [49] followed by retraining in the

current protocols using RGB-D channels.

RGBD-MH-BCE: This uses the multi-head architecture shown in Fig.4, where all

the branches are supervised by binary cross-entropy (BCE). In essence, this is equiv-

alent to setting the value of γ = 0, in the expression for the cross-modal loss function.

This is shown as a baseline to showcase the improvement by the new multi-head

architecture alone and to contrast with the performance change with the new loss

function.

RGBD-MH-CMFL: This uses the multi-head architecture shown in Fig.4, where

individual branches are supervised by CMFL loss and joint branch is supervised by

BCE loss.

4.6 Experiments and Results

Results in HQ-WMCA dataset: Table 1 shows the performance of different meth-

ods in the grandtest protocol, which evaluates the performance of the methods in a

known attack scenario, meaning all attacks are distributed equally across train, de-

velopment, and test set. From the ACER values, it can be seen that the multi-head

architecture performs the best followed by MC-PixBiS architecture. The RGB alone

model (RGB-DeepPixBiS) also performs reasonably well in this protocol. The cor-

responding ROC plots for the evaluation set are shown in Fig. 6. It can be seen from

the ROC that the RGB-only model outperforms the multi-head model in the evalu-

ation set opposite to the results in Table 1. In ACER evaluations, the threshold used
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Table 1 Performance of the multi-channel systems in the grandtest protocol of HQ-WMCA

dataset. The values reported are obtained with a threshold computed for BPCER 1% in dev set.

APCER BPCER ACER

RGB-DeepPixBiS 9.2 0.0 4.6

MC-PixBiS 9.7 0.0 4.8

MCCNN-OCCL-GMM 7.9 11.4 9.7

MC-ResNetDLAS 8.0 6.4 7.2

RGBD-MH-BCE 4.0 2.0 3.0

RGBD-MH-CMFL 6.6 0.1 3.3
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APCER

0.0
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Fig. 6 ROC plot for evaluation set in the grandtest protocol in HQ-WMCA dataset.
Table 2 Performance of the multi-channel systems method in unseen protocols of HQ-WMCA

dataset. The values reported are obtained with a threshold computed for BPCER 1% in dev set.

Flexiblemask Glasses Makeup Mannequin Papermask Rigidmask Tattoo Replay Mean±Std

RGB-DeepPixBiS [22] 5.8 49.3 23.8 0.0 0.0 25.9 13.6 6.0 15.5± 15.8

MC-PixBiS [22] 29.9 49.9 29.4 0.1 0.0 32.5 5.7 9.6 19.6±17.1

MCCNN-OCCL-GMM [24] 14.2 32.7 22.0 1.5 7.1 33.7 4.2 36.6 19.0±13.2

MC-ResNetDLAS [49] 23.5 50.0 33.8 1.0 2.6 31.0 5.7 15.5 20.3±16.2

RGBD-MH-BCE 16.7 38.1 43.3 0.4 1.3 3.0 2.0 2.3 13.3±16.5

RGBD-MH-CMFL [25] 14.8 37.4 34.9 0.0 0.4 2.4 2.4 1.0 11.6±14.8

is selected from the development set. The ROC plots only depict the performance in

the evaluation set without considering the threshold selected from the development

set causing the discrepancy. ACER reported shows more realistic performance es-

timates in real-world scenarios as the thresholds are fixed in advance according to

specific performance criteria.

The HQ-WMCA dataset consists of challenging attacks, specifically, there are dif-

ferent types of partial attacks such as Glasses which occupy only a part of the face.

These attacks are much harder to detect when they are not seen in the training set, as

they appear very similar to bonafide samples. The analysis we performed is similar

to a worst-case analysis since it specifically focuses on the unseen attack robust-

ness. The experimental results in the LOO protocols of HQ-WMCA are tabulated in

Table 2. Overall, MCCNN-OCCL-GMM and MC-ResNetDLAS do not perform well
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(h) LOO Tattoo

Fig. 7 ROC plots for the evaluation set in unseen attack protocols of HQ-WMCA dataset.
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in the LOO protocols of HQ-WMCA database. In addition, the MC-PixBiS method

also performs poorly in the unseen attack protocols of the HQ-WMCA dataset. This

could be due to the challenging nature of the attacks in the database. The RGB-only

method RGB-DeepPixBiS performs reasonably well overall too. It can be seen that

the multi-head architecture, RGBD-MH-BCE, already improves the results as com-

pared to all the baselines with an average ACER of 13.3± 16.5. With the addition

of the CMFL loss, the ACER further improves to 11.6±14.8%. The results indicate

that the proposed architecture already improves the performance in challenging at-

tacks, and the proposed loss further improves the results achieving state-of-the-art

results in the HQ-WMCA dataset.

From Table 2, it can be seen that the effectiveness of fusion strategies is differ-

ent for unseen PA scenarios. While most of the multi-channel methods struggle to

achieve good performance in detecting unseen Flexiblemasks, the RGB-DeepPixBiS

achieves much better performance in this case. A similar trend can be seen in the

case of Makeup attack as well. This could be due to the lack of additional informa-

tion provided by the depth channel in these cases. The depth information in the case

of these attacks is very similar to that of bonafide samples. However, multi-channel

method provides a significant boost in performance in detecting Rigidmask, Tattoo

and Replay attacks. Attacks like Papermask and Mannequins are easier to detect

in most of the cases due to the distinct appearance compared to bonafide samples.

The multi-head architecture improves the performance compared to other baselines

in most of the sub-protocols. The ROC plots for the eval set for the corresponding

protocols are shown in Fig. 7.

Performance with missing channels: We evaluate the performance of the multi-

head models when evaluated with only a single channel at test time. Consider a

scenario where the model was trained with RGB and depth, and at the test time,

only one of the channels is available. We compare with the mean performance in the

HQ-WMCA dataset, with RGB and depth alone at test time. The results are shown

in Table 3. For the baseline RGBD-MH-BCE, using RGB alone at test time the error

rate is 15.4± 16.1, whereas for the proposed approach it improves to 12.0± 13.9.

The performance improves for the depth channel as well.

From Table 3, it can be seen that the performance improves, as compared to us-

ing BCE even when using a single channel at the time of deployment. This shows

that the performance of the system improves when the loss contributions of samples

that are not possible to classify by that modality are reduced. Forcing the individual

networks to learn a decision boundary leads to overfitting resulting in poor general-

ization.

Table 3 Ablation study using only one channel at deployment time.

RGB Depth

RGBD-MH-BCE 15.4±16.1 34.2±11.6

RGBD-MH-CMFL 12.0±13.9 30.6±17.5



Robust Face Presentation Attack Detection with Multi-channel Neural Networks 21

4.7 Computational Complexity

Table 4 Computational and parameter complexity comparison

Model Compute Parameters

MCCNN-OCCL-GMM [24] 14.51 GMac 50.3 M

MC-PixBiS [22] 4.7 GMac 3.2M

MC-ResNetDLAS [49] 15.34 GMac 69.29 M

RGBD-MH(CMFL) [25] 9.16 GMac 6.39 M

Here we compare the complexity of the models in terms of parameters and com-

pute required (for RGB and Depth channels). The comparison is shown in Table 4. It

can be seen that the parameter and compute for late fusion (MCCNN-OCCL-GMM)

is quite high. A lot of additional parameters are added for each channel before fusion

which increases the total number of parameters. The MC-ResNetDLAS also suffers

from a high number of parameters and compute. The Early fusion method, MC-

PixBiS, with the truncated DenseNet architecture saves compute and parameters a

lot compared to others. Thanks to fusing the channels at the input level, the parame-

ter increase is just for the first convolutional filter keeping rest of the operations the

same. This makes it easy to add more channels as the rest of the network remains

the same except for the first convolutional filter. Lastly, the RGBD-MH(CMFL) is

composed of the PixBiS model for each of the channels, and hence roughly double

the number of parameters and compute compared to the PixBiS model.

4.8 Discussions

From the results, it was observed that the late fusion method MCCNN-OCCL-GMM

performed poorly compared to other methods. Also, this strategy increases the num-

ber of parameters with the increase in the number of channels. The MC-PixBiS

model, on the other hand, does not increase the number of parameters with the

increase in the number of channels. Each additional channel only changes the pa-

rameters in the first convolutional filter, which is negligible compared to the total

number of parameters. In short, the early fusion method is more scalable to an in-

creasing number of channels as the computational complexity is very less. However,

this method cannot handle a missing channel scenario in a real-world application.

From the performance evaluations, it was seen that the RGBD-MH(CMFL) ar-

chitecture achieves the best performance. Usage of multiple heads forces the net-

work to learn multiple redundant features from individual channels as well as from

the joint representation. This effectively acts as a regularization mechanism for the

network, preventing overfitting to seen attacks. Further, one limitation of the multi-
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head representation is that the network is forced to lea discriminative features from

all the channels, which may not be trivial. The CMFL loss proposed effectively ad-

dresses this issue by dynamically modulating the loss contribution from individual

channels. Comparing the computational complexity, this model is relatively simpler

compared to the late fusion model. Nevertheless, this model is more complex com-

pared to the early fusion approach with nearly double the number of parameters,

however, with the addition of parameters and the formulation it can be seen that the

architecture itself improves the robustness, and again with the use of CMFL loss,

the performance further improves indicating a good performance complexity trade-

off. The cross-modal focal loss function modulates the loss contribution of samples

based on the confidence of individual channels. The framework can be trivially ex-

tended to multiple channels and different classification problems where information

from one channel alone is inadequate for classification. This loss forces the network

to learn complementary, discriminative, and robust representations for the compo-

nent channels. The structure of the framework makes it possible to train models

using all the available channels and to deploy with a subset of channels. One limita-

tion of the framework is that the addition of more channels requires more branches

which increases the parameters linearly with the number of channels. While we

have selected RGB and depth channels for this study, mainly due to the availabil-

ity of off-the-shelf devices consisting of these channels, it is trivial to extend this

study to other combinations of channels as well, for instance, RGB-Infrared, and

RGB-Thermal.

5 Conclusions

In this chapter, we have presented different approaches using multi-channel infor-

mation for presentation attack detection. All the approaches have their merits and

limitations, however, we have conducted an extensive analysis of the unseen attack

robustness as a worst-case performance evaluation. As multi-channel methods are

required for safety-critical applications, robustness against unseen attacks is an es-

sential requirement. In the evaluations, we have noted that the performance is much

better for the multi-head architecture, thanks to the CMFL loss. The CMFL loss

forces the network to learn complementary, discriminative, and robust representa-

tions for the component channels. This work can be straightforwardly extended to

other combinations of channels and architectures as well. The HQ-WMCA database

and the source code and protocols will be made available to download for research

purposes. This will certainly foster further research in multi-channel face presenta-

tion attack detection in the future.
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