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Abstract—Air traffic controllers (ATCos) from Austro Control to-
gether with DLR quantified the benefits of automatic speech 
recognition and understanding (ASRU) on workload and flight 
safety. As the baseline procedure, ATCos enter all clearances man-
ually (by mouse) into the aircraft radar labels. As part of our pro-
posed solution, the ATCos are supported by ASRU, which is capa-
ble of delivering the required inputs automatically. The ATCos are 
only prompted to make corrections, when ASRU provided incor-
rect output. Overall amount of time required for manually insert-
ing clearances, i.e., by clicking and selecting the correct input on 
the screen, reduced from 12,800 seconds during 14 hours of simu-
lations time down to 405 seconds, when ATCos were supported by 
ASRU. A reduction of radar label maintenance time through 
ASRU might not be surprising given earlier experiments. How-
ever, a factor greater than 30 outperforms earlier findings. In ad-
dition, this paper also considers safety aspects, i.e., how often 
ATCos support provided an incorrect input into the aircraft radar 
labels with and without ASRU. This paper shows that ASRU sys-
tems based on artificial intelligence are reliable enough for their 
integration into air traffic control operations rooms. 

Keywords—automatic speech recognition, automatic speech 
understanding, situation awareness, saftety, artificial intelligence, 
human factors, air traffic controller’s workload 

I.  INTRODUCTION 
Automatic speech recognition (ASR) systems are widely 

used in everyday life (e.g., Siri®, Alexa®). ASR has been used 
in air traffic control (ATC) training simulators to replace expen-
sive simulation pilots since the late 1980s. The German air nav-
igation service provider DFS has been focusing on deployment 
of ASR for more than 15 years for their trainees in the simulator 
environment [1]. Moreover, the European Commission is fund-
ing the integration of ASR into air traffic management applica-
tions at least since 2016, starting with the project “Machine 
Learning of Speech Recognition Models for Controller Assis-
tance,” MALORCA [2]. However, even though many proto-
types were already implemented in laboratory environments 
over the past, ASR has not yet been productively used in an op-
erational environment, i.e., in an operations room (ops room). 

A. Speech Recognition is not Speech Understanding 
One of the reasons for not deploying ASR systems in ops 

rooms until now is that speech recognition is not the end of the 
story, because ASR is just the process of translating the voice 
signal to a sequence of recognized words. To make actual use of 
the information carried in such words, speech understanding is 
also required. If the air traffic controller (ATCo) e.g. says “speed 
bird two thousand one eight zero knots until four to tower eight-
een seven bye” and even having a perfect ASR system, which 
correctly recognizes each of the 15 words, any digital assistant 
still does not understand the semantics of this utterance, i.e., 
callsign and command elements such as values and units. There-
fore, the term automatic speech recognition and understanding 
(ASRU) is used in the remaining part of the paper. ASRU com-
prises speech-to-text (automatic transcripts) as well as text-to-
concepts (automatic extraction of meanings; annotation). Under-
standing becomes even more important in case not all of the spo-
ken words are correctly recognized by ASR (which is obviously 
expected). Humans are also prone to errors as tasks become 
more and more cognitively demanding, but are still able to grasp 
the meaning of the communication most of the time. ATCo-pilot 
communication is of course standardized by ICAO [3], but there 
is a big difference between what is written in ICAO documents 
and what happens in real life communication between ATCos 
and pilots, which makes understanding even more challenging. 

B. Research Question 
Recently, the STARFiSH project [4] demonstrated that ac-

ceptable command recognition rates are possible for Frankfurt 
apron simulation environment. Command recognition rates of 
90% were achieved. Are 90% enough? A simple answer would 
be “yes”: The ATCo only needs to manually input/correct one 
of ten commands. Even if this correction requires doubled effort 
compared to the input without ASRU support, the workload for 
manual input is still reduced by a factor of four. However, the 
main question is, what happens, if the ATCo does not detect that 
there is an error in the ASRU output, i.e., the content in the radar 
label is wrong or incomplete. Derived from this issue, one also 
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needs to ask if a very good ASRU performance can even result 
in an over-trust into the system. 

C. Derived Research Questions 
 The ASRU availability serves as independent variable for 

our human-in-the-loop real-time simulation study. Another 
independent variable is whether an ATCo starts with or 
without ASRU support. Normally, as shown in [5], ATCos 
perform better when they are already familiar with tools and 
scenarios. How can we compensate unintended sequence 
effects, i.e., the second independent variable? 

 If ASRU errors are not detected and corrected by the ATCo, 
how can we reduce the risk that wrong or missing inputs 
remain undetected and uncorrected?  

 First, however, we need to calculate the metrics. How can 
we effectively and even more important efficiently analyze, 
which clearances are given, which ones are correct in the 
radar labels, and which ones are missing or have wrong val-
ues? 

D. Paper Structure 
After presenting related work in section II, section III de-

scribes the validations, being performed with 12 ATCos from 
Austro Control (ACG) in DLR’s lab environment from Septem-
ber to November 2022. As part of the baseline runs, ATCos enter 
all clearances manually. In solution runs, ATCos are supported 
by ASRU. The ASRU architecture is described together with its 
performance in section IV. Section V contains objective valida-
tion results on ATCo performance and safety questions, whereas 
section VI presents subjective feedback from ATCos from ques-
tionnaires and together with section V gives answers to the de-
rived research questions. Section VII concludes. The appendix 
compares our sequence compensation approach to a multi-factor 
ANOVA approach.  

II. BACKGROUND 
After focusing on replacing ATC simulation pilots by ASR 

[6] in the last decades, the evaluation of ATC workload using 
ASR data [7], [8] was a subsequent step, during which the limi-
tations of grammar-based ASR approaches became apparent. In 
2018 Airbus launched a speech recognition challenge to encour-
age the development of ASR for ATC scenarios [9], which pro-
vided academia and industry with access to real life, manually 
transcribed ATC utterances. Although many applications 
achieved acceptable recognition performance in terms of word 
error rate, it became clear that the lack of context information 
resulted in inadequate results especially at the conceptual level. 
One promising approach to improve ASR performance is the use 
of context knowledge related to expected utterances, with early 
attempts dating back to the 1980s [10], [11]. This context 
knowledge can significantly reduce the search space and lead to 
fewer misrecognitions [12]. In this course, the benefits of using 
context information for pre-processing versus using context for 
post-recognition have been analyzed [13]. 

Later, the context was extended by generating it also with an 
assistance system; here an arrival manager [14]. The extension 
started with a study in 2011 [15]. In a pilot study with a limited 

set of callsigns and commands, [16] reported command (recog-
nition) error rates below 5%. They used an acoustic model de-
rived from the Wall Street Journal recognition corpus. In 2016, 
it was shown that using ASRU with using context from an assis-
tant system can significantly reduce ATCo workload, which 
translates into fuel burn reduction and an increased runway 
throughput. These results were quantified in [5] and [17], respec-
tively. MALORCA project aimed at automatically adapting the 
speech recognition building blocks to different approach areas. 
The learning mechanism of command prediction, i.e., the rele-
vant part of the assistant system, was described in [18]. Auto-
matic adaptation results for Vienna and Prague approach areas 
from ATCo-pilot speech recordings and the corresponding radar 
tracks were presented in [19]. 

ASRU was also used to automatically detect readback dis-
crepancies in the US tower control [20] and Icelandic enroute 
airspace [21]. Reference [22] presented a safety monitoring 
framework that applied ASR to flight conformance monitoring 
and conflict detection. Finally, the accuracy and robustness 
achieved by mature in-domain ASR has enabled mining of 
large-scale ATC communication recordings for post-operational 
analyses [23], [24], [25]. The approach procedure deployment 
across the U.S. National Airspace System using automatically 
transcribed radio communications in post analyses was investi-
gated in [26]. Similarly, the quantity of pilot weather reports de-
livered over the radio against the quantity of pilot reports manu-
ally filed during the same time frame was compared in [27]. An-
other work focused on detecting who is speaking (ATCo or pi-
lot) purely based on transcripts generated by an in-domain ASR 
system was recently proposed on [28]. Likewise, callsign recog-
nition based on ASR transcripts has also been explored in [29]. 

The AcListant®-Strips project has demonstrated that ASRU 
supported radar label maintenance can reduce fuel burn by 50 to 
60 liters of kerosene per flight [5]. The next step was to integrate 
an industrial ASR prototype into the TopSky controller working 
position (CWP) in SESAR 2020 solution PJ.16-04. TopSky is 
an operational radar screen, developed by Thales LAS. Austro 
Control uses the Thales TopSky System [30] since 2014 to man-
ually input given clearances into the radar label. The feedback 
of the participating ATCos related to a usability and integration 
of ASRU into the human machine interface (HMI) was very pos-
itive [30]. Later, it was decided to repeat the experiment with an 
advanced ASRU system integrated into an HMI being adapted 
to Vienna approach area. Open questions were still posed: e.g., 
“what happens when the ATCo does not recognize when ASRU 
fails and a misrecognition is not corrected in the radar labels?”. 
All these questions are addressed by a validation exercise in the 
SESAR funded project “PJ.10-96-W2 HMI Interaction modes 
for ATC center” presented in the next section. 

III. VALIDATION EXERCISE: SETUP AND EXECUTION 
The main purpose of the exercise was to quantify the benefits 

of ASRU with respect to safety and ATCo workload. The benefit 
should arise from supporting approach ATCos with aircraft ra-
dar label maintenance. Therefore, in the baseline runs the mo-
dalities of a “typical” manual mouse-only input for ATCo com-
mands into the human machine interface were compared to a 
setup with ASRU + mouse input in the solution runs. First, the 
flow of ATCo commands into the HMI is detailed. Second and 



third, the experiment setup as well as the scenarios and configu-
rations for our experiments are explained. Fourth, the study par-
ticipants are described. 

A. ATCo Command HMI Input 
If the ATCo clicks on one of the nine underlined radar label 

cells shown in Figure 1, a drop-down menu opens to enter the 
given clearance values, e.g., for altitude, speed, heading, way-
point etc. 

  
Figure 1. Left: Interactive radar label cells (red underlined); Right: Drop-

down menu to enter given transition name, which opens with a click on the 
transition field (in this example the value MABOD). Yellow cross for 

rejecting all and green checkmark to accept all recognized values in the label. 
 

In solution runs, the ATCo command values are extracted 
from the radio telephony utterance and automatically appear in 
the label cells in purple, not shown in Figure 1, but later in Figure 
7. Thus, the ATCo only needs to check and confirm with a 
mouse click or corrects values in seldom cases of misrecogni-
tion. Accepted cell values will turn into light green as soon as 
the ATCo accepts them with a click on the green checkmark in 
the first label line. The command values are also automatically 
accepted after 10 seconds if the ATCo does not reject or correct 
them, which was a result of the AcListant®-Strips project [5] 
and also of solution PJ.16-04-ASR “CWP HMI” [30]. Neverthe-
less, the ATCo can manipulate cell values at any time. 

B. Setup of Experiments 
The exercise included iterative validation trials. Three pre-

validation rounds took place in October 2021, December 2021, 
and in March 2022. Figure 2 shows the basic validation setup for 
the CWP in DLR’s simulation facility, ATMOS (Air Traffic 
Management and Operations Simulator). The ATCos communi-
cated with simulation pilots in another room via voice-over-IP 
(VoIP). The headset microphone signal of the ATCo served as 
the input signal for the speech recognition engine. 

 
Figure 2. Basic validation setup during final trials. 

 
The main radar screen (right square monitor in Figure 2) dis-

played the simulated Vienna (LOWW) airspace. The display 
consisted of the Vienna terminal maneuvering area (TMA) 
structure with the area navigation (RNAV) holding points 

BALAD, PESAT, MABOD, and NERDU, associated way-
points and RNAV routes, and radar data of inbound aircraft to 
runway 34 (see also Figure 4). The left monitor (ASRU log) 
shows the recognized ATCo utterances with the extracted con-
cepts: callsign, command type, value etc. in the solution runs 
with ASRU support. The small touch screen monitor to the right 
provides the interface for a secondary task. 

The ISA (Instantaneous self-assessment of workload) inter-
face is integrated into the radar screen and requires ATCo feed-
back regarding individual self-assessed workload for the last 
five minutes [31]. Subjective rating measures on amongst other 
aspects workload and situation awareness were captured after 
each simulation run using NASA-TLX (National Aeronautics 
and Space Administration Task Load Index) [32], Bedford 
Workload Scale [33], SUS (System Usability Scale) [34], CARS 
(Controller Acceptance Rating Scale) [35], and the three 
SHAPE questionnaires (Solutions for Human Automation Part-
nerships in European ATM) [36] – SASHA (Situation Aware-
ness for SHAPE) ATCo, SATI (SHAPE Automation Trust In-
dex), and AIM-s (Assessing the Impact on Mental Workload). 
A secondary task was evaluated to gather an objective measure 
for ATCo workload during the trials. The task is based on the 
Stroop test [37] implemented in the STARFiSH project [4]. A 
higher number of correct tests indicates more mental capacity 
available for the secondary task. Thus, less workload capacity is 
consumed by the primary task [38]. After ten minutes of a sim-
ulation run, the ATCos had to perform the secondary task for ten 
minutes in addition to controlling the traffic. 

 
Figure 3. Stroop test screenshot. 

 
When the user presses the “START” button (Figure 3), the 

app shows a word for a color printed in a different color. The 
user has to select the color of the print from a list of buttons la-
belled with the names of colors. The user has to select the word 
RED in Figure 3. 

C. Scenarios and Configurations of Experiments 
Two different scenarios were created: a medium density traf-

fic scenario with 30 arrivals per hour and a heavy density traffic 
scenario with 42 arrivals per hour. The scenarios did not contain 
departures, overflights or other types of traffic TMA ATCos fre-
quently deal with in reality. In the heavy density traffic scenario, 
the voice frequency was occupied by the ATCo 35.2% of the 
time (medium density scenario: 30.9%, average of all scenarios: 
33.1%), plus roughly 45% of the time by the simulation pilots. 
The ATCo area of responsibility (see Figure 4) is comparable to 
a combined pickup/feeder sector in Europe, which corresponds 
to a combined feeder/final sector in the US. All scenarios and 
input modalities were trained in additional training runs, before 



the solution and baseline runs started. Each ATCo started with 
the medium traffic scenario. Then a heavy traffic scenario fol-
lowed, afterwards again the medium traffic scenario, and the last 
scenario was always with heavy traffic. 55% of the ATCos 
started with solution runs and 45% started with baseline runs. If 
an ATCo started with a solution run, s/he ended also with a so-
lution run, i.e., in between were two baseline runs. The same ap-
plied the other way around, when the ATCos started and ended 
with the baseline runs. Each scenario lasted for 35 minutes. The 
validation team has heavily discussed whether also to counter-
balance the order of traffic load. We decided to always start with 
the medium scenario to give the ATCos the opportunity for an 
additional training opportunity without calling this a training 
run. The main argument is presented in subsection V.A, because 
this approach enables us to compensate sequence effects. 

 

Figure 4. ATCo’s area of responsibility with main holding points and final. 

D. Study Participants 
The validation exercises were performed between Septem-

ber, 14th and November, 3rd 2022 by 12 ATCos from Austro 
Control. One of them was female. The average age of participat-
ing ATCos was 32 years (Standard Deviation SD=Sigma = 7.3; 
age interval between 25 and 44 years). Their professional work 
experience was 8 years on average (SD = 6.8; experience inter-
val between 1 and 20 years). 

On each of the six validation days two ATCos were availa-
ble. They started at 08:30 a.m. and ended around 04:30 p.m.  
While one of them was doing one of the four exercises (medium 
baseline, heavy solution, medium solution, heavy baseline) the 
other was doing the questionnaires and had free time to rest, re-
spectively. Thus, ATCos were not working in parallel.  

IV. AUTOMATIC SPEECH RECOGNITION AND 
UNDERSTANDING 

The exercise implements the ASRU system as defined by the 
project HAAWAII. The ASRU core mainly relies on four mod-
ules, performing voice activity detection (VAD), speech-to-text 
transformation (S2T), prediction of relevant context (Callsign 
Prediction), and extraction of semantic meaning (Concept 
Recognition). Figure 5 gives an overview about the integration 
of the ASRU components (light blue) in the context of the pro-
ject. 

Voice Activity Detection (VAD): The process is relatively 
straightforward, as the push-to-talk signal is readily available. 

However, there may be instances, where the last one or two 
words of the simulation pilots’ readback are overlapping with 
the next utterance from the ATCo. Despite this, it does not have 
a significant impact on the performance of Concept Recognition. 

 
Figure 5. ASRU components in validation setup. 

 
Speech-to-text (S2T): Whenever the VAD detects a trans-

mission, the signal is forwarded to S2T and the recognition pro-
cess starts in real time. The idea is to transform only the portion 
of the signal that contains audio, into word sequences. This 
means the S2T delivers intermediate recognitions as soon as an 
ATCo starts speaking and updates the recognized words contin-
uously until the end of the transmission (end point). The S2T 
utilizes a combination of cutting-edge technologies to achieve 
optimal performance. The architecture is a hybrid deep neural 
network hidden Markov model (DNN-HMM). It is based on an 
HMM model combined with a convolutional neural network 
factorized time delayed neural network (CNN-TDNNF). The 
entire system is trained using the lattice-free maximum mutual 
information objective function. The implementation follows the 
widely-known Kaldi toolkit, which uses Mel frequency cepstral 
coefficients (MFCC) and i-vector as input features. It also incor-
porates techniques such as 3-fold speed perturbation and one 
third frame sub-sampling. Additionally, a 3-gram language 
model (LM) was trained and adapted using in-domain data to 
further enhance the accuracy of the system. Table I shows the 
performance on word level, which is based on the word error 
rate (WER), i.e., the percentage of words not correctly recog-
nized, which is based on the Levenshtein distance [39]. It also 
lists the number of uttered words, the number of substitutions 
(Subst), deletions (Del), and insertions (Ins) representing the dif-
ference between recognized words and the actual uttered words. 
The best performance, i.e., lowest WER, for a single ATCo on 
all his/her four runs was 0.7%, the worst one was 8.2%. 

TABLE I.  WORD ERROR RATE, I.E., PERFORMANCE AT WORD LEVEL  

 # Words Levenshtein Distance # Subst # Del # Ins WER 
Total 118816 3712 1853 1324 535 3.12% 
Heavy 64441 2148 1066 729 353 3.33% 

Medium 54375 1564 787 595 182 2.88% 
Solution 59180 1805 881 686 238 3.05% 
Baseline 59636 1907 972 638 297 3.20% 

Manual, i.e. gold, transcriptions were generated for all ATCo utterances including baseline runs. 

Callsign Prediction: This module considers surveillance 
data to determine if any recognized callsign could reasonably be 
part of an ATCo voice transmission. The output is used by S2T 
and Concept Recognition to enhance the recognition quality of 
both. 



Concept Recognition: Every time a word sequence is for-
warded, it is analyzed by the concept recognition module. The 
analysis result is then transformed into relevant ATC commands 
as defined by SESAR project PJ.16-04 CWP HMI [40] and ex-
tended by the HAAWAII project [41]. The Concept Recognition 
provides early recognitions of callsigns (Csgn) and also of com-
mands (Cmd), i.e., they are already in the intermediate output 
even before the utterance completely ended. The implementa-
tion relies on a rule-based algorithm, which determines the rele-
vant parts in a step-by-step manner [41]. Plausibility values are 
assigned to each extracted command. If the plausibility is too 
low (< 51%), it is not forwarded to the radar screen. 

 
Figure 6. Elements of an instruction consisting of callsign, command etc. 

 
A command at semantic level consists of callsign, speaker 

(ATCo or pilot), reason (report, request, readback, command), 
see Figure 6, a type, values, unit, qualifier, and can have optional 
conditions. Therefore, all these parts must be correctly extracted 
at semantic level to be counted as a correct recognition. Other-
wise it is counted as an error or a rejection. We concentrated on 
ATCo utterances in this study. Therefore, speaker and reason are 
not used. Table II summarizes the performance of the Concept 
Recognition block of Figure 5. 

TABLE II.  PERFORMANCE AT COMMAND / SEMANTIC LEVEL 

  WER 

Cmd- 
Recog-
Rate 

Cmd- 
Error-
Rate 

Csgn- 
Recog-
Rate 

Csgn- 
Error-
Rate 

Full Command 

3.1% 

92.1% 2.8% 97.8% 0.6% 
Only Label 92.5% 2.4% 97.8% 0.6% 
Label Without Csgn 94.3% 1.9% --- --- 
Only Label, offline 93.4% 1.7% 97.9% 0.5% 
Only Label, gold 0.0% 99.3% 0.3% 99.9% 0.1% 

 
The columns “Cmd-Recog-Rate” and “Cmd-Error-Rate” 

show the percentage of correct command recognitions and er-
rors, respectively. The difference of the sum of these two col-
umns to 100% correspond to rejected commands. The last two 
columns show the same metrics for the callsign only. Details 
with respect to the used metrics can be found in [42]. 

The row “Full Command” visualizes the quality on all in-
struction elements, even if they are never shown in the radar la-
bel of this application.  As for our application only callsign, type, 
and value are important, the row “Only Label” shows the rates, 
when we ignore unit, qualifier etc. If we also ignore the callsign 
(“Label Without Csgn”), the command recognition rates in-
crease to 94.3%, i.e., 2.2% of the wrong or missing label entries 
result from wrong or unrecognized callsign. After the exercise 
the rates were recalculated again offline by also eliminating 
some obvious software bugs. The recalculated rates of row 
“Only Labels” on the same word sequence inputs are shown in 
row “Only Label, offline”. All these reported rates of those four 
rows receive the same word sequences with an average WER of 
3.1% as input. If we would assume a perfect S2T block, i.e., a 
word error rate of 0%, we measure a command recognition rate 

of 99.3%, which shows that the used phraseology is very well 
modelled for the Concept Recognition module. 

V. OBJECTIVE VALIDATION RESULTS 
The following table III shows the result of the Stroop test 

already described in Figure 3 for medium traffic scenarios. Col-
umns “ATCo-Id” show the identifier of the participant. “Sol” 
and “Base” show the Stroop test results (the higher the number 
of correct tests, the better). The number “1/2” indicates whether 
the participant started with a baseline or solution run (“1”) and 
ended with a baseline or solution run (“2”). 

TABLE III.  NUMBER OF SUCCESSFUL STROOP TESTS; RESULTS FOR 
MEDIUM TRAFFIC SCENARIO 

ATCo Id Sol 1 Bas 2 ATCo-Id Bas 1 Sol 2 
1 66 31 3 30 34 
2 106 66 5 17 65 
4 28 20 7 28 50 
6 10 39 9 3 42 
8 30 53 11 18 51 

10 44 78     
12 34 41     

Average 45.4 46.9 Average 19.2 48.4 
Average Run 1 34.5 Average Run 2 47.5 

 
A. Compensating Sequence Effects 
Due to sequence effects, the results in the second run were 

mostly better than in the first run of the ATCo and from second 
to third they also slightly improved etc. This averages out, when 
50% started with baseline and 50% with solution run, but being 
able to compensate will increase statistical significance. Further-
more, a run with ATCo-Id 2 was repeated, so that seven ATCos 
started the medium scenario with solution runs and only five 
with baseline runs. The following approach adapted from [5], 
was used to compensate for these sequence effects: 

TABLE IV.  NUMBER OF SUCCESSFUL STROOP TEST RESULTS FOR 
MEDIUM TRAFFIC SCENARIO AFTER CLEANING SEQUENCE EFFECTS 

ATCo- 
Id Sol1 Bas2 Diff ATCo-

Id Bas1 Sol2 Diff 

1 72.5 24.5 48.0 3 36.5 27.5 -9 
2 112.5 59.5 53.0 5 23.5 58.5 35 
4 34.5 13.5 21.0 7 34.5 43.5 9 
6 16.5 32.5 -16.0 9 9.5 35.5 26 
8 36.5 46.5 -10.0 11 24.5 44.5 20 

10 50.5 71.5 -21.0        
12 40.5 34.5 6.0        

Average 51.9 40.4 11.6 Average 25.7 41.9 16.2 
Average Run 1 41.0  Average Run 2 41.0  

 
The average values of all 12 ATCos for the first run and the 

second run were calculated, see second last and last rows of table 
III. The averages of the last row were used to correct the Stroop 
test results. During the first runs the ATCo all together achieved 
an average number of 34.5 successful Stroop tests (average of 
all values in column “Sol 1” and column “Base 1”, marked in 
light yellow). In the second run with medium traffic the ATCos 
successfully completed on average 47.5 Stroop tests (columns 
“Base 2” and “Sol 2”, marked in light green). Therefore, we cor-
rected all entries of table III by 50% of the difference between 

Instruction
Command Condition(s)

Type Value(s) Unit Qualifier Conjunction +
RequirementReasonSpeaker

Callsign



34.5 and 47.5. As shown in table IV, first runs were corrected by 
adding 6.5 and second runs were corrected by subtracting 6.5.  

B. Paired t-Tests to Evaluate Statistical Significance 
The differences between runs of the same ATCo in baseline 

and in solution runs get smaller now, i.e., sigma decreases. This 
is also shown by the performed paired t-test. The null hypothesis 
H0 is “No ASRU support increases the number of successfully 
performed Stoop tests compared to solution mode”. The test 
value is defined by: 

� = (� − µ0) √�
��
 

The differences of the successful Stroop tests (solution mi-
nus baseline runs) for each run of table IV is calculated, e.g., 
72.5 minus 24.5 for ATCo-Id 1. The number of differences 
(ATCos) is n (12 in our case). D is the mean value of the per-
formed Stroop test differences “Diff”, i.e. 13.5. SD is the stand-
ard deviation of the differences, i.e., 23.6. We are just interested 
in checking, whether ASRU input enables more correct Stroop 
tests than mouse input. Therefore, µ0 is set to 0. The value T of 
1.98 is calculated.  

As T obeys a t-distribution with n-1 degrees of freedom we 
can reject our null hypothesis H0 with probability of α (p-value), 
if the calculated value for T is bigger than the value of the in-
verse t-distribution at position tn-1,1-α with n-1 degrees of freedom 
(in our case 1.80 for α=0.05). Therefore, the hypothesis H0 is 
rejected, because T=1.98 > 1.80 holds. We could even calculate 
the minimal α so that T > tn-1, 1-α is still valid. This is in our case 
α=0.036. Our results falsify the negatively formulated null hy-
pothesis. Hence, more correct Stroop tests were done, when 
ATCos had ASRU support. 

The probability to reject the null hypotheses for the heavy 
traffic scenario and for both scenarios together is calculated, too. 
Table V shows the minimal α values, so that T > tn-1, 1-α holds. 
We will mark in the following in green, if α is less than 5%. With 
considering sequence effects all null-hypotheses can be rejected 
with α less than 5%. 

TABLE V.  MIN ΑLPHA FOR FOR SUCCESSFUL STROOP TESTS 

Hypotheses  Me-
dium Heavy Both 

With considering sequence effects 3.6% 2.3% 0.3% 
Without considering sequence effects 9.3% 3.6% 1.3% 

Minimal α values, shaded in green for 0%≤α<5%, in light green for 5%≤α<10% 

Our approach to compensate the sequence effects by sub-
tracting or adding the average values and then performing a 
paired t-test on the transformed values is not the only approach. 
The two-way analysis of variance (ANOVA) might provide sim-
ilar results [43], but we did not further investigate. More details 
to increase trust in our results can be found in the appendix. 

C. Workload Resulting from Radar Label Maintenance 
We wanted to know how much time the ATCo could save 

for maintaining the command values in the radar label when be-
ing supported by ASRU. If the ATCo gives the command 
“AUA472T DESCEND 120 FL, AUA472T HEADING 110, 
AUA472T RATE_OF_DESCENT 1000 ft_min OR_GREA-

TER”, the ATCo has to click into the radar label (see Figure 1), 
i.e., into the active altitude field, scroll in the menu, and select 
the value 120, then click on the active heading field and scroll 
down or up to the heading value 110, click in the vertical rate 
field, select the 1000, and click into the field for 
“OR_GREATER”. The ATCo can update the cell at any time, 
e.g., 5 seconds before the command is spoken or 10 seconds later 
or during readback of the pilot. In solution runs, the ATCo just 
checks the three purple values and the purple arrow indication 
“OR GREATER” in the radar label of the callsign, see Figure 7. 

 
Figure 7. Radar label showing recognized flight level (120), heading (110 and 

“—” for waypoint (WP) cell), and descent rate (1000 or greater). 
If the values are correct, nothing needs to be done. If one 

value is wrong or missing, it needs to be manually overwritten. 
If more values are wrong, the ATCo’s workload would of course 
be higher compared to entering the values manually from the 
beginning. The worst case would be, if even the callsign is 
wrongly recognized. Then, the ATCo needs to reject the values 
for the wrong callsign and to manually input all of them for the 
correct callsign. As the callsign recognition error rate is very 
low, see Table II in section IV, this last case almost never hap-
pens. 

Table VI shows the time (column 2) needed for entering the 
values into the radar label cells. Both baseline and solution sce-
narios for 12 ATCos each sum up to 50,400 seconds duration. In 
the baseline scenarios the ATCos spent 25.3% of their time, i.e., 
12,763 of 50,400 seconds, just for clicking, whereas in the solu-
tion runs only 0.8% of the time was needed, i.e., a factor of more 
than 31. It needs to be mentioned that ATCos are used to doing 
some tasks in parallel. During those 12,763 seconds they are, 
e.g., partly speaking to the pilot or checking pilots` readbacks. 
The ASRU system, however, is not perfect. The ATCo is still 
responsible for the contents in the radar labels cells. Especially 
during solution runs, the ATCos need to check contents of the 
cells and compare it to the pilot readback. This requires mental 
workload, which also needs to be considered. 

TABLE VI.  RADAR LABEL MAINTENANCE EFFORT: DURATION AND 
CLICKS FOR CERTAIN INPUT TYPES 

 Number of Mouse Clicks for Radar Label Input 

Scenario Time [s] Total 
Alti-
tude Head Speed Trans Rates WP 

Baseline 12,763 58,77 1,906 572 1,074 216 74 589 
Solution 405 154 28 7 34 7 11 20 

The call values do not sum up to “Total”, because the numbers of for elements of Figure 1 are not 
shown. Especially the field with ILS and Handover contains 936 clicks.  

 
As done in [17], we used the Keystroke-Level-Model (KLM) 

[44] for the above analysis. This model defines execution times 
for different types of human-computer interaction, e.g., press or 
release a button, move the mouse to a specific position on the 
screen, the mental process of thinking what to do next. Since the 
calculation of input commands via mouse starts with the first 
click in the respective label, we ignore the time the ATCo needs 



to move the mouse to the label. We estimate the additional time 
compared to the baseline (“mouse only”) scenario with 1200 
milliseconds for every command that was accepted without any 
correction. This time correlates with the duration needed for a 
single mental process thinking of what to do next. In all solution 
runs 6,480 commands were given, which were relevant for the 
radar label cells, i.e., 6,480 * 1.2 seconds need to be added to the 
405 seconds for correcting the wrong and missing recognitions. 
This sum of 8,200 seconds is still less than the 12,763 seconds 
needed for clicking in the baseline runs. 

D. Missing Information in Radar Label Cells 
Knowing now that ASRU support reduces ATCo workload, 

we need to know if all given commands show the current situa-
tion in digital form, i.e., are the contents of the radar label cells 
correct, after the ATCo has corrected the ASRU output. How 
often, do we have wrong or missing inputs? A person who in 
theory counts how often the radar label contents are different 
from the spoken commands is needed. However, this approach 
is hopeless. Nobody is able to listen to ATCo utterances, under-
stand on word and on semantic level, and check the radar label 
contents with the needed accuracy. A deviation in the order of 
1% is expected. From transcription experiments it is already 
known that a person’s word error rate is in the order of 4% to 
11%, especially when a person can only listen once [45]. A com-
puter-based solution is necessary. 

During the experiments all mouse clicks changing the radar 
label cell contents are recorded; table VI resulted from these re-
cordings. The correct contents of each cell for each callsign at 
any point in time is indirectly given: All voice recordings were 
transcribed and annotated. These so-called gold annotations are 
replayed and sent to the process, which has generated the con-
tents of the radar label cells, i.e., the clicks are recorded again, 
i.e., we got the gold contents (assumed to be correct) of each cell 
for each callsign at any point in time. Then the cell contents dur-
ing the experiments are compared with the correct/gold contents. 
The comparison of the label cell contents during the experiments 
to the correct contents can be done automatically, and best of all, 
the calculation can be redone whenever we find, e.g., an incon-
sistency in the gold annotations. 

Table VII shows the result for the baseline and the solution 
runs. The first column shows the number of clearances given for 
each cell. We did not count commands which cleared a value in 
a field, e.g., “own navigation” or “no speed restrictions”, but we 
considered them when a calculation was missing or in case of 
wrong cell entries. “Gold” contains the number of commands of 
this type, resulting from the replay of the manual annotations. 
“Clicks” counts the number of clicks into this cell, which 
changed the value in this cell, ignoring clicks clearing the value. 

“Miss” counts the number of cell values, which were missing 
and “Add” the number of cell values which were in the cells, but 
not said at that time. If the 250 knots were intended/said and the 
value 240 was accidently entered or wrongly recognized and, 
therefore, not correct, we counted this twice as missing 250 and 
as additional 240 in the “Spd” row. “RR” is the command recog-
nition rate for that type. The entries in the cells “Miss” and 
“Add” are corrected by sequence effects as described in subsec-
tion V.A. The compensation effects, however, were much 

smaller than for the Stroop test. The biggest change is by 1.3 in 
absolute numbers. Some cells of Table VII are marked in orange, 
which require a deeper analysis or some more explanations. 

TABLE VII.  NUMBER OF ERRORS IN RADAR LABEL CELLS AFTER 
CLEANING BY SEQUENCE EFFECTS FOR HEAVY AND MEDIUM SCENARIOS 

 Baseline Solution 
Type Gold Clicks Miss Add RR Gold Clicks Miss Add RR 
Alti 1,950 1,906 62 20 95% 1,978 28 19 16 95% 
Spd 1,102 1074 70 35 89% 1,183 34 17 3 89% 

Head 936 572 351 8 94% 894 7 30 11 94% 
WP 598 589 29 14 85% 604 20 18 25 87% 

Tran 301 216 89 12 85% 289 7 23 1 88% 
Rate 63 74 13 4 67% 64 11 6 1 74% 
Spec 1,367 936 14 15 93% 1,372 19 34 15 92% 

a. “Alti” shows the number of commands, which were spoken and would require an input into 
the altitude cell in the radar label. “Spd” for speed cell, “Head” for the heading cell, “WP” for 

the waypoint cell, “Tran” for the “Transition/Route”, “Rate” for the descent rate and “Spec” for 
the ILS/approach clearance and the change frequency command type. 

 
 62 altitude commands were not or wrongly entered into the 

radar cells during baseline runs. Reasons are that 39 times 
the clearance “descend three thousand feet, cleared ILS run-
way three four” was only entered as ILS clearance. 12 times 
a clearance to 2600 feet was given. The input of an altitude 
clearance, which is not a multiple of 1000 was not supported 
by the used HMI. Nevertheless, these values were in the al-
titude cells with ASRU support. 

 351 heading values were not entered into the label cells in 
baseline runs. This happens 218 times, when the ATCo 
gives an ILS clearance (“heading three one zero cleared ILS 
three four”). ATCos from ACG explained that they are 
never inputting heading values in their TopSky system at 
home, when giving an ILS clearance. Nevertheless, this is 
an advantage for ATCos, when supported by ASRU. 

 19 altitude values were not corrected in the solution runs. 
This mostly happened, when recognizing a wrong callsign. 

 25 misrecognitions of waypoint values were not corrected 
in the solution runs. 15 times a waypoint name was wrongly 
extracted instead of another command type (e.g., “reduce 
two two zero two” extracted as abbreviation of waypoint 
WW202). Six out of these 15 cases happened together with 
the handover to tower. A reason for forgetting the correction 
could be that the aircraft are not in the focus of the ATCo 
anymore. Furthermore, seven wrong waypoint values ap-
peared, when the ATCos advised a holding at a waypoint or 
directed the aircraft to the starting waypoint of a transition, 
which was misrecognized as DIRECT_TO. From the point 
of evaluation this is a wrong, not corrected entry, but oper-
ationally it does not really matter, in which cell the way-
point is shown. Twice a wrong callsign was extracted, 
which had already been handed over to tower. The ATCos 
did not pay attention anymore to those cell entries. 

 The 34 values in the special field in the fourth label line 
mostly (30 times) relate to a misrecognition of a CLEARED 
ILS RW34 command, which was recognized as EXPECT 
ILS RW34. The ATCo did not realize this misrecognition, 
because it is shown only when the mouse is hovered over 
the label. The hidden forth label line, shown in left part of 



Figure 8, was implemented by intention to find out, if this 
has effects on situation awareness and safety. It would have 
and, therefore, the fourth label line must always be shown 
when it changes and not only when the mouse hovers over. 

        
Figure 8. Radar label with hidden (left) and shown (right) fourth label line. 

 

The initial question was how it can be verified how many 
ATCo commands are missing in the label cells with and without 
ASRU support. This was done by replaying the annotated utter-
ances. The next question was if all missing commands were cor-
rected by the ATCo. The numbers in Table VII clearly show that 
this is not the case. However, it is also not the case when the 
ATCo manually inputs all commands. We performed paired t-
tests as described in subsection V.A to validate if the differences 
are statistically significant. We used the data after cleaning the 
sequence effects. 

TABLE VIII.  MIN ALPHA FOR HYPOTHESES THAT ASRU IMPROVES 
CORRECTNESS OF RADAR LABEL CELL CONTENTS 

Hypotheses Medium Heavy Both 
Total Missing 1.6E-04 4.9E-05 6.1E-08 
Altitude cell 1.7E-04 7.2% 2.1E-04 
Speed cell 1.9% 0.5% 4.9E-04 
Heading cell 3.4E-04 3.0E-04 1.1E-06 
Waypoint cell 16.9% 9.8% 5.2% 
Transition cell 2.8% 5.0E-04 1.0E-04 
Vertical Rate cell -18.6% 2.9% 12.7% 
Special cell -14.8% -9.5% -4.8% 
Minimal α values, shaded in green for 0%≤α<5%, in light green for 5%≤α<10%, in orange if we 
have evidence that results are worse with ASRU support, and in yellow for the rest (|α| ≥ 10%). 

 

Table VIII shows the minimal α values. We have (very 
strong) statistical significance α < 10 -7 % (column Both, row 
Total Missing), that the contents of cell values are better, when 
the ATCo is supported by ASRU for the majority of command 
types. We already discussed that, when explaining Table VII. 

VI. RESULTS FROM SUBJECTIVE ATCO FEEDBACK 
The ISA test aims at a retrospective self-assessment of the 

workload during the last 5 minutes. Every five minutes a five-
points rating scale was shown on the radar screen. The ATCo 
has to select one of five numbers (1) Under-utilised, (2) Relaxed, 
(3) Comfortable, (4) High, (5) Excessive. In total, we got 6 to 7 
values from the 48 simulation runs resulting in 327 feedbacks. 

TABLE IX.  MIN ΑLPHA AND DIFFERENCE OF AVERAGE ISA VALUES  

  Medium Heavy Both 
delta ISA no consideration of se-

quence effects 
-0.03 -0.39 -0.21 

min α 42.6% 1.1% 3.1% 
delta ISA consideration of         

sequence effects 
-0.09 -0.39 -0.25 

min α 10.6% 0.5% 0.3% 
Average 
ISA 

Without ASRU 2.48 3.26 2.87 
With ASRU 2.39 2.87 2.63 

Minimal α values, marked green (0%≤α<5%), light green (5%≤α<10%), and yellow (α ≥ 10%). 

 

Table IX shows the results of the paired t-test. Negative val-
ues in column “delta ISA” indicate that the average ISA score 
was 0.39 units less for the heavy traffic scenario, i.e., better in 
the solution runs. The last two rows show the absolute ISA 
scores without sequence effects. The consideration of the se-
quence effects is important for the medium traffic scenarios. The 
compensation of sequence effects does not influence the average 
value of the ISA scores, but reduces the sigma and therefore im-
proves statistical significance, e.g. for the heavy traffic scenario 
from α=1.1% down to 0.5%. 

Six questions are used for the NASA-TLX with the ten an-
swer possibilities (1) Low to (10) High. The Bedford Workload 
scale has two different questions with also ten alternatives from 
(1) Workload Insignificant, (2) Workload Very Low, … (9) 
Workload Very High, (10) Workload Extremely High. SASHA 
offers six questions with answers from (1) Never, (2) Seldom, … 
(6) Very Often, (7) Always. AIM-s has 15 questions with seven 
answer alternatives: (1) None, (2) Little … to (7) Extreme. The 
System Usability Scale (SUS) uses ten questions with five alter-
natives from (0) fully disagree … to (4) fully agree. CARS offers 
ten alternatives for one question: (1) Improvement mandatory. 
Safe operation could not be maintained … (5) Very Objectiona-
ble Deficiencies. Maintaining adequate performance requires 
extensive controller compensation to (10) Deficiencies are rare. 
System is acceptable and controller doesn't have to compensate 
to achieve desired performance. 

We show the answers to the following 10 safety related ques-
tions; in brackets the row name in table X and the test category: 

1. How insecure, discouraged, irritated, stressed, and annoyed were 
you? (Stress annoyed, NASA-TLX) 

2. What was your peak workload? (Peak workload, Bedford) 
3. In the previous run I … started to focus on a single problem or a 

specific aircraft. (Single aircraft, SASHA) 
4. In the previous run there … was a risk of forgetting something im-

portant (such as inputting the spoken command values into the la-
bels). (Risk to Forget, SASHA) 

5. In the previous run, how much effort did it take to evaluate conflict 
resolution options against the traffic situation and conditions? 
(Conflict resolution, AIM-s) 

6. In the previous run, how much effort did it take to evaluate the 
consequences of a plan? (Consequences, AIM-s) 

7. In the previous working period, I felt that … the system was relia-
ble. (Reliable, SATI) 

8. In the previous working period, I felt that … I was confident when 
working with the system. (Confidence, SATI) 

9. I … found the system unnecessarily complex. (Complexity, SUS) 
10. Please read the descriptors and score your overall level of user ac-

ceptance experienced during the run. Please check the appropriate 
number. (User Acceptance, CARS) 

The results of each question with elimination of sequence ef-
fects are shown in table X. After elimination of sequence effects, 
all values are normalized to the interval [1..10], so that value 1 
corresponds to safe and 10 to unsafe. With this normalization, 
we could calculate a total safety value by calculating the average 
of all 10 questions. We see the results for Medium, Heavy, and 
Both traffic scenarios. “Diff” shows the average differences of 
solution run minus baseline run. A negative value means that the 



ATCo thinks the solution is safer. Column “α” shows the p/α-
value of the performed paired t-tests. We are now interpreting 
the green and orange α-values: 

TABLE X.  MIN ΑLPHA OF PAIRED T-TESTS AND DIFFERENCE OF 
AVERAGE FOR SAFETY RELEVANT SUBJECTIVE FEEDACK OF ATCOS 

 Medium Heavy Both 
Question Diff α Diff α Diff α 

Stress, annoyed -0.50 18% 0.18 -38% -0.16 34% 
Peak workload -0.44 4.6% -0.19 33% -0.32 9.9% 
Single aircraft 0.24 -23% -0.13 32% 0.04 -41% 
Risk to forget -0.83 0.2% -0.46 14% -0.64 0.7% 
Conflict resolution 0.22 -35% -0.74 5.6% -0.26 24% 
Consequences 0.77 -10% -0.17 34% 0.30 -21% 
Reliable 0.19 -40% -0.63 13% -0.24 30% 
Confidence -1.75 3.7% -1.44 7.8% -1.59 1.1% 
Complexity -2.36 0.4% -1.60 1.5% -1.98 2.E-04 
User Acceptance -1.72 3.7% -0.30 37% -1.01 6.3% 
Total -0.49 4.8% -0.62 2.2% -0.56 0.4% 

Minimal α values, shaded in green for 0%≤α<5%, in light green for 5%≤α<10%, in orange if we 
have evidence that results are worse with ASRU support, and in yellow for the rest (|α| ≥ 10%).  

 

 The feedback to “Stress, annoyed”, “Single aircraft”, “Con-
flict resolution”, “Consequences”, and “Reliability” show 
trends, but no statistical significance. 

 Peak workload seems to be less with ASRU support espe-
cially in the medium traffic scenarios. The “Risk to forget” 
something is significantly higher (α=0.7%, both), when no 
ASRU support is available. 

 The feedback to “Confidence” and “Complexity” of use 
was better in solution runs in all three cases, i.e., Medium, 
Heavy, and Both. The α-value of 0.0002 for system com-
plexity is very clear, i.e., statistically significant. The same 
applies for the absolute difference of 1.98 for both on the 
10-digit scale and even 2.36 for the medium scenario. 

 The “User Acceptance” with respect to safety is clear with 
preference to ASRU support, which is not statistically sig-
nificant for the heavy scenarios, which requires additional 
work and further analysis. 

 In “Total” feedback to the safety related topics of all the 
questionnaires strongly prefers ASRU support with a statis-
tical significance of 0.4%. 

VII. CONCLUSIONS 
The paper compared ATCos’ workload and safety effect be-

tween solution runs with automatic speech recognition and un-
derstanding (ASRU) support and baseline runs without ASRU 
support. The evaluated application was inputting spoken com-
mands into the aircraft radar labels on the radar screen. Two 
main variables affected the results: (1) usage of ASRU or not 
and (2), sequence effects, i.e., whether ATCos started with 
ASRU support or not. An approach was described and success-
fully applied to compensate these sequence effects. This in-
creased statistical significance of the results; in many cases we 
got the same results compared to doubling the number of study 
participants. 

With ASRU support, the time ATCos need to insert given 
commands into the radar labels, could be reduced from more 
than 12,000 to 400 seconds. 4% of label values were wrong or 
missing, when ASRU support was used even after manual cor-
rection with mouse and keyboard. This could have effects on 
safety, because also altitude values were missing or wrong. It 
was, however, also evaluated that without ATCo support 11% 
of given commands were wrongly or not inputted into the radar 
labels, i.e., it was shown that label error with ASRU support is 
smaller than without ASRU support. Evaluation of subjective 
ATCo feedback from questionnaires provided the same results 
with high statistical significance (α=0.3%). A new replay tech-
nique was implemented, which enables a very accurate calcu-
lation of missing and wrong label entries, based on manual 
transcription and annotation of all spoken ATCo transmissions 
to pilots. 

The ATCos that participated in the trials recognized the sig-
nificant potential of ASRU to increase their available mental 
capacity for effective traffic management. This increase in men-
tal capacity is particularly relevant in high-density traffic and/or 
when working in a control sector, which inherently requires a 
steady flow of instructions to aircraft to improve final approach 
path spacing. The more intuitive and well-implemented the inte-
gration of ASRU is in the radar HMI, the greater the potential 
benefits will be. This can be achieved by providing easy meth-
ods to check and, if necessary, fix any incorrect or missing 
ASRU output. Additionally, incorporating a mechanism verify-
ing the contents of radar labels against radar data and Mode-S 
downlinked target values can further increase safety and is al-
ready available in existing assistant systems. 

It is important to note that during the trial, no major safety 
concerns were reported by the participating ATCos. This is a 
crucial requirement for the real-world implementation of ASRU 
systems. In fact, it is possible that the use of ASRU may lead to 
a reduction of risk caused by errors in inputting data in the radar 
labels. The main conclusion of the study is that Artificial Intel-
ligence-based applications are ready for integration in the 
operations room -- at least for ASRU. While they are not yet 
perfect and achieving recognition rates of 99.9% is still a goal to 
strive for, it is also true that human operators make wrong unde-
tected inputs. By considering ASRU and ATCos as a team, the 
safety of air traffic management can be enhanced and workload 
can be reduced.  
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APPENDIX 
We have treated the statistical analysis as many problems 

with one independent variable, in our case ASRU support, and 
one dependent variable. In each problem we consider a different 
dependent variable, e.g. successfully performed Stroop- tests, 
missing label value entries, answers to questionnaires etc. We, 
however, have three independent variables, i.e. with ASRU sup-
port, traffic complexity, i.e. heavy or medium, and when the sce-
nario was performed, i.e. solution run first or baseline first.  

This could also be treated by as a multi-factor variation anal-
ysis problem without repetition, i.e. a multi-factor ANOVA al-
ready introduced by the work of Fisher [43]. We treat the prob-
lem without repetition, because we only measured once. It 
would have been with repetition, if the measurements would 
have been e.g. after ten minutes, 20 minutes and at the end. The 
second independent variable would have been “when taken”.  

For comparison our approach of elimination of sequences ef-
fects presented in subsection V.A, we use the Stroop-Test results 
of the heavy scenarios, shown again in table XI. 

TABLE XI.  NUMBER OF SUCCESSFUL STROOP-TESTS WITH SEQUENCE 
EFFECTS 

ATCO 
Heavy Medium 

Solution Baseline Solution Baseline 
1st 2nd 1st 2nd 1st 2nd 1st 2nd 

1   18 9   66     31 
2 40     0 106     66 
3 33     19   34 30   
4   34 7   28     20 
5 33     10   65 17   
6   23 16   10     39 
7 16     34   50 28   
8   71 38   30     53 
9 12     24   42 3   

10   48 31   44     78 
11 14     45   51 18   
12   68 6   34     41 

 

We can perform a two-factor ANOVA with solution/base-
line and first/second run as independent variable. It enables now 
to test multiple null-hypotheses at the same time. 

1. There is no statistically significant difference between the 
means of successful Stroop-tests in baseline and solution 
run, respectively (H1). 

2. There is no statistically significant difference between the 
means of successful Stroop-tests between first and second 
run, respectively (H2). 

3. The two factors do not influence each other with respect to 
successful Stroop-tests, i.e. we observe the same effects of 
ASRU support on successful Stroop-Test independent 
whether ASRU runs are performed first or second (H3). 

Considering only the heavy traffic scenario, we get for hy-
pothesis H1 with an f-Test a p-value of 4.8%, for H2 a p-value 
of 10.2% and for H3 a p-value of 28.6%, which means that the 
ASRU support has a big effect (4.8%), sequence of ASRU sup-
port might have an effect (10.2%) and the two variables do not 
interact on the result (28.6%). 

We can also test with two different unpaired t-test, which, 
however, do not consider H3. We get a p-value of 5.7% for H1 
and 12.7% for H2. Our p-value provided in table V is with 3.6% 
smaller, because the samples are dependent, a paired t-tests is 
performed, considering only one side, i.e. our null hypothesis is 
“no ASRU support increases the number of successfully per-
formed Stoop tests compared to solution mode”. The null hy-
pothesis of the two-sided test would be “With and without ASRU 
results in the same number of successfully performed Stoop 
tests”. Furthermore, we are not interested in the p-values of H2 
and H3. We know/assume that we have the sequence effects and 
we are looking for a way to compensate them. The “easiest” way 
would be to increase the number of participants by a factor of 
four, so that each participant only performs one experiment. 
Constraints on budget for the simulator and also for participating 
ATCos, pseudo-pilots and validations specialists did of course 
not allow this. 
 

 


