
Implementing contextual biasing in GPU decoder for online ASR

Iuliia Nigmatulina⋆,1,2, Srikanth Madikeri⋆,1, Esaú Villatoro-Tello1, Petr Motlicek1,5
Juan Zuluaga-Gomez1,3, Karthik Pandia4, Aravind Ganapathiraju4

1Idiap Research Institute, Switzerland 2University of Zurich, Switzerland
3LIDIAP, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

4Uniphore, India
5 Faculty of Information Technology, Brno University of Technology, Czech Republic

iuliia.nigmatulina@idiap.ch

Abstract
GPU decoding significantly accelerates the output of ASR pre-
dictions. While GPUs are already being used for online ASR
decoding, post-processing and rescoring on GPUs have not
been properly investigated yet. Rescoring with available con-
textual information can considerably improve ASR predictions.
Previous studies have proven the viability of lattice rescoring
in decoding and biasing language model (LM) weights in of-
fline and online CPU scenarios. In real-time GPU decoding,
partial recognition hypotheses are produced without lattice gen-
eration, which makes the implementation of biasing more com-
plex. The paper proposes and describes an approach to integrate
contextual biasing in real-time GPU decoding while exploiting
the standard Kaldi GPU decoder. Besides the biasing of partial
ASR predictions, our approach also permits dynamic context
switching allowing a flexible rescoring per each speech segment
directly on GPU. The code is publicly released1 and tested with
open-sourced test sets.
Index Terms: real-time speech recognition, contextual adapta-
tion, GPU decoding, finite-state transducers

1. Introduction
Contextual biasing of ASR has proven to be useful for many ap-
plications where prior information is available. Typically, con-
textual biasing in ASR works by adjusting weights of the model,
or costs of words in recognition lattices, and it has been used to
improve recognition of named entities (NEs), such as contacts,
locations, film titles, etc. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Real-
time decoding can work on central processing units (CPUs),
as well as on graphics processing units (GPUs) that can con-
siderably accelerate decoding [11]. Although the previous bi-
asing methods perform well, most experiments were done for
decoding on CPUs and thus are missing possible acceleration
of real-time transcribing available while decoding with GPUs.
This paper focuses on (1) contextual biasing in real-time decod-
ing, (2) dynamic integration of contextual information in online
GPU-based decoders, and (3) analysis of the relevance of paral-
lelized contextual biasing.

For all experiments presented in the paper, we use Kaldi
online decoders [11, 12]. In these decoders, lattice generation
to pick the best output path is performed on the CPUs. Gen-
eration of real-time partial transcriptions works differently to
avoid the generation of lattices, which would considerably in-
crease the latency to obtain the final system output. Thus, a

This work was supported by the Idiap&Uniphore collaboration
project and partially by CRiTERIA (EC Horizon 2020, n.: 101021866)
and ROXANNE (EC Horizon 2020, n.: 833635).

1https://github.com/idiap/
contextual-biasing-on-gpus

GPU-based online decoder outputs partial predictions directly
selecting the current best sequence of tokens, and allows the
process to be fully parallelized. This implementation, however,
makes it impossible to integrate standard methods of contextual
biasing directly into the online GPU decoder, as they involve
lattice rescoring with FST composition. Although the imple-
mentation of lattice composition on GPUs has been proposed
before [13, 14], the main challenges of the current work is to
find a rescoring method without directly dealing with lattices
and avoiding lattice generation for partial hypotheses.

Another challenge arises during the use of multiple con-
textual biases in the same decoder, where each utterance has its
own biasing FST. Such a situation may arise, for instance, when
another modality is providing the constantly changing contex-
tual information for decoding2. It becomes prohibitively large
to maintain multiple FSTs in-memory due to the nature of the
composition even though the actual contextual information en-
coded amounts to few textual tokens. We address this challenge
by keeping the contextual information independent of the orig-
inal decoding graph by only storing a list of indices of the arcs
to be boosted for each context. A discounting offset is added to
these arcs only during decoding, thus indirectly composing the
context graph with the decoding graph.

Contextual information is usually passed as a small
weighted finite state transducer (WFST) created from a list of
words and/or word sequences to be boosted. In this paper, we
extend the previous work on contextual biasing [1, 2, 3, 7, 8,
15]. We investigate the suitability of existing biasing methods
from the previous work for the GPU online decoder and propose
a new approach to dynamically boost contextual information in
the parallelized GPU decoding that does not require lattice gen-
eration. Our main contributions are (1) an analysis of possible
ways to use contextual information in online parallelized de-
coding, and (2) the first publicly available implementation of
dynamic contextual biasing in an online GPU decoder.

2. Online decoding on CPUs vs GPUs
2.1. Decoding on CPUs

Online decoding on CPUs (for example, Kaldi’s online2-tcp-
nnet3-decode-faster) is done in a similar way as offline decod-
ing. Token and link structures are translated into OpenFst struc-
tures [16] that present an exact lattice [17]. An exact lattice
contains paths, which correspond to the candidates for ASR
predictions, and stores precise costs and state-level alignments.
The lattice structure enables flexible post-processing with dif-

2For example, the change of time, location, topic of conversation,
etc. In the air traffic communication (ATC) domain, such information
may come from radar data.



ferent operations possible on lattices, such as acoustic scaling,
computing the best, n-best, or oracle hypotheses, LM rescoring,
lattice composition, etc. Although the lattice structure is conve-
nient for operating with ASR output candidates before choosing
the best ones, its implementation on GPUs would not be trivial.
In the Kaldi GPU decoder, lattices are still created when an end-
point is reached to allow rich post-processing on CPUs [18].

2.2. Decoding on GPUs

There are many implementations of GPU decoders [19, 20, 11]
and post-processing of their outputs with the CPU [20, 18, 14].
For this study, we choose to work with the standard Kaldi GPU
WFST decoder [18, 11], as it is (1) open-source and (2) mostly
built with Kaldi basic functions. The decoder3 yields up to a
240x speedup over single-core CPU decoding [11]. This ap-
proach has fully parallelized decoding up to the outputs, yet its
current implementation does not allow any flexible rescoring.
We proposed the rescoring approach inside Kaldi GPU decoder
which is fully integrated into the parallelized decoding process,
with no need of lattices. It allows to asynchronously output
intermediate results during online decoding without interrupt-
ing the computational process. The decoder pipeline first trans-
fers the models (i.e. acoustic model, and HCLG graph) to the
GPU. The HCLG graph is represented by a special structure
(cuda-fst) on the GPU. The FST structure is represented as a
set of compressed sparse rows (CSRs) and additional metadata,
which can be efficiently traversed with direct indexing [11].

3. Methods for contextual biasing
In this section, we analyze existing and the most relevant rescor-
ing methods, choose the best implementation strategy and men-
tion possible limitations when working on GPUs. The common
feature of all methods under consideration is that contextual in-
formation is presented as a small biasing FST built with the list
of words and/or words sequences we want to boost.

3.1. Rescoring with lattice composition

Lattice rescoring. One of the most used ways of contextual bi-
asing on-the-fly is lattice rescoring in the second-pass decoding
[1, 2, 3, 4, 5, 6, 7, 8]. As our goal is to avoid lattice generation,
this method is not suitable for us.
HCLG ° biasing G. A rescoring approach without lattices is
used in [7] and assumes boosting the HCLG decoding graph
before decoding. The HCLG graph is composed with biasing
FST, which leads to the target word weight adjustment directly
in the decoding graph. If word sequences are boosted by this
method, there is a limitation left: one can adjust the weights
of only those sequences, which already exist in HCLG, yet,
no new unknown sequences can be added. For example, if a 3-
gram LM is used, only unigrams, bi-grams, and 3-grams already
present in the LM can be boosted but not longer n-grams.
HCL ° G boosted. The rescoring method proposed in [8] over-
comes the limitation of the HCLG ◦ biasing G method. First,
the G.fst is separately modified in an iterative fashion in order
(1) to adjust weights of those contextual entities, which are al-
ready present in the LM, and (2) to add new entities we want
to boost, which are not present in the LM. Then, a modified
G boosted.fst is composed on-the-fly with HCL, allowing all
necessary information from other ASR levels to be applied to all

3https://github.com/kaldi-asr/kaldi/tree/
master/src/cudadecoder

LM n-grams including newly added word sequences [21, 22].

3.2. Rescoring without composition.

In the GPU decoder, the HCLG graph is represented on GPUs
with the special cuda-fst structure (see 2.2). When the graph is
loaded, each outgoing arc is processed by its own thread with
the load balancing expand, generating a number of candidate
tokens. The adaptive beam is then adjusted and used to deter-
mine which candidates are added back to the main queue for
further processing [11]. GPU decoders can process multiple
audio streams parallelly and it is important to enable boosting
specific to an audio stream. Pre-modifying the HCLG graph in
advance will result in boosting all the streams.

With a decoding graph, the rescoring approach that would
be the most suitable for our goal is HCLG◦biasing G compo-
sition. Instead of composition, weights in the HCLG could be
adjusted iteratively, like for G in the HCL◦G boosted method,
or by their indices that would allow flexible and less computa-
tionally expensive rescoring. As decoding on GPUs we can-
not afford composition with HCL following the G rescoring,
it is not possible to add unknown word sequences to the graph.
Thus, the n-gram set that we can boost is always limited by the
LM, like in the HCLG ◦ biasing G method. The contextual
boosting information for this method can be passed (1) as a bi-
asing FST, or (2) as a list of entities we want to boost, where all
words are replaced with their IDs from the symbol table.

4. Rescoring in GPU decoder
In our implementation of rescoring, we focus on three tasks:
(1) unigrams boosting, (2) word sequence boosting, (3) dy-
namic update of contextual information, i.e. biasing FST. An-
other important aspect is to make sure that our implementation
is optimal and that the decoding slowdown is minimized.

4.1. Implementation

The HCLG graph is represented as a set of compressed sparse
rows (CSRs) and additional metadata stored in memory. Be-
fore CSRs are generated, the arc information from the loaded
HCLG graph is temporarily kept in separate vectors: for input
labels IDs, output labels IDs, next state IDs, and weights. This
information is further copied to the GPUs. In order to rescore on
GPUs, along with the decoding FST, we load the biasing FST,
whose arc information is also saved in vectors but only for those
arcs that should be boosted. Algorithm 1 gives the pseudocode
of the procedure to determine which arcs to boost given a list
of words. The algorithm is an extension of Depth First Search
to find a sequence of arcs that would generate the desired se-
quence. We also pay attention to the possibility that the first
word in the sequence may start in the middle of the utterance.
During decoding, if an arc index coincides with any token index
saved from the current biasing FST, the arc’s weight is adjusted
by the discount factor. The boosting weight is the sum of the
original arc’s weight and the discount factor. The discount fac-
tor we use equals -2.0 which was empirically identified in the
previous studies [8]. The process is illustrated in Figure 1.

4.2. Boosting unigrams and word sequences

For every contextual biasing FST, we keep track of indices of
the arcs to boost, which are identified by Algorithm 1. In the
decoding kernels, this adds an extra cost of searching if the cur-
rent thread is processing an arc to be boosted. To enable faster



Figure 1: Multiple stages involved in GPU decoding: initially, the models are loaded and the necessary pre-processing is done. When
a chunk of audio is received, the decoding process follows with many steps split over both the CPU and the GPU.

Algorithm 1: Pseudocode to find the arcs to be
boosted given a word sequence (w1w2...wk)

Input : fst: decoding graph; w1w2...wk: word sequence to boost,
N : N value of N-gram language model

Output: arcs indices: arcs that need to be boosted
arcs indices = Set()
statesReached = GetStatesThatOutputToken(fst, w1)
for t← 2 to k do

prevStatesReached = statesReached
statesReached = set()
for sp← prevStatesReached do

// DepthFirstSearchSpecial takes first edge with wt and
then considers only edges that output ϵ until wt is output

reachableStates = DepthFirstSearchSpecial(fst, sp, wt)
// now we know we can emit the next token
statesReached.add(reachableStates)
arcs indices.Add(ArcsIndicesWithOutput(sp, wt−1))

end
end
for s← statesReached do

arcs indices.Add(ArcsIndicesWithOutput(s, wt))
end
return arcs indices

search, we store the indices sorted, and perform a simple binary
search. An additional complexity of O(log k) is added to each
processing thread. This is negligible since k is significantly less
than the total number of arcs in the graph. Compared to exces-
sive memory requirements if storing separate decoding graphs
for each context, we only store few 100s of integers.

The size of biasing FST depends on the number of entities
to boost. As with the increasing number of contextual entities,
the biasing effect typically goes down4, we assume that the size
of biasing FST stays small not to exceed available memory. In
our experiments, the largest FST has 1013 entities (Table 2),
and the number of boosting arcs we keep in memory per FST is
significantly less than the total number of arcs since we aim to
boost only the arcs related to the entities we are interested in.

4.3. Dynamic context update

To provide flexible biasing when the context is modified, we
introduce the functionality of a dynamic switch between differ-
ent biasing FSTs. We assume that certain context situations are
anticipated in advance and the corresponding biasing FSTs are
available before decoding starts. All expected biasing FSTs are
pre-loaded and saved in separate vectors similar to how it is de-
scribed in 4.1. Depending on the context a needed biasing FST

4The optimal size of biasing FST highly depends on the data; in
[23], the performance began to degrade when a number of contextual
entities exceeded 1000.

indices are used to adjust the corresponding arc weights.

5. Data and experimental setup
5.1. Data

For biasing experiments we need test sets which along with text
transcriptions would also have biasing list(s) with entities to
boost. There are only few publicly available test sets that satisfy
this criterion. One of the test sets we use is publicly available
Earning21 [24] which has been recently updated with two bias-
ing lists based on the NER5 [25]. The Earnings21 biasing lists
contain both unigrams and word sequences, and we keep them
together (in Table 1, it is categorized as sequence boosting). For
decoding, we split the audios into 3-minute long segments, sim-
ilar to [25]. In order to test the proposed algorithm for the case
when the biasing context is always changing, we additionally
use two test sets from the ATC domain. ATC conversations are
usually saturated with callsigns6 used to address air crafts, and
contextual data is constantly coming from the radar that regis-
ters those callsigns of corresponding air crafts that are currently
in the airspace [7, 8, 15]. One ATC test set is ATCO2 [26, 27]
and another one is a publicly available 1-hour long subset of
ATCO2, referred to as ATCO2-1h [28].7 Each utterance in the
ATC sets is provided with a list of callsigns to bias and with the
ground truth callsign, or NO CALLSIGN if an utterance does
not contain any. ATCO2 biasing lists contain word sequences,
and for the unigram boosting we converted them into lists of
unique single words. All biasing lists include about 10% of
OOV words. All used sets are English data; an overview in-
cluding the number of biasing entities is given in Table 2.

5.2. ASR model

For the acoustic models, we use the Kaldi toolkit [12]. For the
experiments on ATC data, we trained a CNN-TDNNF model
with ≈1200 hours of ATC labeled data after 3-fold speed per-
turbation. The system follows the standard Kaldi recipe with

5The two biasing lists are the oracle and the distractor lists:
https://github.com/revdotcom/speech-datasets/
tree/main/earnings21/bias_lists. For our experiments,
we use only the oracle list.

6Callsigns are unique identifiers for air crafts, of which the first part
is an abbreviation of the airline name and the last part is a flight number
that contains a digit combination and may also incorporate an additional
character combination, e.g., ryanair one sierra golf.

7Website: https://www.atco2.org/data



Table 1: Contextual biasing with online CPU and GPU decoders (GT is a ground truth sequence (available only for ATCO2 sets);
‘partial hypotheses’ are real-time model predictions; EntWER is a WER calculated for biased entities only).

ATCO2-4h ATCO2-public Earnings21
WER EntWER WER EntWER WER EntWER RTFX

Online decoding on CPU

No biasing 32.6 36.4 24.3 26.4 21.6 59.0 7.001
Biased unigrams (partial hypotheses) 34.6 35.4 25.0 25.7 - - -
Biased sequences (partial hypotheses) 32.5 34.3 24.0 24.2 21.7 51.8 3.577
Biased GT (partial hypotheses) 31.0 30.4 23.1 20.3 - - -

Online decoding on GPU

No biasing 32.2 36.3 24.5 26.4 21.4 60.5 26.062
Biased unigrams (at endpoints) 34.1 35.7 25.0 25.4 - - -
Biased sequences (at endpoints) 31.2 34.4 24.0 24.1 21.4 52.4 26.061
Biased GT (at endpoints) 30.5 30.1 23.4 21.2 - - -

Biased unigrams (partial hypotheses) 33.2 35.5 24.7 25.1 - - -
Biased sequences (partial hypotheses) 32.9 34.6 24.9 25.3 22.2 52.7 26.065
Biased GT (partial hypotheses) 30.7 29.4 23.8 21.9 - - -

Table 2: Test sets with context information (number of biasing
entities for ATCO2 sets† is given on average per utterance).

Test set Size Hours Biasing entities

ATCO2 3535 utterances 4 214†

ATCO2-public 871 utterances 1 140†

Earnings21 44 interviews 39 1013

MFCC and i-vectors features; the standard chain training is
based on LF-MMI [29, 30] including one-third frame sub-
sampling. The LM is 3-gram model trained on the same data as
the acoustic model with additional text data coming from public
resources such as airlines names, airports, the ICAO alphabet,
and way-points in Europe. For the experiments on the Earn-
ings21 set, we use the pre-trained chain LSTM-TDNN Kaldi
model8 with Gigaspeech-XL speech corpus [31].

5.3. Evaluation of speed

To demonstrate the lack of difference in the decoding time with
VS without biasing, we measured relative decoding time with
the inverse real-time factor (RTFX), which is the ratio between
the length of the processed audio and the decoding time. The
RTFX is measured with 1 GPU NVIDIA GeForce RTX 3090,
with 2K clients, and on 81 minutes of Earnings21 data, which
are split into 27 utterances, each of 3 minutes in length.

6. Results
We compare WER results achieved (1) with contextual biasing
on CPUs VS GPUs with lattice rescoring at endpoints VS dy-
namic biasing for partial hypotheses on GPUs (to see if there is
performance degradation when rescoring is done without com-
position), (2) on GPUs with VS without applying contextual
biasing (to see how the method improves the recognition). We
do not compare the performance of our implementation to pre-
vious work, as there is no such results for ATCO2 sets, and bias-
ing results on Earnings21 [25] are achieved with an End-to-End
model with a different biasing approach which would be incom-
parable to our experiments. The results of the partial hypotheses

8https://kaldi-asr.org/models/m14

biasing on GPUs are taken directly from the final server outputs,
i.e. before it is sent for post-processing. Table 1 reports the re-
sults with utterance WER, and entities WER (EntWER) where
WER is calculated only on biased entities. Comparing the per-
formance of biasing with CPU decoder to the one on GPUs, the
achieved improvement is almost the same, when rescored with
lattices. Contextual biasing on GPUs always helps improve per-
formance on the entities: e.g. EntWER 52.4% instead of 60.5%,
resulting in a relative improvement of 13.4% on Earnings21.
The results in utterance WERs stay the same or slightly im-
prove when sequences are boosted. Dynamic biasing of partial
hypotheses on GPUs slightly differs from the other results, as
weights are modified directly in the HCLG graph instead of de-
coder output candidates. Overall, the performance of dynamic
biasing on GPUs shows similar improvement on entities over
the baseline compared to the lattice composition approach.

The main advantages of our implementation are its speed
and flexibility. Decoding on GPUs allows a considerable in-
crease in speed compared to CPUs. Adding boosting inside the
GPU decoder does not slow down the decoding process with the
RTFX staying almost the same: 26.06. Pre-biasing the HCLG
graph in advance would lead to similar improvements but does
not allow dynamic context adaptation. The main limitation is
that it is not possible to add unknown word sequences to the
graph and the n-gram set we can boost is always limited by the
LM. In the future, the method can be also extended to WFST
decoding for End-to-End models, where instead of words End-
to-End model units, i.e. characters or subwords, are used.

7. Conclusion
Motivated by the high effectiveness of contextual biasing on
CPUs, we proposed an algorithm and its implementation for
dynamic contextual biasing on GPUs for real-time hypothe-
ses. Given the context words and word sequences as input the
method adjusts target arc weights in the decoding graph in a
distributed way and without lattice generation. This approach
allows fast and flexible adaptation to a current context and is a
step toward closer integration between inference and decoding.
A relative improvement in EntityWER of 13.4% was achieved
on the Earnings21 set when biasing the target entities.



8. References
[1] P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall,

B. Roark, D. Rybach, and P. Moreno, “Bringing contextual in-
formation to google speech recognition,” in Proc. of Interspeech,
2015, pp. 468–472.

[2] K. Hall, E. Cho, C. Allauzen, F. Beaufays, N. Coccaro,
K. Nakajima, M. Riley, B. Roark, D. Rybach, and L. Zhang,
“Composition-based on-the-fly rescoring for salient n-gram bias-
ing,” in Proc. of Interspeech, 2015, pp. 1418–1422.

[3] I. Williams and P. S. Aleksic, “Rescoring-aware beam search for
reduced search errors in contextual automatic speech recognition.”
in Proc. of Interspeech, 2017, pp. 508–512.

[4] J. Serrino, L. Velikovich, P. S. Aleksic, and C. Allauzen, “Contex-
tual recovery of out-of-lattice named entities in automatic speech
recognition.” in Interspeech, 2019, pp. 3830–3834.

[5] T. Shore, F. Faubel, H. Helmke, and D. Klakow, “Knowledge-
based word lattice rescoring in a dynamic context,” in Proc. of
Interspeech, 2012, pp. 1083–1086.

[6] Y. Oualil, D. Klakow, G. Szaszák, A. Srinivasamurthy,
H. Helmke, and P. Motlicek, “A context-aware speech recognition
and understanding system for air traffic control domain,” in 2017
IEEE Automatic Speech Recognition and Understanding Work-
shop (ASRU). IEEE, 2017, pp. 404–408.

[7] M. Kocour, K. Veselỳ, A. Blatt, J. Z. Gomez, I. Szöke, J. Cer-
nocky, D. Klakow, and P. Motlicek, “Boosting of Contextual In-
formation in ASR for Air-Traffic Call-Sign Recognition,” in Proc.
Interspeech 2021, 2021, pp. 3301–3305.

[8] I. Nigmatulina, R. Braun, J. Zuluaga-Gomez, and P. Motlicek,
“Improving callsign recognition with air-surveillance data in air-
traffic communication,” Idiap Research Institute. Idiap Research
Institute, 2021, pp. 1–5.

[9] J. Zuluaga-Gomez, I. Nigmatulina, A. Prasad, P. Motlicek,
K. Veselỳ, M. Kocour, and I. Szöke, “Contextual Semi-Supervised
Learning: An Approach to Leverage Air-Surveillance and Untran-
scribed ATC Data in ASR Systems,” in Interspeech, 2021, pp.
3296–3300.

[10] P. Motlicek, F. Valente, and P. N. Garner, “English spoken term
detection in multilingual recordings,” in Eleventh Annual Con-
ference of the International Speech Communication Association,
2010.

[11] H. Braun, J. Luitjens, R. Leary, T. Kaldewey, and D. Povey, “Gpu-
accelerated viterbi exact lattice decoder for batched online and
offline speech recognition,” in ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 7874–7878.

[12] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE workshop on au-
tomatic speech recognition and understanding, no. CONF. IEEE
Signal Processing Society, 2011.

[13] A. Argueta and D. Chiang, “Composing finite state transducers on
gpus,” in Proc. of the 56th Annual Meeting of the Association for
Computational Linguistics (Vol. 1), 2018, pp. 2697–2705.

[14] K. Li, D. Povey, and S. Khudanpur, “A parallelizable lattice
rescoring strategy with neural language models,” in ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2021, pp. 6518–6522.

[15] I. Nigmatulina, J. Zuluaga-Gomez, A. Prasad, S. S. Sarfjoo, and
P. Motlicek, “A two-step approach to leverage contextual data:
speech recognition in air-traffic communications,” in ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2022, pp. 6282–6286.

[16] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri,
“Openfst: A general and efficient weighted finite-state transducer
library,” in International Conference on Implementation and Ap-
plication of Automata. Springer, 2007, pp. 11–23.

[17] D. Povey, M. Hannemann, G. Boulianne, L. Burget, A. Ghoshal,
M. Janda, M. Karafiát, S. Kombrink, P. Motlı́ček, Y. Qian et al.,
“Generating exact lattices in the wfst framework,” in 2012 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2012, pp. 4213–4216.

[18] Z. Chen, J. Luitjens, H. Xu, Y. Wang, D. Povey, and S. Khudanpur,
“A gpu-based wfst decoder with exact lattice generation,” in Proc.
of Interspeech, 2018, pp. 2212–2216.

[19] A. V. Ivanov, P. L. Lange, and D. Suendermann-Oeft, “Lvcsr sys-
tem on a hybrid gpu-cpu embedded platform for real-time dia-
log applications,” in Proceedings of the 17th Annual Meeting of
the Special Interest Group on Discourse and Dialogue, 2016, pp.
220–223.

[20] J. Kim and I. Lane, “Accelerating large vocabulary continuous
speech recognition on heterogeneous cpu-gpu platforms,” in Proc.
of IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2014, pp. 3291–3295.

[21] T. Hori, C. Hori, Y. Minami, and A. Nakamura, “Efficient wfst-
based one-pass decoding with on-the-fly hypothesis rescoring in
extremely large vocabulary continuous speech recognition,” IEEE
Transactions on audio, speech, and language processing, vol. 15,
no. 4, pp. 1352–1365, 2007.

[22] J. R. Novak, N. Minematsu, and K. Hirose, “Dynamic gram-
mars with lookahead composition for wfst-based speech recog-
nition,” in Thirteenth Annual Conference of the International
Speech Communication Association, 2012.

[23] Z. Chen, M. Jain, Y. Wang, M. L. Seltzer, and C. Fuegen, “End-
to-end contextual speech recognition using class language models
and a token passing decoder,” in Proc. of IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 6186–6190.

[24] M. D. Rio, N. Delworth, R. Westerman, M. Huang, N. Bhandari,
J. Palakapilly, Q. McNamara, J. Dong, P. Zelasko, and M. Jette,
“Earnings-21: A practical benchmark for asr in the wild,” in In-
terspeech, 2021.

[25] J. Drexler Fox and N. Delworth, “Improving contextual recogni-
tion of rare words with an alternate spelling prediction model,” in
Interspeech, 2022, pp. 3914–3918.

[26] J. Zuluaga-Gomez, K. Veselỳ, I. Szöke, P. Motlicek, M. Kocour,
M. Rigault, K. Choukri, A. Prasad, S. S. Sarfjoo, I. Nigmat-
ulina et al., “ATCO2 corpus: A Large-Scale Dataset for Research
on Automatic Speech Recognition and Natural Language Under-
standing of Air Traffic Control Communications,” arXiv preprint
arXiv:2211.04054, 2022.

[27] J. Zuluaga-Gomez, I. Nigmatulina, A. Prasad, P. Motlicek,
D. Khalil, S. Madikeri, A. Tart, I. Szoke, V. Lenders, M. Rigault
et al., “Lessons Learned in ATCO2: 5000 hours of Air Traffic
Control Communications for Robust Automatic Speech Recogni-
tion and Understanding,” arXiv preprint arXiv:2305.01155, 2023.

[28] J. Zuluaga-Gomez, A. Prasad, I. Nigmatulina, S. S. Sarfjoo,
P. Motlicek, M. Kleinert, H. Helmke, O. Ohneiser, and Q. Zhan,
“How does pre-trained wav2vec 2.0 perform on domain-shifted
asr? an extensive benchmark on air traffic control communi-
cations,” in 2022 IEEE Spoken Language Technology Workshop
(SLT). IEEE, 2023, pp. 205–212.

[29] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for asr based on lattice-free mmi.” in Interspeech,
2016, pp. 2751–2755.

[30] S. R. Madikeri, B. K. Khonglah, S. Tong, P. Motlicek,
H. Bourlard, and D. Povey, “Lattice-free maximum mutual infor-
mation training of multilingual speech recognition systems.” in
Interspeech, 2020, pp. 4746–4750.

[31] G. Chen, S. Chai, G. Wang, J. Du, W.-Q. Zhang, C. Weng, D. Su,
D. Povey, J. Trmal, J. Zhang et al., “Gigaspeech: An evolving,
multi-domain asr corpus with 10,000 hours of transcribed audio,”
in Interspeech, 2021.


	 Introduction
	 Online decoding on CPUs vs GPUs
	 Decoding on CPUs
	 Decoding on GPUs

	 Methods for contextual biasing
	 Rescoring with lattice composition
	 Rescoring without composition.

	 Rescoring in GPU decoder
	 Implementation
	 Boosting unigrams and word sequences
	 Dynamic context update

	 Data and experimental setup
	 Data
	 ASR model
	 Evaluation of speed

	 Results
	 Conclusion
	 References

