
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Stop Wasting my FLOPS:
Improving the Efficiency of Deep Learning Models

Angelos KATHAROPOULOS

Thèse n° 8607

2022

Présentée le 14 juin 2022

Prof. A. M. Alahi, président du jury
Prof. F. Fleuret, Prof. P. Frossard, directeurs de thèse
Dr A. Lucchi, rapporteur
Dr G. Synnaeve, rapporteur
Dr M. Salzmann, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de l’IDIAP
Programme doctoral en génie électrique

Acknowledgements
Before continuing to the rest of this thesis, I would like to express my appreciation to several

people that have directly or indirectly made this work possible and the past 5 years enjoyable.

Firstly, I would like to thank François for offering me this opportunity 5 years ago. More

importantly, I want to thank him for the many interesting discussions and for showing to me

what a sustainable approach to research looks like. Finally, I want to express my admiration

for his unlimited enthusiasm that has been really inspirational. I will certainly miss going to

his office for a morning meeting and instead discussing the latest mini-project he was playing

with over the weekend.

Secondly, I would like to thank all the people at Idiap for making my PhD a smooth and enjoy-

able experience. To Alexandros, Nam, Bastian, Sophie, François, Apoorv, Sargam, Christian,

Olivia, Angel, Suraj, Teja, Tatjana, Cijo, James, Julian, Phil, Nikos, Thiago and many other

Idiapers past and present.

I would also like to thank my brother and my parents because they have had the longest

influence on my life without which I would not be the person that I am today.

Moreover, I want to thank my friends and in particular “Ζωάρα Crew”. It is very inspiring to

see our little group from Greece spread all over the world in various prestigious places.

Finally, but definitely most importantly, I want to thank Despoina for making my life so much

brighter and for sharing with me the highs and supporting me during the lows of this 5 year

journey.

January 13, 2022 Angelos

i

Abstract

Deep neural networks have completely revolutionized the field of machine learning by achiev-

ing state-of-the-art results on various tasks ranging from computer vision to protein folding.

However, their application is hindered by their large computational and memory requirements.

In this thesis, we propose methods for improving the efficiency of deep neural networks.

Firstly, we tackle the sample inefficiency of neural network training with an importance

sampling algorithm suitable for deep neural networks. This algorithm allows us to focus

computation on datapoints that are going to provide useful gradients for training our models

and ignore the ones that will have negligible gradients. We show that our algorithm can

improve the performance of various neural networks when compared to uniform sampling

under a fixed computational budget.

Secondly, we design a model that is suitable for processing large input images with a fraction

of the computational and memory requirements of traditional approaches. We achieve this by

sampling from a data-dependent attention distribution in order to only process a portion of

the input in high resolution. We demonstrate that our model can learn both the attention and

the features in an end-to-end fashion using only single image-wise labels for supervision.

Subsequently, we shift our attention to transformer architectures and introduce a kernelized

formulation for self-attention that reduces its quadratic complexity to linear with respect to

the input sequence’s length. Furthermore, we uncover the relationship between autoregressive

transformers and recurrent neural networks and show that our formulation enables up to 3

orders of magnitude faster autoregressive inference.

Finally, we develop clustered attention, a method that can approximate softmax transformers

with reduced computation. This is achieved by grouping elements of the input using clus-

tering. We showcase that our formulation provides a better trade-off between performance

and computation in comparison to the original transformer architecture. In addition, we

demonstrate that clustered attention can approximate pretrained transformer models without

any fine-tuning and with minimal loss in performance.

iii

Résumé

Les réseaux de neurones profonds (deep neural networks) ont révolutionné le domaine de

l’apprentissage automatique (machine learning) en obtenant des résultats à la pointe de

l’innovation dans des domaines comme la vision par ordinateur (computer vision) ou le

repliement des protéines. Mais leur utilisation est fortement pénalisée par leurs énormes

besoins en puissance de calcul et en mémoire. Dans cette thèse, notre objectif est de proposer

différentes méthodes permettant d’optimiser l’efficacité de ces modèles.

Dans un premier temps, nous tentons de résoudre le problème de l’inefficacité de la phase

d’échantillonnage de l’apprentissage de réseau de neurones à l’aide d’un algorithme d’échan-

tillonnage dynamique adapté. Cet algorithme nous permet de concentrer la puissance de

calcul sur les exemples d’apprentissage qui apporteront des gradients utiles à l’entraînement

de nos modèles, tout en ignorant ceux qui ont des gradients négligeables. Nous démontrons

que notre algorithme peut améliorer les performances de divers réseaux neuronaux par rap-

port à un processus d’échantillonnage uniforme, étant donné un budget computationnel

fixé.

Ensuite, nous élaborons un modèle qui convient au traitement d’images de grande tailles avec

seulement une fraction des besoins en matière de calcul et de mémoire demandés par les

approches traditionnelles. Nous y parvenons en réalisant un échantillonnage à partir d’une

fonction d’attention qui dépend des données, afin de ne traiter qu’une partie des entrées en

haute résolution. Nous montrons que notre modèle peut apprendre de manière jointe aussi

bien la fonction d’attention que les caractéristiques en utilisant uniquement une vérité terrain

de classification.

Ensuite, nous nous intéressons aux modèles à attention du type transformers et nous introdui-

sons une formulation kernelisée pour l’auto-attention (self-attention) qui réduit sa complexité

quadratique en complexité linéaire par rapport à la longueur de la séquence d’entrée. Nous

montrons la relation entre les transformers autorégressifs et les réseaux neuronaux récurrents,

et nous démontrons que notre formulation permet une inférence autorégressive plus rapide

de 3 ordres de grandeur.

Enfin, nous développons une méthode d’attention groupée proche des transformers softmax,

qui elle aussi demande une puissance de calcul réduite. Cette méthode consiste à regrouper

v

Résumé

les éléments d’entrée à l’aide d’un clustering. Nous montrons que notre formulation offre un

meilleur compromis entre performance et puissance de calcul par rapport à l’architecture

originale. Par ailleurs, nous démontrons que cette attention groupée peut égaler les modèles de

transformers pré-entraînés sans réglage spécifique, avec une perte minimale de performance.

vi

Zusammenfassung

Tiefe neuronale Netze haben den Bereich des maschinellen Lernens vollständig revolutioniert,

indem sie bei verschiedenen Aufgaben — von Computer Vision bis zur Proteinfaltung —

Spitzenergebnisse erzielt haben. Ihre Anwendung wird jedoch durch ihren hohen Rechen-

und Speicherbedarf behindert. In dieser Arbeit schlagen wir Methoden zur Verbesserung der

Effizienz von tiefen neuronalen Netzen vor.

Erstens gehen wir die Ineffizienz des Trainings neuronaler Netze mit einem für tiefe neuronale

Netze geeigneten Importance Sampling Algorithmus (Algorithmus für Stichprobenentnahme

nach Wichtigkeit) an. Dieser Algorithmus ermöglicht es uns, die Berechnung auf Datenpunkte

zu konzentrieren, die nützliche Gradienten für das Training unserer Modelle bieten, und

diejenigen zu ignorieren, die vernachlässigbare Gradienten aufweisen. Wir zeigen, dass unser

Algorithmus die Leistung verschiedener neuronaler Netze im Vergleich zu gleichmäßigem

Sampling bei einem festen Berechnungsbudget verbessern kann.

Zweitens entwerfen wir ein Modell, das für die Verarbeitung grosser Eingangsbilder geeignet

ist und nur einen Bruchteil der Rechen- und Speicheranforderungen herkömmlicher Ansätze

benötigt. Wir erreichen dies, indem wir von einer datenabhängigen Aufmerksamkeitsvertei-

lung (Attention Distribution) abtasten, um nur einen Teil des Inputs in hoher Auflösung zu

verarbeiten. Wir zeigen, dass unser Modell sowohl die Aufmerksamkeit als auch die Merk-

male durchgehend erlernen kann, indem es nur einzelne Labels per Bild zur Überwachung

verwendet.

Darauffolgend verlagern wir unsere Aufmerksamkeit auf Transformer-Architekturen und

führen eine kernelisierte Formulierung für die Selbstaufmerksamkeit (Self-Attention) ein, die

ihre quadratische Komplexität auf eine lineare in Bezug auf die Länge der Eingabesequenz

reduziert. Zudem decken wir die Beziehung zwischen autoregressiven Transformers und

rekurrenten neuronalen Netzen (RNN) auf und zeigen, dass unsere Formulierung eine um bis

zu drei Grössenordnungen schnellere autoregressive Inferenz ermöglicht.

Schliesslich entwickeln wir eine Methode der geclusterten Aufmerksamkeit, die Softmax-

Transformers mit reduziertem Rechenaufwand approximieren kann. Dies wird durch die

Gruppierung von Eingabeelementen mittels Clustering erreicht. Wir zeigen, dass unsere For-

mulierung im Vergleich zur ursprünglichen Transformer-Architektur einen besseren Trade-Off

vii

Zusammenfassung

zwischen Leistung und Rechenaufwand bietet. Darüber hinaus zeigen wir, dass die geclu-

sterte Aufmerksamkeit die vortrainierte Transformer-Modelle ohne Verfeinerung und mit

minimalem Leistungsverlust nähern kann.

viii

Περίληψη

Τα νευρωνικά δίκτυα έχουν φέρει πλήρη επανάσταση στον τομέα της μηχανικής μάθησης,

επιτυγχάνοντας κορυφαία αποτελέσματα σε διάφορες εργασίες που κυμαίνονται από την υπο-

λογιστική όραση έως την αναδίπλωση πρωτεϊνών. Ωστόσο, η εφαρμογή τους παρεμποδίζεται

από τις μεγάλες απαιτήσεις τους σε υπολογιστική ισχύ και μνήμη. Στην παρούσα διατριβή

προτείνουμε μεθόδους για τη βελτίωση της αποδοτικότητας των νευρωνικών δικτύων.

Πρώτον, αντιμετωπίζουμε τη δειγματοληπτική αναποτελεσματικότητα της εκπαίδευσης των

νευρωνικών δικτύων με έναν αλγόριθμο δειγματοληψίας σημαντικότητας κατάλληλο για νευ-

ρωνικά δίκτυα. Αυτός ο αλγόριθμος μας επιτρέπει να εστιάσουμε τους υπολογισμούς σε

σημεία δεδομένων που πρόκειται να παρέχουν χρήσιμη πληροφορία για την εκπαίδευση των

μοντέλων μας και να αγνοήσουμε αυτά που δεν βοηθούν στην εκπαίδευση. Δείχνουμε

ότι ο αλγόριθμός μας μπορεί να βελτιώσει την απόδοση διαφόρων νευρωνικών δικτύων σε

σύγκριση με την ομοιόμορφη δειγματοληψία υπό σταθερή υπολογιστική ισχύ.

Δεύτερον, σχεδιάζουμε ένα μοντέλο που είναι κατάλληλο για την επεξεργασία μεγάλων ει-

κόνων εισόδου ενώ έχει πολύ μικρότερες υπολογιστικές απαιτήσεις και απαιτήσεις μνήμης

σε σχέση με τις παραδοσιακές προσεγγίσεις. Το επιτυγχάνουμε αυτό με τη δειγματοληψία

από μια κατανομή προσοχής (attention) που εξαρτάται από τα δεδομένα, ώστε να επεξερ-

γαζόμαστε μόνο ένα τμήμα της εισόδου σε υψηλή ανάλυση. Αποδεικνύουμε ότι το μοντέλο

μας μπορεί να μάθει τόσο την κατανομή προσοχής όσο και την εξαγωγή χαρακτηριστικών

με τρόπο end-to-end χρησιμοποιώντας μόνο ετικέτες ανά εικόνα για επίβλεψη.

Στη συνέχεια, στρέφουμε την προσοχή μας στις αρχιτεκτονικές transformer και εισάγουμε

μια αναδιατύπωση της εξίσωσης αυτοπροσοχής (self-attention) που μειώνει την τετραγωνική

πολυπλοκότητά της σε γραμμική σε σχέση με το μήκος της ακολουθίας εισόδου. Επιπλέον,

αποκαλύπτουμε τη σχέση μεταξύ των ανατροφοδοτούμενων transformer και των αναδρο-

μικών νευρωνικών δικτύων (RNN) και δείχνουμε ότι η διατύπωσή μας επιτρέπει έως και 3

τάξεις μεγέθους ταχύτερη εκτέλεση των ανατροφοδοτούμενων transformer.

Τέλος, αναπτύσσουμε μια μέθοδο ομαδοποιημένης προσοχής που μπορεί να προσεγγίσει

τους παραδοσιακούς transformer με μειωμένες υπολογιστικές απαιτήσεις. Αυτό επιτυγ-

χάνεται με την ομαδοποίηση στοιχείων της εισόδου ώστε να μειωθούν οι απαιτήσεις για

τον υπολογισμό των κατανομών προσοχής. Παρουσιάζουμε ότι η μέθοδός μας παρέχει

ix

Περίληψη

καλύτερο συμβιβασμό μεταξύ απόδοσης και υπολογισμού σε σύγκριση με την αρχική αρχι-

τεκτονική. Επιπλέον, αποδεικνύουμε ότι η ομαδοποιημένη προσοχή μπορεί να προσεγγίσει

προ-εκπαιδευμένα μοντέλα χωρίς καμία αλλαγή και με ελάχιστη απώλεια επιδόσεων.

x

Contents
Acknowledgements i

Abstract (English/Français/Deutsch/Ελληνικά) iii

1 Introduction 1

1.1 Dissertation outline and contributions . 3

2 Not All Samples Are Created Equal 5

2.1 Chapter Introduction . 5

2.2 Related Work . 6

2.2.1 Importance Sampling for Convex Problems 6

2.2.2 Importance Sampling for Deep Learning 7

2.2.3 Other Sample Selection Methods . 7

2.2.4 Stochastic Variance Reduced Gradient . 7

2.3 Variance Reduction for Deep Neural Networks . 8

2.3.1 Introduction to Importance Sampling . 8

2.3.2 Beyond the Full Gradient Norm . 9

2.3.3 When is Variance Reduction Possible? . 10

2.4 Experiments . 12

2.4.1 Ablation study . 13

2.4.2 Image classification . 15

2.4.3 Fine-tuning . 16

2.4.4 Pixel by Pixel MNIST . 17

2.5 Chapter Conclusions . 18

3 Processing Megapixel Images with Deep Attention Sampling 19

3.1 Chapter Introduction . 19

3.2 Related Work . 20

3.2.1 Recurrent visual attention models . 21

3.2.2 Patch based models . 21

3.2.3 Attention models . 21

3.2.4 Other methods . 22

3.3 Methodology . 22

3.3.1 Attention in neural networks . 22

xi

Contents

3.3.2 Attention sampling . 22

3.3.3 Multi-resolution data . 25

3.3.4 Implementation details . 26

3.4 Experimental evaluation . 26

3.4.1 Introduction . 26

3.4.2 Megapixel MNIST . 27

3.4.3 Histopathology images . 29

3.4.4 Speed limit sign detection . 31

3.5 Chapter Conclusions . 33

4 Fast Autoregressive Transformers with Linear Attention 35

4.1 Chapter Introduction . 35

4.2 Related Work . 36

4.2.1 Efficient Transformers . 36

4.2.2 Understanding Self-Attention . 37

4.2.3 Linearized softmax . 37

4.3 Linear Transformers . 38

4.3.1 Transformers . 38

4.3.2 Linearized Attention . 39

4.3.3 Causal Masking . 40

4.3.4 Transformers are RNNs . 43

4.4 Experiments . 44

4.4.1 Synthetic Tasks . 45

4.4.2 Image Generation . 46

4.4.3 Automatic Speech Recognition . 48

4.5 Chapter Conclusions . 50

5 Fast Transformers with Clustered Attention 51

5.1 Chapter Introduction . 51

5.2 Related Work . 52

5.2.1 Attention Improvements Before Transformers 52

5.2.2 Non-asymptotic Improvements . 53

5.2.3 Improvements in Asymptotic Complexity 53

5.3 Scaling Attention with Fast Clustering . 54

5.3.1 Vanilla Attention . 54

5.3.2 Clustered Attention . 55

5.3.3 Improving clustered attention . 57

5.4 Experiments . 58

5.4.1 Evaluation on Wall Street Journal (WSJ) . 59

5.4.2 Evaluation on Switchboard . 60

5.4.3 RoBERTa Approximation . 61

5.5 Conclusions . 62

xii

Contents

6 Conclusions and Future Work 63

6.1 Future work . 64

A Appendix for Chapter 2 67

A.1 Differences of variances . 67

A.2 An upper bound to the gradient norm . 68

A.3 Comparison with SVRG methods . 69

A.4 Ablation study on B . 70

A.5 Importance Sampling with the Loss . 71

B Appendix for Chapter 3 73

B.1 Introduction . 73

B.2 Sampling with replacement . 73

B.3 Sampling without replacement . 74

B.4 Extra related work . 76

B.5 Ablation study on the entropy regularizer . 76

B.6 Ablation study on the number of patches . 76

B.7 Qualitative results of the learned attention distribution 78

B.7.1 Histopathology images . 78

B.7.2 Speed limits . 80

B.8 Network Architecture Details . 80

B.8.1 Megapixel MNIST . 80

B.8.2 Histopathology images . 80

B.8.3 Speed Limits . 80

C Appendix for Chapter 4 83

C.1 Gradient Derivation . 83

C.2 Training Evolution . 84

C.3 Image Generation Throughput Discussion . 85

C.3.1 Stateful softmax attention . 85

C.3.2 Equalizing the batch size . 85

C.4 Qualitative Results on Image Generation . 86

D Appendix for Chapter 5 91

D.1 Scaling Attention with Fast Clustering . 91

D.1.1 Clustered attention . 91

D.1.2 Improved clustered attention . 92

D.2 Quality of the approximation . 93

D.3 Experiments . 95

D.3.1 Time and Memory Benchmark . 95

D.3.2 Ablation on clusters and sequence length 96

D.3.3 Automatic Speech Recognition . 98

xiii

Contents

D.3.4 RoBERTa Approximation . 100

Bibliography 103

Curriculum Vitae 115

xiv

1 Introduction

Neural networks have long held the promise of general purpose artificial intelligence. In many

respects, they failed to deliver and, even 50 years after their invention, methods like Support

Vector Machines or decision trees with hand crafted features were preferred. However, around

2012, the deep learning revolution (Krizhevsky et al., 2012) has reignited that promise and

deep neural networks are now ubiquitous throughout our technology stack.

From the early days of neural networks, it was obvious to both theorists and practitioners

that their performance was tightly coupled to their size (be it the number of neurons or the

number of layers). In general, larger networks generalize better to unseen datapoints which is

surprising when considering more traditional learning theory. As a result, the most effective

models nowadays have billions of parameters and require millions of dollars to be trained on

large-scale datasets (Brown et al., 2020). This has spawned an active area of research that aims

at improving the efficiency of deep neural networks, which is also the topic of this thesis.

Approaches to improve the efficiency of neural networks can be roughly categorized in four

categories that focus on: (i) the hardware and software, (ii) the optimization algorithms, (iii)

the network architecture and (iv) network compression.

Hardware and software: Moore’s law, the approximate doubling of transistor density every

two years since 1965, as well as the advent of general purpose computing on Graphical Process-

ing Units (GPUs) in 2007 (Nickolls et al., 2008), have played a key role in the democratization of

deep learning. Arguably the only development more important than the evolution of hardware

has been the creation of efficient open source packages (Bergstra et al., 2011; Collobert et al.,

2002; Abadi et al., 2016; Paszke et al., 2019) that enabled fast experimentation on a scale that

was not possible before. This tight coupling between software and hardware has naturally

influenced the design choices of both (Hooker, 2020). For example, commodity hardware such

as GPUs now have specialized operations for large matrix multiplication and algorithms favor

dense operations which are significantly more efficient on commodity hardware. Lately, the

wide adoption of neural networks has led to the development of specialized hardware such

as Tensor Processing Units (Jouppi et al., 2017) and Intelligence Processing Units (Jia et al.,

1

Chapter 1. Introduction

2019) that promise to further improve the efficiency of large neural networks and allow for

more freedom during algorithm design by also enabling sparse computations.

Optimization and sample efficiency: One of the major limiting factors for scaling deep neural

networks is related to the large computational cost of optimizing millions or even billions of

parameters when training on datasets that contain millions of datapoints. The first crucial step

towards reducing this computational cost was to move away from traditional optimization

methods developed for convex problems such as LBFGS (Nocedal, 1980), conjugate gradient

(Hestenes et al., 1952) or even gradient descent with line search (Nocedal and Wright, 2006)

to stochastic optimization (Robbins and Monro, 1951; Qian, 1999). More recently, several

optimization algorithms have been developed, particularly for deep learning, that greatly

reduce the required time for training such models (Kingma and Ba, 2014; You et al., 2017).

However, these methods still rely on naive uniform sampling of datapoints for their stochastic

gradient estimator. In chapter 2, we introduce an importance sampling method that can

be combined with all existing optimization methods to further reduce the computational

requirements during training.

Efficient Architectures: Modern deep learning frameworks have allowed researchers to easily

utilize any differentiable function f :RD →RM as a layer in a neural network. This gave rise

to a plethora of models that achieve comparable performance while having widely different

computational characteristics. As a result, researchers focus on developing models that

achieve state-of-the-art performance with significantly reduced computational cost. For

example, MobileNet (Howard et al., 2017) retained state-of-the-art classification accuracy

on the popular ImageNet image recognition challenge while reducing the computation cost

by more than three times and the number of network parameters by 40%. Along this line of

research, we present in Chapter 3, a network architecture that can process large images with

an order of magnitude lower computational and memory requirements. Moreover, in Chapter

4 and 5, we present two efficient transformer variants that were among the first to reduce the

asymptotic computational complexity of the transformer architecture (Vaswani et al., 2017)

to linear with respect to the input’s length. More recently, researchers have employed Neural

Architecture Search for discovering efficient architectures that surpass existing models both in

terms of accuracy and computation (Tan and Le, 2019).

Network compression: The previously discussed methods reduce the computational cost of

neural networks in general, both during training and during inference. However, the need to

deploy existing models on a variety of devices (e.g. servers, mobile devices, laptops etc.) gave

rise to methods that reduce the computational cost of neural networks during inference. These

methods can be roughly categorized into (i) network quantization methods (Courbariaux

et al., 2015; Yang et al., 2019a) that approximate the inference using integers instead of floating

point numbers, (ii) network compression methods (Liang et al., 2021) that either merge or

remove parts of the network that do not contribute to the final prediction and (iii) distillation

methods (Hinton et al., 2015) that improve the performance of smaller and more efficient

networks using the output of larger architectures.

2

1.1. Dissertation outline and contributions

1.1 Dissertation outline and contributions

The following four chapters in this dissertation are based on four conference proceedings arti-

cles (Katharopoulos and Fleuret, 2018, 2019; Katharopoulos et al., 2020; Vyas et al., 2020). While

all of them deal with improving the efficiency of neural networks, each work is independent

and the chapters can be read in any order.

In Chapter 2, which is based on Katharopoulos and Fleuret (2018), we show that deep neural

network training spends most of the computation on examples that are properly handled, and

could be ignored for most of the training. We propose to mitigate this phenomenon with a

principled importance sampling scheme that focuses computation on “informative” examples,

and reduces the variance of the stochastic gradients during training. Our contribution is

twofold: first, we derive a tractable upper bound to the per-sample gradient norm, and second

we derive an estimator of the variance reduction achieved with importance sampling, which

enables us to switch it on when it will result in an actual speedup. The resulting scheme can

be used by changing a few lines of code in a standard SGD procedure, and we demonstrate

experimentally, on image classification, CNN fine-tuning, and RNN training, that for a fixed

wall-clock time budget, it provides a reduction of the train losses of up to an order of magnitude

and a relative improvement of test errors between 5% and 17%.

In Chapter 3, which is based on Katharopoulos and Fleuret (2019), we address the large

computational and memory constraints of deep architectures for processing large signals, such

as megapixel images. To this end, we propose a fully differentiable end-to-end trainable model

that samples and processes only a fraction of the full resolution input image. The locations to

process are sampled from an attention distribution computed from a low resolution view of

the input. We refer to our method as attention sampling and it can process images of several

megapixels with a standard single GPU setup. We show that sampling from the attention

distribution results in an unbiased estimator of the full model with minimal variance, and we

derive an unbiased estimator of the gradient that we use to train our model end-to-end with a

normal SGD procedure. This new method is evaluated on three classification tasks, where we

show that it allows to reduce computation and memory footprint by an order of magnitude for

the same accuracy as classical architectures. We also show the consistency of the sampling

that indeed focuses on informative parts of the input images.

In chapters 4 and 5 we tackle the computational and memory requirements of self-attention,

a crucial component of the transformer architecture. In particular, due to the quadratic

complexity with respect to the input’s length, transformers are prohibitively slow for large

sequences. To address this limitation, in Chapter 4 (Katharopoulos et al., 2020), we express the

self-attention as a linear dot-product of kernel feature maps and make use of the associativity

property of matrix products to reduce the complexity from O
(
N 2

)
to O (N), where N is the

sequence length. We show that this formulation permits an iterative implementation that

dramatically accelerates autoregressive transformers and reveals their relationship to recurrent

neural networks. Our linear transformers achieve similar performance to vanilla transformers

3

Chapter 1. Introduction

and they are up to 4000× faster on autoregressive prediction of very long sequences.

In Chapter 5, which is based on Vyas et al. (2020), we propose clustered attention, which

instead of computing the attention for every query, groups queries into clusters and com-

putes attention just for the centroids. To further improve this approximation, we use the

computed clusters to identify the keys with the highest attention per query and compute the

exact key/query dot products. This results in a model with linear complexity with respect to

the sequence length for a fixed number of clusters. We evaluate our approach on two auto-

matic speech recognition datasets and show that our model consistently outperforms vanilla

transformers for a given computational budget. Finally, we demonstrate that our model can

approximate arbitrarily complex attention distributions with a minimal number of clusters

by approximating a pretrained BERT model on GLUE and SQuAD benchmarks with only 25

clusters and no loss in performance.

Finally, in chapter 6, we summarize our findings and propose new directions for future re-

search.

4

2 Not All Samples Are Created Equal

2.1 Chapter Introduction

The dramatic increase in available training data has made the use of deep neural networks

feasible, which in turn has significantly improved the state-of-the-art in many fields, in partic-

ular computer vision and natural language processing. However, due to the complexity of the

resulting optimization problem, computational cost is now the core issue in training these

large architectures.

When training such models, it appears to any practitioner that not all samples are equally

important; many of them are properly handled after a few epochs of training, and most could

be ignored at that point without impacting the final model. To this end, we propose a novel

importance sampling scheme that accelerates the training of any neural network architecture

by focusing the computation on the samples that will introduce the biggest change in the

parameters which reduces the variance of the gradient estimates.

For convex optimization problems, many works (Bordes et al., 2005; Zhao and Zhang, 2015;

Needell et al., 2014; Canévet et al., 2016; Richtárik and Takáč, 2013) have taken advantage

of the difference in importance among the samples to improve the convergence speed of

stochastic optimization methods. On the other hand, for deep neural networks, sample

selection methods were mainly employed to generate hard negative samples for embedding

learning problems or to tackle the class imbalance problem (Schroff et al., 2015; Wu et al.,

2017; Simo-Serra et al., 2015).

Recently, researchers have shifted their focus on using importance sampling to improve and

accelerate the training of neural networks (Alain et al., 2015; Loshchilov and Hutter, 2015;

Schaul et al., 2015). Those works, employ either the gradient norm or the loss to compute

each sample’s importance. However, the former is prohibitively expensive to compute and the

latter is not a particularly good approximation of the gradient norm.

Compared to the aforementioned works, we derive an upper bound to the per sample gradient

5

Chapter 2. Not All Samples Are Created Equal

norm that can be computed in a single forward pass. This results in reduced computational

requirements of more than an order of magnitude compared to Alain et al. (2015). Furthermore,

we quantify the variance reduction achieved with the proposed importance sampling scheme

and associate it with the batch size increment required to achieve an equivalent variance

reduction. The benefits of this are twofold, firstly we provide an intuitive metric to predict

how useful importance sampling is going to be, thus we are able to decide when to switch on

importance sampling during training. Secondly, we also provide theoretical guarantees for

speedup, when variance reduction is above a threshold. Based on our analysis, we propose

a simple to use algorithm that can be used to accelerate the training of any neural network

architecture.

Our implementation is generic and can be employed by adding a single line of code in a

standard Keras model training. We validate it on three independent tasks: image classification,

fine-tuning and sequence classification with recurrent neural networks. Compared to existing

batch selection schemes, we show that our method consistently achieves lower training loss

and test error for equalized wall-clock time.

2.2 Related Work

Existing importance sampling methods can be roughly categorized in methods applied to

convex problems and methods designed for deep neural networks.

2.2.1 Importance Sampling for Convex Problems

Importance sampling for convex optimization problems has been extensively studied over

the last years. Bordes et al. (2005) developed LASVM, which is an online algorithm that uses

importance sampling to train kernelized support vector machines. Later, Richtárik and Takáč

(2013) proposed a generalized coordinate descent algorithm that samples coordinate sets in a

way that optimizes the algorithm’s convergence rate.

More recent works (Zhao and Zhang, 2015; Needell et al., 2014) make a clear connection

with the variance of the gradient estimates of stochastic gradient descent and show that the

optimal sampling distribution is proportional to the per sample gradient norm. Due to the

relatively simple optimization problems that they deal with, the authors resort to sampling

proportionally to the norm of the inputs, which in simple linear classification is proportional

to the Lipschitz constant of the per sample loss function.

Such simple importance measures do not exist for Deep Learning and the direct application

of the aforementioned theory (Alain et al., 2015), requires clusters of GPU workers just to

compute the sampling distribution.

6

2.2. Related Work

2.2.2 Importance Sampling for Deep Learning

Importance sampling has been used in Deep Learning mainly in the form of manually tuned

sampling schemes. Bengio et al. (2009) manually design a sampling scheme inspired by the

perceived way that human children learn; in practice they provide the network with examples

of increasing difficulty in an arbitrary manner. Diametrically opposite, it is common for deep

embedding learning to sample hard examples because of the plethora of easy non informative

ones (Simo-Serra et al., 2015; Schroff et al., 2015).

More closely related to our work, Schaul et al. (2015) and Loshchilov and Hutter (2015) use

the loss to create the sampling distribution. Both approaches keep a history of losses for

previously seen samples, and sample either proportionally to the loss or based on the loss

ranking. One of the main limitations of history based sampling, is the need for tuning a large

number of hyperparameters that control the effects of “stale” importance scores; i.e. since the

model is constantly updated, the importance of samples fluctuate and previous observations

may poorly reflect the current situation. In particular, Schaul et al. (2015) use various forms

of smoothing for the losses and the importance sampling weights, while Loshchilov and

Hutter (2015) introduce a large number of hyperparameters that control when the losses are

computed, when they are sorted as well as how the sampling distribution is computed based

on the rank.

In comparison to all the above methods, our importance sampling scheme based on an upper

bound to the gradient norm has a solid theoretical basis with clear objectives, very easy to

choose hyperparameters, theoretically guaranteed speedup and can be applied to any type of

network and loss function.

2.2.3 Other Sample Selection Methods

For completeness, we mention the work of Wu et al. (2017), who design a distribution (suitable

only for the distance based losses) that maximizes the diversity of the losses in a single batch.

In addition, Fan et al. (2017) use reinforcement learning to train a neural network that selects

samples for another neural network in order to optimize the convergence speed. Although

their preliminary results are promising, the overhead of training two networks makes the

wall-clock speedup unlikely and their proposal not as appealing.

2.2.4 Stochastic Variance Reduced Gradient

Finally, a class of algorithms that aim to accelerate the convergence of Stochastic Gradient

Descent (SGD) through variance reduction are SVRG type algorithms (Johnson and Zhang,

2013; Defazio et al., 2014; Allen-Zhu, 2017; Lei et al., 2017). Although asymptotically better,

those algorithms typically perform worse than plain SGD with momentum for the low accuracy

optimization setting of Deep Learning. Contrary to the aforementioned algorithms, our

proposed importance sampling does not improve the asymptotic convergence of SGD but

7

Chapter 2. Not All Samples Are Created Equal

results in pragmatic improvements in all the metrics given a fixed time budget.

2.3 Variance Reduction for Deep Neural Networks

Importance sampling aims at increasing the convergence speed of SGD by focusing com-

putation on samples that actually induce a change in the model parameters. This formally

translates into a reduced variance of the gradient estimates for a fixed computational cost. In

the following sections, we analyze how this works and present an efficient algorithm that can

be used to train any Deep Learning model.

2.3.1 Introduction to Importance Sampling

Let xi , yi be the i -th input-output pair from the training set,Ψ(·;θ) be a Deep Learning model

parameterized by the vector θ, and L (·, ·) be the loss function to be minimized during training.

The goal of training is to find

θ∗ = argmin
θ

1

N

N∑
i=1

L (Ψ(xi ;θ), yi) (2.1)

where N corresponds to the number of examples in the training set.

We use an SGD procedure with learning rate η, where the update at iteration t depends on

the sampling distribution p t
1, . . . , p t

N and re-scaling coefficients w t
1, . . . , w t

N . Let It be the data

point sampled at that step, we have P (It = i) = p t
i and

θt+1 = θt −ηw It ∇θt L (Ψ(xIt ;θt), yIt) (2.2)

Plain SGD with uniform sampling is achieved with w t
i = 1 and p t

i = 1
N for all t and i .

If we define the convergence speed S of SGD as the reduction of the distance of the parameter

vector θ from the optimal parameter vector θ∗ in two consecutive iterations t and t +1

S =−EPt

[∥∥θt+1 −θ∗
∥∥2

2 −
∥∥θt −θ∗

∥∥2
2

]
, (2.3)

and if we have wi = 1
N pi

such that

EPt

[
w It ∇θt L (Ψ(xIt ;θt), yIt)

]
(2.4)

=∇θt
1
N

∑N
i=1 L (Ψ(xi ;θt), yi), (2.5)

and set Gi = wi∇θt L (Ψ(xi ;θt), yi), then we get (this is a different derivation of the result by

8

2.3. Variance Reduction for Deep Neural Networks

Wang et al., 2016)

S =−EPt

[(
θt+1−θ∗

)T (
θt+1−θ∗

)− (
θt−θ∗

)T (
θt−θ∗

)]
=−EPt

[
θT

t+1θt+1−2θt+1θ
∗−θT

t θt +2θtθ
∗]

=−EPt

[(
θt−ηG It

)T (
θt−ηG It

)+2ηGT
It
θ∗−θT

t θt

]
=−EPt

[
−2η

(
θt−θ∗

)
G It +η2GT

It
G It

]
= 2η

(
θt−θ∗

)
EPt

[
G It

]−η2EPt

[
G It

]T
EPt

[
G It

]−
η2Tr

(
VPt

[
G It

])
(2.6)

Since the first two terms, in the last expression, are the speed of batch gradient descent, we

observe that it is possible to gain a speedup by sampling from the distribution that minimizes

Tr
(
VPt

[
G It

])
. Several works (Needell et al., 2014; Zhao and Zhang, 2015; Alain et al., 2015) have

shown the optimal distribution to be proportional to the per-sample gradient norm. However,

computing this distribution is computationally prohibitive.

2.3.2 Beyond the Full Gradient Norm

Given an upper bound Ĝi ≥
∥∥∇θt L (Ψ(xi ;θt), yi)

∥∥
2 and due to

argmin
P

Tr
(
VPt

[
G It

])= argmin
P

EPt

[∥∥G It

∥∥2
2

]
, (2.7)

we propose to relax the optimization problem in the following way

min
P
EPt

[∥∥G It

∥∥2
2

]
≤ min

P
EPt

[
w2

It
Ĝ2

It

]
. (2.8)

The minimizer of the second term of equation 2.8, similar to the first term, is pi ∝ Ĝi . All that

remains, is to find a proper expression for Ĝi which is significantly easier to compute than the

norm of the gradient for each sample.

In order to continue with the derivation of our upper bound Ĝi , let us introduce some notation

specific to a multi-layer perceptron. Let θ(l) ∈ RMl×Ml−1 be the weight matrix for layer l and

σ(l)(·) be a Lipschitz continuous activation function. Then, let

x(0) = x (2.9)

z(l) = θ(l) x(l−1) (2.10)

x(l) =σ(l)(z(l)) (2.11)

Ψ(x;Θ) = x(L) (2.12)

Although our notation describes simple fully connected neural networks without bias, our

analysis holds for any affine operation followed by a slope-bounded non-linearity (|σ′(x)| ≤ K).

9

Chapter 2. Not All Samples Are Created Equal

With

Σ′
l (z) = di ag

(
σ′(l)(z1), . . . ,σ′(l)(zMl)

)
, (2.13)

∆(l)
i =Σ′

l (z(l)
i)θT

l+1 . . .Σ′
L−1(z(L−1)

i)θT
L , (2.14)

∇x(L)
i

L =∇x(L)
i

L (Ψ(xi ;Θ), yi) (2.15)

we get ∥∥∇θl L (Ψ(xi ;Θ), yi)
∥∥

2 (2.16)

=
∥∥∥∥(
∆(l)

i Σ
′
L(z(L)

i)∇x(L)
i

L
)(

x(l−1)
i

)T
∥∥∥∥

2
(2.17)

≤
∥∥∥∆(l)

i

∥∥∥
2

∥∥∥Σ′
L(z(L)

i)∇x(L)
i

L
∥∥∥

2

∥∥∥x(l−1)
i

∥∥∥
2

(2.18)

≤ max
l ,i

(∥∥∥x(l−1)
i

∥∥∥
2

∥∥∥∆(l)
i

∥∥∥
2

)
︸ ︷︷ ︸

ρ

∥∥∥Σ′
L(z(L)

i)∇x(L)
i

L
∥∥∥

2
(2.19)

Various weight initialization (Glorot and Bengio, 2010) and activation normalization tech-

niques (Ioffe and Szegedy, 2015; Ba et al., 2016) uniformise the activations across samples. As a

result, the variation of the gradient norm is mostly captured by the gradient of the loss function

with respect to the pre-activation outputs of the last layer of our neural network. Consequently

we can derive the following upper bound to the gradient norm of all the parameters∥∥∇ΘL (Ψ(xi ;Θ), yi)
∥∥

2 ≤ Lρ
∥∥∥Σ′

L(z(L)
i)∇x(L)

i
L

∥∥∥
2︸ ︷︷ ︸

Ĝi

, (2.20)

which is marginally more difficult to compute than the value of the loss since it can be

computed in a closed form in terms of z(L). However, our upper bound depends on the time

step t , thus we cannot generate a distribution once and sample from it during training. This is

intuitive because the importance of each sample changes as the model changes.

2.3.3 When is Variance Reduction Possible?

Computing the importance score from equation 2.20 is more than an order of magnitude faster

compared to computing the gradient norm for each sample. Nevertheless, it still costs one

forward pass through the network and can be wasteful. For instance, during the first iterations

of training, the gradients with respect to every sample have approximately equal norm; thus

we would waste computational resources trying to sample from the uniform distribution. In

addition, computing the importance score for the whole dataset is still prohibitive and would

render the method unsuitable for online learning.

In order to solve the problem of computing the importance for the whole dataset, we pre-

sample a large batch of data points, compute the sampling distribution for that batch and

10

2.3. Variance Reduction for Deep Neural Networks

re-sample a smaller batch with replacement. The above procedure upper bounds both the

speedup and variance reduction. Given a large batch consisting of B samples and a small

one consisting of b, we can achieve a maximum variance reduction of 1
b − 1

B and a maximum

speedup of B+3b
3B assuming that the backward pass requires twice the amount of time as the

forward pass.

Due to the large cost of computing the importance per sample, we only perform importance

sampling when we know that the variance of the gradients can be reduced. In the following

equation, we show that the variance reduction is proportional to the squared L2 distance of the

sampling distribution, g , to the uniform distribution u. The complete derivation is included

in appendix A.1. Let gi ∝
∥∥∇θt L (Ψ(xi ;θt), yi)

∥∥
2 = ‖Gi‖2 and u = 1

B the uniform probability.

Tr(Vu[Gi])−Tr
(
Vg [wi Gi]

)
(2.21)

= Eu
[‖Gi‖2

2

]−Eg
[
w2

i ‖Gi‖2
2

]
(2.22)

=
(

1

B

B∑
i=1

‖Gi‖2

)2

B
∥∥g −u

∥∥2
2 . (2.23)

Equation 2.23 already provides us with a useful metric to decide if the variance reduction

is significant enough to justify using importance sampling. However, choosing a suitable

threshold for the L2 distance squared would be tedious and unintuitive. We can do much

better by dividing the variance reduction with the original variance to derive the increase in

the batch size that would achieve an equivalent variance reduction. Assuming that we increase

the batch size by τ, we achieve variance reduction 1
τ ; thus we have1

(1
B

∑B
i=1 ‖Gi‖2

)2
B

∥∥g −u
∥∥2

2

Tr(Vu[Gi])
≥ (2.24)(1

B

∑B
i=1 ‖Gi‖2

)2
B

∥∥g −u
∥∥2

2
1
B

∑B
i=1 ‖Gi‖2

2

= (2.25)

1∑B
i=1 g 2

i

∥∥g −u
∥∥2

2 = 1− 1

τ
⇐⇒ (2.26)

1

τ
= 1− 1∑B

i=1 g 2
i

∥∥g −u
∥∥2

2 (2.27)

Using equation 2.27, we have a hyperparameter that is very easy to select and can now design

our training procedure which is described in pseudocode in algorithm 1. Computing τ from

equation 2.27 allows us to have guaranteed speedup when B +3b < 3τb. However, as it is

shown in the experiments, we can use τth smaller than B+3b
3b and still get a significant speedup.

The inputs to the algorithm are the pre-sampling size B , the batch size b, the equivalent

batch size increment after which we start importance sampling τth and the exponential

1In the first version we mistakenly assume 1
τ2 which made the algorithm unnecessarily conservative. All the

experiments are run using the square root of line 17 in Algorithm 1.

11

Chapter 2. Not All Samples Are Created Equal

Algorithm 1 Deep Learning with Importance Sampling

1: Inputs B ,b,τth , aτ,θ0

2: t ← 1
3: τ← 0
4: repeat
5: if τ> τth then
6: U ← B uniformly sampled datapoints
7: gi ∝ Ĝi ∀i ∈U according to eq 2.20
8: G ← b datapoints sampled with gi from U

9: wi ← 1
B gi

∀i ∈G

10: θt ← sgd_step(wi ,G ,θt−1)
11: else
12: U ← b uniformly sampled datapoints
13: wi ← 1 ∀i ∈U

14: θt ← sgd_step(wi ,U ,θt−1)
15: gi ∝ Ĝi ∀i ∈U

16: end if

17: τ← aττ+ (1−aτ)

(
1− 1∑

i g 2
i

∥∥∥g − 1
|U |

∥∥∥2

2

)−1

18: until convergence

moving average parameter aτ used to compute a smooth estimate of τ. θ0 denotes the initial

parameters of our deep network. We would like to point out that in line 15 of the algorithm,

we compute gi for free since we have done the forward pass in the previous step.

The only parameter that has to be explicitly defined for our algorithm is the pre-sampling size

B because τth can be set using equation 2.27. A small analysis on the impact of B is provided

in appendix A.4.

2.4 Experiments

In this section, we analyse experimentally the performance of the proposed importance

sampling scheme based on our upper-bound of the gradient norm. In the first subsection, we

compare the variance reduction achieved with our upper bound to the theoretically maximum

achieved with the true gradient norm. We also compare against sampling based on the

loss, which is commonly used in practice. Subsequently, we conduct experiments which

demonstrate that we are able to achieve non-negligible wall-clock speedup for a variety of

tasks using our importance sampling scheme.

In all the subsequent sections, we use uniform to refer to the usual training algorithm that

samples points from a uniform distribution, we use loss to refer to algorithm 1 but instead

of sampling from a distribution proportional to our upper-bound to the gradient norm Ĝi

(equations 2.8 and 2.20), we sample from a distribution proportional to the loss value and

finally upper-bound to refer to our proposed method. All the other baselines from published

12

2.4. Experiments

methods are referred to using the names of the authors.

In addition to batch selection methods, we compare with various SVRG implementations

including the accelerated Katyusha (Allen-Zhu, 2017) and the online SCSG (Lei et al., 2017)

method. In all cases, SGD with uniform sampling performs significantly better. The detailed

results are provided in appendix A.3.

Experiments were conducted using Keras (Chollet et al., 2015) with TensorFlow (Abadi et al.,

2016), and the code can be found at http://github.com/idiap/importance-sampling. For all

the experiments, we use Nvidia K80 GPUs and the reported time is calculated by subtracting

the timestamps before starting one epoch and after finishing one; thus it includes the time

needed to transfer data between CPU and GPU memory.

Our implementation provides a wrapper around models that substitutes the standard uniform

sampling with our importance-sampling method. This means that adding a single line of code

to call this wrapper before actually fitting the model is sufficient to switch from the standard

uniform sampling to our importance-sampling scheme. And, as specified in § 2.3.3 and

Algorithm 1, our procedure reliably estimates at every iteration if the importance sampling

will provide a speed-up and sticks to uniform sampling otherwise.

10000 20000 30000 40000 50000

Iterations

0.4

0.6

0.8

1.0

1.2

‖G
B
−
G
b
‖

uniform

loss

upper-bound (ours)

gradient-norm

Figure 2.1 – The y-axis denotes the L2 distance of the average gradient of the large batch (GB)
and the average gradient of the small batch (Gb) normalized with the distance achieved by
uniform sampling. The sampling of the small batch is done 10 times and the reported results
are the average. The details of the experimental setup are given in § 2.4.1.

2.4.1 Ablation study

As already mentioned, several works (Loshchilov and Hutter, 2015; Schaul et al., 2015) use the

loss value, directly or indirectly, to generate sampling distributions. In this section, we present

experiments that validate the superiority of our method with respect to the loss in terms of

variance reduction. For completeness, in appendix A.5, we include a theoretical analysis that

explains why sampling based on the loss also achieves variance reduction during the late

stages of training.

13

http://github.com/idiap/importance-sampling

Chapter 2. Not All Samples Are Created Equal

0.000 0.002 0.004 0.006 0.008

Gradient norm induced probability

0.000

0.002

0.004

0.006

0.008

Im
p

o
rt

a
n

ce
in

d
u

ce
d

p
ro

b
a
b

il
it

y

loss

upper-bound (ours)

Figure 2.2 – The probabilities generated with the loss and our upper-bound are plotted against
the ideal probabilities produced by the gradient-norm. The black line denotes perfect correla-
tion. The details of the experimental setup are given in § 2.4.1.

Our experimental setup is as follows: we train a wide residual network (Zagoruyko and Ko-

modakis, 2016) on the CIFAR100 dataset (Krizhevsky, 2009), following closely the training

procedure of Zagoruyko and Komodakis (2016) (the details are presented in § 2.4.2). Subse-

quently, we sample 1,024 images uniformly at random from the dataset. Using the weights

of the trained network, at intervals of 3,000 updates, we resample 128 images from the large

batch of 1,024 images using uniform sampling or importance sampling with probabilities pro-

portional to the loss, our upper-bound or the gradient-norm. The gradient-norm is computed

by running the backpropagation algorithm with a batch size of 1.

Figure 2.1 depicts the variance reduction achieved with every sampling scheme in comparison

to uniform. We measure this directly as the distance between the mini-batch gradient and

the batch gradient of the 1,024 samples. For robustness we perform the sampling 10 times

and report the average. We observe that our upper bound and the gradient norm result in

very similar variance reduction, meaning that the bound is relatively tight and that the pro-

duced probability distributions are highly correlated. This can also be deduced by observing

figure 2.2, where the probabilities proportional to the loss and the upper-bound are plotted

against the optimal ones (proportional to the gradient-norm). We observe that our upper

bound is almost perfectly correlated with the gradient norm, in stark contrast to the loss which

is only correlated at the regime of very small gradients. Quantitatively the sum of squared error

of 16,384 points in figure 2.2 is 0.017 for the loss and 0.002 for our proposed upper bound.

Furthermore, we observe that sampling hard examples (with high loss), increases the variance,

especially in the beginning of training. Similar behaviour has been observed in problems such

as embedding learning where semi-hard sample mining is preferred over sampling using the

loss (Wu et al., 2017; Schroff et al., 2015).

14

2.4. Experiments

0 5000 10000 15000 20000

Seconds

10−3

10−2

10−1

100
T

ra
in

in
g

L
o
ss

(a) CIFAR10 Training Loss

0 5000 10000 15000 20000

Seconds

10−1

T
es

t
E

rr
o
r

upper-bound (ours)

uniform

loss

Schaul et al. (2015)

Loshchilov et al. (2015)

(b) CIFAR10 Test Error

0 5000 10000 15000 20000

Seconds

10−1

100

T
ra

in
in

g
L

o
ss

(c) CIFAR100 Training Loss

0 5000 10000 15000 20000

Seconds

100

3× 10−1

4× 10−1

6× 10−1

T
es

t
E

rr
o
r

(d) CIFAR100 Test Error

Figure 2.3 – Comparison of importance sampling using the upper-bound with uniform and
loss based importance sampling. The details of the training procedure are given in § 2.4.2. Our
proposed scheme is the only one achieving a speedup on CIFAR100 and results in 5% smaller
test error. All presented results are averaged across 3 independent runs.

2.4.2 Image classification

In this section, we use importance sampling to train a residual network on CIFAR10 and

CIFAR100. We follow the experimental setup of Zagoruyko and Komodakis (2016), specifically

we train a wide resnet 28-2 with SGD with momentum. We use batch size 128, weight decay

0.0005, momentum 0.9, initial learning rate 0.1 divided by 5 after 20,000 and 40,000 parameter

updates. Finally, we train for a total of 50,000 iterations. In order for our history based baselines

to be compatible with the data augmentation of the CIFAR images, we pre-augment both

datasets to generate 1.5×106 images for each one. Our method does not have this limitation

since it can work on infinite datasets in a true online fashion. To compare between methods,

we use a learning rate schedule based on wall-clock time and we also fix the total seconds

available for training. A faster method should have smaller training loss and test error given a

specific time during training.

For this experiment, we compare the proposed method to uniform, loss, online batch selection

by Loshchilov and Hutter (2015) and the history based sampling of Schaul et al. (2015). For

the method of Schaul et al. (2015), we use their proportional sampling since the rank based is

very similar to Loshchilov and Hutter (2015) and we select the best parameters from the grid

a = {0.1,0.5,1.0} and β= {0.5,1.0}. Similarly, for online batch selection, we use s = {1,10,102}

15

Chapter 2. Not All Samples Are Created Equal

500 1000 1500

Seconds

10−2

10−1

100

T
ra

in
in

g
L

o
ss

upper-bound (ours)

uniform

loss

500 1000 1500

Seconds

3× 10−1

4× 10−1

6× 10−1

T
es

t
E

rr
o
r

upper-bound (ours)

uniform

loss

Figure 2.4 – Comparison of importance sampling for fine-tuning on MIT67 dataset. The details
of the training procedure are given in § 2.4.3. Our proposed algorithm converges very quickly
to 28.06% test error in approximately half an hour, a relative reduction of 17% to uniform
sampling. For robustness, the results are averaged across 3 independent runs.

and a recomputation of all the losses every r = {600,1200,3600} updates.

For our method, we use a presampling size of 640. One of the goals of this experiment is to

show that even a smaller reduction in variance can effectively stabilize training and provide

wall-clock time speedup; thus we set τth = 1.5. We perform 3 independent runs and report the

average.

The results are depicted in figure 2.3. We observe that in the relatively easy CIFAR10 dataset,

all methods can provide some speedup over uniform sampling. However, for the more com-

plicated CIFAR100, only sampling with our proposed upper-bound to the gradient norm

reduces the variance of the gradients and provides faster convergence. Examining the training

evolution in detail, we observe that on CIFAR10 our method is the only one that achieves a

significant improvement in the test error even in the first stages of training (4,000 to 8,000

seconds). Quantitatively, on CIFAR10 we achieve more than an order of magnitude lower

training loss and 8% lower test error from 0.087 to 0.079 while on CIFAR100 approximately

3 times lower training loss and 5% lower test error from 0.34 to 0.32 compared to uniform

sampling.

At this point, we would also like to discuss the performance of the loss compared to other

methods that also select batches based on this metric. Our experiments show, that using

“fresh” values for the loss combined with a warmup stage so that importance sampling is not

started too early outperforms all the other baselines on the CIFAR10 dataset.

2.4.3 Fine-tuning

Our second experiment shows the application of importance sampling to the significant task

of fine tuning a pre-trained large neural network on a new dataset. This task is of particular

importance because there exists an abundance of powerful models pre-trained on large

datasets such as ImageNet (Deng et al., 2009).

16

2.4. Experiments

Our experimental setup is the following, we fine-tune a ResNet-50 (He et al., 2015) previously

trained on ImageNet. We replace the last classification layer and then train the whole network

end-to-end to classify indoor images among 67 possible categories (Quattoni and Torralba,

2009). We use SGD with learning rate 10−3 and momentum 0.9. We set the batch size to 16 and

for our importance sampling algorithm we pre-sample 48. The variance reduction threshold

is set to 2 as designated by equation 2.27.

To assess the performance of both our algorithm and our gradient norm approximation, we

compare the convergence speed of our importance sampling algorithm using our upper-

bound and using the loss. Once again, for robustness, we run 3 independent runs and report

the average.

The results of the experiment are depicted in figure 2.4. As expected, importance sampling

is very useful for the task of fine-tuning since a lot of samples are handled correctly very

early in the training process. Our upper-bound, once again, greatly outperforms sampling

proportionally to the loss when the network is large and the problem is non trivial. Compared

to uniform sampling, in just half an hour importance sampling has converged close to the

best performance (28.06% test error) that can be expected on this dataset without any data

augmentation or multiple crops (Razavian et al., 2014), while uniform achieves only 33.74%.

2.4.4 Pixel by Pixel MNIST

0 1000 2000 3000

Seconds

100

3× 10−1

4× 10−1

6× 10−1

2× 100

T
ra

in
in

g
L

o
ss

0 1000 2000 3000

Seconds

10−1

2× 10−1

3× 10−1

4× 10−1

6× 10−1

T
es

t
E

rr
o
r

upper-bound (ours)

uniform

loss

Figure 2.5 – Comparison of importance sampling on pixel-by-pixel MNIST with an LSTM.
The details of the training procedure are given in § 2.4.4. Our proposed algorithm speeds up
training and achieves 7% lower test error in one hour of training (0.1055 compared to 0.1139).
We observe that sampling proportionally to the loss actually hurts convergence in this case.

To showcase the generality of our method, we use our importance sampling algorithm to

accelerate the training of an LSTM in a sequence classification problem. We use the pixel by

pixel classification of randomly permuted MNIST digits (LeCun et al., 2010), as defined by Le

et al. (2015). The problem may seem trivial at first, however as shown by Le et al. (2015) it is

particularly suited to benchmarking the training of recurrent neural networks, due to the long

range dependency problems inherent in the dataset (784 time steps).

For our experiment, we fix a permutation matrix for all the pixels to generate a training set of

17

Chapter 2. Not All Samples Are Created Equal

60,000 samples with 784 time steps each. Subsequently, we train an LSTM (Hochreiter and

Schmidhuber, 1997) with 128 dimensions in the hidden space, tanh(·) as an activation function

and sigmoid(·) as the recurrent activation function. Finally, we use a linear classifier on top of

the LSTM to choose a digit based on the hidden representation. To train the aforementioned

architecture, we use the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 10−3

and a batch size of 32. We have also found gradient clipping to be necessary for the training

not to diverge; thus we clip the norm of all gradients to 1.

The results of the experiment are depicted in figure 2.5. Both for the loss and our proposed

upper-bound, importance sampling starts at around 2,000 seconds by setting τth = 1.8 and

the presampling size to 128. We could set τth = 2.33 (equation 2.27) which would only result

in our algorithm being more conservative and starting importance sampling later. We clearly

observe that sampling proportionally to the loss hurts the convergence in this case. On the

other hand, our algorithm achieves 20% lower training loss and 7% lower test error in the given

time budget.

2.5 Chapter Conclusions

We have presented an efficient algorithm for accelerating the training of deep neural networks

using importance sampling. Our algorithm takes advantage of a novel upper bound to the

gradient norm of any neural network that can be computed in a single forward pass. In

addition, we show an equivalence of the variance reduction with importance sampling to

increasing the batch size; thus we are able to quantify both the variance reduction and the

speedup and intelligently decide when to stop sampling uniformly.

Our experiments show that our algorithm is effective in reducing the training time for several

tasks both on image and sequence data. More importantly, we show that not all data points

matter equally in the duration of training, which can be exploited to gain a speedup or better

quality gradients or both.

Our analysis opens several avenues of future research. The two most important ones that

were not investigated in this work are automatically tuning the learning rate based on the

variance of the gradients and decreasing the batch size. The variance of the gradients can

be kept stable by increasing the learning rate proportionally to the batch increment or by

decreasing the number of samples for which we compute the backward pass. Thus, we can

speed up convergence by increasing the step size or reducing the time per update.

In the next chapter, we utilize the idea of importance sampling to focus computation not on

informative parts of the dataset but on informative parts of a single input.

18

3 Processing Megapixel Images with
Deep Attention Sampling

3.1 Chapter Introduction

For a variety of computer vision tasks, such as cancer detection, self driving vehicles, and

satellite image processing, it is necessary to develop models that are able to handle high

resolution images. The existing CNN architectures, that provide state-of-the-art performance

in various computer vision fields such as image classification (He et al., 2016), object detection

(Liu et al., 2016), semantic segmentation (Wu et al., 2019) etc., cannot operate directly on such

images due to computational and memory requirements. To address this issue, a common

practice is to downsample the original image before passing it to the network. However, this

leads to loss of significant information possibly critical for certain tasks.

Another research direction seeks to mitigate this problem by splitting the original high reso-

lution image into patches and processing them separately (Hou et al., 2016; Golatkar et al.,

2018; Nazeri et al., 2018). Naturally, these methods either waste computational resources

on uninformative patches or require ground truth annotations for each patch. However, per

patch labels are typically expensive to acquire and are not available for the majority of the

available datasets.

The aforementioned limitations are addressed by two disjoint lines of work: the recurrent

visual attention models (Mnih et al., 2014; Ba et al., 2014) and the attention based multiple

instance learning (Ilse et al., 2018). The first seeks to limit the wasteful computations by only

processing some parts of the full image. However, these models result in hard optimization

problems that limit their applicability to high resolution images. The second line of work shows

that regions of interest can be identified without explicit patch annotations by aggregating per

patch features with an attention mechanism. Nevertheless, such methods do not address the

computational and memory issues inherent in all patch based models.

This work aims at combining the benefits of both. Towards this goal, we propose an end-

to-end trainable model able to handle multi-megapixel images using a single GPU or CPU.

In particular, we sample locations of “informative patches” from an “attention distribution”

19

Chapter 3. Processing Megapixel Images with Deep Attention Sampling

(a)

(b)

(c)

Figure 3.1 – Common practice to process megapixel images with CNNs is to downsample
them, however this results in significant loss of information (b, c).

computed on a lower resolution version of the original image. This allows us to only process

a fraction of the original image. Compared to previous works, due to our attention based

weighted average feature aggregation, we are able to derive an unbiased estimator of the

gradient of the virtual and intractable “full model” that would process the full-scale image

in a standard feed-forward manner, and do not need to resort to reinforcement learning or

variational methods to train. Furthermore, we prove that sampling patches from the attention

distribution results in the minimum variance estimator of the “full model”.

We evaluate our model on three classification tasks and we show that our proposed attention

sampling achieves comparable test errors with Ilse et al. (2018), that considers all patches

from the high resolution images, while being up to 25× faster and requiring up to 30× less

memory.

3.2 Related Work

In this section, we discuss the most relevant body of work on attention-based models and

techniques to process high resolution images using deep neural networks, which can be

trained from a scene-level categorical label. Region proposal methods that require per-patch

annotations, such as instance-level bounding boxes (Girshick et al., 2014; Redmon et al., 2016;

Liu et al., 2016), do not fall in that category.

20

3.2. Related Work

3.2.1 Recurrent visual attention models

This line of work includes models that learn to extract a sequence of regions from the original

high resolution image and only process these at high resolution. The regions are processed

in a sequential manner, namely the distribution to sample the n-th region depends on the

previous n −1 regions. Mnih et al. (2014) were the first to employ a recurrent neural network

to predict regions of interest on the high resolution image and process them sequentially.

In order to train their model, which is not differentiable, they use reinforcement learning.

In parallel, Ranzato (2014); Ba et al. (2014) proposed to additionally downsample the input

image and use it to provide spatial context to the recurrent network. Ramapuram et al. (2018)

improved upon the previous works by using variational inference and Spatial Transformer

Networks (Jaderberg et al., 2015) to solve the same optimization problem.

All the aforementioned works seek to solve a complicated optimization problem that is non

differentiable and is approximated with either reinforcement learning or variational methods.

Instead of employing such a complicated model to aggregate the features of the patches and

generate dependent attention distributions that result in a hard optimization problem, we

propose to use an attention distribution to perform a weighted average of the features, which

allows us to directly train our model with SGD.

3.2.2 Patch based models

Such models (Hou et al., 2016; Liu et al., 2017; Nazeri et al., 2018) divide the high resolution

image into patches and process them separately. Due to the lack of per patch annotations, the

above models need to introduce a separate method to provide labels for training the patch

level network. Instead attention sampling does not require any patch annotations and through

the attention mechanism learns to identify regions of interest in arbitrarily large images.

3.2.3 Attention models

Xu et al. (2015) were the first to use soft attention methods to generate image captions. More

related to our work is the model of Ilse et al. (2018), where they use the attention distribution

to aggregate a bag of features. To apply their method to images, they extract patches, compute

features and aggregate them with an attention distribution that is computed from these

features. This allows them to infer regions of interest without having access to per-patch

labels. However, their model wastes computational resources by handling all patches, both

informative and non-informative. Our method, instead, learns to focus only on informative

regions of the image, thus resulting in orders of magnitude faster computation while retaining

equally good performance.

21

Chapter 3. Processing Megapixel Images with Deep Attention Sampling

3.2.4 Other methods

Jaderberg et al. (2015) propose Spatial Transformer Networks (STN) that learn to predict affine

transformations of a feature map than includes cropping and rescaling. STNs employ several

localization networks, that operate on the full image, to generate these transformations. As

a result, they do not scale easily to megapixel images or larger. Recasens et al. (2018) use a

low resolution view of the image to predict a saliency map that is used in conjunction with

the differentiable STN sampler to focus on useful regions of the high resolution image by

making them larger. In comparison, attention sampling focuses on regions by weighing the

corresponding features with the attention weights.

3.3 Methodology

In this section, we formalize our proposed attention-sampling method. Initially, we introduce

a generic formulation for attention and we show that sampling from the attention distribu-

tion generates an optimal approximation in terms of variance that significantly reduces the

required computation. In § 3.3.2, we derive the gradient with respect to the parameters of the

attention and the feature network through the sampling procedure. In § 3.3.3 and § 3.3.4, we

provide the methodology that allows us to speed up the processing of high resolution images

using attention sampling and is used throughout our experiments.

3.3.1 Attention in neural networks

Let x, y denote an input-target pair from our dataset. We considerΨ(x;Θ) = g (f (x;Θ);Θ) to be

a neural network parameterized byΘ. f (x;Θ) ∈RK×D is an intermediate representation of the

neural network that can be thought of as K features of dimension D , e.g. the last convolutional

layer of a ResNet architecture or the previous hidden states and outputs of a recurrent neural

network.

Employing an attention mechanism in the neural networkΨ(·) at the intermediate representa-

tion f (·) is equivalent to defining a function a(x;Θ) ∈RK+ s.t.
∑K

i=1 a(x;Θ)i = 1 and changing

the definition of the network to

Ψ(x;Θ) = g

(
K∑

i=1
a(x;Θ)i f (x;Θ)i

)
, (3.1)

given that the subscript i extracts the i -th row from a matrix or the i -th element from a vector.

3.3.2 Attention sampling

By definition, a(·) is a multinomial distribution over K discrete elements (e.g. locations in

the images). Let I be a random variable sampled from a(x;Θ). We can rewrite the attention

in the neural networkΨ(·) as the expectation of the intermediate features over the attention

22

3.3. Methodology

distribution a(·)

Ψ(x;Θ) = g

(
K∑

i=1
a(x;Θ)i f (x;Θ)i

)
(3.2)

= g
(
EI∼a(x;Θ)

[
f (x;Θ)I

])
. (3.3)

Consequently, we can avoid computing all K features by approximating the expectation with a

Monte Carlo estimate. We sample a set Q of N i.i.d. indices from the attention distribution,

Q = {qi ∼ a(x;Θ) | i ∈ {1,2, . . . , N }} and approximate the neural network with

Ψ(x;Θ) ≈ g

(
1

N

∑
q∈Q

f (x;Θ)q

)
. (3.4)

Relation with importance-sampling

We are interested in deriving an approximation with minimum variance so that the output of

the network does not change because of the sampling. In the following paragraphs, we show

that sampling from a(x;Θ) is optimal in that respect.

Let P denote a discrete probability distribution on the K features with probabilities pi . We

want to sample from P such that the variance is minimized. Concretely, we seek P∗ such that

P∗ = argmin
P

VI∼P

[
a(x;Θ)I f (x;Θ)I

p I

]
. (3.5)

We divide by p I to ensure that the expectation remains the same regardless of P . One can easily

verify that EI∼P

[
a(x;Θ)I f (x;Θ)I

p I

]
= EI∼a(x;Θ)

[
f (x;Θ)I

]
. We continue our derivation as follows:

argmin
P

VI∼P

[
a(x;Θ)I f (x;Θ)I

p I

]
(3.6)

= argmin
P

EI∼P

[(
a(x;Θ)I

p I

)2 ∥∥ f (x;Θ)I
∥∥2

2

]
(3.7)

= argmin
P

K∑
i=1

a(x;Θ)2
i

pi

∥∥ f (x;Θ)i
∥∥2

2 . (3.8)

The minimum of equation 3.8 is

p∗
i ∝ a(x;Θ)i

∥∥ f (x;Θ)i
∥∥

2 , (3.9)

which means that sampling according to the attention distribution is optimal when we do not

have information about the norm of the features. This can be easily enforced by constraining

the features to have the same L2 norm.

23

Chapter 3. Processing Megapixel Images with Deep Attention Sampling

Gradient derivation

In order to use a neural network as our attention distribution we need to derive the gradient of

the loss with respect to the parameters of the attention function a(·;Θ) through the sampling

of the set of indices Q. Namely, we need to compute

∂ 1
N

∑
q∈Q f (x;Θ)q

∂θ
(3.10)

for all θ ∈Θ including the ones that affect a(·).

By exploiting the Monte Carlo approximation and the multiply by one trick, we show that

∂

∂θ

1

N

∑
q∈Q

f (x;Θ)q ≈ EI∼a(x;Θ)

[
∂
∂θ

[
a(x;Θ)I f (x;Θ)I

]
a(x;Θ)I

]
. (3.11)

In equation 3.11, the gradient of each feature is weighed inversely proportionally to the

probability of sampling that feature. This result is expected, because the “effect” of rare

samples should be increased to account for the low observation frequency (Kahn and Harris,

1951). This allows us to derive the gradients of our attention sampling method as follows:

∂

∂θ

1

N

∑
q∈Q

f (x;Θ)q = 1

N

∑
q∈Q

∂
∂θ

[
a(x;Θ)q f (x;Θ)q

]
a(x;Θ)q

, (3.12)

which requires computing only the rows of f (·) for the sampled indices in Q. A detailed

derivation of equation 3.11, can be found in appendix B.2.

Sampling without replacement

In our initial analysis, we assume that Q is sampled i.i.d. from a(x;Θ). However, this means

that it is probable to sample the same element multiple times, especially as the entropy of

the distribution decreases during the training of the attention network. To avoid computing

a feature multiple times and to make the best use of the available computational budget we

propose sampling without replacement.

We model sampling without replacement as follows: Initially, we sample a position i1 with

probability p1(i) ∝ a(x;Θ)i ∀i . Subsequently, we sample the second position i2, given the first,

with probability p2(i | i1) ∝ a(x;Θ)i ∀i 6= i1. Following this reasoning, we can define sampling

the n-th position with probability

∀i ∉ {i1, i2, . . . , in−1}, pn(i | i1, i2, . . . , in−1) ∝ a(x;Θ)i (3.13)

Simply averaging the features, as in equation 3.4, would result in a biased estimator. Instead,

24

3.3. Methodology

we use

EI1,I2,...,In

[
n−1∑
k=1

a(x;Θ)Ik f (x;Θ)Ik+ (3.14)

f (x;Θ)In

∑
t∉{I1,I2,...,In−1}

a(x;Θ)t

]
= (3.15)

EI1,I2,...,In

[
K∑

i=1
a(x;Θ)i f (x;Θ)i

]
= (3.16)

EI∼a(x;Θ)
[

f (x;Θ)I
]
. (3.17)

We assume that I1 to In are sampled from p1(i) to pn(i) accordingly. Following the reasoning

of § 3.3.2, we compute the gradient through the sampling in an efficient and numerically

stable way. The complete analysis is provided in appendix B.3.

3.3.3 Multi-resolution data

For most implementations of attention in neural networks, a(·) is a function of the features f (·)
(Ilse et al., 2018). This means that in order to compute the attention distribution we need to

compute all the features. However, in order to take advantage of our Monte Carlo Estimation

of equation 3.4 and avoid computing all K features, we use a lower resolution view of the data.

This allows us to gain significant speedup from attention sampling.

Given an image x ∈ RH×W ×C where H , W , C denote the height, width and channels respec-

tively, and its corresponding view V (x, s) ∈Rh×w×C at scale s we compute the attention as

a(V (x, s);Θ) :Rh×w×C →Rhw , (3.18)

where h < H and w <W . We also define a function P (x, i) that extracts a patch from the full

resolution image x centered around the corresponding i -th pixel in V (x, s).

Based on the above, we derive a model capable of only considering few patches from the full

size image x, as follows:

Ψ(x) = g

(
hw∑
i=1

a(V (x, s))i f (P (x, i))

)
(3.19)

≈ g

(
1

N

∑
q∈Q

f (P (x, q))

)
. (3.20)

Note that both the attention and feature functions have trainable parametersΘwhich we omit

for clarity. In the formulation of equation 3.20, we do not consider the location of the sampled

patches P (x, q). This is not an inherent limitation of the model since we can simply pass the

location as a parameter in our feature function f (·).

25

Chapter 3. Processing Megapixel Images with Deep Attention Sampling

3.3.4 Implementation details

In this section, we discuss the specifics of our proposed attention sampling. Equation f (·)
is implemented by a neural network which we refer to as feature network. Similarly a(·)
is another neural network, typically, significantly smaller, referred to as attention network.

Finally, function g (·) is a linear classification layer.

In order to control the exploration-exploitation dilemma we introduce an entropy regularizer

for the attention distribution. Namely given a loss function L (x, y ;Θ) we use

L ′(x, y ;Θ) =L (x, y ;Θ)−λH (a(x;Θ)), (3.21)

where H (x) denotes the entropy of the distribution x. This regularizer prevents the attention

network from quickly deciding which patches are informative. This results in an exploration

of the available patch space during the initial stage of training. The impact of this regularizaer

is quantitatively evaluated in section B.5 in the appendix.

As already mentioned in § 3.3.2, normalizing the features in terms of the L2 norm guarantees

that the attention distribution produces the minimum variance estimator of the “full model”;

thus in all the feature networks we add L2 normalization as the final layer.

3.4 Experimental evaluation

In this section, we analyse experimentally the performance of our attention sampling approach

on three classification tasks. We showcase the ability of our model to focus on informative

parts of the input image which results in significantly reduced computational requirements.

We refer to our approach as ATS or ATS-XX where XX denotes the number of sampled patches.

Note that we do not consider per-patch annotations for any of the used datasets. The code

used for the experiments can be found in https://github.com/idiap/attention-sampling.

3.4.1 Introduction

Baselines

Most related to our method is the patch based approach of Ilse et al. (2018) that implements

the attention as a function of the features of each patch. For the rest of the experiments, we

refer to this method as Deep MIL. For Deep MIL, we specify the patches to be extracted from

each high resolution image by a regular grid of varying size depending on the dimensions of

the input image and the patch size. Note that the architecture of the feature network and the

patch size used for Deep MIL is always the same as the ones used for our attention sampling

method.

To showcase that existing CNN architectures are unable to operate on megapixel images, we

26

https://github.com/idiap/attention-sampling

3.4. Experimental evaluation

also compare our method to traditional CNN models. Typically, the approach for handling

high resolution images with deep neural networks is to downsample the input images. Thus;

for a fair comparison, we train the CNN baselines using images at various scales. The specifics

of each network architecture are described in the corresponding experiment and in detail in

section B.8 in the appendix.

Finally, to show that the learned attention distribution is non-trivial, we replace the attention

network of our model with a fixed network that predicts the uniform distribution and compare

the results. We refer to this baseline as U-XX where XX denotes the number of sampled

patches.

Metrics

Our proposed model allows us to trade off computation with increased performance. There-

fore, besides reporting just the achieved test error, we also measure the computational and

memory requirements. To this end, we report the per sample wall-clock time for a for-

ward/backward pass and the peak GPU memory allocated for training with a batch size

of 1, as reported by the TensorFlow (Abadi et al., 2016) profiler. Note that for attention sam-

pling, extracting a patch, reading it from main memory and moving it to the GPU memory is

always included in the reported time. Regarding the memory requirements of our baselines,

it is important to mention that the maximum used memory depends on the size of the high

resolution image, whereas for attention sampling it only depends on the number sampled

patches and the patch size. For a fair comparison in terms of both memory and computational

requirements, with Deep MIL, we make sure that the patches are extracted from a grid with

a stride at least half the size of the patch. Finally, extensive qualitative results of the learned

attention distribution are provided in appendix B.7.

3.4.2 Megapixel MNIST

We evaluate attention sampling on an artificial dataset based on the MNIST digit classification

task (LeCun et al., 2010). We generate 6000 empty images of size 1500×1500 and we place

patches of random noise at 50 random locations. The size of each patch is equal to an MNIST

digit. In addition, we randomly position 5 digits sampled from the MNIST dataset, 3 belonging

to the same class and 2 to a random class. The task is to identify the digit with the most

occurrences. We use 5000 images for training and 1000 for testing.

For ATS, the attention network is a three layer convolutional network and the feature network

is inspired from LeNet-1 (LeCun et al., 1995). To compute the attention, we downsample the

image to 180×180 which results in 32,400 patches to sample from. The sampled patches

from the high resolution image have size 50×50 pixels. For the CNN baseline, we train it on

the full size images. Regarding uniform sampling, we note that it does not perform better

than random guessing, due to the very large sampling space (32,400 possible patches); thus

27

Chapter 3. Processing Megapixel Images with Deep Attention Sampling

(a) Performance on training set

101

Time to evaluate (s)

10−1

6× 10−2

2× 10−1

3× 10−1

4× 10−1

T
es

t
E

rr
o
r

CNN

ATS

Patches

100

50

25

10

5

(b) Performance on test set

Figure 3.2 – Comparison of attention sampling (ATS) with a CNN on Megapixel MNIST. We
observe that we can trade optimization accuracy for time by sampling fewer patches.

we omit it from this experiment. Furthermore, we also omit Deep MIL because the required

memory for a batch size of 1 exceeds the available GPU memory.

Performance

Initially, we examine the effect of the number of sampled patches on the performance of our

method. We sample {5,10,25,50,100} patches for each image which corresponds to 0.01% to

0.3% of the available sampling space. We train our models 5 independent runs for 500 epochs

and the averaged results are depicted in figures 3.2a and 3.2b. The figures show the training

loss and test error, respectively, with respect to wall clock time both for ATS and the CNN

baseline. Even though the CNN has comparably increased capacity, we observe that ATS is

order of magnitudes faster and performs better.

As expected, we observe that attention sampling directly trades performance for speed, namely

sampling fewer patches results in both higher training loss and test error. Although the CNN

baseline performs better than random guessing, achieving roughly 40% error, it is still more

than an order of magnitude higher than ATS.

Evolution of the attention distribution

The quantitative results of the previous section demonstrate that attention sampling processes

high resolution images both faster and more accurately than the CNN baseline. However,

another important benefit of using attention is the increased interpretability of the decisions

of the network. This can be noticed from Figure 3.3, where we visualize the evolution of

the attention distribution as the training progresses. In particular, we select a patch from a

random image from the dataset that contains 6 distinct items, 3 pieces of noise and 3 digits,

and draw the attention distribution for that patch. We observe that the attention distribution

starts as uniform. However, during training, we note that the attention network first learns to

distinguish empty space from noise and digits and subsequently even noise from digits. This

explains why by only sampling 5 patches we achieve approximately 20% error, even though it

28

3.4. Experimental evaluation

Epoch 0 Epoch 5 Epoch 10 Epoch 15 Epoch 20

Epoch 25 Epoch 30 Epoch 35 Epoch 40 Epoch 45

Figure 3.3 – The evolution of the attention distribution on Megapixel MNIST. Yellow means
higher attention. At the first image (epoch 0) we mark the position of the digits with the red
dots. The attention finds the three digits and focuses on them instead of the noise which can
be clearly seen in epochs 10 and 15.

is the minimum required to be able to confidently classify an image.

3.4.3 Histopathology images

Method Scale Train Loss Test Error Time/sample Memory/sample

U-10 0.2/1 0.210 ± 0.031 0.156 ± 0.006 1.8 ms 19 MB
U-50 0.2/1 0.075 ± 0.000 0.124 ± 0.010 4.6 ms 24 MB
CNN 0.5 0.002 ± 0.000 0.104 ± 0.009 4.8 ms 65 MB
CNN 1 0.002 ± 0.000 0.092 ± 0.012 18.7 ms 250 MB
Deep MIL (Ilse et al., 2018) 1 0.007 ± 0.000 0.093 ± 0.004 48.5 ms 644 MB

ATS-10 0.2/1 0.083 ± 0.019 0.093 ± 0.014 1.8 ms 21 MB
ATS-50 0.2/1 0.028 ± 0.002 0.093 ± 0.019 4.5 ms 26 MB

Table 3.1 – Performance comparison of attention sampling (ATS) with a CNN and Deep MIL
on the colon cancer dataset comprised of H&E stained images. The experiments were run 5
times and the average (± a standard error of the mean) is reported. ATS performs equally well
to Deep MIL and CNN in terms of test error, while being at least 10x faster.

In this experiment, we evaluate attention sampling on the colon cancer dataset introduced

by Sirinukunwattana et al. (2016) to detect whether epithelial cells exist in a hematoxylin and

eosin (H&E) stained image.

This dataset contains 100 images of dimensions 500×500. The images originate both from

malignant and normal tissue and contain approximately 22,000 annotated cells. Following the

experimental setup of Ilse et al. (2018), we treat the problem as binary classification where

the positive images are the ones that contain at least one cell belonging in the epithelial class.

While the size of the images in this dataset is less than one megapixel, our method can easily

29

Chapter 3. Processing Megapixel Images with Deep Attention Sampling

(a) (b) (c) (d)

Figure 3.4 – Visualization of the learned attention distributions for Deep MIL (c) and our
attention sampling (d) on an H&E stained image from the colon cancer dataset. (a) depicts the
raw image and (b) depicts the cells that belong to the epithelial class. Images (c) and (d) are
created by multiplying every patch in (a) by the corresponding normalized attention weight.
Both methods localize the attention distribution effectively on the informative parts of the
image.

scale to datasets with much larger images, as the computational and memory requirements

depend only on the size and the number of the patches. However, this does not apply to our

baselines, where both the memory and the computational requirements scale linearly with the

size of the input image. As a result, this experiment is a best case scenario for our baselines.

For our model, we downsample the images by a factor of 5 and we use the attention network

described in § 3.4.2. The feature network of our model is the same as the one proposed by Ilse

et al. (2018) with input patches of size 27×27. For Deep MIL, we extract 2,500 patches per image

at a regular grid. Regarding the CNN baseline, we use a ResNet (He et al., 2016) architecture.

Furthermore, we perform data augmentation by small random adjustments to the brightness

and contrast of each image. Following Ilse et al. (2018), we perform 5 independent runs and

report the mean and the standard error of the mean.

Performance

The results of this experiment are summarized in Table 3.1. We observe that sampling from the

uniform distribution 10 and 50 patches is clearly better than random guessing by achieving

15.6% and 12.4% error respectively. This stems from the fact that each positive sample contains

hundreds of regions of interest, namely epithelial cells, and we only need one to classify the

image. As expected, attention sampling learns to focus only on informative parts of the

image thus resulting in approximately 35% lower test error and 3 times lower training loss.

Furthermore, compared to Deep MIL and CNN, ATS-10 performs equally well while being 25x

and 10x faster respectively. Moreover, the most memory efficient baseline (CNN) needs at

least 3x more memory compared to attention sampling, while Deep MIL needs 30x more.

30

3.4. Experimental evaluation

Attention Distribution

To show that our proposed model indeed learns to focus on informative parts of the image,

we visualize the learned attention distribution at the end of training. In particular, we select

an image from the test set and we compute the attention distribution both for Deep MIL and

attention sampling. Subsequently, we weigh each corresponding patch with a normalized

attention value that is computed as wi = ai−min(a)
max(a)−min(a) . For reference, in Figure 3.4, apart

from the two attention distributions, we also visualize the patches that contain an epithelial

cell. Both models identify epithelial cells without having access to per-patch annotations. In

order to properly classify an image as positive or not, we just need to find a single patch that

contains an epithelial cell. Therefore, despite the fact that the learned attention using attention

sampling matches less well the distribution of the epithelial cells (Figure 3.4b), compared

to Deep MIL, it is not necessarily worse for the classification task that we are interested in.

However, it is less helpful for detecting regions of interest. In addition, we also observe that

both attentions have significant overlap even on mistakenly selected patches such as the

bottom center of the images.

3.4.4 Speed limit sign detection

Method Scale Train Loss Test Error Time/sample Memory/sample

U-5 0.3/1 1.468 ± 0.317 0.531 ± 0.004 7.8 ms 39 MB
U-10 0.3/1 0.851 ± 0.408 0.472 ± 0.008 10.8 ms 78 MB
CNN 0.3 0.003 ± 0.001 0.311 ± 0.049 6.6 ms 86 MB
CNN 0.5 0.002 ± 0.001 0.295 ± 0.039 15.6 ms 239 MB
CNN 1 0.002 ± 0.000 0.247 ± 0.001 64.2 ms 958 MB
Deep MIL (Ilse et al., 2018) 1 0.077 ± 0.089 0.083 ± 0.006 97.2 ms 1,497 MB

ATS-5 0.3/1 0.162 ± 0.124 0.089 ± 0.002 8.5 ms 86 MB
ATS-10 0.3/1 0.082 ± 0.032 0.095 ± 0.008 10.3 ms 118 MB

Table 3.2 – Performance comparison of attention sampling (ATS) with a CNN and Deep MIL on
the speed limits dataset. The experiments were run 3 times and the average (± a standard error
of the mean) is reported. ATS performs equally well as Deep MIL while being at least 10x faster.
Regarding CNN, we note that both Deep MIL and attention sampling perform significantly
better.

In this experiment, we seek to classify images based on whether they contain no speed limit

or a limit sign of 50, 70 or 80 kilometers per hour. We use a subset of the Swedish traffic

signs dataset (Larsson and Felsberg, 2011), for which we do not use explicit annotations of

the signs, just one label for each image. The dataset contains 3,777 images annotated with

20 different traffic sign classes. Each image is 1.3 megapixels, namely 960×1280 pixels. As

some classes contain less than 20 samples, we limit the classification task to the one described

above. The resulting dataset consists of 747 training images and 684 test images, distributed

approximately as 100 images for each speed limit sign and 400 for the background class,

namely no limit sign.

31

Chapter 3. Processing Megapixel Images with Deep Attention Sampling

(a) (b) (c)

(d)

(e)

Figure 3.5 – Visualization of the learned attention distributions for Deep MIL (b) and our
attention sampling (c) on an image from the speed limits dataset (a). (d) and (e) depict the
marked regions from (a) which are also selected by attention sampling. We observe that both
of them contain speed limit signs unrecognizable in the low resolution image.

An interesting fact about this dataset is that in order to properly classify all images it is manda-

tory to process them in high resolution. This is illustrated in Figure 3.1, where from the

downsampled image one can deduce the existence of a speed limit sign, without being able

to identify the number of kilometers written on it. Objects that are physically far from the

moving camera become unrecognizable when downsampling the input image. This property

might be critical, for early detection of pedestrians or collision avoidance in a self-driving car

scenario.

For attention sampling, we downsample the original image by approximately a factor of 3 to

288×384. The attention network is a four layer convolutional network and the feature network

of both our model and Deep MIL is a simple ResNet. For Deep MIL, we extract 192 patches

on a grid 12×16 of patch size 100×100. For a fair comparison, we evaluate the CNN baseline

using images at various resolutions, namely scales 0.3, 0.5 and 1.0.

Again also for this dataset, we perform data augmentation, namely random translations

and contrast brightness adjustments. In addition, due to class imbalance, for all evaluated

methods, we use a crossentropy loss weighted with the inverse of the prior of each class. We

perform 3 independent runs and report the mean and the standard error of the mean.

Performance

Table 3.2 compares the proposed model to our baselines on the speed limits dataset. We

observe that although the CNN learns the training set perfectly, it fails to generalise. For the

downsampled images, this is expected as the limits on the traffic signs are indistinguishable.

Similarly, due to the small number of informative patches, uniform sampling fails to correctly

classify both the training set and the test set. We observe that attention sampling achieves

comparable test error to Deep MIL by using just 5 patches, instead of 192. This results in

significant speedups of more than an order of magnitude. Regarding the required memory,

32

3.5. Chapter Conclusions

attention sampling needs 17x less memory compared to Deep MIL.

Attention Distribution

In this section, we compare qualitatively the learned attention distribution of Deep MIL and

attention sampling on an image from the test set of the speed limits dataset. In Figure 3.5a,

we mark the positions of speed limit signs with red circles and visualize the corresponding

patches in figures 3.5d and 3.5e. We observe that the attention distribution from our proposed

model has high probability for both patches whereas Deep MIL locates both but selects only

one. Also in this dataset, both models identify regions of interest in the images without being

given any explicit per-patch label.

3.5 Chapter Conclusions

We have presented a novel algorithm to efficiently process megapixel images in a single CPU

or GPU. Our algorithm only processes fractions of the input image, relying on an attention

distribution to discover informative regions of the input. We show that we can derive the

gradients through the sampling and train our model end-to-end with SGD. Furthermore, we

show that sampling with the attention distribution is the optimal approximation, in terms of

variance, of the model that processes the whole image.

Our experiments show that our algorithm effectively identifies the important regions in two

real world tasks and an artificial dataset without any patch specific annotation. In addition,

our model executes an order of magnitude faster and requires an order of magnitude less

memory than state of the art patch based methods and traditional CNNs.

The presented line of research opens several directions for future work. We believe that a

nested model of attention sampling can be used to efficiently learn to discover informative

regions and classify up to gigapixel images using a single GPU. In addition, attention sampling

can be used in resource constrained scenarios to finely control the trade-off between accuracy

and spent computation.

In the following chapter, we study the most commonly used attention mechanism in neural

networks, the scaled dot product attention used in the transformer architecture (Vaswani et al.,

2017).

33

4 Fast Autoregressive Transformers with
Linear Attention

4.1 Chapter Introduction

Transformer models were originally introduced by Vaswani et al. (2017) in the context of neural

machine translation (Sutskever et al., 2014; Bahdanau et al., 2015) and have demonstrated

impressive results on a variety of tasks dealing with natural language (Devlin et al., 2019),

audio (Sperber et al., 2018), and images (Parmar et al., 2019). Apart from tasks with ample

supervision, transformers are also effective in transferring knowledge to tasks with limited or

no supervision when they are pretrained with autoregressive (Radford et al., 2018, 2019) or

masked language modeling objectives (Devlin et al., 2019; Yang et al., 2019b; Song et al., 2019;

Liu et al., 2020b).

However, these benefits often come with a very high computational and memory cost. The

bottleneck is mainly caused by the global receptive field of self-attention, which processes

contexts of N inputs with a quadratic memory and time complexity O
(
N 2

)
. As a result, in

practice transformers are slow to train and their context is limited. This disrupts temporal co-

herence and hinders the capturing of long-term dependencies. Dai et al. (2019a) addressed the

latter by attending to memories from previous contexts albeit at the expense of computational

efficiency.

Lately, researchers shifted their attention to approaches that increase the context length with-

out sacrificing efficiency. Towards this end, Child et al. (2019) introduced sparse factorizations

of the attention matrix to reduce the self-attention complexity to O
(
N
p

N
)
. Kitaev et al. (2020)

further reduced the complexity to O
(
N log N

)
using locality-sensitive hashing. This made

scaling to long sequences possible. Even though the aforementioned models can be efficiently

trained on large sequences, they do not speed-up autoregressive inference.

In this chapter, we introduce the linear transformer model that significantly reduces the

memory footprint and scales linearly with respect to the context length. We achieve this

by using a kernel-based formulation of self-attention and the associative property of matrix

products to calculate the self-attention weights (§ 4.3.2). Using our linear formulation, we also

35

Chapter 4. Fast Autoregressive Transformers with Linear Attention

express causal masking with linear complexity and constant memory (§ 4.3.3). This reveals

the relation between transformers and RNNs, which enables us to perform autoregressive

inference orders of magnitude faster (§ 4.3.4).

Our evaluation on image generation and automatic speech recognition demonstrates that

linear transformer can reach the performance levels of transformer, while being up to three

orders of magnitude faster during inference.

4.2 Related Work

In this section, we provide an overview of the most relevant works that seek to address the

large memory and computational requirements of transformers. Furthermore, we discuss

methods that theoretically analyze the core component of the transformer model, namely

self-attention. Finally, we present another line of work that seeks to alleviate the softmax

bottleneck in the attention computation.

4.2.1 Efficient Transformers

Existing works seek to improve memory efficiency in transformers through weight pruning

(Michel et al., 2019), weight factorization (Lan et al., 2020), weight quantization (Zafrir et al.,

2019) or knowledge distillation. Clark et al. (2020) proposed a new pretraining objective called

replaced token detection that is more sample efficient and reduces the overall computation.

Lample et al. (2019) used product-key attention to increase the capacity of any layer with

negligible computational overhead.

Reducing the memory or computational requirements with these methods leads to training

or inference time speedups, but, fundamentally, the time complexity is still quadratic with

respect to the sequence length which hinders scaling to long sequences. In contrast, we show

that our method reduces both memory and time complexity of transformers both theoretically

(§ 4.3.2) and empirically (§ 4.4.1).

Another line of research aims at increasing the “context” of self-attention in transformers.

Context refers to the maximum part of the sequence that is used for computing self-attention.

Dai et al. (2019a) introduced Transformer-XL which achieves state-of-the-art in language mod-

eling by learning dependencies beyond a fixed length context without disrupting the temporal

coherence. However, maintaining previous contexts in memory introduces significant addi-

tional computational cost. In contrast, Sukhbaatar et al. (2019a) extended the context length

significantly by learning the optimal attention span per attention head, while maintaining

control over the memory footprint and computation time. Note that both approaches have

the same asymptotic complexity as the vanilla model. In contrast, we improve the asymptotic

complexity of the self-attention, which allows us to use significantly larger context.

More related to our model are the works of Child et al. (2019) and Kitaev et al. (2020). The

36

4.2. Related Work

former (Child et al., 2019) introduced sparse factorizations of the attention matrix reducing

the overall complexity from quadratic to O
(
N
p

N
)

for generative modeling of long sequences.

More recently, Kitaev et al. (2020) proposed Reformer. This method further reduces complexity

to O
(
N log N

)
by using locality-sensitive hashing (LSH) to perform fewer dot products. Note

that in order to be able to use LSH, Reformer constrains the keys, for the attention, to be

identical to the queries. As a result this method cannot be used for decoding tasks where the

keys need to be different from the queries. In comparison, linear transformers impose no

constraints on the queries and keys and scale linearly with respect to the sequence length.

Furthermore, they can be used to perform inference in autoregressive tasks three orders of

magnitude faster, achieving comparable performance in terms of validation perplexity.

4.2.2 Understanding Self-Attention

There have been few efforts to better understand self-attention from a theoretical perspective.

Tsai et al. (2019) proposed a kernel-based formulation of attention in transformers which

considers attention as applying a kernel smoother over the inputs with the kernel scores being

the similarity between inputs. This formulation provides a better way to understand attention

components and integrate the positional embedding. In contrast, we use the kernel formula-

tion to speed up the calculation of self-attention and lower its computational complexity. Also,

we observe that if a kernel with positive similarity scores is applied on the queries and keys,

linear attention converges normally.

More recently, Cordonnier et al. (2020) provided theoretical proofs and empirical evidence that

a multi-head self-attention with sufficient number of heads can express any convolutional

layer. Here, we instead show that a self-attention layer trained with an autoregressive objective

can be seen as a recurrent neural network and this observation can be used to significantly

speed up inference time of autoregressive transformer models.

4.2.3 Linearized softmax

For many years, softmax has been the bottleneck for training classification models with a

large number of categories (Goodman, 2001; Morin and Bengio, 2005; Mnih and Hinton, 2009).

Recent works (Blanc and Rendle, 2017; Rawat et al., 2019), have approximated softmax with a

linear dot product of feature maps to speed up the training through sampling. Inspired from

these works, we linearize the softmax attention in transformers. Concurrently with this work,

Shen et al. (2020) explored the use of linearized attention for the task of object detection in

images. In comparison, we do not only linearize the attention computation, but also develop

an autoregressive transformer model with linear complexity and constant memory for both

inference and training. Moreover, we show that through the lens of kernels, every transformer

can be seen as a recurrent neural network.

37

Chapter 4. Fast Autoregressive Transformers with Linear Attention

4.3 Linear Transformers

In this section, we formalize our proposed linear transformer. We present that changing the

attention from the traditional softmax attention to a feature map based dot product attention

results in better time and memory complexity as well as a causal model that can perform

sequence generation in linear time, similar to a recurrent neural network.

Initially, in § 4.3.1, we introduce a formulation for the transformer architecture introduced

in (Vaswani et al., 2017). Subsequently, in § 4.3.2 and § 4.3.3 we present our proposed linear

transformer and finally, in § 4.3.4 we rewrite the transformer as a recurrent neural network.

4.3.1 Transformers

Let x ∈ RN×F denote a sequence of N feature vectors of dimensions F . A transformer is a

function T :RN×F →RN×F defined by the composition of L transformer layers T1(·), . . . ,TL(·)
as follows,

Tl (x) = fl (Al (x)+x). (4.1)

The function fl (·) transforms each feature independently of the others and is usually imple-

mented with a small two-layer feedforward network. Al (·) is the self attention function and is

the only part of the transformer that acts across sequences.

The self attention function Al (·) computes, for every position, a weighted average of the feature

representations of all other positions with a weight proportional to a similarity score between

the representations. Formally, the input sequence x is projected by three matrices WQ ∈RF×D ,

WK ∈RF×D and WV ∈RF×M to corresponding representations Q, K and V . The output for all

positions, Al (x) =V ′, is computed as follows,

Q = xWQ ,

K = xWK ,

V = xWV ,

Al (x) =V ′ = softmax

(
QK T

p
D

)
V.

(4.2)

Note that in the previous equation, the softmax function is applied rowwise to QK T . Following

common terminology, the Q, K and V are referred to as the “queries”, “keys” and “values”

respectively.

Equation 4.2 implements a specific form of self-attention called softmax attention where

the similarity score is the exponential of the dot product between a query and a key. Given

that subscripting a matrix with i returns the i -th row as a vector, we can write a generalized

38

4.3. Linear Transformers

attention equation for any similarity function as follows,

V ′
i =

∑N
j=1 sim

(
Qi ,K j

)
V j∑N

j=1 sim
(
Qi ,K j

) . (4.3)

Equation 4.3 is equivalent to equation 4.2 if we substitute the similarity function with sim
(
q,k

)=
exp

(
qT kp

D

)
.

4.3.2 Linearized Attention

The definition of attention in equation 4.2 is generic and can be used to define several other

attention implementations such as polynomial attention or RBF kernel attention (Tsai et al.,

2019). Note that the only constraint we need to impose to sim(·), in order for equation 4.3 to

define an attention function, is to be non-negative. This includes all kernels k(x, y) :R2×F →
R+.

Given such a kernel with a feature representation φ (x) we can rewrite equation 4.2 as follows,

V ′
i =

∑N
j=1φ (Qi)T φ

(
K j

)
V j∑N

j=1φ (Qi)T φ
(
K j

) , (4.4)

and then further simplify it by making use of the associative property of matrix multiplication

to

V ′
i =

φ (Qi)T ∑N
j=1φ

(
K j

)
V T

j

φ (Qi)T ∑N
j=1φ

(
K j

) . (4.5)

The above equation is simpler to follow when the numerator is written in vectorized form as

follows, (
φ (Q)φ (K)T)

V =φ (Q)
(
φ (K)T V

)
. (4.6)

Note that the feature map φ (·) is applied rowwise to the matrices Q and K .

From equation 4.2, it is evident that the computational cost of softmax attention scales

with O
(
N 2

)
, where N represents the sequence length. The same is true for the memory

requirements because the full attention matrix must be stored to compute the gradients with

respect to the queries, keys and values. In contrast, our proposed linear transformer from

equation 4.5 has time and memory complexity O (N) because we can compute
∑N

j=1φ
(
K j

)
V T

j

and
∑N

j=1φ
(
K j

)
once and reuse them for every query.

39

Chapter 4. Fast Autoregressive Transformers with Linear Attention

Feature Maps and Computational Cost

For softmax attention, the total cost in terms of multiplications and additions scales as

O
(
N 2 max(D, M)

)
, where D is the dimensionality of the queries and keys and M is the di-

mensionality of the values. On the contrary, for linear attention, we first compute the feature

maps of dimensionality C . Subsequently, computing the new values requires O (NC M) addi-

tions and multiplications.

The previous analysis does not take into account the choice of kernel and feature function.

Note that the feature function that corresponds to the exponential kernel is infinite dimen-

sional, which makes the linearization of exact softmax attention infeasible. On the other hand,

the polynomial kernel, for example, has an exact finite dimensional feature map and has

been shown to work equally well with the exponential or RBF kernel (Tsai et al., 2019). The

computational cost for a linearized polynomial transformer of degree 2 is O
(
N D2M

)
. This

makes the computational complexity favorable when N > D2. Note that this is true in practice

since we want to be able to process sequences with tens of thousands of elements.

For our experiments, that deal with smaller sequences, we employ a feature map that results

in a positive similarity function as defined below,

φ (x) = elu(x)+1, (4.7)

where elu(·) denotes the exponential linear unit (Clevert et al., 2015) activation function. We

prefer elu(·) over relu(·) to avoid setting the gradients to 0 when x is negative. This feature map

results in an attention function that requires O (N DM) multiplications and additions. In our

experimental section, we show that the feature map of equation 4.7 performs on par to the full

transformer, while significantly reducing the computational and memory requirements.

4.3.3 Causal Masking

The transformer architecture can be used to efficiently train autoregressive models by masking

the attention computation such that the i -th position can only be influenced by a position

j if and only if j ≤ i , namely a position cannot be influenced by the subsequent positions.

Formally, this causal masking changes equation 4.3 as follows,

V ′
i =

∑i
j=1 sim

(
Qi ,K j

)
V j∑i

j=1 sim
(
Qi ,K j

) . (4.8)

Following the reasoning of § 4.3.2, we linearize the masked attention as described below,

V ′
i =

φ (Qi)T ∑i
j=1φ

(
K j

)
V T

j

φ (Qi)T ∑i
j=1φ

(
K j

) . (4.9)

40

4.3. Linear Transformers

By introducing Si and Zi as follows,

Si =
i∑

j=1
φ

(
K j

)
V T

j , (4.10)

Zi =
i∑

j=1
φ

(
K j

)
, (4.11)

we can simplify equation 4.9 to

V ′
i =

φ (Qi)T Si

φ (Qi)T Zi
. (4.12)

Note that, Si and Zi can be computed from Si−1 and Zi−1 in constant time hence making the

computational complexity of linear transformers with causal masking linear with respect to

the sequence length.

Gradient Computation

A naive implementation of equation 4.12, in any deep learning framework, requires storing

all intermediate values Si in order to compute the gradients. This increases the memory

consumption by max(D, M) times; thus hindering the applicability of causal linear attention to

longer sequences or deeper models. To address this, we derive the gradients of the numerator

in equation 4.9 as cumulative sums. This allows us to compute both the forward and backward

pass of causal linear attention in linear time and constant memory. A detailed derivation is

provided in the supplementary material.

Given the numerator V̄i and the gradient of a scalar loss function with respect to the numerator

∇V̄i
L , we derive ∇φ(Qi)L , ∇φ(Ki)L and ∇Vi L as follows,

∇φ(Qi)L =∇V̄i
L

(
i∑

j=1
φ

(
K j

)
V T

j

)T

, (4.13)

∇φ(Ki)L =
(

N∑
j=i

φ
(
Q j

)(∇V̄ j
L

)T
)

Vi , (4.14)

∇Vi L =
(

N∑
j=i

φ
(
Q j

)(∇V̄ j
L

)T
)T

φ (Ki) . (4.15)

The cumulative sum terms in equations 4.9, 4.13-4.15 are computed in linear time and require

constant memory with respect to the sequence length. This results in an algorithm with

computational complexity O (NC M) and memory O (N max(C , M)) for a given feature map

of C dimensions. A pseudocode implementation of the forward and backward pass of the

numerator is given in algorithms 2 and 3 respectively.

41

Chapter 4. Fast Autoregressive Transformers with Linear Attention

Algorithm 2 Forward pass for linear transformers with causal masking

1: Inputs φ (Q) ,φ (K) ,V
2: V̄ ← 0
3: S ← 0
4: for i = 1, . . . , N do
5: S ← S +φ (Ki)V T

i equation 4.10
6: V̄ ←φ (Qi)S
7: end for
8: Return V̄

Algorithm 3 Backward pass for linear transformers with causal masking

1: Inputs φ (Q) ,φ (K) ,V and G
2: G is the gradient of the loss with respect to the output of algorithm 2
3: S ← 0
4: ∇φ(Q)L ← 0
5: for i = 1, . . . , N do
6: S ← S +φ (Ki)V T

i
7: ∇φ(Qi)L ←Gi ST equation 4.13
8: end for
9: S ← 0

10: ∇φ(K)L ← 0
11: ∇V L ← 0
12: for i = N , . . . ,1 do
13: S ← S +φ (Qi)GT

i
14: ∇Vi L ← STφ (Ki) equation 4.15
15: ∇φ(Ki)L ← SVi equation 4.14
16: end for
17: Return ∇φ(Q)L , ∇φ(K)L , ∇V L

42

4.3. Linear Transformers

Training and Inference

When training an autoregressive transformer model the full ground truth sequence is available.

This makes layerwise parallelism possible both for fl (·) of equation 4.1 and the attention

computation. As a result, transformers are more efficient to train than recurrent neural

networks. On the other hand, during inference the output for timestep i is the input for

timestep i +1. This makes autoregressive models impossible to parallelize. Moreover, the cost

per timestep for transformers is not constant; instead, it scales with the square of the current

sequence length because attention must be computed for all previous timesteps.

Our proposed linear transformer model combines the best of both worlds. When it comes

to training, the computations can be parallelized and take full advantage of GPUs or other

accelerators. When it comes to inference, the cost per time and memory for one prediction is

constant for our model. This means we can simply store the φ
(
K j

)
V T

j matrix as an internal

state and update it at every time step like a recurrent neural network. This results in inference

thousands of times faster than other transformer models.

4.3.4 Transformers are RNNs

In literature, transformer models are considered to be a fundamentally different approach

to recurrent neural networks. However, from the causal masking formulation in § 4.3.3 and

the discussion in the previous section, it becomes evident that any transformer layer with

causal masking can be written as a model that, given an input, modifies an internal state and

then predicts an output, namely a Recurrent Neural Network (RNN). Note that, in contrast to

Universal Transformers (Dehghani et al., 2018), we consider the recurrence with respect to

time and not depth.

In the following equations, we formalize the transformer layer of equation 4.1 as a recurrent

neural network. The resulting RNN has two hidden states, namely the attention memory s

and the normalizer memory z. We use subscripts to denote the timestep in the recurrence.

s0 = 0, (4.16)

z0 = 0, (4.17)

si = si−1 +φ (xi WK) (xi WV)T , (4.18)

zi = zi−1 +φ (xi WK) , (4.19)

yi = fl

(
φ

(
xi WQ

)T si

φ
(
xi WQ

)T zi

+xi

)
. (4.20)

In the above equations, xi denotes the i -th input and yi the i -th output for a specific trans-

former layer. Note that our formulation does not impose any constraint on the feature function

and it can be used for representing any transformer model, in theory even the ones using soft-

max attention. This formulation is a first step towards better understanding the relationship

43

Chapter 4. Fast Autoregressive Transformers with Linear Attention

29 210 211 212 213 214 215 216

Sequence Length

100

101

102

T
im

e
(m

il
li

se
co

n
d

s)

29 210 211 212 213 214 215 216

Sequence Length

101

102

103

G
P

U
M

em
o
ry

(M
B

)

linear(ours)

softmax

lsh-1

lsh-4

lsh-8

Figure 4.1 – Comparison of the computational requirements for a forward/backward pass for
Reformer (lsh-X), softmax attention and linear attention. Linear and Reformer models scale
linearly with the sequence length unlike softmax which scales with the square of the sequence
length both in memory and time. Full details of the experiment can be found in § 4.4.1.

between transformers and popular recurrent networks (Hochreiter and Schmidhuber, 1997)

and the processes used for storing and retrieving information.

4.4 Experiments

In this section, we analyze experimentally the performance of the proposed linear transformer.

Initially, in § 4.4.1, we evaluate the linearized attention in terms of computational cost, memory

consumption and convergence on synthetic data. To further showcase the effectiveness of

linear transformers, we evaluate our model on two real-world applications, image generation

in § 4.4.2 and automatic speech recognition in § 4.4.3. We show that our model achieves

competitive performance with respect to the state-of-the-art transformer architectures, while

requiring significantly less GPU memory and computation.

Throughout our experiments, we compare our model with two baselines, the full transformer

with softmax attention and the Reformer (Kitaev et al., 2020), the latter being a state-of-the-art

accelerated transformer architecture. For the Reformer, we use a PyTorch reimplementation

of the published code and for the full transformer we use the default PyTorch implementation.

Note that for Reformer, we do not use the reversible layers, however, this does not affect the

results as we only measure the memory consumption with respect to the self attention layer.

In all experiments, we use softmax (Vaswani et al., 2017) to refer to the standard transformer

architecture, linear for our proposed linear transformers and lsh-X for Reformer (Kitaev et al.,

2020), where X denotes the hashing rounds.

For training the linear transformers, we use the feature map of equation 4.7. Our PyTorch

(Paszke et al., 2019) code with documentation and examples can be found at https://linear-transformers.

com/. The constant memory gradient computation of equations 4.13-4.15 is implemented in

approximately 200 lines of CUDA code.

44

https://linear-transformers.com/
https://linear-transformers.com/

4.4. Experiments

0 2000 4000 6000 8000 10000

Gradient steps

10−4

10−3

10−2

10−1

100

C
ro

ss
E

n
tr

o
p
y

L
o
ss

linear (ours)

softmax

lsh-4

Figure 4.2 – Convergence comparison of softmax, linear and reformer attention on a sequence
duplication task. linear converges stably and reaches the same final performance as softmax.
The details of the experiment are in § 4.4.1.

4.4.1 Synthetic Tasks

Convergence Analysis

To examine the convergence properties of linear transformers we train on an artifical copy task

with causal masking. Namely, the transformers have to copy a series of symbols similar to the

sequence duplication task of Kitaev et al. (2020). We use a sequence of maximum length 128

with 10 different symbols separated by a dedicated separator symbol. For all three methods,

we train a 4 layer transformer with 8 attention heads using a batch size of 64 and the RAdam

optimizer (Liu et al., 2019a) with a learning rate of 10−3 which is reduced to 10−4 after 3000

updates. Figure 4.2 depicts the loss with respect to the number of gradient steps. We observe

that linear converges smoothly and reaches a lower loss than lsh due to the lack of noise

introduced by hashing. In particular, it reaches the same loss as softmax.

Memory and Computational Requirements

In this subsection, we compare transformers with respect to their computational and memory

requirements. We compute the attention and the gradients for a synthetic input with varying

sequence lengths N ∈ {29,210, . . . ,216} and measure the peak allocated GPU memory and

required time for each variation of transformer. We scale the batch size inversely with the

sequence length and report the time and memory per sample in the batch.

Every method is evaluated up to the maximum sequence length that fits the GPU memory.

For this benchmark we use an NVidia GTX 1080 Ti with 11GB of memory. This results in a

maximum sequence length of 4,096 elements for softmax and 16,384 for lsh-4 and lsh-8. As

45

Chapter 4. Fast Autoregressive Transformers with Linear Attention

Method Bits/dim Images/sec

Softmax 0.621 0.45 (1×)

LSH-1 0.745 0.68 (1.5×)

LSH-4 0.676 0.27 (0.6×)

Linear (ours) 0.644 142.8 (317×)

Table 4.1 – Comparison of autoregressive image generation of MNIST images. Our linear
transformers achieve almost the same bits/dim as the full softmax attention but more than
300 times higher throughput in image generation. The full details of the experiment are in
§ 4.4.2.

expected, softmax scales quadratically with respect to the sequence length. Our method is

faster and requires less memory than the baselines for every configuration, as seen in figure

4.1. We observe that both Reformer and linear attention scale linearly with the sequence

length. Note that although the asymptotic complexity for Reformer is O
(
N log N

)
, log N is

small enough and does not affect the computation time.

4.4.2 Image Generation

Transformers have shown great results on the task of conditional or unconditional autoregres-

sive generation (Radford et al., 2019; Child et al., 2019), however, sampling from transformers

is slow due to the task being inherently sequential and the memory scaling with the square

of the sequence length. In this section, we train causally masked transformers to predict

images pixel by pixel. Our achieved performance in terms of bits per dimension is on par with

softmax attention while being able to generate images more than 1,000 times faster and with

constant memory per image from the first to the last pixel. We refer the reader to our supple-

mentary for comparisons in terms of training evolution, quality of generated images and time

to generate a single image. In addition, we also compare with a faster softmax transformer

that caches the keys and values during inference, in contrast to the PyTorch implementation.

MNIST

First, we evaluate our model on image generation with autoregressive transformers on the

widely used MNIST dataset (LeCun et al., 2010). The architecture for this experiment comprises

8 attention layers with 8 attention heads each. We set the embedding size to 256 which is 32

dimensions per head. Our feed forward dimensions are 4 times larger than our embedding

size. We model the output with a mixture of 10 logistics as introduced by Salimans et al. (2017).

We use the RAdam optimizer with a learning rate of 10−4 and train all models for 250 epochs.

For the reformer baseline, we use 1 and 4 hashing rounds. Furthermore, as suggested in Kitaev

et al. (2020), we use 64 buckets and chunks with approximately 32 elements. In particular,

we divide the 783 long input sequence to 27 chunks of 29 elements each. Since the sequence

46

4.4. Experiments

Method Bits/dim Images/sec

Softmax 3.47 0.004 (1×)

LSH-1 3.39 0.015 (3.75×)

LSH-4 3.51 0.005 (1.25×)

Linear (ours) 3.40 17.85 (4,462×)

Table 4.2 – We train autoregressive transformers for 1 week on a single GPU to generate CIFAR-
10 images. Our linear transformer completes 3 times more epochs than softmax, which results
in better perplexity. Our model generates images 4,000× faster than the baselines. The full
details of the experiment are in § 4.4.2.

length is realtively small, namely only 784 pixels, to remove differences due to different batch

sizes we use a batch size of 10 for all methods.

Table 4.1 summarizes the results. We observe that linear transformers achieve almost the same

performance, in terms of final perplexity, as softmax transformers while being able to generate

images more than 300 times faster. This is achieved due to the low memory requirements of

our model, which is able to simultaneously generate 10,000 MNIST images with a single GPU.

In particular, the memory is constant with respect to the sequence length because the only

thing that needs to be stored between pixels are the si and zi values as described in equations

4.18 and 4.19. On the other hand, both softmax and Reformer require memory that increases

with the length of the sequence.

Image completions and unconditional samples from our MNIST model can be seen in figure

4.3. We observe that our linear transformer generates very convincing samples with sharp

boundaries and no noise. In the case of image completion, we also observe that the trans-

former learns to use the same stroke style and width as the original image effectively attending

over long temporal distances. Note that as the achieved perplexity is more or less the same for

all models, we do not observe qualitative differences between the generated samples from

different models.

CIFAR-10

The benefits of our linear formulation increase as the sequence length increases. To showcase

that, we train 16 layer transformers to generate CIFAR-10 images (Krizhevsky, 2009). For each

layer we use the same configuration as in the previous experiment. For Reformer, we use again

64 buckets and 83 chunks of 37 elements, which is approximately 32, as suggested in the paper.

Since the sequence length is almost 4 times larger than for the previous experiment, the full

transformer can only be used with a batch size of 1 in the largest GPU that is available to us,

namely an NVidia P40 with 24GB of memory. For both the linear transformer and reformer,

we use a batch size of 4. All models are trained for 7 days. We report results in terms of bits per

dimension and image generation throughput in table 4.2. Note that although the main point

47

Chapter 4. Fast Autoregressive Transformers with Linear Attention

of this experiment is not the final perplexity, it is evident that as the sequence length grows, the

fast transformer models become increasingly more efficient per GPU hour, achieving better

scores than their slower counterparts.

As the memory and time to generate a single pixel scales quadratically with the number

of pixels for both Reformer and softmax attention, the increase in throughput for our linear

transformer is even more pronounced. In particular, for every image generated by the softmax

transformer, our method can generate 4,460 images. Image completions and unconditional

samples from our model can be seen in figure 4.4. We observe that our model generates

images with spatial consistency and can complete images convincigly without significantly

hindering the recognition of the image category. For instance, in figure 4.4b, all images have

successfully completed the dog’s nose (first row) or the windshield of the truck (last row).

Unconditional samples

Image completion

(a) (b) (c)

Figure 4.3 – Unconditional samples and image completions generated by our method for
MNIST. (a) depicts the occluded orignal images, (b) the completions and (c) the original. Our
model achieves comparable bits/dimension to softmax, while having more than 300 times
higher throughput, generating 142 images/second. For details see § 4.4.2.

4.4.3 Automatic Speech Recognition

To show that our method can also be used for non-autoregressive tasks, we evaluate the

performance of linear transformers in end-to-end automatic speech recognition using Con-

48

4.4. Experiments

Unconditional samples

Image completion

(a) (b) (c)

Figure 4.4 – Unconditional samples and image completions generated by our method for
CIFAR-10. (a) depicts the occluded orignal images, (b) the completions and (c) the original. As
the sequence length grows linear transformers become more efficient compared to softmax
attention. Our model achieves more than 4,000 times higher throughput and generates 17.85
images/second. For details see § 4.4.2.

nectionist Temporal Classification (CTC) loss (Graves et al., 2006a). In this setup, we predict

a distribution over phonemes for each input frame in a non autoregressive fashion. We use

the 80 hour WSJ dataset (Paul and Baker, 1992a) with 40-dimensional mel-scale filterbanks

without temporal differences as features. The dataset contains sequences with 800 frames on

average and a maximum sequence length of 2,400 frames. For this task, we also compare with

a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) with 3 layers of hidden size 320. We

use the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 10−3 which is reduced

when the validation error stops decreasing. For the transformer models, we use 9 layers with 6

heads with the same embedding dimensions as for the image experiments. As an optimizer,

we use RAdam with an initial learning rate of 10−4 that is divided by 2 when the validation

error stops decreasing.

All models are evaluated in terms of phoneme error rate (PER) and training time per epoch.

We observe that linear outperforms the recurrent network baseline and Reformer both in

terms of performance and speed by a large margin, as seen in table 4.3. Note that the softmax

49

Chapter 4. Fast Autoregressive Transformers with Linear Attention

Method Validation PER Time/epoch (s)

Bi-LSTM 10.94 1047

Softmax 5.12 2711

LSH-4 9.33 2250

Linear (ours) 8.08 824

Table 4.3 – Performance comparison in automatic speech recognition on the WSJ dataset. The
results are given in the form of phoneme error rate (PER) and training time per epoch. Our
model outperforms the LSTM and Reformer while being faster to train and evaluate. Details of
the experiment can be found in § 4.4.3.

transformer, achieves lower phone error rate in comparison to all baselines, but is significantly

slower. In particular, linear transformer is more than 3× faster per epoch. We provide training

evolution plots in the supplementary.

4.5 Chapter Conclusions

In this work, we presented linear transformer, a model that significantly reduces the memory

and computational cost of the original transformers. In particular, by exploiting the associativ-

ity property of matrix products we are able to compute the self-attention in time and memory

that scales linearly with respect to the sequence length. We show that our model can be used

with causal masking and still retain its linear asymptotic complexities. Finally, we express the

transformer model as a recurrent neural network, which allows us to perform inference on

autoregressive tasks thousands of time faster.

This property opens a multitude of directions for future research regarding the storage and

retrieval of information in both RNNs and transformers. Another line of research to be explored

is related to the choice of feature map for linear attention. For instance, approximating the

RBF kernel with random Fourier features could allow us to use models pretrained with softmax

attention.

In the next chapter we present a different approach for accelerating the attention computation

but also more importantly for approximating pretrained transformer models without the need

for additional finetuning.

50

5 Fast Transformers with Clustered
Attention

5.1 Chapter Introduction

Sequence modelling is a fundamental task of machine learning, integral in a variety of ap-

plications such as neural machine translation (Bahdanau et al., 2014), image captioning (Xu

et al., 2015), summarization (Maybury, 1999), automatic speech recognition (Dong et al.,

2018) and synthesis (Oord et al., 2016) etc. Transformers (Vaswani et al., 2017) have been

proven a powerful tool significantly advancing the state-of-the-art for the majority of the

aforementioned tasks. In particular, transformers employ self-attention that allows them to

handle long sequences without the vanishing-gradient problem inherent in RNNs (Hochreiter

et al., 2001; Arjovsky et al., 2016).

Nonetheless, despite their impressive performance, the use of self-attention comes with

computational and memory requirements that scale quadratic to the sequence length, limiting

their applicability to long sequences. The quadratic complexity becomes apparent if we

consider the core mechanism of self-attention, namely splitting the input sequence into

queries and keys and then each query attending to all keys. To this end, recently, there has

been an increasing interest for developing methods that address this limitation (Dai et al.,

2019b; Sukhbaatar et al., 2019b; Child et al., 2019; Kitaev et al., 2020).

These methods can be broadly categorized into two distinct lines of work, those that focus on

improving the asymptotic complexity of the self-attention computation (Child et al., 2019; Lee

et al., 2019; Kitaev et al., 2020; Roy et al., 2020) and those that aim at developing techniques

that make transformers applicable to longer sequences without addressing the quadratic

complexity of self-attention (Dai et al., 2019b; Sukhbaatar et al., 2019b). The former limits

the amount of keys that each query attends to, thus reducing the asymptotic complexity. The

latter increases the length of the sequence that a transformer can attend to without altering

the underlying complexity of the self-attention mechanism.

In this work, we propose clustered attention which is a fast approximation of self-attention.

Clustered attention makes use of similarities between queries and groups them in order to

51

Chapter 5. Fast Transformers with Clustered Attention

reduce the computational cost. In particular, we perform fast clustering using locality-sensitive

hashing and K-Means and only compute the attention once per cluster. This results in linear

complexity for a fixed number of clusters (§ 5.3.2). In addition, we showcase that we can further

improve the quality of our approximation by separately considering the keys with the highest

attention per cluster (§ 5.3.3). Finally, we provide theoretical bounds of our approximation

quality with respect to the full attention (§ 5.3.2, § 5.3.3) and show that our model can be

applied for inference of pre-trained transformers with minimal loss in performance.

We evaluate our model on two automatic speech recognition datasets and showcase that

clustered attention consistently achieves better performance than vanilla attention when the

computational budget is equalized. Moreover, we demonstrate that our proposed attention

can approximate a pretrained BERT model on the popular GLUE and SQuAD benchmarks

with only 25 clusters and without loss in performance.

5.2 Related Work

In this section, we discuss the most relevant works on scaling transformers to larger sequences.

We start by presenting approaches that aim to speed up the attention computation in general.

Subsequently, we discuss approaches that speed up transformers without changing the com-

plexity of the attention layer and finally, we summarize the most related works on improving

the asymptotic complexity of the attention layer in transformer models.

5.2.1 Attention Improvements Before Transformers

Attention has been an integral component of neural networks for sequence modelling for

several years (Bahdanau et al., 2014; Xu et al., 2015; Chan et al., 2016). However, its quadratic

complexity with respect to the sequence length hinders its applicability on large sequences.

Among the first attempts to address this was the work of Britz et al. (2017) that propose to

aggregate the information of the input sequence into fewer vectors and perform attention

with these fewer vectors, thus speeding up the attention computation and reducing the

memory requirements. However, the input aggregation is performed using a learned but fixed

matrix that remains constant for all sequences, hence significantly limiting the expressivity

of the model. Similarly, Chiu and Raffel (2017) limit the amount of accessible elements to

the attention, by attending monotonically from the past to the future. Namely, if timestep i

attends to position j then timestep i +1 cannot attend to any of the earlier positions. Note that

in order to speed up the attention computation, the above methods are limiting the number

of elements that each layer attends to. Recently, some of these approaches have also been

applied in the context of transformers (Ma et al., 2020).

52

5.2. Related Work

5.2.2 Non-asymptotic Improvements

In this section, we summarize techniques that seek to apply transformers to long sequences

without focusing on improving the quadratic complexity of self-attention. The most important

are Adaptive Attention Span Transformers (Sukhbaatar et al., 2019b) and Transformer-XL (Dai

et al., 2019b).

Sukhbaatar et al. (2019b) propose to limit the self-attention context to the closest samples

(attention span), in terms of relative distance with respect to the time step, thus reducing both

the time and memory requirements of self-attention computation. This is achieved using a

masking function with learnable parameters that allows the network to increase the attention

span if necessary. Transformer-XL (Dai et al., 2019b), on the other hand, seeks to increase the

effective sequence length by introducing segment-level recurrent training, namely splitting

the input into segments and attending jointly to the previous and the current segment. The

above, combined with a new relative positional encoding results in models that attend to more

distant positions than the length of the segment used during training.

Although both approaches have been proven effective, the underlying limitations of self-

attention still remains. Attending to an element that is N timesteps away requires O
(
N 2

)
memory and computation. In contrast, our model trades-off a small error in the computation

of the full attention for an improved linear asymptotic complexity. This makes processing

long sequences possible.

5.2.3 Improvements in Asymptotic Complexity

Child et al. (2019) factorize the self-attention mechanism in local and strided attention. The

local attention is computed between the C nearest positions and the strided attention is

computed between positions that are C steps away from each other. When C is set to
p

N the

total asymptotic complexity becomes O
(
N
p

N
)

both in terms of memory and computation

time. With the aforementioned factorization, two self-attention layers are required in order

for any position to attend to any other position. In addition, the factorization is fixed and data

independent. This makes it intuitive for certain signals (e.g. images), however in most cases it

is arbitrary. In contrast, our method automatically groups the input queries that are similar

without the need for a manually designed factorization. Moreover, in our model, information

flows always from every position to every other position.

Set Transformers (Lee et al., 2019) compute attention between the input sequence X , of length

N and a set of trainable parameters, I , called inducing points to get a new sequence H , of

length M << N . The new sequence H is then used to compute the attention with X to get the

output representation. For a fixed M , the asympotic complexity becomes linear with respect

to the sequence length. Inducing points are expected to encode some global structure that

is task specific. However, this introduces additional model parameters for each attention

layer. In contrast to this, we use clustering to project the input to a fixed sequence of smaller

53

Chapter 5. Fast Transformers with Clustered Attention

length without any increase in the number of parameters. Moreover, we show that not only

our method has the same asymptotic complexity, it can also be used to speed up inference of

pretrained models without additional training.

Recently, Kitaev et al. (2020) introduced Reformer. A method that groups positions based on

their similarity using locality-sensitive hashing (LSH) and only computes the attention within

groups. For groups of fixed size, the asymptotic complexity of Reformer becomes linear with

respect to the sequence length. Note that Reformer constrains the queries and keys of self-

attention to be equal. As a result, it cannot be applied to neural machine translation, image

captioning or memory networks, or generally any application with heterogenous queries

and keys. In addition, as it uses hash collisions to form groups it can only handle a small

number of bits, thus significantly reducing the quality of the grouping. Instead, our method

uses clustering to group the queries, resulting in significantly better groups compared to hash

collisions.

5.3 Scaling Attention with Fast Clustering

In this section, we formalize the proposed method for approximate softmax attention. In

§ 5.3.1, we first discuss the attention mechanism in vanilla transformers and present its

computational complexity. We then introduce clustered attention in § 5.3.2 and show that for

queries close in the Euclidean space, the attention difference can be bounded by the distance

between the queries. This property allows us to reduce the computational complexity by

clustering the queries. Subsequently, in § 5.3.3 we show that we can further improve the

approximation by first extracting the top-k keys with the highest attention per cluster and

then computing the attention on these keys separately for each query that belongs to the

cluster. A graphical illustration of our method is provided in appendix D.1.

5.3.1 Vanilla Attention

For any sequnce of length N , the standard attention mechanism that is used in transformers

is the dot product attention introduced by Vaswani et al. (2017). Following standard notation,

we define the attention matrix A ∈RN×N as,

A = softmax

(
QK T√

Dk

)
, (5.1)

where Q ∈RN×Dk denotes the queries and K ∈RN×Dk denotes the keys. Note that softmax(·) is

applied row-wise. Using the attention weights A and the values V ∈RN×Dv , we compute the

new values V̂ as follows,

V̂ = AV. (5.2)

An intuitive understanding of the attention, as described above, is that given Q,K ,V we

create new values V̂ as the weighted average of the old ones, where the weights are defined

54

5.3. Scaling Attention with Fast Clustering

by the attention matrix A. Computing equation 5.1 requires O
(
N 2Dk

)
operations and the

weighted average of equation 5.2 requires O
(
N 2Dv

)
. This results in an asymptotic complexity

of O
(
N 2Dk +N 2Dv

)
.

5.3.2 Clustered Attention

Instead of computing the attention matrix for all queries, we group them into C clusters and

compute the attention only for these clusters. Then, we use the same attention weights for

queries that belong to the same cluster. As a result, the attention computation now becomes

O (NC Dk), where C ¿ N .

More formally, let us define S ∈ {0,1}N×C , a partitioning of the queries Q into C non-overlapping

clusters, such that, Si j = 1, if the i -th query Qi belongs to the j -th cluster and 0 otherwise.

Using this partitioning, we can now compute the clustered attention. First, we compute the

cluster centroids as follows,

Qc
j =

∑N
i=1 Si j Qi∑N

i=1 Si j
, (5.3)

where Qc
j is the centroid of the j -th cluster. Let us denote Qc ∈RC×Dk as the centroid matrix.

Now, we can compute the clustered attention as if Qc were the queries. Namely, we compute

the clustered attention matrix Ac ∈RC×N

Ac = softmax

(
Qc K T√

Dk

)
(5.4)

and the new values V̂ c ∈RC×Dv

V̂ c = AcV. (5.5)

Finally, the value of the i -th query becomes the value of its closest centroid, namely,

V̂i =
C∑

j=1
Si j V̂ c

j . (5.6)

From the above analysis, it is evident that we only need to compute the attention weights and

the weighted average of the values once per cluster. Then, we can broadcast the same value to

all queries belonging to the same cluster. This allows us to reduce the number of dot products

from N for each query to C for each cluster, which results in an asymptotic complexity of

O (NC Dk)+O (C N Dv).

Note that in practice, we use multi-head attention, this means that two queries belonging to

the same cluster can be clustered differently in another attention head. Moreover, the output

of the attention layer involves residual connections. This can cause two queries belonging to

the same cluster to have different output representations. The combined effect of residual

55

Chapter 5. Fast Transformers with Clustered Attention

connections and multi-head attention allows new clustering patterns to emerge in subsequent

layers.

Quality of the approximation

From the above, we show that grouping queries into clusters can speed-up the self-attention

computation. However, in the previous analysis, we do not consider the effects of clustering

on the attention weights A. To address this, we derive a bound for the approximation error.

In particular, we show that the difference in attention can be bounded as a function of the

Euclidean distance between the queries.

Proposition 1. Given two queries Qi and Q j such that
∥∥Qi −Q j

∥∥
2 ≤ ε,∥∥softmax

(
Qi K T)− softmax

(
Q j K T)∥∥

2 ≤ ε‖K ‖2 , (5.7)

where ‖K ‖2 denotes the spectral norm of K .

Proof. Given that softmax(·) has Lipschitz constant less than 1 (Gao and Pavel, 2017),∥∥softmax
(
Qi K T)− softmax

(
Q j K T)∥∥

2

≤ ∥∥Qi K T −Q j K T
∥∥

2

≤ ε‖K ‖2

(5.8)

Proposition 1 shows that queries that are close in Euclidean space have similar attention

distributions. As a result, the error in the attention approximation for the i -th query assigned

to the j -th cluster can be bounded by its distance from the cluster centroid Qc
j .

Grouping the Queries

From the discussion, we have shown that given a representative set of queries, we can approxi-

mate the attention with fewer computations. Thus, now the problem becomes finding this

representative set of queries. K-Means clustering minimizes the sum of squared distances be-

tween the cluster members, which would be optimal given our analysis from § 5.3.2. However,

for a sequence of length N one iteration of Lloyd’s algorithm for the K-Means optimization

problem has an asymptotic complexity O (NC Dk). To speed up the distance computations,

we propose to use Locality-Sensitive Hashing (LSH) on the queries and then K-Means in Ham-

ming space. In particular, we use the sign of random projections (Shrivastava and Li, 2014)

to hash the queries followed by K-Means clustering with hamming distance as the metric.

This results in an asymptotic complexity of O (NC L+C BL+N Dk B), where L is the number of

Lloyd iterations and B is the number of bits used for hashing.

56

5.3. Scaling Attention with Fast Clustering

5.3.3 Improving clustered attention

In the previous section, we show that clustered attention provides a fast approximation for

softmax attention. In this section, we discuss how this approximation can be further improved

by considering separately the keys with the highest attention. To intuitively understand the

importance of the above, it suffices to consider a scenario where a key with low attention for

some query gets a high attention as approximated with the cluster centroid. This can happen

when the number of clusters are too low or due to the convergence failure of K-Means. For

the clustered attention, described in § 5.3.2, this introduces significant error in the computed

value. The variation discussed below addresses such limitations.

After having computed the clustered attention Ac from equation 5.4, we find the k keys

with the highest attention for each cluster. The main idea then is to improve the attention

approximation on these top-k keys for each query that belongs to the cluster. To do so, we

first compute the dot product attention as defined in equation 5.1 on these top-k keys for

all queries belonging to this cluster. For any query, the computed attention on these top-k

keys will sum up to one. This means that it cannot be directly used to substitute the clustered-

attention on these keys. To address this, before substition, we scale the computed attention by

the total probability mass assigned by the clustered attention to these top-k keys.

More formally, we start by introducing T ∈ {0,1}C×N , where T j i = 1 if the i -th key is among the

top-k keys for the j -th cluster and 0 otherwise. We can then compute the probability mass, let

it be m̂ j , of the top-k keys for the j -th cluster, as follows

m̂ j =
N∑

i=1
T j i Ac

j i . (5.9)

Now we formulate an improved attention matrix approximation At ∈RN×N as follows

At
i l =


m̂ j exp

(
Qi K T

l

)∑N
r=1 T j r exp(Qi K T

r)
if T j l = 1

Ac
j l otherwise

. (5.10)

Note that in the above, i denotes the i -th query belonging to the j -th cluster and
√

Dk is

ommited for clarity. In particular, equation 5.10 selects the clustered attention of equation

5.4 for keys that are not among the top-k keys for a given cluster. For the rest, it redistributes

the mass m̂ j according to the dot product attention of the queries with the top-k keys. The

corresponding new values, V̂ ∈RN×Dv , are a simple matrix product of At with the values,

V̂ = At V. (5.11)

Equation 5.11 can be decomposed into clustered attention computation and two sparse dot

products, one for every query with the top-k keys and one for the top-k attention weights with

the corresponding values. This adds O (N k max(Dk ,Dv)) to the asymptotic complexity of the

attention approximation of equation 5.4.

57

Chapter 5. Fast Transformers with Clustered Attention

Quality of the approximation

In the following, we provide proof that improved clustered attention (eq. 5.10) is a direct

improvement over the clustered attention (eq. 5.4), in terms of the L1 distance from the

attention matrix A.

Proposition 2. For the i -th query belonging to the j -th cluster, the improved clustered attention

At
i and clustered attention Ac

j relate to the full attention Ai as follows,

∥∥At
i − Ai

∥∥
1 ≤

∥∥∥Ac
j − Ai

∥∥∥
1

(5.12)

The proof of the above proposition is presented in section D.2 in the appendix. From equation

5.12 it becomes evident that improved clustered attention will always approximate the full

attention better compared to clustered attention.

5.4 Experiments

In this section, we analyze experimentally the performance of our proposed method. Initially,

we show that our model outperforms our baselines for a given computational budget on a

real-world sequence to sequence task, namely automatic speech recognition on two datasets,

the Wall Street Journal dataset (§ 5.4.1) and the Switchboard dataset (§ 5.4.2). Subsequently, in

§ 5.4.3, we demonstrate that our model can approximate a pretrained BERT model (Liu et al.,

2019b) on the GLUE (Wang et al., 2019) and SQuAD (Rajpurkar et al., 2018) benchmarks with

minimal loss in performance even when the number of clusters is less than one tenth of the

sequence length. We also provide, in appendix D.3.1, a thorough benchmark that showcases

the linear complexity of clustered attention and an ablation study regarding how the number

of clusters scale with respect to the sequence length.

We compare our model with the vanilla transformers (Vaswani et al., 2017), which we refer

to as full and the Reformer (Kitaev et al., 2020), which we refer to as lsh-X, where X denotes

the rounds of hashing. We refer to clustered attention, introduced in § 5.3.2, as clustered-X

and to improved clustered attention, introduced in § 5.3.3, as i-clustered-X, where X denotes

the number of clusters. Unless mentioned otherwise we use k = 32 for the top-k keys with

improved clustered.

All experiments are conducted using NVidia GTX 1080 Ti with 11GB of memory and all models

are implemented in PyTorch (Paszke et al., 2019). For Reformer we use a PyTorch port of the

published code. Note that we do not use reversible layers since it is a technique that could

be applied to all methods. Our PyTorch code can be found at https://clustered-transformers.

github.io.

58

https://clustered-transformers.github.io
https://clustered-transformers.github.io

5.4. Experiments

full lsh clustered (ours) i-clustered (ours)

10 15 20 25 30 35 40

Forward Pass Time (s)

4

6

8

10

P
E

R
(%

)

9

6

49-100

9-200
9-300

6-100

6-200

9-100
9-200

9-1

9-4

(a) Wall Street Journal

30 40 50 60 70 80 90 100

Forward Pass Time (s)

14

16

18

W
E

R
(%

)

12

8

6

12-100

12-200

12-300

8-100 8-200

12-100
12-200

(b) Switchboard

Figure 5.1 – We compare the achieved performance of various transformer models under an
equalized computational budget. The numbers near the datapoints denote the number of
layers and number of clusters or hashing rounds where applicable. i-clustered is consistently
better than all baselines for a given computational budget both in WSJ and Switchboard
datasets. The details can be found in § 5.4.1 and § 5.4.2 respectively.

5.4.1 Evaluation on Wall Street Journal (WSJ)

In our first experiment, we employ the Wall-Street Journal dataset (Paul and Baker, 1992b).

The input to all transformers is 40-dimensional filter-bank features with fixed positional

embeddings. We train using Connectionist Temporal Classification (CTC) (Graves et al., 2006b)

loss with phonemes as ground-truth labels. The approximate average and maximum sequence

lengths for the training inputs are 780 and 2500 respectively.

Speed Accuracy Trade-off: We start by comparing the performance of our proposed model

with various transformer variants under an equalized computational budget. To this end, we

train full with 4, 6 and 9 layers to get a range of the required computation time and achieved

phone error rate (PER). Similarly, we train i-clustered with 6 and 9 layers. Both models are

trained with 100 and 200 clusters. We also train clustered with 9 layers, and 100, 200 and

300 clusters. Finally, we train Reformer with 9 layers, and 1 and 4 hashing rounds. We refer

the reader to appendix D.3.3 for the specifics of all transformer architectures as well as their

training details. In figure 5.1a, we plot the achieved PER on the validation set with respect to

the required time to perform a full forward pass. Our i-clustered achieves lower PER than all

other baselines for a given computational budget.

Approximation Quality: To assess the approximation capabilities of our method, we train

different transformer variants on the aforementioned task and evaluate them using other

self-attention implementations during inference. As the Reformer requires the queries to

be identical to the keys to evaluate its approximation ability we also train a full attention

model with shared queries and keys, which we refer to as shared-full. Note that both clus-

tered attention and improved clustered attention can be used for approximating shared-full,

59

Chapter 5. Fast Transformers with Clustered Attention

simply by setting keys to be equal to queries. Table 5.1 summarizes the results. We observe

that improved clustered attention (7-8 rows) achieves the lowest phone error rate in every

comparison. This implies that it is the best choice for approximating pre-trained models. In

addition, we also note that as the number of clusters increases, the approximation improves

as well. Furthermore, to show that the top keys alone are not sufficient for approximating

Train with

full shared-full lsh-1 lsh-4 clustered-100 i-clustered-100

E
va

lu
at

e
w

it
h

full 5.14 - - - 7.10 5.56

shared-full - 6.57 25.16 41.61 - -

lsh-1 - 71.40 10.43 13.76 - -

lsh-4 - 64.29 9.35 9.33 - -

clustered-100 44.88 40.86 68.06 66.43 7.06 18.83

clustered-200 21.76 25.86 57.75 57.24 6.34 8.95

i-clustered-100 9.29 13.22 41.65 48.20 8.80 5.95

i-clustered-200 6.38 8.43 30.09 42.43 7.71 5.60

oracle-top 17.16 77.18 43.35 59.38 24.32 6.96

Table 5.1 – We report validation phone error rate (PER) on the WSJ dataset (§ 5.4.1). We train
with one model and evaluate with another to assess the approximation abilities of different
models. Underline denotes training and testing with the same model. Improved cluster
(rows 7-8) approximates the full and the shared-full significantly better than all the other fast
attention methods.

full, we also compare with an attention variant, that for each query only keeps the 32 keys

with the highest attention. We refer to the latter as oracle-top. We observe that oracle-top

achieves significantly larger phone error rate than improved clustered in all cases. This im-

plies that improved clustered attention also captures the significant long tail of the attention

distribution.

Convergence Behaviour: In Table 5.2, we report the required time per epoch as well as the

total training time for all transformer variants with 9 layers. For completeness, we also provide

the corresponding phone error rates on the test set. We observe that clustered attention is

more than two times faster than full (per epoch) and achieves significantly lower PER than

both Reformer variants (lsh-1 and lsh-4). Improved clustered is the only method that is not

only faster per epoch but also in total wall-clock time required to converge.

5.4.2 Evaluation on Switchboard

We also evaluate our model on the Switchboard dataset (Godfrey et al., 1992), which is a

collection of 2,400 telephone conversations on common topics among 543 strangers. All

transformers are trained with lattice-free MMI loss (Povey et al., 2016) and as inputs we use

80-dimensional filter-bank features with fixed positional embeddings. The average input

60

5.4. Experiments

full lsh-1 lsh-4 clustered-100 i-clustered-100

PER (%) 5.03 9.43 8.59 7.50 5.61
Time/Epoch (s) 2514 1004 2320 803 1325

Convergence Time (h) 87.99 189.64 210.09 102.15 72.14

Table 5.2 – We report the test PER, the time per training epoch (in seconds) and the wall-clock
time required for the convergence of each model (in hours).

sequence length is roughly 534 and the maximum sequence length is approximately 3850.

Details regarding the transformer architectures as well as their training details are provided in

appendix D.3.3.

Speed Accuracy Trade-off: Similar to § 5.4.1, we compare the performance of various trans-

former models given a specific computational budget. To this end, we train full with 6,8 and

12 layers. Similarly, we train i-clustered with 8 and 12 layers; both with 100 and 200 clusters.

Finally, we also train clustered with 12 layers, and 100,200 and 300 clusters. In figure 5.1b, we

plot the achieved word error rate (WER) in the validation set of Switchboard with respect to

the required time to perform a full forward pass. Our i-clustered is consistently better than

full for a given computational budget. In particular, for a budget of approximately 50 seconds,

improved clustered achieves more than 2 percentage points lower WER. Furthermore, we note

that it is consistently better than clustered attention for all computational budgets.

Convergence Behaviour: Table 5.3 summarizes the computational cost of training the trans-

former models with 12 layers in the Switchboard dataset as well as the WER in the test set.

We observe that due to the larger sequences in this dataset both clustered and i-clustered are

faster to train per epoch and with respect to total required wall-clock time.

full clustered-100 i-clustered-100

WER (%) 15.0 18.5 15.5
Time/Epoch (h) 3.84 1.91 2.57

Convergence Time (h) 228.05 132.13 127.44

Table 5.3 – We report the test set WER, the time per training epoch (in hours) and the wall-clock
time required for the convergence of each model (in hours).

5.4.3 RoBERTa Approximation

To highlight the ability of our model to approximate arbitrarily complicated attention distri-

butions, we evaluate our proposed method on the approximation of a fine-tuned RoBERTa

model (Liu et al., 2019b) on the GLUE (Wang et al., 2019) and SQuAD (Rajpurkar et al., 2018)

benchmarks. In particular, we evaluate on 10 different tasks, among which there are tasks

61

Chapter 5. Fast Transformers with Clustered Attention

such as question answering (SQuAD) and textual entailment (RTE), which exhibit arbitrary

and sparse attention patterns. We refer the reader to Wang et al. (2019); Rajpurkar et al. (2018)

for a detailed analysis of all tasks.

For the GLUE tasks, the maximum sequence length is 128 while for SQuAD, it is 384. For

each task, we use 25 clusters for approximation which is less than 20% and 10% of the input

sequence length for GLUE and SQuAD tasks respectively. In Table 5.4, we summarize the per-

formance per task. We observe that improved clustered performs as well as the full transformer

in all tasks but SQuAD, in which it is only marginally worse. Moreover, we note that clustered

performs significantly worse in tasks that require more complicated attention patterns such

as SQuAD and RTE. For inference time, full was faster than the clustered attention variants

due to short sequence lengths.

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI SQuAD

full 0.601 0.880 0.868 0.929 0.915 0.682 0.947 0.900 0.437 0.904
clustered-25 0.598 0.794 0.436 0.746 0.894 0.498 0.944 0.789 0.437 0.006

i-clustered-25 0.601 0.880 0.873 0.930 0.915 0.704 0.947 0.900 0.437 0.876

Table 5.4 – We report the performance on GLUE and SQuAD benchmarks. Following common
practice, we report accuracy for all tasks except STS-B and SQuAD, where we report Pearson
correlation and F1-score respectively. For all metrics higher is better.

5.5 Conclusions

We have presented clustered attention a method that approximates vanilla transformers with

significantly lower computational requirements. In particular, we have shown that our model

can be up to 2× faster during training and inference with minimal loss in performance. In

contrast to recent fast variations of transformers, we have also shown that our method can

efficiently approximate pre-trained models with full attention while retaining the linear asymp-

totic complexity.

The proposed method opens several research directions towards applying transformers on

long sequence tasks such as music generation, scene flow estimation etc. We consider masked

language modeling for long texts to be of particular importance, as it will allow finetuning for

downstream tasks that need a context longer than the commonly used 512 tokens.

62

6 Conclusions and Future Work

In this thesis, we have presented novel ways for improving the efficiency of deep neural

networks. Firstly, we improved the sample inefficiency of neural networks using importance

sampling. Subsequently, we introduced a method that focuses the computation of neural

networks to informative parts of the input and finally, we improved the asymptotic complexity

of the transformer architecture with our linear and clustered attention.

In more detail, in Chapter 2, we show that most of the computation during the training of deep

neural networks is spent on examples that have negligible gradients and thus can be ignored.

In order to develop an algorithm that is suitable for deep neural networks, we derive an

upper bound to the per-sample gradient norm that can be computed in a single forward pass.

Subsequently, we show that we can quantify the variance reduction of the stochastic gradient

estimator achieved when sampling the data points with importance instead of uniform. Using

these two insights, we develop an importance sampling algorithm, suitable for deep learning

models that requires no tuning and results in improvements in both training loss and test set

performance for a given computational budget.

After focusing the computation on useful parts of the dataset, in Chapter 3, we use importance

sampling again to focus the computation on informative parts of a single large input. In

particular, we use a small and efficient neural network to compute an attention distribution

over an input image and then sample parts from the attention distribution in order to process

only a tiny fraction of the full image to make our prediction. Our key contribution lies in

our algorithm for training both the attention network and the feature extraction network in

an end-to-end fashion despite the sampling procedure and only using image wide labels for

supervision. As a result, we achieve the same performance as state-of-the-art models using an

order of magnitude less computation and memory.

Subsequently, in Chapter 4, we shifted our attention to the transformer architecture. Specif-

ically, we tackle the quadratic complexity of the self-attention component in transformer

models. We showed that expressing the similarities of the queries and keys as dot products

of kernel feature maps allows for computing the attention with linear complexity both in

63

Chapter 6. Conclusions and Future Work

terms of memory and computation. Moreover, by extending this formulation to autoregressive

transformers, we increase the throughput of autoregressive inference by up to 3 orders of

magnitude and uncover the relationship of transformers to recurrent neural networks.

Finally, in Chapter 5, we present clustered attention which is an approximation method for

the commonly used softmax attention. In particular, we utilize the fact that queries that are

close in Euclidean space have similar attention distributions to group them in cluster and

only compute the attention for the cluster centroids. We show that using improved clustered

attention results in better performance than softmax attention for a fixed computational

budget. More importantly, we also demonstrate that our proposed method can approximate

pre-trained transformers without any fine-tuning and no loss in performance.

6.1 Future work

In this thesis, we focused our attention on approximating computationally expensive oper-

ations with more efficient counterparts. In the first half of our work, we primarily utilized

importance sampling to achieve this approximations. Whereas in the second part, we focused

on improving the asymptotic complexity of the transformer architecture. We believe that our

work opens up a multitude of new research directions.

In modern deep embedding learning problems the state-of-the-art results are achieved with

the use of ranking losses such as contrastive loss or triplet loss, which result in O
(
N 2

)
and

O
(
N 3

)
possible samples, where N is the size of the dataset (Schroff et al., 2015). In these

problems, importance sampling becomes a necessity. A promising future research direction

is to extend our importance sampling algorithm such that it takes advantage of the specific

structure of this problem and efficiently sample among millions of possible triplets or pairs.

We demonstrated that importance sampling, in addition to providing a speedup, can also

stabilize training by providing consistent gradients with lower variance. Generative adversarial

networks (GANs) (Goodfellow et al., 2014) are notoriously hard to train; thus we would like to

investigate the effects of importance sampling on this hard optimization problem. Specifically,

in vanilla GANs the generated samples might be easily recognized by the discriminator result-

ing in small gradients that significantly slow down learning the parameters of the generator.

In the literature, there have been many extensions of the original vanilla GAN to mitigate this

issue. However, the most popular of them, the Wasserstein GAN (Arjovsky et al., 2017) and

its improved variant (Gulrajani et al., 2017), require computing second order gradients and

are significantly slower per parameter update. To this end, we propose investigating whether

importance sampling of the latent space of vanilla GANs can produce meaningful gradients

for the generator without using significantly more computational resources.

For a variety of computer vision tasks, such as cancer detection, self driving vehicles and

satellite image processing, it is necessary to develop models that process signals of extremely

high resolution. For example, the typical image size that is used to analyze tissue samples

from biopsies is several gigapixels. State-of-the-art approaches for these kind of data typically

64

6.1. Future work

divide the input into patches and process them separately (Hou et al., 2016; Nazeri et al., 2018;

Golatkar et al., 2018). As a result, these approaches, waste computation on patches that either

contain little information for the task or require patch level annotations, which are hard to

acquire. A natural extension of our work on attention sampling for megapixel images is to

utilize attention at several resolutions in order to be able to process even larger inputs.

Finally, our work on efficient transformer architectures enables their application on modali-

ties and problems that were previously computationally prohibitive. In particular, in future

research, we would like to investigate the application of linear transformers on autoregressive

modelling of video and audio that typically have an input length larger than tens of thou-

sands of tokens. Moreover, we believe that clustered attention is particularly well suited for

images, where pixels can be naturally grouped into clusters. Finally our kernelized attention

formulation from Chapter 4 has spawned a significant amount of research on appropriate

kernel feature maps for self attention (Choromanski et al., 2020; Peng et al., 2021; Schlag et al.,

2021). Nevertheless, the expressivity of the feature map, in these works, is proportional to an

increase in computational complexity. We believe that a promising research direction is the

development of a sparse feature map that allows for increased expressivity without increasing

the computational requirements.

65

A Appendix for Chapter 2

A.1 Differences of variances

In the following equations we quantify the variance reduction achieved with importance

sampling using the gradient norm. Let gi ∝
∥∥∇θt L (Ψ(xi ;θt), yi)

∥∥
2 = ‖Gi‖2 and u = 1

B the

uniform probability.

We want to compute

Tr(Vu[Gi])−Tr
(
Vg [wi Gi]

)= Eu
[‖Gi‖2

2

]−Eg
[
w2

i ‖Gi‖2
2

]
. (A.1)

Using the fact that wi = 1
B gi

we have

Eg
[
w2

i ‖Gi‖2
2

]= (
1

B

B∑
i=1

‖Gi‖2

)2

, (A.2)

thus

Tr(Vu[Gi])−Tr
(
Vg [wi Gi]

)
(A.3)

= 1

B

B∑
i=1

‖Gi‖2
2 −

(
1

B

B∑
i=1

‖Gi‖2

)2

(A.4)

=
(∑B

i=1 ‖Gi‖2
)2

B 3

B∑
i=1

(
B 2 ‖Gi‖2

2

(
∑B

i=1 ‖Gi‖2)2
−1

)
(A.5)

=
(∑B

i=1 ‖Gi‖2
)2

B

B∑
i=1

(
g 2

i −u2) . (A.6)

Completing the squares at equation A.6 and using the fact that
∑B

i=1 u = 1 we complete the

67

Appendix A. Appendix for Chapter 2

derivation.

Tr(Vu[Gi])−Tr
(
Vg [wi Gi]

)
(A.7)

=
(∑B

i=1 ‖Gi‖2
)2

B

B∑
i=1

(
gi −u

)2 (A.8)

=
(

1

B

B∑
i=1

‖Gi‖2

)2

B
∥∥g −u

∥∥2
2 . (A.9)

A.2 An upper bound to the gradient norm

In this section, we reiterate the analysis from § 2.3.2 with more details.

Let θ(l) ∈RMl×Ml−1 be the weight matrix for layer l and σ(l)(·) be a Lipschitz continuous activa-

tion function. Then, let

x(0) = x (A.10)

z(l) = θ(l) x(l−1) (A.11)

x(l) =σ(l)(z(l)) (A.12)

Ψ(x;Θ) = x(L). (A.13)

Equations A.10-A.13 define a simple fully connected neural network without bias to simplify

the closed form definition of the gradient with respect to the parametersΘ.

In addition we define the gradient of the loss with respect to the output of the network as

∇x(L)
i

L =∇x(L)
i

L (Ψ(xi ;Θ), yi) (A.14)

and the gradient of the loss with respect to the output of layer l as

∇x(l)
i

L =∆(l)
i Σ

′
L(z(L)

i)∇x(L)
i

L (A.15)

where

∆(l)
i =Σ′

l (z(l)
i)θT

l+1 . . .Σ′
L−1(z(L−1)

i)θT
L (A.16)

propagates the gradient from the last layer (pre-activation) to layer l and

Σ′
l (z) = di ag

(
σ′(l)(z1), . . . ,σ′(l)(zMl)

)
(A.17)

defines the gradient of the activation function of layer l .

68

A.3. Comparison with SVRG methods

Finally, the gradient with respect to the parameters of the l-th layer can be written∥∥∇θl L (Ψ(xi ;Θ), yi)
∥∥

2 (A.18)

=
∥∥∥∥(
∆(l)

i Σ
′
L(z(L)

i)∇x(L)
i

L
)(

x(l−1)
i

)T
∥∥∥∥

2
(A.19)

≤
∥∥∥x(l−1)

i

∥∥∥
2

∥∥∥∆(l)
i

∥∥∥
2

∥∥∥Σ′
L(z(L)

i)∇x(L)
i

L
∥∥∥

2
. (A.20)

We observe that x(l)
i and ∆(l)

i depend only on zi and Θ. However, we theorize that due to

various weight initialization and activation normalization techniques those quantities do not

capture the important per sample variations of the gradient norm. Using the above, which is

also shown experimentally to be true in § 4.1, we deduce the following upper bound per layer∥∥∇θl L (Ψ(xi ;Θ), yi)
∥∥

2 (A.21)

≤ max
l ,i

(∥∥∥x(l−1)
i

∥∥∥
2

∥∥∥∆(l)
i

∥∥∥
2

)∥∥∥Σ′
L(z(L)

i)∇x(L)
i

L
∥∥∥

2
(A.22)

= ρ
∥∥∥Σ′

L(z(L)
i)∇x(L)

i
L

∥∥∥
2

, (A.23)

which can then be used to derive our final upper bound∥∥∇ΘL (Ψ(xi ;Θ), yi)
∥∥

2 ≤ Lρ
∥∥∥Σ′

L(z(L)
i)∇x(L)

i
L

∥∥∥
2︸ ︷︷ ︸

Ĝi

. (A.24)

Intuitively, equation A.24 means that the variations of the gradient norm are mostly captured

by the final classification layer. Consequently, we can use the gradient of the loss with respect

to the pre-activation outputs of our neural network as an upper bound to the per-sample

gradient norm.

A.3 Comparison with SVRG methods

For completeness, we also compare our proposed method with Stochastic Variance Reduced

Gradient methods and present the results in this section. We follow the experimental setup of

§ 4.2 and evaluate on the augmented CIFAR10 and CIFAR100 datasets. The algorithms we con-

sidered were SVRG (Johnson and Zhang, 2013), accelerated SVRG with Katyusha momentum

(Allen-Zhu, 2017) and, the most suitable for Deep Learning, SCSG (Lei et al., 2017) which in

practice is a mini-batch version of SVRG. SAGA (Defazio et al., 2014) was not considered due

to the prohibitive memory requirements for storing the per sample gradients.

For all methods, we tune the learning rate and the epochs per batch gradient computation

(m in SVRG literature). For SCSG, we also tune the large batch (denoted as B j in Lei et al.

(2017)) and its growth rate. The results are depicted in figure A.1. We observe that SGD

with momentum performs significantly better than all SVRG methods. Full batch SVRG and

Katyusha perform a small number of parameter updates thus failing to optimize the networks.

69

Appendix A. Appendix for Chapter 2

0 5000 10000 15000 20000

Seconds

10−3

10−2

10−1

100

T
ra

in
in

g
L

o
ss

(a) CIFAR10 Training Loss

0 5000 10000 15000 20000

Seconds

10−1

100

T
es

t
E

rr
o
r

upper-bound (ours)

uniform

SCSG

SVRG

Katyusha

(b) CIFAR10 Test Error

0 5000 10000 15000 20000

Seconds

10−1

100

T
ra

in
in

g
L

o
ss

(c) CIFAR100 Training Loss

0 5000 10000 15000 20000

Seconds

100

3× 10−1

4× 10−1

6× 10−1

T
es

t
E

rr
o
r

(d) CIFAR100 Test Error

Figure A.1 – Comparison of our proposed importance sampling scheme (upper-bound) to
SGD with uniform sampling and variance reduced methods. Only SCSG can actually perform
enough iterations to optimize the network. However, SGD with uniform sampling and our
upper-bound greatly outperform SCSG.

In all cases, the best variance reduced method achieves more than an order of magnitude

higher training loss than our proposed importance sampling scheme.

A.4 Ablation study on B

The only hyperparameter that is somewhat hard to define in our algorithm is the pre-sampling

size B . As mentioned in § 2.3.3, it controls the maximum possible variance reduction and also

how much wall-clock time one iteration with importance sampling will require.

In figure A.2 we depict the results of training with importance sampling and different pre-

sampling sizes on CIFAR10. We follow the same experimental setup as in § 2.4.2.

We observe that larger presampling size results in lower training loss, which follows from our

theory since the maximum variance reduction is smaller with small B . In this experiment we

use the same τth for all the methods and we observe that B = 384 reaches first to 0.6 training

loss. This is justified because computing the importance for 1,024 samples in the beginning of

training is wasteful according to our analysis.

70

A.5. Importance Sampling with the Loss

0 5000 10000 15000 20000

Seconds

10−3

10−2

10−1

100
T

ra
in

in
g

L
o
ss

B = 384

B = 640

B = 1024

1000 2000 3000 4000 5000 6000 7000

Seconds

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

T
ra

in
in

g
L

o
ss

Figure A.2 – Results on training with different B on CIFAR10. See § 2.4.2 for the experimental
setup.

According to this preliminary ablation study for B , we conclude that choosing B = kb with

2 < k < 6 is a good strategy for achieving a speedup. However, regardless of the choice of

B , pairing it with a threshold τth designated by the analysis in the chapter guarantees that

the algorithm will be spending time on importance sampling only when the variance can be

greatly reduced.

A.5 Importance Sampling with the Loss

In this section we will present a small analysis that provides intuition regarding using the loss

as an approximation or an upper bound to the per sample gradient norm.

Let L (ψ, y) : D → R be either the negative log likelihood through a sigmoid or the squared

error loss function defined respectively as

L1(ψ, y) =− log

(
exp(yψ)

1+exp(yψ)

)
y ∈ {−1,1} ψ ∈R

L2(ψ, y) = ∥∥y −ψ∥∥2
2 y ∈Rd ψ ∈Rd

(A.25)

Given our upper bound to the gradient norm, we can write∥∥∇θt L (Ψ(xi ;θt), yi)
∥∥

2 ≤ Lρ
∥∥∇ψL (Ψ(xi ;θt), yi)

∥∥
2 . (A.26)

Moreover, for the losses that we are considering, when L (ψ, y) → 0 then
∥∥∇ψL (Ψ(xi ;θt), yi)

∥∥
2 →

0. Using this fact in combination to equation A.26, we claim that so does the per sample gradi-

ent norm thus small loss values imply small gradients. However, large loss values are not well

correlated with the gradient norm which can also be observed in § 2.4.1.

To summarize, we conjecture that due to the above facts, sampling proportionally to the

loss reduces the variance only when the majority of the samples have losses close to 0. Our

assumption is validated from our experiments, where the loss struggles to achieve a speedup

71

Appendix A. Appendix for Chapter 2

in the early stages of training where most samples still have relatively large loss values.

72

B Appendix for Chapter 3

B.1 Introduction

This supplementary material is organised as follows: In § B.2 and § B.3 we provide the detailed

derivation of the gradients for our attention sampling. Subsequently, in § B.4 we mention

additional related work that might be of interest to the readers. In § B.5 and § B.6 we present

experiments that analyse the effect of our entropy regularizer and the number of patches

sampled on the learned attention distribution. In § B.7, we visualize the attention distribution

of our method to show it focuses computation on the informative parts of the high resolution

images. Finally, in § B.8 we provide details with respect to the architectures trained for our

experiments.

B.2 Sampling with replacement

In this section, we detail the derivation of equation 11 in our main submission. In order to be

able to use a neural network as our attention distribution we need to derive the gradient of the

loss with respect to the parameters of the attention function a(·;Θ) through the sampling of

the set of indices Q. Namely, we need to compute

∂ 1
N

∑
q∈Q f (x;Θ)q

∂θ
(B.1)

for all θ ∈Θ including the ones that affect a(·).

73

Appendix B. Appendix for Chapter 3

By exploiting the Monte Carlo approximation and the multiply by one trick, we get

∂

∂θ

1

N

∑
q∈Q

f (x;Θ)q (B.2)

≈ ∂

∂θ

K∑
i=1

a(x;Θ)i f (x;Θ)i (B.3)

=
K∑

i=1

∂

∂θ

[
a(x;Θ)i f (x;Θ)i

]
(B.4)

=
K∑

i=1

a(x;Θ)i

a(x;Θ)i

∂

∂θ

[
a(x;Θ)i f (x;Θ)i

]
(B.5)

= EI∼a(x;Θ)

[
∂
∂θ

[
a(x;Θ)I f (x;Θ)I

]
a(x;Θ)I

]
. (B.6)

B.3 Sampling without replacement

In this section, we derive the gradients of the attention distribution with respect to the feature

network and attention network parameters. We define

• fi = f (x;Θ)i for i ∈ {1,2, . . . ,K } to be the K features

• ai = a(x;Θ)i for i ∈ {1,2, . . . ,K } to be the probability of the i -th feature from the attention

distribution a

• wi =∑
j 6=i a j

We consider sampling without replacement to be sampling an index i from a and then sam-

pling from the distribution pi (j) defined for j ∈ {1,2, . . . , i −1, i +1, . . . ,K } as follows,

pi (j) = a j

wi
. (B.7)

Given samples i , j sampled from a and pi , we can make an unbiased estimator for EI∼a
[

f I
]

as

74

B.3. Sampling without replacement

follows,

ai fi +wi f j ' (B.8)

EI∼a
[
EJ∼p I

[
aI f I +w I f J

]]= (B.9)

EI∼a
[
aI f I +EJ∼p I

[
w I f J

]]= (B.10)

EI∼a

[
aI f I +

∑
j 6=I

a j f j

]
= (B.11)

EI∼a

[
K∑

j=1
a j f j

]
= (B.12)

EI∼a
[

f I
]

. (B.13)

Using the same i , j sampled from a and pi accordingly, we can estimate the gradient as follows,

∂

∂θ
EI∼a

[
f I

]= (B.14)

∂

∂θ
EI∼a

[
EJ∼p I

[
aI f I +w I f J

]]= (B.15)

∂

∂θ

K∑
i=1

∑
j 6=i

ai pi (j)
(
ai fi +wi f j

)= (B.16)

K∑
i=1

∑
j 6=i

∂

∂θ
ai pi (j)

(
ai fi +wi f j

)= (B.17)

K∑
i=1

∑
j 6=i

ai pi (j)

ai pi (j)

∂

∂θ
ai pi (j)

(
ai fi +w I f j

)= (B.18)

EI∼a

[
EJ∼p I

[
∂
∂θaI p I (J)

(
aI f I +w I f J

)
aI p I (J)

]]
' (B.19)

∂
∂θai pi (j)

(
ai fi +wi f j

)
ai pi (j)

= (B.20)

pi (j)
(
ai fi +wi f j

)
∂
∂θai

ai pi (j)
+ ai

∂
∂θpi (j)

(
ai fi +wi f j

)
ai pi (j)

= (B.21)

(
ai fi +wi f j

) ∂
∂θai

ai
+

∂
∂θpi (j)

(
ai fi +wi f j

)
pi (j)

= (B.22)

(
ai fi +wi f j

) ∂

∂θ
log(ai)+

∂
∂θpi (j)

(
ai fi +wi f j

)
pi (j)

. (B.23)

When we extend the above computations for sampling more than two samples, the logarithm

in equation B.23 allows us to avoid the numerical errors that arise from the cumulative product

at equation B.20.

75

Appendix B. Appendix for Chapter 3

B.4 Extra related work

For completeness, in this section we discuss parts of the literature that are tangentially related

to our work.

Combalia and Vilaplana (2018) consider the problem of high-resolution image classification

from the Multiple Instance Learning perspective. The authors propose a two-step procedure;

initially random patches are sampled and classified. Subsequently, more patches are sampled

around the patches that resulted in confident predictions. The most confident prediction is

returned. Due to the lack of the attention mechanism, this model relies in identifying the

region of interest via the initial random patches. However, in the second pass the prediction is

finetuned if informative patches are likely to be spatially close with each other.

Maggiori et al. (2017) propose a neural network architecture for the pixelwise classification

of high resolution images. The authors consider features at several resolutions and train a

pixel-by-pixel fully connected network to combine the features into the final classification. The

aforementioned approach could be used with our attention sampling to approach pixelwise

classification tasks such as semantic segmentation.

B.5 Ablation study on the entropy regularizer

To characterize the effect of the entropy regularizer on our attention sampling, we train with

the same experimental setup as for the histopathology images of § 3.4.3 but varying the

entropy regularizer λ ∈ {0,0.01,0.1,1}. The results are depicted in Figure B.1. Using no entropy

regularizer results in a very selective attention distribution in the first 60 epochs of training.

On the other hand, a high value for λ, the entropy regularizer weight, drives the sampling

distribution towards uniform.

In our experiments we observed that values close to 0.01 (e.g. 0.005 or 0.05) had no observable

difference in terms of the final attention distribution.

B.6 Ablation study on the number of patches

According to our theory, the number of patches should not affect the learned attention distri-

bution. Namely, the expectation of the gradients and the predictions should be the same and

the only difference is in the variance.

In Figure B.2, we visualize, in a similar fashion to B.5, the attention distributions learned when

sampling various numbers of patches per image for training. Although the distributions are

different in the beginning of training after approximately 100 epochs they converge to a very

similar attention distribution.

76

B.6. Ablation study on the number of patches

Sample image

λ= 0

λ= 0.01

λ= 0.1

λ= 1

Epoch 0 Epoch 20 Epoch 40 Epoch 60

Figure B.1 – We visualize the effects of the entropy regularizer on the sampling distribution
computeed from a test image of the colon cancer dataset in the first 60 epochs of training.
We observe that no entropy regularizer results in our attention becoming very selective early
during training which might hinder the exploration of the sampling space.

77

Appendix B. Appendix for Chapter 3

Sample image

1 patch

3 patches

6 patches

12 patches

Epoch 0 Epoch 40 Epoch 80 Epoch 120

Figure B.2 – Visualization of the attention distribution when training with varying number of
patches. All the distributions converge to approximately the same after ∼100 epochs.

B.7 Qualitative results of the learned attention distribution

In this section, we provide additional visualizations of the learned attention distribution

using both attention sampling and Deep MIL on our two real world datasets, namely the

Histopathology images § 3.4.3 and the Speed limits § 3.4.4.

B.7.1 Histopathology images

In Figure B.3 we visualize the learned attention distribution of attention sampling and we

compare it to Deep MIL and the ground truth positions of epithelial cells in an subset of the

test set.

We observe that the learned attention distribution is very similar to the one learned by Deep

MIL even though our model processes a fraction of the image at any iteration. In addition, it is

interesting to note that the two methods produce distributions that agree even on mistakenly

tagged patches, one such case is depicted in figures 11 and 12 where both methods the top

right part of the image to contain useful patches.

78

B.7. Qualitative results of the learned attention distribution

(1) (2) (3) (4) (5) (6) (7) (8)

(9) (10) (11) (12) (13) (14) (15) (16)

(17) (18) (19) (20) (21) (22) (23) (24)

(25) (26) (27) (28) (29) (30) (31) (32)

(33) (34) (35) (36) (37) (38) (39) (40)

(41) (42) (43) (44) (45) (46) (47) (48)

Figure B.3 – We visualize in groups of 4, the H&E stained image, the ground truth positions
of epithelial cells, the attention distribution of Deep MIL and the attention distribution of
attention sampling. We observe that indeed our method learns to identify regions of interest
without per patch annotations in a similar fashion to Deep MIL.

79

Appendix B. Appendix for Chapter 3

B.7.2 Speed limits

Figure B.4 compares the attention distributions of Deep MIL and attention sampling on the

Speed Limits dataset (§ 3.4.4). This dataset is hard because it presents large variations in scale

and orientation of the regions of interest, namely the speed limit signs. However, we observe

that both methods locate effectively the signs even when there exist more than one in the

image. Note that for some of the images, such as 6 and 15, the sign is not readable from the

low resolution image.

B.8 Network Architecture Details

In this section, we detail the network architectures used throughout our experimental evalua-

tion. The ultimate detail is always code, thus we encourage the reader to refer to the github

repository https://github.com/idiap/attention-sampling.

B.8.1 Megapixel MNIST

We summarize the details of the architectures used for the current experiment. For ATS, we

use a three layer convolutional network with 8 channels followed by a ReLU activation as the

attention network and a convolutional network inspired from LeNet-1 (LeCun et al., 1995)

with 32 channels and a global max-pooling as a last layer as the feature network. We also use

an entropy regularizer with weight 0.01. The CNN baseline is a ResNet-16 that starts with 32

channels for convolutions and doubles them after every two residual blocks.

We train all the networks with the Adam (Kingma and Ba, 2014) optimizer with a fixed learning

rate of 10−3 for 500 epochs.

B.8.2 Histopathology images

We summarize the details of the architecture used for the experiment on the H&E stained

images. For ATS, we use a three layer convolutional network with 8 channels followed by ReLU

non linearities as the attention network with an entropy regularizer weight 0.01. The feature

network of is the same as the one proposed by (Ilse et al., 2018). Regarding, the CNN baseline,

we use a ResNet (He et al., 2016) with 8 convolutional layers and 32 channels instead.

We train all the networks for 30,000 gradient updates with the Adam optimizer with learning

rate 10−3.

B.8.3 Speed Limits

We detail the network architectures used for the current experiment. For attention sam-

pling, we use an attention network that consists of four convolutions followed by ReLU

80

https://github.com/idiap/attention-sampling

B.8. Network Architecture Details

(1) (2) (3)

(4)

(5)

(6) (7) (8)

(9)

(10) (11) (12)

(13)

(14)

(15) (16) (17)

(18)

(19) (20) (21)

(22)

Figure B.4 – Visualization of the positions of the speed limit signs in test images of the dataset
as well as the two attention distributions of Deep MIL (left) and attention sampling (right)
and the patches extracted from the high resolution image at the positions of the signs. Both
methods identify effectively the speed limit in the high resolution image.

81

Appendix B. Appendix for Chapter 3

non-linearities starting with 8 channels and doubling them after each layer. Furthermore, we

add a max pooling layer with pool size 8 at the end to reduce the sampling space and use an

entropy regularizer weight of 0.05. The feature network of both our model and Deep MIL is

a ResNet with 8 layers and 32 channels. The CNN baseline is a ResNet-16 that starts with 32

channels for convolutions and doubles them after every two residual blocks.

Again, we we use the Adam (Kingma and Ba, 2014) optimizer with a fixed learning rate of 10−3

for 300,000 iterations.

82

C Appendix for Chapter 4

C.1 Gradient Derivation

In the first section of our supplementary material, we derive in detail the gradients for causally

masked linear transformers and show that they can be computed in linear time and constant

memory. In particular, we derive the gradients of a scalar loss with respect to the numerator of

the following equation,

V ′
i =

φ (Qi)T ∑i
j=1φ

(
K j

)
V T

j

φ (Qi)T ∑i
j=1φ

(
K j

) . (C.1)

The gradient with respect to the denominator and the fraction are efficiently handled by

autograd. Without loss of generality, we can assume that Q and K already contain the vectors

mapped by φ (·), hence given the numerator

V̄i =QT
i

i∑
j=1

K j V T
j , (C.2)

and ∇V̄ L we seek to compute ∇QL , ∇K L and ∇V L . Note that Q ∈ RN×D , K ∈ RN×D and

V ∈RN×M . To derive the gradients, we first express the above equation for a single element

without using vector notation,

V̄i e =
D∑

d=1
Qi d

i∑
j=1

K j d V j e =
D∑

d=1

i∑
j=1

Qi d K j d V j e . (C.3)

Subsequently we can start deriving the gradients for Q by taking the partial derivative for any

Ql t , as follows
∂L

∂Ql t
=

M∑
e=1

∂L

∂V̄l e

∂V̄le

∂Ql t
=

M∑
e=1

∂L

∂V̄le

(
l∑

j=1
K j t V j e

)
. (C.4)

83

Appendix C. Appendix for Chapter 4

If we write the above equation as a matrix product of gradients it becomes,

∇Qi L =∇V̄i
L

(
i∑

j=1
K j V T

j

)T

, (C.5)

proving equation 4.13. In equation C.4 we made use of the fact that Ql t only affects V̄l hence

we do not need to sum over i to compute the gradients. However, for K and V this is not

the case. In particular, K j affects all V̄i where i ≥ j . Consequently, we can write the partial

derivative of the loss with respect to Kl t as follows,

∂L

∂Kl t
=

M∑
e=1

N∑
i=l

∂L

∂V̄i e

∂V̄i e

∂Kl t
=

M∑
e=1

N∑
i=l

∂L

∂V̄i e

∂
(∑D

d=1

∑i
j=1 Qi d K j d V j e

)
∂Kl t

=
M∑

e=1

N∑
i=l

∂L

∂V̄i e
Qi t Vle .

(C.6)

As for Q we can now write the gradient in vectorized form,

∇Ki L =
(

N∑
j=i

Q j

(
∇V̄ j

L
)T

)
Vi , (C.7)

proving equation 4.14. Following the same reasoning, we can compute the partial derivative

of the loss with respect to Vl t and prove equation 4.15. Note that the cumulative sum matrices

for the gradient with respect to Q and K have the same size, however one is computed in

the forward direction (summing from 1 to N) similarly to the forward pass and the other is

computed in the backwards direction (summing from N to 1) similar to backpropagation

through time done in RNNs.

C.2 Training Evolution

In figure C.1 we present the training evolution of all transformer models in our experiments.

For the MNIST experiment (Fig. C.1a) we train all methods for 250 epochs. The sequence

length is small enough so that the training time does not vary significantly for all methods. We

observe that our method converges on par with softmax attention outperforming significantly

both reformer variants.

On the other hand, for CIFAR-10 (Fig. C.1b) we train all methods for a fixed amount of time,

namely 7 days. We observe that lsh-1 and linear complete significantly more epochs than

softmax and lsh-4 and achieve better performance. This gap is expected to increase with a

further increase in sequence length.

Finally, in our last experiment on automatic speech recognition (Fig. C.1c), softmax outper-

forms significantly both Reformer and linear in terms of convergence. Note that linear is

3× faster per epoch which means it has completed approximately 4 times more epochs in

84

C.3. Image Generation Throughput Discussion

comparison to softmax. Even though softmax attention is better in this task, we observe that

linear transformers significantly outperform Reformer both in terms of convergence and final

performance.

0 50 100 150 200 250

Epochs

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
b
p

d

softmax

lsh-1

lsh-4

linear (ours)

(a) MNIST

0 10 20 30 40 50 60

Epochs

3.4

3.6

3.8

4.0

4.2

T
es

t
b
p

d

(b) CIFAR-10

0 50 100 150 200

Wall-clock time (hours)

5

10

15

20

25

30

V
a
li
d
a
ti

o
n

P
E

R

(c) Speech Recognition

Figure C.1 – Training evolution of transformers for all our experiments. It can be observed
that linear transformers converge consistently faster than Reformer and in the autoregressive
experiments on par with softmax. For MNIST all methods are trained for 250 epochs while for
CIFAR we train for 7 days. In the speech recognition experiments all methods are trained to
convergence. The details of the experiments can be found in § 4.4.2 and § 4.4.3.

C.3 Image Generation Throughput Discussion

C.3.1 Stateful softmax attention

In § 4.4.2, we report the image generation throughput and we compare with softmax trans-

former and lsh. In this section we create another baseline, denoted as stateful-softmax, that

implements a softmax autoregressive transformer as a recurrent model. Namely, all the keys

and values are saved and then passed to the model again when predicting the next element of

the sequence. The state of this recurrent model is the set of keys and values which has size

proportional to the sequence length. This is qualitatively different to our proposed model that

has a state with fixed dimensions and computing the i -th state given the previous one has

fixed computational cost regardless of i .

Table C.1 summarizes the results. We observe that stateful-softmax is significantly faster than

vanilla transformers. However, its complexity is still quadratic with respect to the sequence

length and our forumlation is more than 50× faster for CIFAR-10. Moreover, we would like to

point out that implementing a similar stateful attention for Reformer is not a trivial task as the

sorting and chunking operations need to be performed each time a new input is provided.

C.3.2 Equalizing the batch size

In the previous sections we evaluate the throughput of all transformer variants for the task of

autoregressive image generation. However, another important factor to consider is latency,

namely the total time required to produce a single image. To this end, we use a batch size of

85

Appendix C. Appendix for Chapter 4

Method Bits/dim Images/sec
Softmax 0.621 0.45 (1×)
Stateful-softmax 0.621 7.56 (16.8×)
LSH-1 0.745 0.68 (1.5×)
LSH-4 0.676 0.27 (0.6×)
Linear (ours) 0.644 142.8 (317×)

(a) Image generation on MNIST

Method Bits/dim Images/sec
Softmax 3.47 0.004 (1×)
Stateful-softmax 3.47 0.32 (80×)
LSH-1 3.39 0.015 (3.75×)
LSH-4 3.51 0.005 (1.25×)
Linear (ours) 3.40 17.85 (4,462×)

(b) Image generation on CIFAR-10

Table C.1 – Comparison of autoregressive image generation throughput of MNIST and CIFAR-
10 images. The experiment can be found in § 4.4.2. For stateful-softmax we save the keys and
values and reuse them for predicting the next element. A detailed description of this extra
baseline can be found in § C.3.1.

1 and measure the time required by all methods to generate a single image. In addition to

running the inference on the GPU, we also evaluate the time required on CPU. The results are

reported in table C.2.

Method Seconds (CPU) Seconds (GPU)
Softmax 72.6 (13.2×) 10.2 (1.4×)
Stateful-softmax 7.4 (1.3×) 10.4 (1.42×)
LSH-1 46.0 (8.3×) 19.2 (2.6×)
LSH-4 112.0 (20×) 55.8 (7.6×)
Linear (ours) 5.5 (1×) 7.3 (1×)

(a) Image generation on MNIST

Method Seconds (CPU) Seconds (GPU)
Softmax 8651.4 (191.8×) 300.1 (4.9×)
Stateful-softmax 71.9 (1.6×) 70.4 (1.14×)
LSH-1 2318.9 (51.4×) 221.6 (3.6×)
LSH-4 5263.7 (116.7×) 683.9 (11.1×)
Linear (ours) 45.1 (1×) 61.3 (1×)

(b) Image generation on CIFAR-10

Table C.2 – Comparison of the time required to generate a single image with autoregressive
transformers on MNIST and CIFAR-10. We run all methods with a batch size of 1 both on CPU
and GPU and report the total time in seconds. For all numbers in the table, lower is better.

We observe that all methods underutilize the GPU and achieve significantly smaller image

generation throughput than the one shown in table C.1. The proposed linear transformer is

faster than all the methods and in particular it is almost 6.6× faster than softmax transformers

for generating an image on CIFAR-10. Note that our linear autoregressive transformer is the

only method that is faster on the CPU than on the GPU in every case. This is due to the fact

that computing the attention as an RNN has such a low cost that the main computational

bottleneck becomes the inevitable outer loop over the sequence.

C.4 Qualitative Results on Image Generation

In this section we provide qualitative results for our image generation experiments. Since the

perplexity of all models is approximately the same, as expected, the qualitative differences are

not significant. A rather interesting observation however is that the Reformer models provide

significantly fewer variations in their unconditional samples. Moreover, we observe that image

86

C.4. Qualitative Results on Image Generation

completion is a significantly easier task than unconditional generation as all models perform

significantly better.

(a) Softmax (b) Linear (ours)

(c) LSH-1 (d) LSH-4

Figure C.2 – Unconditional samples from the transformer models trained with MNIST. See
§ 4.4.2 for more details.

87

Appendix C. Appendix for Chapter 4

(a) Occluded (b) Softmax (c) Linear (ours) (d) LSH-1 (e) LSH-4 (f) Original

Figure C.3 – MNIST digit completion from all trained models. See § 4.4.2 for more details.

88

C.4. Qualitative Results on Image Generation

(a) Softmax (b) Linear (ours)

(c) LSH-1 (d) LSH-4

Figure C.4 – Unconditional samples from the transformer models trained with CIFAR-10. See
§ 4.4.2 for more details.

89

Appendix C. Appendix for Chapter 4

(a) Occluded (b) Softmax (c) Linear (ours) (d) LSH-1 (e) LSH-4 (f) Original

Figure C.5 – CIFAR-10 image completions from all trained transformer models. See § 4.4.2 for
more details.

90

D Appendix for Chapter 5

D.1 Scaling Attention with Fast Clustering

D.1.1 Clustered attention

In figure D.1, we present the steps involved in clustered attention computation for an example

sequence with 8 queries and the number of clusters set to 3. We first cluster the queries Q

using K-means to output S which indicates the membership of queries to different clusters.

We use different colors to represent different clusters. After clustering, the centroids Qc are

used to compute the attention weights Ac and the new values V c for the centroids. Finally, the

values are broadcasted to get the new values V̂ corresponding to each query.

��

��

�

� ̂ �

1

1

1

1

1

1

1

1

�

�

�
�

� ̂

�

=��
�

∑�

�=1 �����

∑�

�=1 ���

softmax()�
�
�

�
= �� ̂ � ��

K-Means

Clustering

=� ̂
� ∑

�=1

�

����
̂ �
�

Figure D.1 – Flow-chart demonstrating the compuation for clustered attention. We use different
colors to represent the query groups and the computed centroids. The same colors are then
used to show the attention weights Ac , new values for the centroids V̂ c , and the resulting
values V̂ after broadcasting.

91

Appendix D. Appendix for Chapter 5

D.1.2 Improved clustered attention

In this section, we first describe how we can efficiently compute i-clustered attention using

sparse dot products with the top-k keys and values. We then present a flow chart demonstrat-

ing the same in Figure D.2.

As discussed in § 5.3.3, the improved attention matrix approximation At
i for the query, Qi

belonging to the cluster j is computed as follows:

At
i l =


m̂ j exp

(
Qi K T

l

)∑N
r=1 T j r exp(Qi K T

r)
if T j l = 1

Ac
i l otherwise

, (D.1)

where, T ∈ {0,1}C×N , stores the top-k keys for each cluster. T j i = 1 if the i -th key is among the

top-k keys for the j -th cluster and 0 otherwise. In addition, m̂ j is the total probability mass on

the top-k keys for the j -th cluster given by:

m̂ j =
N∑

r=1
T j r Ac

j r . (D.2)

Note that we can compute the attention weights At
i on the top-k keys by first taking sparse

dot-product of Qi with the top-k keys followed by the softmax activation and rescaling with

the total probablity mass m j . For the rest of the keys, the attention weight is the clustered-

attention weight Ac
i .

Similarly, the new values V̂i can be decomposed into the following two terms,

V̂i = V̂ t
i + V̂ b

i , (D.3)

where V̂ t
i is the weighted average of the values corresponding to the top-k keys with weights

being the improved attention on the top-k keys. On the other hand, V̂ b
i is the weighted average

of the rest of the values with weights being the clustered attention Ac
i . The following equations

show how we compute V̂ t
i and V̂ b

i ,

V̂ t
i =

N∑
l=1

T j l At
i l Vl , (D.4)

V̂ b
i =

N∑
l=1

(1−T j l)Ac
i l Vl , (D.5)

Note that V̂ t
i is weighted average of k values for each query and thus requires O (N kDv)

operations. V̂ b
i only needs to be computed once per-cluster centroid and thus requires

O (NC Dv) operations.

In figure D.2 we present the i-clustered attention computation for the same example sequence

with 8 queries and the number of clusters and top-k keys set to 3. The lower half of the

92

D.2. Quality of the approximation

figure shows the new value V̂ t , computed by first taking sparse dot-products with the top

3 keys to get the attention weights. This is followed by taking the weighted average of the 3

correponding values. The top half of the figure shows the V̂ b computation. This is same as

clustered attention computation but with attention weights corresponding to top 3 keys set to

0 for Ac . The resulting values V̂ is the sum of V̂ b and V̂ t .

Figure D.2 – Flow-chart demonstrating the compuation for i-clustered attention. The lower
half of the figure shows the new value V̂ t , computed by sparse dot-products with the keys
K and values V corresponding to the the top-k keys in T . The top half of the figure shows
the computation for V̂ b which is the weighted average of the rest of the values with weights
coming from the clustered attention Ac . The resulting values V̂ is the sum of V̂ b and V̂ t .
Further details are provided in § 5.3.3 and § D.1.2.

D.2 Quality of the approximation

Proposition 3. For the i -th query belonging to the j -th cluster, the improved clustered attention

At
i and clustered attention Ac

j relate to the full attention Ai as follows,

∥∥At
i − Ai

∥∥
1 ≤

∥∥∥Ac
j − Ai

∥∥∥
1

(D.6)

Proof. As discussed before, the improved attention matrix approximation At
i for the query, Qi

is computed as follows:

At
i l =


m̂ j exp

(
Qi K T

l

)∑N
r=1 T j r exp(Qi K T

r)
if T j l = 1

Ac
i l otherwise

, (D.7)

93

Appendix D. Appendix for Chapter 5

where, T ∈ {0,1}C×N , stores the top-k keys for each cluster, T j i = 1 if the i -th key is among the

top-k keys for the j -th cluster and 0 otherwise. m̂ j is the total probability mass on the top-k

keys for the j -th cluster, computed as follows:

m̂ j =
N∑

r=1
T j r Ac

j r . (D.8)

Given the full attention Ai , equation D.7 can be simplified to

At
i l =


m̂ j

mi
Ai l if T j l = 1

Ac
i l otherwise

, (D.9)

where, mi is the total probability mass on the same top-k keys for the i -th query, computed

using the true attention Ai , as follows:

mi =
∑N

r=1 T j r exp
(
Qi K T

r

)∑N
r=1 exp

(
Qi K T

r
) (D.10)

=
N∑

r=1
T j r Ai r . (D.11)

Without loss of generality, let us assume, T j l = 1 ∀ l ∈ {1, . . . ,k} and T j l = 0 ∀ l ∈ {k +
1, . . . , N }.

In this case, equation D.9 can be written as:

At
i l =


m̂ j

mi
Ai l if l ≤ k

Ac
i l if l ≥ k +1

. (D.12)

The total probability masses on the top-k keys, mi and m̂ j can now be expressed as:

mi =
k∑

r=1
Ai r . (D.13)

m̂ j =
k∑

r=1
Ac

j r . (D.14)

From equation D.12 it is clear that the clustered attention, Ac
i , and the improved clustered

attention, At
i , only differ on the keys {1, . . . ,k}. Thus, it suffices to show that At

i has lower

approximation error on these keys. The approximation error on the top-k keys {1, . . . ,k}, let it

be et , between the i-clustered attention and the full attention is as follows:

94

D.3. Experiments

et =
k∑

l=1

∣∣Ai l − At
i l

∣∣ (D.15)

=
k∑

l=1

∣∣∣∣Ai l − Ai l
m̂ j

mi

∣∣∣∣ (D.16)

=
k∑

l=1
Ai l

∣∣∣∣1− m̂ j

mi

∣∣∣∣ (D.17)

=
∣∣∣∣1− m̂ j

mi

∣∣∣∣ k∑
l=1

Ai l (D.18)

= mi

∣∣∣∣1− m̂ j

mi

∣∣∣∣ (D.19)

= ∣∣mi −m̂ j
∣∣ (D.20)

=
∣∣∣∣∣ k∑
l=1

Ai l − Ac
j l

∣∣∣∣∣ (D.21)

≤
k∑

l=1

∣∣∣Ai l − Ac
j l

∣∣∣ (D.22)

Therefore,

∥∥Ai − At
i

∥∥
1 =

k∑
l=1

∣∣Ai l − At
i l

∣∣+ N∑
l=k+1

∣∣Ai l − At
i l

∣∣ (D.23)

=
k∑

l=1

∣∣Ai l − At
i l

∣∣+ N∑
l=k+1

∣∣∣Ai l − Ac
j l

∣∣∣ (D.24)

≤
k∑

l=1

∣∣∣Ai l − Ac
j l

∣∣∣+ N∑
l=k+1

∣∣∣Ai l − Ac
j l

∣∣∣ (D.25)

≤ ∥∥Ai − Ac
i

∥∥
1 (D.26)

D.3 Experiments

D.3.1 Time and Memory Benchmark

To measure the computational cost, we compare the memory consumption and computation

time on artificially generated sequences of various lengths. For clustered attention we use

100 clusters, 63 bits for the LSH, and 10 Lloyd iterations for the K-Means. For the improved

clustered attention, we use the same configuration with k = 32. For Reformer, we evaluate on

two variants using 1 and 4 rounds of hashing. All models consist of 1 layer with 6 attention

heads, embedding dimension of 64 for each head, and a feed-forward dimension of 1536.

95

Appendix D. Appendix for Chapter 5

In this experiment, we measure the required memory and GPU time per single sequence

element to perform a forward/backward pass for the various self-attention models. Figure D.3

illustrates how these metrics evolve as the sequence length increases from N = 29 to N = 215.

For a fair comparison, we use the maximum possible batch size for each method and we

divide the computational cost and memory with the number of samples in each batch and the

sequence length.

We note that, in contrast to all other methods, vanilla transformer scales quadratically with

respect to the sequence length and does not fit in GPU memory for sequences longer than 213

elements. All other methods scale linearly. Clustered attention becomes faster than the vanilla

transformer for sequences with 1000 elements or more, while improved clustered attention

surpasses it for sequences with 2000 elements. Note that with respect to per sample memory,

both clustered and improved clustered attention perform better than all other methods. This

can be explained by the fact that our method does not require storing intermediate results to

compute the gradients from multiple hashing rounds as Reformer does. It can be seen, that

lsh-1 is faster than the improved clustered clustered attention, however, as also mentioned by

(Kitaev et al., 2020) Reformer requires multiple hashing rounds to generalize.

full lsh-1 lsh-4 clustered-100 (ours) i-clustered-100 (ours)

29 210 211 212 213 214 215

Sequence Length

10−2

P
er

E
le

m
en

t
C

o
m

p
u

ta
ti

o
n

T
im

e

(a) Per Element Time

29 210 211 212 213 214 215

Sequence Length

10−1

100

P
er

E
le

m
en

t
M

em
o
ry

(b) Per Element Memory

Figure D.3 – Per element GPU time and memory consumption for a forward/backward pass.
All models, except full, scale linearly with respect to the sequence length since they have
constant time and memory per element.

D.3.2 Ablation on clusters and sequence length

Following (Kitaev et al., 2020), we introduce a synthetic task to analyze the relationship

between the number of clusters and sequence length. In our task, the transformer models

need to copy some symbols that are masked out from either the first or second half of the

sequence. In particular, we generate a random sequence of tokens and we prepend a unique

separator token, let it be 0. The sequence is then copied to get a target of the form 0w0w ,

where w ∈ {1, . . . ,C }L , C is the number of possible symbols and L is the sequence length. To

96

D.3. Experiments

Accuracy with respect to clusters and hashing rounds

64 128 256 512

Sequence length

100

60

30

15

#
cl

u
st

er
s

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

(a) Improved clustered

64 128 256 512

Sequence length

100

60

30

15

#
cl

u
st

er
s

1.0 1.0 1.0 0.96

1.0 1.0 1.0 0.74

1.0 1.0 0.44 0.19

1.0 0.7 0.27 0.19

(b) Clustered

64 128 256 512

Sequence length

16

8

4

1

#
h

a
sh

in
g

ro
u

n
d

s

1.0 1.0 1.0 1.0

1.0 1.0 1.0 0.4

1.0 1.0 1.0 0.4

1.0 1.0 1.0 0.3

(c) Reformer

Figure D.4 – The heatmaps depict the achieved accuracy on an artificial copy task (§ D.3.2)
as the sequence length, the number of clusters and the number of hashing rounds varies.
Improved clustered (D.4a) is the only fast transformer variant that can solve the task perfectly
for any sequence length and number of clusters combination.

generate the input, we replace some symbols from the first half of the sequence and some

different symbols from the second half, such that the target sequence can be reconstructed

from the input. An example of an input output pair with L = 4 can be seen in figure D.5. Note

that to solve this task, transformers simply need to learn to attend to the corresponding tokens

in the two identical halves of the sequence.

Input 0 4 M 2 2 0 4 5 M 2

Output 0 4 5 2 2 0 4 5 2 2

Figure D.5 – Example of an input and output pair for the masked copy task. M denotes the
masked out tokens.

We set the sequence length L to one of {31,63,127,255} which means the input length varies

between N = 26 and N = 29. For each sequence, we sample tokens uniformly from {1, . . . ,10}

and randomly mask out 20% of the tokens. To analyze the impact of number of clusters on

performance, we train full transformer as well as clustered variants with different number of

clusters and Reformer with different number of hashing rounds.

All transformer variants consist of 4 layers, 6 attention heads, embedding dimension of 32 for

each head, and feed-forward dimension of 768. For both clustered and improved clustered

attention, we set the number of bits for LSH to 63 and the number of Lloyd iterations for the

K-Means to 10. Both clustered and improved clustered attention are trained with 15, 30, 60

and 100 clusters. We also train Reformer with 1, 4, 8 and 16 hashing rounds. Finally, all models

are trained using R-Adam optimizer (Liu et al., 2020a) with a learning rate of 0.0002, batch size

of 32 for 5000 iterations.

97

Appendix D. Appendix for Chapter 5

In figure D.4, we illustrate the results of this experiment as heatmaps depicting the achieved

accuracy for a given combination of number of clusters and sequence length for clustered

transformers and number of hashing rounds and sequence length for Reformer. Note that the

vanilla transformer solves the task perfectly for all sequence lengths. We observe that both

clustered (Fig. D.4b) and Reformer (Fig. D.4c) require more clusters or more rounds as the

sequence length increases. However, improved clustered achieves the same performance

as vanilla transformers, namely perfect accuracy, for every number of clusters and sequence

length combination. This result increases our confidence that the required number of clusters

for our method is not a function of the sequence length but of the task at hand.

D.3.3 Automatic Speech Recognition

In this section, we present the details for the ASR experiments such as transformer architecture,

optimizer and learning rate schedule. As mentioned in § 5.4, for i-clustered, unless specified

otherwise, k is set to 32. Furthermore, all transformers have 6 heads with an embedding

dimension of 32 for each head and feed-forward dimension of 768. Other architectural details

specific to each experiment are described in the corresponding section.

Wall Street Journal

Convergence Behaviour:

For this experiment, we train a transformer with the full, clustered and Reformer attention

variants. All models consist of 9 layers. For Reformer, we train two variants with 1 and 4 rounds

of hashing with chunk size fixed to 32 as suggested. For clustered and improved clustered

attention we set the number of clusters to 100. We also set the number of Lloyd iterations for

K-Means to 10 and the bits for LSH to 63. All models are trained to convergence using the

R-Adam optimizer (Liu et al., 2020a) with a learning rate of 0.0001, max gradient norm set

to 10.0 and and weight decay of 0.01. The learning rate is dropped when the validation loss

plateaus. For each model we select the largest batch size that fits the GPU. The full attention

model was trained with a batch size of 2 while the clustered variants: clustered and i-clustered

could fit batch sizes of 14 and 10 respectively. For Reformer variants: lsh-1 and lsh-4, batch

sizes of 8 and 6 were used.

In figure D.6a, we show the training loss convergence for different transformer variants. It

can be seen that i-clustered has a much faster convergence than the clustered attention. This

shows that the improved clustered attention indeed approximates the full attention better.

More importantly, only the i-clustered attention has a comparable wall-clock convergence.

Given that full has a much smaller batch size, it makes many more updates per-epoch. We

think that a slightly smaller batchsize with more updates would have been a better choice

for the clustered transformers w.r.t. the wall-clock convergence. This is reflected in the

Switchboard experiments where the batchsizes for the clustered variants were smaller due

98

D.3. Experiments

0 50 100 150 200

Wall-Clock Time (in hours)

101

102
T

ra
in

in
g

L
o
ss

full

clustered

improved-clustered

lsh-1

lsh-4

(a) Wall Street Journal

0 50 100 150 200

Wall-Clock Time (in hours)

2× 10−1

3× 10−1

4× 10−1

V
a
li

d
a
ti

o
n

L
o
ss

full

clustered

improved-clustered

(b) Switchboard

Figure D.6 – We show training/validation loss convergence for different transformer variants.
Only i-clustered has a faster or comparable wall-clock convergence to full attention. Both the
clustered variants are have a significantly better convergence than both lsh-1 and lsh-4. Note
that due to a smaller batch size full makes many more updates than all other transformer
variants. More details can be found in § D.3.3 and § D.3.3.

to more layers. Finally, as it can be seen from the wall-clock convergence, the clustered

transformers significantly outperform Reformer.

Speed-Accuracy Tradeoff:

As described in § 5.4.1, for this task we additionally train full with 4 and 6 layers. Similary, we

train clustered with 9 layers, and 200 and 300 clusters. We also train an i-clustered model with

9 layer and 200 clusters, and smaller models with 6 layers, and 100 and 200 clusters.

For clustered and i-clustered variants with 9 layers, we finetuned the previously described

models trained with 100 clusters. We finetuned for 15 epochs with a learning rate of 0.00001.

We train full with 4 and 6 layers to convergence in a similar fashion to the full with 9 layers

described previously. Finally, for i-clustered, we first trained a model with 6 layers and 100

clusters using the training strategy used for 9 layers and 100 clusters. We then finetuned this

model for 15 epochs using 200 clusters and a learning rate of 0.00001.

Switchboard

Convergence Behaviour:

For this experiment, we train a transformer with the full and clustered attention variants. All

models consist of 12 layers. For the clustered and improved clustered attention we set the

number of clusters to 100. We also set the number of Lloyd iterations for K-Means to 10 and

the bits for LSH to 63.

Following common practice for flat-start lattice-free MMI training, we train over multiple gpus

with weight averaging for synchronization as described in (Povey et al., 2015). Specfically, we

modify the e2e training recipe for the Wall Street Journal in Kaldi (Povey et al., 2011) with the

99

Appendix D. Appendix for Chapter 5

following two key differences: first, the acoustic model training is done in PyTorch and second,

we use R-Adam optimizer instead on natural stochastic gradient descent.

All models are trained using the R-Adam optimizer with a learning rate of 0.0002, max gradient

norm set to 10.0 and and weight decay of 0.01. The learning rate is dropped when the validation

loss plateaus. We use the word error rate (WER) on the validation set for early stopping and

model selection. The full attention model is trained with a batch size of 2 while the clustered

variants: clustered and i-clustered are trained with a batch size of 6.

In figure D.6b, we show the training loss convergence for different transformer variants. It

can be seen that i-clustered has the fastest convergence for this setup. Note that the overall

training time for clustered attention is still less than that of full as it starts to overfit early on

the validation set WER.

Speed-Accuracy Tradeoff:

For this task we additionally train full with 6 and 8 layers. Similary, we train clustered with 12

layers, and 200 and 300 clusters. We also train i-clustered with 12 layer and 200 clusters, and

smaller models with 8 layers, and 100 and 200 clusters.

For the clustered and i-clustered variants with 12 layers, we finetuned the previously described

models trained with 100 clusters. We finetuned for 5 epochs with a learning rate of 0.00001.

Once again, full with 6 and 8 layers were trained to convergence similar to full with 12 layers

described previously. Finally, for i-clustered with 8 layers, we first train a model with 100

clusters using the training strategy used for 12 layers and 100 clusters. We then finetuned this

model for 5 epochs using 200 clusters and a learning rate of 0.00001.

D.3.4 RoBERTa Approximation

In this section we provide a qualitative comparison between the full attention, and the clus-

tered attention variants clustered and i-clustered used for approximation. As described in

§ 5.4.3, we use 25 clusters for both attention variants. In Figure D.7 we show the attention

distribution for the question tokens for a randomly selected question-context tuple from the

SQuAD dataset. For each token in the question we show the attention distribution over the

input sequence formed by concatenating the question and context tokens with CLS and SEP

tokens appended. It can be seen that with only a few clusters, improved clustered approxi-

mates the softmax attention very closely even when the attention distribution has complicated

and sparse patterns. In contrast, clustered attention fails to approximate such attention dis-

tributions. Moreover, it can further be seen that for almost all question tokens, both full and

improved clustered have the same tokens with the highest attention weights. This further

strengthens our believe that improved clustered attention can approximate a wide range of

complicated attention patterns.

100

D.3. Experiments

Manning finished the year with a career-low 67.9 passer rating, throwing for 2,249 yards and nine touchdowns,
with 17 interceptions. In contrast, Osweiler threw for 1,967 yards, 10 touchdowns and six interceptions for a rating
of 86.4. Veteran receiver Demaryius Thomas led the team with 105 receptions for 1,304 yards and six touchdowns,

while Emmanuel Sanders caught 76 passes for 1,135 yards and six scores, while adding another 106 yards
returning punts. Tight end Owen Daniels was also a big element of the passing game with 46 receptions for 517
yards. Running back C. J. Anderson was the team’s leading rusher 863 yards and seven touchdowns, while also

catching 25 passes for 183 yards. Running back Ronnie Hillman also made a big impact with 720 yards, five
touchdowns, 24 receptions, and a 4.7 yards per carry average. Overall, the offense ranked 19th in scoring with 355

points and did not have any Pro Bowl selections.

(a) context

Input tokens

Who

registered

the

most

receptions

on

the

Broncos

?

Q
u
es

ti
o
n

to
k
en

s

CLS

CLS registered

CLS

CLS most

CLS receptions

CLS on

CLS the

CLS Broncos els

CLS ?

(b) full

Input tokens

Who

registered

the

most

receptions

on

the

Broncos

?

Q
u
es

ti
o
n

to
k
en

s

CLS

CLS registered

CLS

CLS most

CLS receptions

CLS on

CLS the the

CLS els

CLS

(c) improved-clustered

Input tokens

Who

registered

the

most

receptions

on

the

Broncos

?

Q
u
es

ti
o
n

to
k
en

s

CLS

CLS

CLS

CLS

CLS yards yards

CLS

CLS

CLS

CLS

(d) clustered

Figure D.7 – Attention matrices for question-context tuples for full attention, and clustered
and i-clustered attention used for approximation. D.7a shows the the context for the question
with answer higlighted in red. D.7b shows the attention distribtution for full, D.7c and D.7d
show the approximation using i-clustered and clustered respectively. Note that i-clustered has
attention patterns very similar to full while clustered shows qualitatively different attention
patterns. For each question token, we also present the tokens with highest attention above a
threshold on the right axis. For more information refer to § D.3.4.

101

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,

J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467.

Alain, G., Lamb, A., Sankar, C., Courville, A., and Bengio, Y. (2015). Variance reduction in sgd

by distributed importance sampling. arXiv preprint arXiv:1511.06481.

Allen-Zhu, Z. (2017). Katyusha: The first direct acceleration of stochastic gradient methods. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages

1200–1205. ACM.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv preprint

arXiv:1701.07875.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural networks. In

International Conference on Machine Learning, pages 1120–1128.

Ba, J., Mnih, V., and Kavukcuoglu, K. (2014). Multiple object recognition with visual attention.

arXiv preprint arXiv:1412.7755.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. CoRR, abs/1607.06450.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning

to align and translate. In Proceedings of the 5th International Conference on Learning

Representations, San Diego, CA, USA.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Pro-

ceedings of the 26th annual international conference on machine learning, pages 41–48.

ACM.

Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., Desjardins, G.,

Warde-Farley, D., Goodfellow, I., Bergeron, A., et al. (2011). Theano: Deep learning on gpus

with python. In NIPS 2011, BigLearning Workshop, Granada, Spain, volume 3, pages 1–48.

Citeseer.

103

Bibliography

Blanc, G. and Rendle, S. (2017). Adaptive sampled softmax with kernel based sampling. arXiv

preprint arXiv:1712.00527.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005). Fast kernel classifiers with online and

active learning. Journal of Machine Learning Research, 6(Sep):1579–1619.

Britz, D., Guan, M. Y., and Luong, M.-T. (2017). Efficient attention using a fixed-size memory

representation. arXiv preprint arXiv:1707.00110.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,

P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,

Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,

S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.

(2020). Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell,

R., Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December

6-12, 2020, virtual.

Canévet, O., Jose, C., and Fleuret, F. (2016). Importance sampling tree for large-scale empirical

expectation. In Proceedings of the International Conference on Machine Learning (ICML),

pages 1454–1462.

Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2016). Listen, attend and spell: A neural network for

large vocabulary conversational speech recognition. In 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 4960–4964. IEEE.

Child, R., Gray, S., Radford, A., and Sutskever, I. (2019). Generating long sequences with sparse

transformers. arXiv preprint arXiv:1904.10509.

Chiu, C.-C. and Raffel, C. (2017). Monotonic chunkwise attention. arXiv preprint

arXiv:1712.05382.

Chollet, F. et al. (2015). keras. https://github.com/fchollet/keras.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis,

J., Mohiuddin, A., Kaiser, L., et al. (2020). Rethinking attention with performers. arXiv

preprint arXiv:2009.14794.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. (2020). ELECTRA: Pre-training text

encoders as discriminators rather than generators. In International Conference on Learning

Representations.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep network

learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289.

Collobert, R., Bengio, S., and Mariéthoz, J. (2002). Torch: a modular machine learning software

library. Technical report, Idiap.

104

https://github.com/fchollet/keras

Bibliography

Combalia, M. and Vilaplana, V. (2018). Monte-carlo sampling applied to multiple instance

learning for whole slide image classification.

Cordonnier, J.-B., Loukas, A., and Jaggi, M. (2020). On the relationship between self-attention

and convolutional layers. In International Conference on Learning Representations.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Binaryconnect: Training deep neural

networks with binary weights during propagations. In NIPS.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and Salakhutdinov, R. (2019a). Transformer-XL:

Attentive language models beyond a fixed-length context. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 2978–2988, Florence, Italy.

Association for Computational Linguistics.

Dai, Z., Yang, Z., Yang, Y., Cohen, W. W., Carbonell, J., Le, Q. V., and Salakhutdinov, R. (2019b).

Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint

arXiv:1901.02860.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: A fast incremental gradient method

with support for non-strongly convex composite objectives. In Advances in neural informa-

tion processing systems, pages 1646–1654.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, Ł. (2018). Universal transformers.

arXiv preprint arXiv:1807.03819.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale

Hierarchical Image Database. In CVPR09.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidi-

rectional transformers for language understanding. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,

Minnesota. Association for Computational Linguistics.

Dong, L., Xu, S., and Xu, B. (2018). Speech-transformer: a no-recurrence sequence-to-sequence

model for speech recognition. In 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 5884–5888. IEEE.

Fan, Y., Tian, F., Qin, T., Bian, J., and Liu, T.-Y. (2017). Learning what data to learn. arXiv

preprint arXiv:1702.08635.

Gao, B. and Pavel, L. (2017). On the properties of the softmax function with application in

game theory and reinforcement learning.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate

object detection and semantic segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 580–587.

105

Bibliography

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks.

Godfrey, J. J., Holliman, E. C., and McDaniel, J. (1992). Switchboard: Telephone speech

corpus for research and development. In [Proceedings] ICASSP-92: 1992 IEEE International

Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 517–520. IEEE.

Golatkar, A., Anand, D., and Sethi, A. (2018). Classification of breast cancer histology using

deep learning. In International Conference Image Analysis and Recognition, pages 837–844.

Springer.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and

Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing

systems, pages 2672–2680.

Goodman, J. (2001). Classes for fast maximum entropy training. In 2001 IEEE International

Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221),

volume 1, pages 561–564. IEEE.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006a). Connectionist temporal

classification: labelling unsegmented sequence data with recurrent neural networks. In

Proceedings of the 23rd international conference on Machine learning, pages 369–376.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006b). Connectionist temporal

classification: Labelling unsegmented sequence data with recurrent neural networks. In

Proceedings of the 23rd International Conference on Machine Learning.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017). Improved

training of wasserstein gans. In Advances in Neural Information Processing Systems, pages

5769–5779.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778.

Hestenes, M. R., Stiefel, E., et al. (1952). Methods of conjugate gradients for solving linear

systems, volume 49. NBS Washington, DC.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. In

NIPS Deep Learning and Representation Learning Workshop.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001). Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies.

106

Bibliography

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8):1735–1780.

Hooker, S. (2020). The hardware lottery. arXiv preprint arXiv:2009.06489.

Hou, L., Samaras, D., Kurc, T. M., Gao, Y., Davis, J. E., and Saltz, J. H. (2016). Patch-based

convolutional neural network for whole slide tissue image classification. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 2424–2433.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and

Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

Ilse, M., Tomczak, J., and Welling, M. (2018). Attention-based deep multiple instance learning.

In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Ma-

chine Learning, volume 80 of Proceedings of Machine Learning Research, pages 2127–2136,

Stockholmsmässan, Stockholm Sweden. PMLR.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift.

Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In

Advances in neural information processing systems, pages 2017–2025.

Jia, Z., Tillman, B., Maggioni, M., and Scarpazza, D. P. (2019). Dissecting the graphcore ipu

architecture via microbenchmarking. arXiv preprint arXiv:1912.03413.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predictive

variance reduction. In Advances in neural information processing systems, pages 315–323.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,

S., Boden, N., Borchers, A., et al. (2017). In-datacenter performance analysis of a tensor

processing unit. In Proceedings of the 44th annual international symposium on computer

architecture, pages 1–12.

Kahn, H. and Harris, T. E. (1951). Estimation of particle transmission by random sampling.

National Bureau of Standards applied mathematics series, 12:27–30.

Katharopoulos, A. and Fleuret, F. (2018). Not all samples are created equal: Deep learning with

importance sampling. In Proceedings of the International Conference on Machine Learning

(ICML).

Katharopoulos, A. and Fleuret, F. (2019). Processing megapixel images with deep attention-

sampling models. In Proceedings of the International Conference on Machine Learning

(ICML).

107

Bibliography

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). Transformers are rnns: Fast

autoregressive transformers with linear attention. In Proceedings of the International Con-

ference on Machine Learning (ICML).

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kitaev, N., Kaiser, Ł., and Levskaya, A. (2020). Reformer: The efficient transformer. arXiv

preprint arXiv:2001.04451.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Master’s thesis,

Department of Computer Science, University of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25:1097–

1105.

Lample, G., Sablayrolles, A., Ranzato, M. A., Denoyer, L., and Jegou, H. (2019). Large memory

layers with product keys. In Wallach, H., Larochelle, H., Beygelzimer, A., dÁlché-Buc, F., Fox,

E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages

8546–8557. Curran Associates, Inc.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020). Albert: A lite

bert for self-supervised learning of language representations. In International Conference

on Learning Representations.

Larsson, F. and Felsberg, M. (2011). Using fourier descriptors and spatial models for traffic

sign recognition. In Scandinavian Conference on Image Analysis, pages 238–249. Springer.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent networks of

rectified linear units. arXiv preprint arXiv:1504.00941.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. AT&T Labs

[Online]. Available: http://yann. lecun. com/exdb/mnist, 2.

LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon, I., Muller,

U., Sackinger, E., et al. (1995). Comparison of learning algorithms for handwritten digit

recognition. In International conference on artificial neural networks, volume 60, pages

53–60. Perth, Australia.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. (2019). Set transformer: A framework

for attention-based permutation-invariant neural networks. In International Conference on

Machine Learning.

Lei, L., Ju, C., Chen, J., and Jordan, M. I. (2017). Non-convex finite-sum optimization via scsg

methods. In Advances in Neural Information Processing Systems, pages 2345–2355.

108

Bibliography

Liang, T., Glossner, J., Wang, L., and Shi, S. (2021). Pruning and quantization for deep neural

network acceleration: A survey. arXiv preprint arXiv:2101.09671.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J. (2019a). On the variance of the

adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J. (2020a). On the variance of the

adaptive learning rate and beyond. In International Conference on Learning Representations.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). Ssd:

Single shot multibox detector. In European conference on computer vision, pages 21–37.

Springer.

Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G. E., Kohlberger, T., Boyko, A., Venugopalan, S.,

Timofeev, A., Nelson, P. Q., Corrado, G. S., et al. (2017). Detecting cancer metastases on

gigapixel pathology images. arXiv preprint arXiv:1703.02442.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,

and Stoyanov, V. (2019b). Roberta: A robustly optimized bert pretraining approach. arXiv

preprint arXiv:1907.11692.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and

Stoyanov, V. (2020b). RoBERTa: A robustly optimized BERT pretraining approach.

Loshchilov, I. and Hutter, F. (2015). Online batch selection for faster training of neural networks.

arXiv preprint arXiv:1511.06343.

Ma, X., Pino, J. M., Cross, J., Puzon, L., and Gu, J. (2020). Monotonic multihead attention. In

International Conference on Learning Representations.

Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). High-resolution image classi-

fication with convolutional networks. In 2017 IEEE International Geoscience and Remote

Sensing Symposium (IGARSS), pages 5157–5160. IEEE.

Maybury, M. (1999). Advances in automatic text summarization. MIT press.

Michel, P., Levy, O., and Neubig, G. (2019). Are sixteen heads really better than one? In Wallach,

H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances

in Neural Information Processing Systems 32, pages 14014–14024. Curran Associates, Inc.

Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical distributed language model. In

Advances in neural information processing systems, pages 1081–1088.

Mnih, V., Heess, N., Graves, A., et al. (2014). Recurrent models of visual attention. In Advances

in neural information processing systems, pages 2204–2212.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language model. In

Aistats, volume 5, pages 246–252. Citeseer.

109

Bibliography

Nazeri, K., Aminpour, A., and Ebrahimi, M. (2018). Two-stage convolutional neural network

for breast cancer histology image classification. In International Conference Image Analysis

and Recognition, pages 717–726. Springer.

Needell, D., Ward, R., and Srebro, N. (2014). Stochastic gradient descent, weighted sampling,

and the randomized kaczmarz algorithm. In Advances in Neural Information Processing

Systems, pages 1017–1025.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel programming

with cuda: Is cuda the parallel programming model that application developers have been

waiting for? Queue, 6(2):40–53.

Nocedal, J. (1980). Updating quasi-newton matrices with limited storage. Mathematics of

computation, 35(151):773–782.

Nocedal, J. and Wright, S. J. (2006). Line search methods. Numerical optimization, pages

30–65.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N.,

Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv

preprint arXiv:1609.03499.

Parmar, N., Ramachandran, P., Vaswani, A., Bello, I., Levskaya, A., and Shlens, J. (2019). Stand-

alone self-attention in vision models. In Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-

Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems

32, pages 68–80. Curran Associates, Inc.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning

library. In Advances in Neural Information Processing Systems, pages 8024–8035.

Paul, D. B. and Baker, J. M. (1992a). The design for the wall street journal-based csr corpus. In

Proceedings of the workshop on Speech and Natural Language, pages 357–362. Association

for Computational Linguistics.

Paul, D. B. and Baker, J. M. (1992b). The design for the wall street journal-based csr corpus. In

Proceedings of the Workshop on Speech and Natural Language, HLT ’91.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith, N. A., and Kong, L. (2021). Random

feature attention. arXiv preprint arXiv:2103.02143.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,

Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., and Vesely, K. (2011). The

kaldi speech recognition toolkit. In IEEE Workshop on Automatic Speech Recognition and

Understanding. IEEE Signal Processing Society.

110

Bibliography

Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X., Wang, Y., and Khudan-

pur, S. (2016). Purely sequence-trained neural networks for asr based on lattice-free mmi.

In Interspeech, pages 2751–2755.

Povey, D., Zhang, X., and Khudanpur, S. (2015). Parallel training of dnns with natural gradient

and parameter averaging. In In International Conference on Learning Representations:

Workshop track.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural

networks, 12(1):145–151.

Quattoni, A. and Torralba, A. (2009). Recognizing indoor scenes. In Computer Vision and

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 413–420. IEEE.

Radford, A., Narasimhan, K., Salimans, T., , and Sutskever, I. (2018). Improving language

understanding by generative pre-training. In OpenAI report.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models

are unsupervised multitask learners. OpenAI Blog, 1(8):9.

Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable questions

for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 784–789.

Ramapuram, J., Diephuis, M., Webb, R., and Kalousis, A. (2018). Variational saccading: Efficient

inference for large resolution images. arXiv preprint arXiv:1812.03170.

Ranzato, M. (2014). On learning where to look. arXiv preprint arXiv:1405.5488.

Rawat, A. S., Chen, J., Yu, F. X. X., Suresh, A. T., and Kumar, S. (2019). Sampled softmax with

random fourier features. In Advances in Neural Information Processing Systems, pages

13834–13844.

Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). Cnn features off-the-shelf: an

astounding baseline for recognition. In Computer Vision and Pattern Recognition Workshops

(CVPRW), 2014 IEEE Conference on, pages 512–519. IEEE.

Recasens, A., Kellnhofer, P., Stent, S., Matusik, W., and Torralba, A. (2018). Learning to zoom: a

saliency-based sampling layer for neural networks. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 51–66.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified,

real-time object detection. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 779–788.

Richtárik, P. and Takáč, M. (2013). On optimal probabilities in stochastic coordinate descent

methods. arXiv preprint arXiv:1310.3438.

111

Bibliography

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of mathe-

matical statistics, pages 400–407.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. (2020). Efficient content-based sparse attention

with routing transformers. arXiv preprint arXiv:1908.03265.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. (2017). Pixelcnn++: Improving the

pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint

arXiv:1701.05517.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. arXiv

preprint arXiv:1511.05952.

Schlag, I., Irie, K., and Schmidhuber, J. (2021). Linear transformers are secretly fast weight

memory systems. arXiv preprint arXiv:2102.11174.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face

recognition and clustering. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 815–823.

Shen, Z., Zhang, M., Zhao, H., Yi, S., and Li, H. (2020). Efficient attention: Attention with linear

complexities. arXiv preprint arXiv:1812.01243.

Shrivastava, A. and Li, P. (2014). Asymmetric lsh (alsh) for sublinear time maximum inner

product search (mips). In Advances in Neural Information Processing Systems, pages 2321–

2329.

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., and Moreno-Noguer, F. (2015). Dis-

criminative learning of deep convolutional feature point descriptors. In Computer Vision

(ICCV), 2015 IEEE International Conference on, pages 118–126. IEEE.

Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., Snead, D. R., Cree, I. A., and Rajpoot, N. M.

(2016). Locality sensitive deep learning for detection and classification of nuclei in routine

colon cancer histology images. IEEE transactions on medical imaging, 35(5):1196–1206.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. (2019). MASS: Masked sequence to sequence

pre-training for language generation. In Chaudhuri, K. and Salakhutdinov, R., editors, Pro-

ceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings

of Machine Learning Research, pages 5926–5936, Long Beach, California, USA. PMLR.

Sperber, M., Niehues, J., Neubig, G., Stüker, S., and Waibel, A. (2018). Self-attentional acoustic

models. In 19th Annual Conference of the International Speech Communication Association

(InterSpeech 2018), Hyderabad, India.

Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin, A. (2019a). Adaptive attention span in

transformers. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 331–335, Florence, Italy. Association for Computational Linguistics.

112

Bibliography

Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin, A. (2019b). Adaptive attention span in

transformers. arXiv preprint arXiv:1905.07799.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural

networks. In Advances in Neural Information Processing Systems 27, pages 3104–3112.

Curran Associates, Inc.

Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural

networks. In International Conference on Machine Learning, pages 6105–6114. PMLR.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and Salakhutdinov, R. (2019). Transformer

dissection: An unified understanding for transformer’s attention via the lens of kernel. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

pages 4343–4352, Hong Kong, China. Association for Computational Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and

Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing

systems, pages 5998–6008.

Vyas, A., Katharopoulos, A., and Fleuret, F. (2020). Fast transformers with clustered attention.

In Proceedings of the international conference on Neural Information Processing Systems

(NeurIPS).

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2019). GLUE: A multi-task

benchmark and analysis platform for natural language understanding. In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Wang, L., Yang, Y., Min, M. R., and Chakradhar, S. (2016). Accelerating deep neural network

training with inconsistent stochastic gradient descent. arXiv preprint arXiv:1603.05544.

Wu, C.-Y., Manmatha, R., Smola, A. J., and Krahenbuhl, P. (2017). Sampling matters in deep

embedding learning. In The IEEE International Conference on Computer Vision (ICCV).

Wu, Z., Shen, C., and Van Den Hengel, A. (2019). Wider or deeper: Revisiting the resnet model

for visual recognition. Pattern Recognition.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio, Y.

(2015). Show, attend and tell: Neural image caption generation with visual attention. In

International conference on machine learning, pages 2048–2057.

Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang, J., and Hua, X.-s. (2019a). Quantiza-

tion networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7308–7316.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., and Le, Q. V. (2019b). Xlnet:

Generalized autoregressive pretraining for language understanding. CoRR, abs/1906.08237.

113

Bibliography

You, Y., Gitman, I., and Ginsburg, B. (2017). Large batch training of convolutional networks.

arXiv preprint arXiv:1708.03888.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M. (2019). Q8BERT: quantized 8bit BERT.

CoRR, abs/1910.06188.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In Richard C. Wilson, E. R. H.

and Smith, W. A. P., editors, Proceedings of the British Machine Vision Conference (BMVC),

pages 87.1–87.12. BMVA Press.

Zhao, P. and Zhang, T. (2015). Stochastic optimization with importance sampling for regular-

ized loss minimization. In Proceedings of the 32nd International Conference on Machine

Learning (ICML-15), pages 1–9.

114

Angelos Katharopoulos
PhD Student in EPFL

Bahnhofstrasse 34  angelos.katharopoulos@idiap.ch
 Rümlang  angeloskath.github.io

Switzerland  github.com/angeloskath

Education Doctor of Philosophy (PhD)
École Polytechnique Fédérale de Lausanne, Switzerland

2017 – Today

PhD Advisor: François Fleuret (https://fleuret.org/francois)
Research interests: Making Deep Neural Networks efficient.

Electrical and Computer Engineering
Aristotle University of Thessaloniki, Greece

2008 - 2015

Degree: Diploma in Electrical and Computer Engineering
Thesis: Learning discriminative codebooks for local feature aggregation

Publications [1] Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, Sanja Fidler. “Neural
Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks”.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[2] Apoorv Vyas, Angelos Katharopoulos, François Fleuret. “Fast Transformers with Clus-
tered Attention”. Neural Information Processing Systems (NeurIPS), 2020.

[3] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, François Fleuret. “Transform-
ers are RNNs: Fast Autoregressive Transformers with Linear Attention”. In Proceedings
of the International Conference on Machine Learning (ICML), 2020.

[4] Angelos Katharopoulos, François Fleuret. “Processing Megapixel Images with Deep
Attention-Sampling Models”. In Proceedings of the International Conference on Machine
Learning (ICML), 2019.

[5] Angelos Katharopoulos, François Fleuret. “Not All Samples Are Created Equal: Deep
Learning with Importance Sampling”. In Proceedings of the International Conference on
Machine Learning (ICML), 2018.

[6] Angelos Katharopoulos∗, Despoina Paschalidou∗, Christos Diou, Anastasios Delopou-
los. “Learning Local Feature Aggregation Functions with Backpropagation”. In Signal
Processing Conference (EUSIPCO ’17).

[7] Angelos Katharopoulos∗, Despoina Paschalidou∗, Christos Diou, Anastasios Delopou-
los. “Fast Supervised LDA for discovering micro-events in large-scale video datasets”.
ACM International conference on Multimedia (MM ’16).

Professional
Experience

Research Intern
Facebook AI Research, Menlo Park, CA (remotely)

June 2021 – October 2021

Working on efficient transformers for structured computer vision tasks.

115

Research Intern
Naver Labs Europe, Grenoble, France (remotely)

January 2021 – June 2021

Working on transformer networks for visual localization.

Graduate Research Assistant
Idiap Research Institute, Martigny, Switzerland

March 2017 – January 2021

Reducing the computational complexity of deep neural networks using sampling or
approximations.

Senior Software Engineer
Total Eclipse, Thessaloniki, Greece

March 2014 – January 2015

Designed the software architecture for in-house frameworks in C++ and C#, imple-
mented 2D visual effects with OpenGL shaders.

Founder & Lead Software Engineer
Yourse, Thessaloniki, Greece

November 2009 – February 2014

Yourse became the most successful job search engine in Greece utilizing its advantage
in Greek natural language processing. Among others, I implemented the search engine
crawler, the query parser, the stemmers and the search quality and ranking.

Open Source
Software
Development

Fast Transformers
https://fast-transformers.github.io  887⋆

June 2020 – Today

A library for efficient self-attention and transformer implementations.

simple-3dviz
https://simple-3dviz.com  58⋆

August 2019 – Today

Fast and easy-to-use 3D visualization library with python and OpenGL.

Attention Sampling
https://attention-sampling.com  76⋆

July 2019 – Today

Allows neural networks to process extremely large images with a complexity decoupled
from the size of the images.

Keras Importance Sampling
https://importance-sampling.com  260⋆

July 2017 – Today

Keras Importance Sampling is a library that speeds up neural network training by
selecting important examples from the dataset for each iteration.

LDA++
http://ldaplusplus.com  19⋆

February 2016 – Today

A C++ library for fast supervised and unsupervised Latent Dirichlet Allocation.

PHP NlpTools
http://php-nlp-tools.com  663⋆

July 2012 – January 2018

NlpTools is the most comprehensive PHP library for natural language processing. It
provides a relatively large collection of algorithms for text classification, clustering,
topic modeling, stemming, preprocessing and more.

116

Skills • Programming Languages: C, C++, C#, Python, PHP, Java 7/8, JavaScript, Go, Mat-
lab/Octave, GLSL, bash

• Parallel and Distributed Computing: Nvidia CUDA, MPI
• Deep Learning Frameworks: Keras, TensorFlow, PyTorch, Theano, Caffe
• Grid Infrastructure: Sun Grid Engine, Amazon EC2, Google Compute Engine
• Software testing: JUnit, PHPUnit, googletest, unittest
• Build automation: GNU Make, CMake
• RDBMSs: PostgreSQL, MySQL, Sqlite
• Other: OpenCV, VLFeat, Atmel AVR assembly, Linux, Git, LATEX

Academic
Service

• Reviewer for ICCV (2019), ECCV (2020), NeurIPS (2019, 2020), AAAI (2020, 2021),
ICLR (2020), CVPR (2020, 2021), ICML (2021)

Distinctions • Outstanding Reviewer Award (ECCV 2020, CVPR 2021)
• IEEE Xtreme Country Winner (2012, 2013, 2014, 2015)

55th, 55th, 62nd, 54th respectively worldwide

Teaching
Experience

Deep Learning (Assistant)
African Masters of Machine Intelligence, Kigali, Rwanda

October 2018

Deep Learning (Assistant)
EPFL, Lausanne, Switzerland

Spring 2018, Spring 2017

117

	Acknowledgements
	Abstract (English/Français/Deutsch/)
	Contents
	Introduction
	Dissertation outline and contributions

	Not All Samples Are Created Equal
	Chapter Introduction
	Related Work
	Importance Sampling for Convex Problems
	Importance Sampling for Deep Learning
	Other Sample Selection Methods
	Stochastic Variance Reduced Gradient

	Variance Reduction for Deep Neural Networks
	Introduction to Importance Sampling
	Beyond the Full Gradient Norm
	When is Variance Reduction Possible?

	Experiments
	Ablation study
	Image classification
	Fine-tuning
	Pixel by Pixel MNIST

	Chapter Conclusions

	Processing Megapixel Images with Deep Attention Sampling
	Chapter Introduction
	Related Work
	Recurrent visual attention models
	Patch based models
	Attention models
	Other methods

	Methodology
	Attention in neural networks
	Attention sampling
	Multi-resolution data
	Implementation details

	Experimental evaluation
	Introduction
	Megapixel MNIST
	Histopathology images
	Speed limit sign detection

	Chapter Conclusions

	Fast Autoregressive Transformers with Linear Attention
	Chapter Introduction
	Related Work
	Efficient Transformers
	Understanding Self-Attention
	Linearized softmax

	Linear Transformers
	Transformers
	Linearized Attention
	Causal Masking
	Transformers are RNNs

	Experiments
	Synthetic Tasks
	Image Generation
	Automatic Speech Recognition

	Chapter Conclusions

	Fast Transformers with Clustered Attention
	Chapter Introduction
	Related Work
	Attention Improvements Before Transformers
	Non-asymptotic Improvements
	Improvements in Asymptotic Complexity

	Scaling Attention with Fast Clustering
	Vanilla Attention
	Clustered Attention
	Improving clustered attention

	Experiments
	Evaluation on Wall Street Journal (WSJ)
	Evaluation on Switchboard
	RoBERTa Approximation

	Conclusions

	Conclusions and Future Work
	Future work

	Appendix for Chapter 2
	Differences of variances
	An upper bound to the gradient norm
	Comparison with SVRG methods
	Ablation study on B
	Importance Sampling with the Loss

	Appendix for Chapter 3
	Introduction
	Sampling with replacement
	Sampling without replacement
	Extra related work
	Ablation study on the entropy regularizer
	Ablation study on the number of patches
	Qualitative results of the learned attention distribution
	Histopathology images
	Speed limits

	Network Architecture Details
	Megapixel MNIST
	Histopathology images
	Speed Limits

	Appendix for Chapter 4
	Gradient Derivation
	Training Evolution
	Image Generation Throughput Discussion
	Stateful softmax attention
	Equalizing the batch size

	Qualitative Results on Image Generation

	Appendix for Chapter 5
	Scaling Attention with Fast Clustering
	Clustered attention
	Improved clustered attention

	Quality of the approximation
	Experiments
	Time and Memory Benchmark
	Ablation on clusters and sequence length
	Automatic Speech Recognition
	RoBERTa Approximation

	Bibliography
	Curriculum Vitae

