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Abstract: OptoMechanical Modulation Tomography (OMMT) exploits compressed sensing to
reconstruct high resolution microscopy volumes from fewer measurement images compared to
exhaustive section sampling in conventional light sheet microscopy. Nevertheless, the volumetric
reconstruction process is computationally expensive, making it impractically slow to use on
large-size images, and prone to generating visual artefacts. Here, we propose a reconstruction
approach that uses a 1+2D Total Variation (TV1+2) regularization that does not generate such
artefacts and is amenable to efficient implementation using parallel computing. We evaluate our
method for accuracy and scaleability on simulated and experimental data. Using a high quality,
but computationally expensive, Plug-and-Play (PnP) method that uses the BM4D denoiser as a
benchmark, we observe that our approach offers an advantageous trade-off between speed and
accuracy.

1. Introduction

Compressed sensing techniques exploit prior knowledge of the imaged object to reconstruct a
high quality image [1, 2] from fewer measurements than traditional sampling would require. In
3D medical imaging, reconstruction algorithms exploit the specificities of the imaging procedure
to yield improved performance and faster convergence speed [3].

In fluorescence microscopy, compressed sensing offers the prospect of high quality imaging
while also reducing light exposure, which can lead to photobleaching or induce toxicity during in
vivo imaging. Furthermore it could increase acquisition speed while taking fewer images [4].
Compressive sensing approaches have been proposed for structured illumination microscopy [5]
and widefield imaging [6].

For Selective Plane Illumination Microscopy (SPIM) [7], compressive sensing has been
implemented by collecting axial projections after illuminating the sample with a spatial modulation
pattern, either by shaping the illumination with digital micromirror devices [8] or by applying
optomechanical modulation [9]. The latter approach mechanically moves the sample along
the axial (focal) direction while simultaneously modulating the overall light sheet intensity in
time, all while keeping the camera shutter open. Measurements are repeated for multiple scans,
each with a different modulation pattern. The volume is reconstructed computationally. We
will use an approach similar to [9] as it is a particularly attractive way to achieve spatial light
modulation. First, it can be implemented with minimal hardware modifications of simple light
sheet microscopes such as, e.g., the OpenSPIM microscope [10]. Second, the spatial illumination
pattern is created by modulating the intensity in time, which leaves great freedom for designing
a suitable modulation pattern. We will refer to this technique as OptoMechanical Modulation
Tomography (OMMT).

Despite the potential benefits of compressive sensing approaches, the computational cost of
reconstructing 3D volumes is particularly high. Naive extensions of 2D reconstruction schemes



to 3D are impractical for the large images that can be acquired with modern microscopes.
Furthermore, overly simplified 1D or 2D regularizing terms may not capture the objects’ 3D
nature, a prior that is key to ensure quality reconstructions.

Recently, in the field of 2D image reconstruction, the introduction of Plug-and-Play (PnP)
methods has allowed replacing explicit regularization priors with denoising algorithms for
image reconstruction [11, 12]. This led to using high-quality denoising algorithms such as
Block-Matching and 3D filtering (BM3D) [13] to improve image reconstruction [14–16]. More
recently, the use of pretrained deep learning based denoisers has further pushed the performance
of PnP methods [17, 18].

Here, we propose an efficient reconstruction method for OMMT that exploits the 3D nature of
the data, thereby reducing the reconstruction artefacts from which this techniques suffered [9]. To
that end, we introduce a hybrid 1+2D regularization function that takes into account the anisotropy
of the problem, while allowing efficient 3D computations thanks to parallel computing. We also
implement a high quality, but computationally expensive, Plug-and-Play (PnP) regularization
function to serve as a benchmark against which we compare our proposed approach. We evaluate
our method for accuracy and scaleability on simulated and experimental data.

2. Method

We briefly recall the method by Woringer et al. [9], who combine temporal illumination modulation
combined with focal plane scanning to generate patterned illumination along the depth axis
and implement 3D compressed sensing. In this approach, the mechanized focus stage moves
at a constant speed 𝑣 during a single camera exposure time Δ𝐸 , enabling the acquisition of
projections by optical integration. Simultaneously, the intensity of the light sheet illumination
varies according to a temporal modulation function, which creates spatial light patterns along the
depth, as illustrated in Fig. 1 (a-b).
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Fig. 1. Overview of OMMT imaging. (a) Optomechanical modulation combines focus
sweeping synchronized with temporal light modulation. (b) The modulation creates
a shaped illumination pattern in the depth axis. (c) This is repeated to acquire 𝑁
projections with different modulation functions, which are stacked into the measurement
matrix G′.



2.1. Forward model

Let 𝑓 (𝑥, 𝑦, 𝑧) be a three-dimensional object, with 𝑥, 𝑦, 𝑧 the horizontal, vertical, and focus axes
respectively. We write the Point Spread Function (PSF) of the system as ℎ(𝑥, 𝑦, 𝑧), and the
position in depth of the focal plane over time 𝑡 as 𝑧(𝑡) = 𝑣𝑡. We acquire 𝑁 projections 𝑝𝑛 (𝑥, 𝑦)
(𝑛 = 1, . . . , 𝑁) by modulating the light intensity over time using a function 𝑖𝑛 (𝑡) defined over the
interval [0,Δ𝐸], resulting in the following imaging model:

𝑝𝑛 (𝑥, 𝑦) =
∫ Δ𝐸

0
[ 𝑓 ∗ ℎ] (𝑥, 𝑦, 𝑣𝑡) 𝑖𝑛 (𝑡) d𝑡 + 𝜖𝑛 (𝑥, 𝑦), (1)

where ∗ is a 3D convolution operator and 𝜖𝑛 (𝑥, 𝑦) is an additive measurement noise.
The optomechanical modulation is particularly flexible, as the illumination functions 𝑖𝑛 (𝑡) can

be arbitrarily chosen, with the only constraint that all their values are positive. We choose to use
an incomplete Hadamard basis for our experiments, as it can easily be generated by switching the
illumination on and off over time, and has been used successfully in computational imaging and
compressed sensing applications [4, 8, 19–23].

We start by constructing a Hadamard matrix H𝑀 ∈ R𝑀×𝑀 of order 𝑀 using Sylvester’s
construction, setting its negative values to 0 to conform to the positivity constraint. We then
build an incomplete Hadamard matrix H𝑁 ∈ R𝑁×𝑀 of size 𝑁 × 𝑀 by selecting the first row
(full of ones) of H𝑀 and stacking it with 𝑁 − 1 other rows of H𝑀 that are randomly sampled
without replacement with uniform probability. By using 𝑁 ≤ 𝑀 , we can reduce the number of
measurements while keeping the high frequency sampling offered by a higher order Hadamard
matrix. Finally, we define our illumination modulation functions as:

𝑖𝑛 (𝑡) = 𝐻𝑁 [𝑛, 𝑗] s.t. 𝑗 − 1 ≤ 𝑀𝑡

Δ𝐸
< 𝑗, (2)

with 𝑛 ∈ {1, . . . , 𝑁}, and 𝑗 ∈ {1, . . . , 𝑀}.
By applying a variable substitution 𝑧 = 𝑣𝑡, we can express Eq. (1) as an integral over depth

rather than time:

𝑝𝑛 (𝑥, 𝑦) =
∫ 𝐿

0
[ 𝑓 ∗ ℎ] (𝑥, 𝑦, 𝑧) 𝑔𝑛 (𝑧) d𝑧 + 𝜖𝑛 (𝑥, 𝑦), (3)

where 𝐿 = 𝑣Δ𝐸 is the scanning depth, and 𝑔𝑛 (𝑧) = 1
𝑣 𝑖𝑛 ( 𝑧𝑣 ), defined over [0, 𝐿], is the spatial

illumination pattern created by the temporal modulation 𝑖𝑛 combined with focus sweeping,
illustrated in Fig. 1 (b).

Reconstructing the sample 𝑓 from the imaging model in Eq. (3) is a three-dimensional problem
whose computational complexity increases with the size of the imaged volume. It makes this
model unusable to reconstruct volumetric data in reasonable time when working with the typical
image sizes acquired by modern microscopes.

To address this issue, Woringer et al. [9] approach the problem as a stack of 2D images, which
they split into smaller regions that they reconstruct independently in a parallel computing cluster.
For these 2D reconstructions, they first perform empirical measurements of the 3D PSF that they
crop to a single 𝑥𝑧 plane. Because this approach solves 2D reconstructions independently, it
cannot exploit the 3D nature of the sample to improve its reconstruction consistency, leading
to the adjacent sections showing visual incoherences because they are computed separately.
Moreover, the computational cost is still high and the method requires access to a computational
cluster to run in reasonable time, as reconstructing a 512× 512× 100 volume on a single machine
takes longer than a full day to complete.

In order to reduce the computational complexity of this problem, we simplify Eq. (3) by ignoring
the lateral extent of the PSF and modelling it with a one-dimensional function ℎ′ (𝑧) = ℎ(0, 0, 𝑧).



This is motivated by the fact that light sheet devices have a thin truncated PSF, which vanishes
much faster in the lateral directions than in the axial one [24]. Using this simplified PSF, we
write an approximated projection 𝑝′𝑛:

𝑝′𝑛 (𝑥, 𝑦) =
∫ 𝐿

0

(∫ ∞

−∞
𝑓 (𝑥, 𝑦, 𝑢) ℎ′ (𝑢 − 𝑧) d𝑢

)
𝑔𝑛 (𝑧) d𝑧 + 𝜖𝑛 (𝑥, 𝑦) (4)

𝑝′𝑛 (𝑥, 𝑦) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦, 𝑢)

(∫ 𝐿

0
ℎ′ (𝑢 − 𝑧) 𝑔𝑛 (𝑧) d𝑧

)
d𝑢 + 𝜖𝑛 (𝑥, 𝑦) (5)

𝑝′𝑛 (𝑥, 𝑦) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦, 𝑧) 𝑔′𝑛 (𝑧) d𝑧 + 𝜖𝑛 (𝑥, 𝑦), (6)

where 𝑔′𝑛 (𝑧) = 𝑔𝑛 (𝑧) ⊛ ℎ′ (−𝑧) is the modulation function blurred by the simplified PSF by
the 1D convolution ⊛. At each location (𝑥, 𝑦) in a projection, the imaging model reduces to a
one-dimensional expression that is much simpler and faster to compute than Eq. (3).

When discretized, we can write Eq. (6) as the following linear expression:

P[ 𝑗 , 𝑘, :] = G′F[ 𝑗 , 𝑘, :] + E[ 𝑗 , 𝑘, :], (7)

where F ∈ R𝑊×𝐻×𝐷 is a discrete sampling of 𝑓 with width 𝑊 , height 𝐻, and depth 𝐷, the
latter corresponding to the focus axis 𝑧. G′ ∈ R𝑁×𝐷 is the matrix operator corresponding to
the multiplication with the modulation function 𝑔′𝑛 and the axial integration, and constitutes
the compressed sensing measurement matrix. The values in P ∈ R𝑊×𝐻×𝑁 correspond to our
discrete measurements, and E ∈ R𝑊×𝐻×𝑁 is the measurement noise. We use : as a shorthand
notation to describe all elements in the corresponding dimension of the array [25]. For each
pair of coordinates 𝑗 = 1, . . . ,𝑊 and 𝑘 = 1, . . . , 𝐻, the model is a simple matrix-vector
multiplication, which can be computed very efficiently. It can therefore realistically be applied
on big experimental data to compute volumetric reconstructions in reasonable time.

To derive the measurement matrix, we estimate ℎ′ (𝑧) based on a simulated PSF. Since the 1D
model is an approximation, we do not require accurate experimental measurements of the 3D
PSF which can be tedious to obtain. We compute the rows of G′ by discretizing the blurred light
patterns 𝑔′𝑛 according to the axial resolution of F, as illustrated in Fig. 1 (c).

2.2. Inverse problem

Reconstructing F from the measurements requires solving the linear inverse problem correspond-
ing to Eq. (7). Since the reconstructed axial resolution is higher than the number of acquired
projections 𝐷 > 𝑁 , this inverse problem is ill-posed and requires additional constraints to be
solved uniquely. A common approach in compressed sensing is to formulate the reconstruction
as a minimization problem [4, 9, 26]:

F̂ = arg min
F∈R𝑊×𝐻×𝐷

©«
𝑊∑︁
𝑗=1

𝐻∑︁
𝑘=1

C (p[ 𝑗 , 𝑘, :],GF[ 𝑗 , 𝑘, :]) + 𝜆 R (F)ª®¬ , (8)

where C : R𝑁 × R𝑁 → R+ is a loss functional that ensures consistency of the solution with the
measurements, R : R𝑊×𝐻×𝐷 → R+ is a regularization term that imposes prior constraints and
the parameter 𝜆 ∈ R+ allows adjusting the strength of the regularization. More specifically, we
use a squared ℓ2 loss for data consistency:

C
(
p[ 𝑗 , 𝑘, :],GF̂[ 𝑗 , 𝑘, :]

)
= | |p[ 𝑗 , 𝑘, :] − GF̂[ 𝑗 , 𝑘, :] | |22. (9)

We solve Eq. (8) using an iterative optimization algorithm, the alternating direction method of
multipliers (ADMM [27–29]), which alternates between minimizing C and R. Choosing a good



regularization R is crucial as it impacts the quality of the reconstruction but also the computational
complexity of the minimization. We consider three different regularization candidates that we
compare below.

2.2.1. ℓ1 sparsity constraint

In the original method, Woringer et al. [9] use a spatial sparsity constraint expressed as:

R(F) = | |F| |1. (10)

This regularization favours reconstructions that are sparse [30], and is common in compressed
sensing applications [2,4]. It has a low computational cost, but it does not enforce any continuity
between adjacent values in the volume and therefore cannot take advantage of the additional
information provided by neighbouring voxels in the reconstruction.

2.2.2. TV1+2 sparsity constraint

Another common regularization is Total Variation (TV), which aims at generating smoother
solutions while preserving sharp edges [31, 32]. We introduce a 1+2D formulation that penalizes
TV separately along the 𝑧 axis, which we call TV1+2:

R(F) = 𝜌 TV1D (F) + TV2D (F) (11)

where TV1D is the 1D TV along the depth axis and TV2D is the isotropic 2D TV on 𝑥𝑦 sections:

TV1D (F) =
𝑊∑︁
𝑖=1

𝐻∑︁
𝑗=1

𝐷∑︁
𝑘=1

|F[𝑖, 𝑗 , 𝑘 + 1] − F[𝑖, 𝑗 , 𝑘] | (12)

TV2D (F) =
𝑊∑︁
𝑖=1

𝐻∑︁
𝑗=1

𝐷∑︁
𝑘=1

√︃
|F[𝑖 + 1, 𝑗 , 𝑘] − F[𝑖, 𝑗 , 𝑘] |2 + |F[𝑖, 𝑗 + 1, 𝑘] − F[𝑖, 𝑗 , 𝑘] |2. (13)

The factor 𝜌 allows us to tune the regularization strength independently in the compression
axis. We use that additional degree of freedom to factor in the anisotropic properties of the
reconstructed volume, which stem from the compressed imaging and the shape of the PSF.

This regularization enforces visual coherence across space in the solution, thus benefitting
from the additional information contained in neighbouring voxels. Although this comes at
the cost of a higher computational complexity, we can massively speed it up using parallel
computing. Indeed, all the minimization steps are simple operations that can be computed
independently: both the data consistency term and TV1D are 1D operations, and TV2D is a
simple 2D computation, as illustrated on Fig. 2. Moreover, the ADMM algorithm allows
computing these terms simultaneously at each iteration, making the minimization fall into the
‘embarrassingly parallel’ category. We can therefore expect fast computations on machines
supporting multithreaded execution, or with Graphical Processing Unit (GPU) acceleration.

2.2.3. PnP BM4D constraint

ADMM does not compute the gradient of R but can instead rely on its proximal function to carry
out the minimization. This makes it suitable for implementing PnP methods [11] by using a
denoiser as the proximal function to an implicit regularization prior. This is not possible with the
SPIRAL solver [33] used by Woringer et al. [9], as it requires an explicit regularization function.

Although deep learning denoisers provide state-of-the-art performance for PnP methods in
2D, publicly available pretrained universal 3D denoisers based on deep learning are lacking, and
the massive computational cost of building a volumetric dataset and training our own model
prevents us from using one in this work. Instead, we use the BM4D denoiser [34], an extension
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Fig. 2. Regularization with TV1+2 implements 3D prior constraints while keeping
efficient computations using a parallel implementation. (a) Data consistency relies on
the 1D forward model. (b) TV1D regularization along the compression axis is tuned
separately to account for anisotropy in the volume. (c) Isotropic TV2D on 𝑥𝑦 sections
allows information sharing between the many 1D problems.

of the well-known BM3D algorithm to volumetric data, as a PnP prior for our problem. By
enforcing a 3D spatial coherence in the reconstruction, this prior also benefits from information
sharing between adjacent voxels. The regularization strength 𝜆 in Eq. (8) is replaced by a new
parameter 𝜎 specific to BM4D, which is the strength of the denoising applied at each iteration of
the ADMM optimization.

2.3. Reliable choice of the hyperparameters

The performance of the reconstruction algorithm is impacted by the selected hyperparameter
values for the optimization problem (depending on the regularization, these can be 𝜆, 𝜌 or 𝜎).
We have found the minimization of the data consistency cost C to be a good proxy for the
performance of the reconstruction. Although the minimum cost does not always correspond
to the best reconstruction accuracy, we have measured that it consistently gives a very similar
performance to the actual best on our experiments.

Choosing hyperparameters that minimize the final data consistency cost is therefore a reliable
way to guarantee good performance using a reproducible method. This does not require knowing
the ground truth, and can be applied regardless of the regularization constraints used. That is
particularly helpful in the case of the BM4D PnP prior, as the lack of an explicit regularization
function prevents from using common hyperparameter selection methods such as the L-curve [35].

3. Experiments and results

In order to take advantage of the highly parallel nature of our algorithm, we implemented the
reconstruction using the scientific imaging library SCICO [36]. This framework provides an
efficient implementation of ADMM based on JAX [37, 38], a high-performance Python library
that uses just-in-time compilation to provide parallel computing and hardware acceleration (such
as GPU). We used a Python implementation of an updated version of BM4D provided by its
authors [39, 40].

We first characterize our method on simulated data, then validate it on experimental images.

3.1. Characterization on simulated data

We used our previously introduced simulation framework [41] to generate synthetic volumes of
size 128×128×128 with physical properties matching those of data acquired with the OpenSPIM
platform [10]. We simulated the imaging 3D PSF using an implementation of the Born & Wolf
model [42, 43]. After the imaging simulation, we corrupted the data with shot noise generated
using a Poisson distribution. We set the strength of the noise by rescaling the data to a chosen



maximum photon count before sampling the Poisson distribution, with higher photon counts
corresponding to weaker overall noise. Finally, we quantized the data to a 12 bit representation to
emulate acquisition with a digital camera.

In practice, the PSF simulation model used for reconstruction in our method does not exactly
match the actual imaging PSF. In order to account for this discrepancy in our experiments, we
used a different simplified Gaussian beam model [44] to compute the 1D PSF when building the
measurement matrix.

To select the hyperparameters, we ran loose grid searches (in logarithmic space for 𝜆 and 𝜌,
and in linear space for 𝜎) and selected the solution with minimal consistency cost as described in
Section 2.3. We use 𝑁 = 16 and 𝑀 = 32 to build our measurement matrices. We measured that
this ratio of 2 for undersampling of the Hadamard matrix yields the best performance for a fixed
number of projections.

In order to evaluate how the use of different regularizations can affect the artefacts present
in the reconstruction, we simulated an object with a moon-shaped cross-section and imaged it
with low noise (104 photons). The 3D reconstructions obtained using our method with each
regularization prior are shown in Fig. 3, alongside the central 𝑥𝑦 and 𝑥𝑧 sections.
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Fig. 3. Reconstruction of a simulated sample using the different regularization priors.
The ℓ1 result contains more noise and has fuzzy edges in the 𝑥𝑧 section, while TV1+2
and BM4D give a much smoother result with better defined edges. 3D views use
attenuated mean intensity projection. Scale bar axes are 50 µm.

Reconstructions performed with the ℓ1 regularization contain visual noise. While the 𝑥𝑦
section appears good visually, the quality of the 𝑥𝑧 section is visibly worse, with the strong
noise leading to a very uneven intensity in the object and fuzzy edges. Similar artefacts also
appeared in the results obtained by Woringer et al. [9]. It is also visible on the 3D views that the
ℓ1 reconstruction contains non-zero values in empty areas around the object.

Both our proposed TV1+2 and BM4D priors give a much cleaner result and better defined
edges, with an even intensity in the 𝑥𝑦 section and only small variations in the 𝑥𝑧 section. They
also contain only few non-zero values outside the object. This reduced number of artefacts shows
the benefit of using a 3D-aware regularization prior that better enforces spatial continuity. The



information sharing between neighbouring voxels leads to a visually more coherent volumetric
reconstruction and reduced noise.

3.1.1. Comparison with plane-by-plane acquisition for sparse object detection

When introducing compressed sensing based on optomechanical modulation, Woringer et al. [9]
showed that one of its main benefits is the reduction of phototoxicity during acquisition. They
demonstrated how the method outperforms plane-by-plane acquisition when matching the light
dose by reducing the exposure of the SPIM acquisition, which increases the level of noise in
the stack. Here we want to measure if these advantages are maintained when comparing to
a plane-by-plane acquisition with fewer imaged sections, which gives a comparable level of
phototoxicity without adding noise. To that end, we consider the scenario where we image
a number of uniformly spaced sections equal to the number of projections 𝑁 = 16 acquired
with OMMT. By using the same average light intensity per frame and exposure time for the
plane-by-plane as for OMMT, the sample receives the same light dose and the noise level in
images is comparable. We then resample the SPIM stack along the 𝑧 axis with cubic interpolation
to achieve the same final spatial sampling as the OMMT reconstructions.

We simulate a sample composed of thin vertical cylinders uniformly spaced along the diagonal
of the volume. We choose spacing along the depth axis to not be a multiple of the distance
between acquired sections with the plane-by-plane method, and position the central cylinder to
be exactly aligned with one of the imaged planes. That way, the cylinders are gradually less
aligned with the plane-by-plane sampling as they get further away from the centre.

Figure 4 shows the SPIM axial sampling and the obtained volumes with both methods.
While the central cylinders are correctly visible in the plane-by-plane image, misaligned objects
highlighted in the figure are barely visible when they fall exactly between two sampled sections.
All cylinders are clearly visible in the OMMT reconstructions regardless of their position, thanks
to the fact that all regions of the sample are illuminated at least once during acquisition due to
the choice of illumination functions. This makes OMMT more reliable than plane-by-plane
acquisition to detect spatially sparse objects, at equal phototoxicity and noise levels.
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Fig. 4. Comparison of undersampled plane-by-plane SPIM and OMMT with equal
phototoxicity. SPIM fails to detect objects that are misaligned with its axial sampling,
while OMMT reconstructions contain all the elements. All views use mean intensity
projection, and axes are 50 µm scale bars.



3.1.2. Quantitative performance comparison and impact of noise

In order to quantify the performance of our algorithm, we simulated a sample containing multiple
thin objects crossing the volume at various angles and with different cross-sections and intensities.
To measure the impact of noise on the reconstruction, we generated images for a virtually
noise-free scenario with a maximum photon count per pixel of 104, and a noisy scenario with a
maximum photon count of 400.

Our comparison criterion is the Peak Signal-to-Noise Ratio (PSNR), defined as:

PSNR = 10 log10

(
max(F)2/MSE

)
, (14)

where MSE is the Mean Squared Error between our reconstructions and the original sample F.
We ran the reconstructions on a multithreaded machine (AMD EPYC 7742 2.25 GHz, limited
to 8 cores), and measured the total running time of the ADMM minimization to compare the
computational complexity of the different regularization priors.

We repeated each experiment 5 times with different random seeds for the noise and the choice
of the illumination functions, and averaged the obtained metrics. The measured deviation between
repetitions was negligible, guaranteeing good confidence in the presented numbers.

Table 1 summarizes the results obtained with the different regularization priors for both
clean and noisy scenarios. As a reference, we also simulated a fully sampled SPIM stack with
128 sections and an undersampled SPIM stack with 16 sections corresponding to equivalent
phototoxicity, as described in Section 3.1.1.

Max photons: 104 Max photons: 400

PSNR Time PSNR Time

SPIM (N=128) 36.08 dB / 34.63 dB /

SPIM (N=16) 28.64 dB / 28.49 dB /

OMMT (ℓ1) 32.77 dB 4 s 32.22 dB 4 s
OMMT (TV1+2) 34.22 dB 26 s 34.05 dB 21 s

OMMT (BM4D) 35.26 dB 72 min 35.21 dB 68 min

Table 1. Performance characterization on simulated sample for different regularization
priors and with varying noise strengths, with full and undersampled SPIM stacks as
reference. BM4D performs best, but is significantly slower than using other priors.
OMMT reconstruction consistently outperforms undersampled SPIM, and beats the
full SPIM stack in the noisy scenario with BM4D prior.

The results clearly show that the PnP BM4D prior consistently outperforms all other regular-
izations in both scenarios. However, it is very slow to compute, with the ℓ1 prior being 1000×
faster to reach convergence. Our proposed TV1+2 regularization offers a trade-off between speed
and accuracy, being only 5× slower than ℓ1, while improving over its performance by 1.5 dB on
average.

OMMT outperforms the undersampled SPIM regardless of the photon count. Adding noise
does not significantly impact its reconstruction performance, and with the BM4D prior OMMT
beats the full SPIM stack in the noisy scenario. This confirms the observations of Woringer et
al. [9] that compressed sensing methods match the performance of classically sampling noisy
images as the noise level increases.
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Fig. 5. Volumetric reconstructions on simulated objects in a noisy scenario compared to
an undersampled SPIM with equal phototoxicity. OMMT reconstructions are smoother,
with a minor improvement when using BM4D over TV1+2. Attenuated mean intensity
projection is shown, and axes are 50 µm scale bars.

We show the reconstructions obtained with TV1+2 and BM4D priors for the noisy scenario in
Fig. 5 alongside the undersampled SPIM volume. OMMT reconstructions are visibly smoother
in regions where the SPIM stack appears to have gaps in the objects. Using the BM4D PnP prior
yields a smoother reconstruction but the visual improvement over TV1+2 is not significant.

3.2. Analysis of the computational cost

To efficiently explore many scenarios and methods efficiently, we performed our simulations
on undersized data. In order to apply our method in practice, it must be able to compute a
solution on real-scale images with a size of at least 512 × 512 in reasonable time. To assess the
scaleability of the different regularization priors, we measured the time to run a single iteration of
the ADMM optimization loop for increasing data sizes. This gives us a computational efficiency
measurement that is not influenced by the number of iterations to converge. The obtained single
iteration run time is sufficient to estimate the relative total run time of the algorithm with various
regularizations, as we observed that the different priors lead to similar total number of iterations
to convergence. Any arbitrary data can be used for this speed assessment as we run a fixed
number of iterations that do not need to converge. We used random uniform input data and
averaged the time over 5 runs of 2 iterations each, after running 2 warm-up iterations.

We measured the performance of our implementation on a multithreaded machine (AMD
EPYC 7742 2.25 GHz, limited to 8 cores). In the case of ℓ1 and TV1+2, we also measured the
performance on a machine with GPU (Nvidia GeForce RTX 3090). We did not measure it for
BM4D as its implementation does not support GPU acceleration.

Figure 6 shows our measurements for output volumes with equal depth, width, and height.
We used a number of projections 𝑁 equal to half the depth of the reconstructed volume. As
observed before, the BM4D PnP prior is much slower than the other regularizers. It becomes
unusable for volumes bigger than 256 × 256 × 256 as its computation time become unreasonably
high. Even if ℓ1 is consistently the fastest, TV1+2 is only slightly slower for bigger images.
Their computation time grows less quickly with data size, making them realistically useable
to reconstruct big volumes. Moreover, using GPU acceleration brings a massive speed-up of
over 30× to the algorithm, which shows that our method is suitable for reconstructing real-scale
experimental data very efficiently without requiring access to a computational cluster.

3.3. Validation on experimental data

To confirm the real-case applicability of our method, we mounted two fluorescent textile fibres
with a diameter of 25 µm in 2 % low melting agarose solution inside a fluorinated ethylene
propylene tube. We imaged the sample using an implementation of the OpenSPIM platform [10]
with a 561 nm Vortran Stradus laser, a UMPLFLN 20XW semi-apochromat water dipping
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Fig. 6. Average time per iteration of our ADMM optimization loop for different
regularization priors. BM4D is not realistically useable to reconstruct big images, but
both TV1+2 and ℓ1 are fast enough to be applied to real size experimental data. This is
particularly true with the 30× speed-up when running with GPU acceleration.

objective lens and an Andor Zyla 4.2 sCMOS camera mounted on a U-TV0.5XC-3 adapter. We
used a custom modulation controller based on Arduino that we introduced in previous works [45]
to control the intensity of the laser directly at emission, which is a cost-efficient alternative to the
more expensive acousto-optic tunable filter used in the original method [9].

We acquired 𝑁 = 16 projections with 𝑀 = 32, sweeping the focal plane over a total depth
of 600 µm and reconstructed a volume of size 640 × 640 × 128 using the TV1+2 prior. As a
reference, we acquired a full SPIM stack with 128 sections. We also imaged an undersampled
SPIM containing 16 sections, which yields equivalent phototoxicity to OMMT.

Figure 7 shows the obtained volumes. For an equal light exposure, OMMT does not feature the
jagged artefacts visible in the undersampled SPIM and does not contain gaps in the reconstructed
fibres. This confirms our results obtained on simulations. The solution matches the geometry of
the reference volume even with a very low number of acquired images.

SPIM (N=128) SPIM (N=16) OMMT (TV1+2)
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Fig. 7. OMMT reconstruction of fluorescent textile fibres and comparison to under-
sampled SPIM with equal light dose. The reconstructed image with TV1+2 prior is
smoother, and looks similar to the reference SPIM volume. Views use mean intensity
projection, and axes are 100 µm scale bars.



4. Discussion

Our reconstruction method is able to use regularization priors that enforce a 3D coherence in the
solution while being efficient to compute given its parallel implementation. Since our proposed
TV1+2 formulation is specifically tailored to the geometry of the problem, we have been able
to improve over the existing method with ℓ1 prior and reduce reconstruction artefacts while
having a minor additional computational cost. This better performance likely stems from the fact
that the method takes into account the volumetric nature of the problem where neighbouring
voxels are considered along all dimension to improve the overall accuracy. Using the same
acquisition procedure as in [9]), our updated method retains the advantages of the original
technique over plane-by-plane imaging (lower phototoxicity, faster acquisition) while the efficient
implementation of our reconstruction method eliminates the need for a computational cluster to
obtain solutions in reasonable time.

Using a universal 3D denoiser as PnP prior for reconstruction outperforms the TV1+2
regularization but is not realistically applicable in practice due to its slower computation (up to a
factor 1000) on bigger data. However, this result seems promising when considering the use of
a 3D deep learning-based denoiser instead of BM4D, as neural networks are usually running
efficiently with GPU acceleration. This would alleviate the speed problem by shifting part of
the computational load from reconstruction time to the training of the model. Moreover, recent
works in image reconstruction are trying to reduce the memory and computational requirements
of PnP methods by using subsets of the data at each iteration [16, 46]. These methods could
further improve computation speed if they can be adapted to our 3D problem.

5. Conclusion

We have implemented an ADMM algorithm for OMMT reconstruction that uses parallel
computing and shown that it can efficiently solve the inverse problem on a single machine in
reasonable time. Our efficient 1+2D formulation of the TV regularization prior allows introducing
volumetric smoothness constraints while taking into account the specific geometry of the problem
while keeping the computational overhead in check.

We used simulated data to characterize the performance of our method, showing that using fully
3D-aware priors reduces visual artefacts over ℓ1 and that a PnP method with BM4D denoising
gives the best accuracy. We further established the advantages of the OMMT compressed sensing
acquisition scheme over plane-by-plane imaging by demonstrating its superior ability to detect
sparse objects at comparable phototoxicity.

We have measured the scaleability of our implementation on big volumes, proving its
applicability to real-scale images. We validated these results by successfully applying our method
to an experimental dataset.

Although we showed that using a PnP prior for reconstruction is too computationally demanding
with the BM4D denoiser, we expect that efficient implementations of 3D deep learning denoising
algorithms could further improve the reconstruction accuracy with a lower computational cost.
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