Online Learning of Piecewise Polynomial Signed Distance Fields
for Manipulation Tasks

Ante Mari¢, Yiming Li, and Sylvain Calinon

Abstract— Reasoning about distance is indispensable for
establishing or avoiding contact in manipulation tasks. To
this end, we present an online method for learning implicit
representations of signed distance using piecewise polynomial
basis functions. Starting from an arbitrary prior shape, our
approach incrementally constructs a continuous representation
from incoming point cloud data. It offers fast access to distance
and analytical gradients without the need to store training
data. We assess the accuracy of our model on a diverse set
of household objects and compare it to neural network and
Gaussian process counterparts. Distance reconstruction and
real-time updates are further evaluated in a physical experiment
by simultaneously collecting sparse point cloud data and using
the evolving model to control a manipulator.

Index Terms— Signed Distance Fields; Representation Learn-
ing; Incremental Learning; Machine Learning for Robot Con-
trol

I. INTRODUCTION

Scene representation is a naturally emerging topic in
robotics as a basis for physical interaction. In recent years,
implicit modeling methods have been used as compact
representations of environment properties such as distance,
occupancy, and color. Signed distance functions (SDFs)
model distances to closest occupied points by assigning zero
values to surfaces, negative values to surface interiors, and
positive values elsewhere. Previously used in environment
mapping and collision avoidance settings [1], they have
recently seen use in robotic manipulation as the field moves
towards exploring contact-rich behaviors [2]. In such scenar-
ios, distance representations can be exploited to quickly and
robustly retrieve gradients for a variety of tasks. Furthermore,
modeling the full range of distances, as opposed to only
the zero level-set, can be beneficial for reasoning about
making or breaking contact, deformation, or penetration,
with possible extensions for representing active agents such
as users or robots. Commonly used implicit SDF models
in robotics rely mainly on neural architectures or Gaussian
process models, while alternative formulations remain less
explored. Earlier computer graphics work implicitly encodes
SDFs using basis functions, with recent extensions showing
promising results aimed at simulation environments using
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Fig. 1: Mesh and distance level-sets of the Stanford Bunny
reconstructed from piecewise polynomial basis functions.
The model is learned incrementally from 1283 randomly
sampled surface points and corresponding normal vectors.

piecewise polynomial representations [3]. In robotics, basis
functions have been used to encode movements as superpo-
sitions of primitives [4]. Building on this viewpoint, basis
function representations of implicit distance can be seen as
a step toward combining movement with shape primitives of
robot environments or objects of interest.

In many robotics settings, quickly building an environment
model from sparse incoming data takes priority over achiev-
ing highly accurate representations. Doing so in an online
manner additionally enables the integration of feedback for
adaptive behavior in previously unseen environments. We
formulate an online method for learning implicit signed
distance fields represented as piecewise polynomial basis
functions. Our method uses a simple incremental least
squares approach and regularization scheme in order to
approximate distance fields from incoming surface points
and normals. Accuracy and performance of the piecewise
polynomial representation can be balanced through inter-
pretable hyperparameters like polynomial degree and number
of segments. Model behavior can also easily be influenced by
imposing priors. Our representation does not require storage
of training data and can be run in real-time on both GPU and
CPU. We evaluate its accuracy on a set of diverse household
objects, with comparisons to Gaussian process and neural
network counterparts. The smoothness and continuity of our
representation are highlighted by using an evolving model to
guide the movement of a physical manipulator.



II. IMPLICIT ENVIRONMENT REPRESENTATIONS

In robotics, widely adopted scene representations use map-
ping approaches that rely on discretized occupancy grids and
account for uncertainty [5]. Subsequent methods explicitly
store distance information for real-time usage in dynamic
settings by introducing distance fields [1], [6]. Following
advancements in computer vision, recent work has been
exploring implicit representations as scalable and compact
alternatives for describing scenes without storing data in
dense grids. Implicit representations of distance, volume, and
color information have found application in robotics, with
initial uses in navigation [7] and mapping [8]. Recent work
uses implicit representations as visual encodings for grasping
[9], whole-body manipulation [2], human-robot interaction
[10], planning [11], and control [12].

A. Implicit signed distance functions

Implicit signed distance functions model geometry through
continuous functions, thus decoupling memory from spa-
tial resolution. Seminal work utilizes neural networks for
shape representation, showing higher performance than point
cloud, mesh, or grid-based counterparts [13]. Additional
efforts have been put into investigating regularization and
modeling methods that allow learning such representations
in online scenarios using raw point cloud data [14], [15].
Recent methods introduce neural architectures that jointly
represent SDF and color to track and reconstruct unknown
objects [16]. Similarly, Neural radiance fields (NeRFs) [17]
jointly encode volume density and color. They have garnered
much attention as environment representations, with recent
extensions targeting real-time rendering [18] and dynamic
scenes [19]. However, NeRFs do not offer direct access to
distance or derivative information, which can be beneficial
for interpreting task execution. Furthermore, neural repre-
sentations often require large amounts of data and do not
translate readily to lower data regimes found in modalities
such as tactile or proximity sensing.

B. Gaussian process implicit surfaces

Probabilistic models like Gaussian process implicit sur-
faces (GPIS) have been used to represent distances with
account for uncertainty [20]. To extend the approach for
mapping purposes, scaling issues of the Gaussian process
have been addressed through the use of clustering and hier-
archical models [21]. Subsequent combinations with implicit
regularization methods enable accurate modeling of unsigned
distances [22]. These methods were later combined to give
a unified mapping, odometry, and planning framework [23].

C. Basis function representations

Basis functions can describe complex representations as
weighted superpositions of simple signals. In robotics, they
are well-known as the underlying representation used to
encode movement primitives [24], [25]. A detailed review
can be found in [4]. Their role in computer graphics extends
to higher-dimensional input space to implicitly represent

shapes using SDFs [26]. Learning such representations from
point clouds and normals can be achieved simply by solving
a linear system of equations using a least squares approach
or iterative optimization procedures [27]. The resulting im-
plicit SDF models are continuous and smooth combinations
of shape primitives with analytical access to distance and
gradients. A recent example utilizes piecewise polynomial
basis functions to represent detailed SDFs for high-definition
rendering in simulation settings [3]. The following section
describes an online formulation of piecewise polynomial
SDF based on incremental learning, with the aim of guiding
movement in manipulation tasks.

III. PIECEWISE POLYNOMIAL SDF
A. Bernstein polynomial basis functions

The value of a univariate function f(x) at input = can be
represented as a weighted sum of K basis functions with

K
f@) =) du(x) wp = d(x) w, (1)
k=1

where ¢ can come from any family of basis functions. For
our SDF representation, we use Bernstein polynomial basis
functions, which can be computed as

(K —1)!
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Vk € {1,..., K}. Instead of considering a global encoding
which might require the use of high-order polynomials, we
split the problem into a set of local fitting problems that can
consider lower-order polynomials. We retain C! continuity
between the concatenated segments by adding constraints on
the weights of the form
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where a and b are concatenated polynomials of order K,
and wf is used to denote the k-th weight of polynomial a.
Polynomial bases and their derivatives can then be expressed
in matrix form as

¢(z) = T(2)BC, (5)
op(z) OT(x)
or Oz BC, ©

with T'(z) = [1 z 2® --- 2] being a polynomial feature
map of input z, B the corresponding Bernstein coefficient
matrix, and C a constraint matrix of the form

10 - 0 0
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0 0 10
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enforcing (3) and (4).



Fig. 2: Incremental model updates used to model a 2D shape, starting from a circular prior. Sampled points and normals are
shown in dark blue, and the reconstructed zero-level contour in black. The reconstructed SDF is visualized as a color map
with distance contours. The normal ray and regularization points of a single sample are displayed in the second image.

Successive Kronecker products can be used to extend
the described representation to any number of input and
output dimensions. For clarity and visualization purposes, we
will continue the method description for a two-dimensional
case. Namely, an extension to two-dimensional input space
(Cartesian coordinates) and one-dimensional output (signed
distance) can be calculated as

U(z,y) = dp(z) @ ¢(y), ®

with partial derivatives and gradient computed analytically
as
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This can then be used to compute the distance and gradient
values of the SDF at coordinate (x,y) with

f(x,y) = \I’(l‘,y) w,
Vi(x,y) = V¥(z,y)w.

12)
(13)

The same procedure can be applied to calculate the Laplacian
Af(z,y) = A¥(x,y)w and higher-order derivatives. The
above representation extends analogously to accommodate
three-dimensional Cartesian coordinates as input by applying
an additional Kronecker product.

B. Computation of weights

To approximate the SDF using polynomial basis functions,
any method capable of solving a system of linear equations
of the form Aw = s can be employed. The simplest case
can utilize a batch least squares estimate of the form

w=(ATA)1ATs, (14)

or ridge regression as the regularized variant [28].

We use quadratic error terms in order to evaluate the fitting
of distance and normal data for N incoming samples

ca(@n) = ||¥(@,)w||?, (15)
co(@n) = || VE(zp)w - gal*, (16)
with ¢, = (x,,y,) denoting the n-th input sample, and

gy the corresponding ground truth normal. An additional
tension term is used to constrain the curvature of the resulting
distance field on R control points
co(@,) = || AY (2w, (17)
vr e {l,...,R}.
The model weights are learned by minimizing a combined
cost

N R
c= Z AGCa(®n) + Aocg () + Z Mey(z,), (18)
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with cost-tuning coefficients Aq, Ag, and A;. We construct
our input and output vectors as concatenations of distance,
normal, and tension features

Uy =[T(x1) - T(zy)] ', (19)
VO, = [VE(x,) - - VE(xy)], (20)
AT, = [A¥(x1)--- AT (zR)]" 1)

In the above, multidimensional features are flattened by
stacking components to keep compatible dimensions. We
finally minimize (18) by calculating (14) with

AWy 04
A= NV, , s=|)Ng]|, (22)
MAY, 0;

where g is a vector of sampled normal components, and Oq4
and O, are zero vectors with lengths compatible to ¥, and
AW, respectively.
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Fig. 3: Mesh and SDF reconstruction results for objects from the YCB test set: (a) 003_cracker_box, (b)
006.mustardbottle, (c) 011 _banana, (d) 016._pear, (¢) 019_pitcher base, (f) 021 bleach_cleanser, (g)
048_hammer, (h) 035_power_drill, (i) 063-amarbles, (j) 053.mini_soccer_ball. All models were learned

from 800 non-uniformly sampled points and normals.

C. Incremental formulation

For online approximation, we employ an incremental
variant of the least squares algorithm which allows us to
gradually refine an initial estimate by providing samples one-
by-one or in batches. Similar approaches have previously
been used in the context of control [29]. The algorithm ex-
ploits the Sherman-Morrison-Woodbury relations [30] which
connect subsequent inverses of a matrix after small-rank
perturbations. After initializing the weight precision matrix
P = cov(w)~! to Py, it can be incrementally updated as

P.,=P - PA] (¢’ + A,PA]) " A,P,

K

(23)

where o2 is the measurement noise variance, A, the input
matrix, and I an identity matrix of compatible dimensions.
Starting from a prior w = w, weight updates can then be
calculated by using the Kalman gain K

W, =W + K(sn - Anw). (24)

The above iterative computation has no requirement of
storing the training points and enables us to impose priors
on our model through P, and wq. We initialize the precision
matrix as Py = (M " M)~!, with M = BC following (5).
The evolving precision matrix can be used to incrementally
track weight covariance as the model is learned.

In order for our model to accurately approximate a
distance function, the tension term needs to be enforced
throughout the input space. We achieve this in an online
setting by uniformly sampling a number of control points on
the normal rays of incoming surface samples, as displayed
in Figure 2. The full computation steps are summarized
in Algorithm 1. We apply the same approach for three-
dimensional inputs, with example reconstructions shown in
Figures 1 and 3.

Algorithm 1 Incremental computation of weights.

P =P, // Initialize precision matrix
W = wq // Initialize weights
for n < 1to N do
A, = A(:En) // Construct input matrix
K= .P;4;Lr (021 + AnPA;;)_l// Compute gain
P+ P— KAnP // Update precision matrix
w — w + K(Sn — An'w) // Update weights
end

IV. EXPERIMENTS

A. Reconstruction accuracy

To evaluate the reconstruction accuracy of our method we
use error metrics similar to [15]. Reconstructed distances are
evaluated using the mean absolute error (MAE)

MAE(x) =

$(x) — s(x)], (25)

with §(x) denoting the estimated signed distance at point
@, and s(x) the ground truth value. The accuracy of our
model is first tested on different grid sizes by using cubic
polynomials with a variable number of segments.
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Fig. 4: Mean absolute error (MAE) using cubic polynomials
with a varying number of segments.
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Figure 4 displays the MAE results on our test data, which
comprises of real point clouds from the Yale-CMU-Berkeley
(YCB) dataset [31]. The test set consists of 10 household
objects of diverse shapes, depicted in Figure 3. Ground truth
SDFs are reconstructed from high-definition meshes with
512k polygons.

We compare the accuracy of our approach against two
methods used in online settings: a LogGP model using
the Matérn 3/2 kernel as in [22], and a 4-layer neural
network with 256 neurons in each layer, using the loss
and positional embedding described in [15]. Our comparison
model uses cubic Bernstein polynomials with 6 segments
per input dimension. All methods are evaluated on the same
point cloud and normal data for each object from the test
set. Accuracy is compared across different data volumes
by varying the number of sampled points. Since LogGP
models unsigned distance, we evaluate it against the absolute
value of the ground truth. Figure 5a shows the resulting
MAE comparisons. Distance accuracy near and far from
object surfaces for different amounts of training samples is
displayed in Table I.

0.25 -

mmm Ours
. GP
0.20 - mmm NN
0.15 -
w
<
=
0.10 -
0.05 -
0.00 - . . i
5000 2000 800

Total samples

(a) Mean absolute error (MAE)

0.35 -

mmm Ours
. GP
mm NN

0.25 -
0.20 -
0.15 -
0.10 -
0.05 -
0.00 - § §
800

2000
Total samples

(b) Gradient cosine distance (GCD)

0.30 -

GCD
.
]

i

v

Fig. 5: Distance and gradient reconstruction accuracy com-
pared on varying amounts of data.

Additional comparisons are made with respect to recon-
structed distance gradients by calculating the gradient cosine
distance (GCD)

v
GCD(x)=1- Hvags(w)u||Vms(33)||7

(26)

|s| < 0.05
Samples Ours GP NN
5000 0.0574 £ 0.0389 | 0.0577 £ 0.0379 | 0.0245 4 0.0066
2000 0.0562 £ 0.0366 | 0.0585 4 0.0425 | 0.0385 % 0.0226
800 0.0558 £ 0.0368 | 0.0539 4+ 0.0395 | 0.0386 + 0.0249
|s| > 0.05
Samples Ours GP NN
5000 0.1043 £0.0525 | 0.0926 +0.0392 | 0.1174 £ 0.0561
2000 0.1044 £0.0551 | 0.0916 +0.0325 | 0.0818 = 0.0339
800 0.1079 £ 0.0522 | 0.1252 +0.0461 | 0.0798 & 0.0299

TABLE I: Comparison of the mean absolute error (MAE)
near and far from object surfaces for varying numbers of
training samples.

with V;§(z) denoting the estimated distance gradient, and
Vzs(x) the corresponding ground truth. Gradients are recov-
ered analytically for our method and numerically for the NN
and GP models. Ground truth gradients are calculated numer-
ically from corresponding ground truth SDFs. All numerical
calculations are done on a dense grid of 1283 points. Figure
5b displays the GCD comparisons. For qualitative evaluation,
Figure 3 shows the mesh and distance fields of the test
objects, reconstructed from learned piecewise polynomial
representations.

B. Computation time & memory requirements

The computation time of updates and queries to our model
increases quadratically based on the number of weights,
which is determined by the desired number of segments
and basis functions (polynomial degree). Computation time
and memory requirements do not increase with the total
number of training points, and we only store the combination
weights of our basis function representation. For a set input
dimension, the time complexity of a single incremental
update is O(B3 + S?K?B + SKB?), with S denoting
the number of segments, K the number of basis functions,
and B the sample batch size. Figure 6 shows mean update
times for different numbers of segments and varying batch
sizes using a PyTorch implementation and NVIDIA GeForce
MX550 GPU.
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Fig. 6: Update time for cubic polynomials with varying
numbers of segments and different batch sizes. The desired
real-time cutoff of 30 ms is denoted by a horizontal line.



n = 1275

Fig. 7: A visualization of our physical experiment and results, showing the evolution of a piecewise polynomial SDF
model starting from a spherical prior. As n samples are collected, the updated model is queried in real-time to control the
manipulator by following a tangential trajectory on the SDF level-sets while keeping normal orientation.

During accuracy evaluation, the mean time of a single
incremental update for S = 6, K = 4, and B = 10 was
0.1176 s on the described setup. Update time can be further
reduced by reducing the density of sampled regularization
points. For queries and reconstruction, our method scales
linearly with the number of weights, as we calculate only
a weighted sum of basis functions. The time complexity of
querying our model for a batch of B points is O(SK B) with
mean time 0.17 ms for a single query point in our tests. The
mean time of full SDF reconstruction on a dense 1283 grid,
required only for visualization of the results, was 28.79 s
using the marching cubes algorithm [32].

C. Physical experiment

In order to test the viability of our method in a real-
world setting, we perform a physical experiment in an online
learning scenario using a Franka Emika 7-DoF manipulator.
Starting from a spherical prior, we incrementally update
our model with sparse surface points and estimated normals
collected by an in-hand Intel RealSense D415 sensor. At each
timestep, we query normals from our evolving SDF model to
keep the camera oriented toward the object while following
a tangential trajectory on the level sets. Model updates are
done in real-time and used as feedback for our controller,
with a mean timestep of 31.4 ms on a 3.6 GH z Intel Core
19-9900K CPU. To enable real-time operation on CPU, our
SDF model uses cubic polynomials and 4 segments per input
dimension with point-by-point updates. Figure 7 shows our
setup and the evolution of an SDF approximated from sparse
partial point cloud data.

V. DISCUSSION

The results in Figure 4 demonstrate a reduction in the
reconstruction error when increasing the number of seg-
ments. For cubic polynomials, this decline becomes less
pronounced beyond 5 segments, partly due to the size and

complexity of our test set. Qualitatively, employing a higher
number of segments results in more detailed reconstructions,
a characteristic that might not be fully captured by the MAE
metric. For instance, comparing Figure 3b, reconstructed
from a model using 6 segments, with the final result in Figure
7, reconstructed from a model using 4 segments, shows this
effect. The number of segments and polynomial degree can
be adjusted to balance accuracy and performance for the task
at hand. Evaluations in Figure 5 and Table I demonstrate con-
sistent performance across various data volumes. Employing
6 segments per input dimension yields MAE and GCD
values similar to those of the Gaussian process and neural
network comparison models. These results are maintained
both near object surfaces and at greater distances, affirming
the effectiveness of our regularization approach. Qualitative
reconstructions in Figure 3 display visually accurate distance
and mesh reconstruction results across our test set. It can
be noted that the current regularization approach, paired
with the tested hyperparameters, tends to over-smooth and
compromise detail. This is especially visible when modeling
thin or sharp objects, as depicted by Figure 3g.

The computation time and memory requirements of our
formulation are independent of the total number of training
points. As illustrated in Figure 6, the update time scales
quadratically with the number of segments and cubically with
batch size. Consequently, this constrains the applicability of
our current formulation to smaller environments and data
regimes typically found in tabletop manipulation settings.
Our approach achieves fast query times as inference amounts
to calculating a weighted superposition of basis functions.
The physical experiment showcases real-time updates and
intermediary reconstruction results, starting from a spherical
prior. It demonstrates that continuity, smoothness, and fast
access to distance and analytical gradients enable direct us-
age of our model for feedback-loop control, while validating
it in a scenario with higher noise and sparse samples.



Future work will investigate the adaptation of the de-
scribed method to clustering or hierarchical models, such as
octrees. These approaches have been shown to improve SDF
reconstructions and enable the handling of larger and more
complex environments [3]. Varying other hyperparameters
like polynomial degree or family of basis functions might
yield additional improvements to the accuracy and detail
of the reconstructed SDFs. Further efforts in scaling and
increasing performance might focus on using local weight
updates and optimized computation pipelines. On the method
level, an interesting direction would involve further analysis
of the evolving precision matrix to evaluate the quality of
intermediary results during the learning process, or as an
uncertainty measure in planning scenarios. The use of incre-
mentally updated priors might also be of particular interest
for extensions to dynamic scenes. Finally, combinations of
multiple sensing modalities (e.g., tactile and proximity) need
to be further explored and validated on a physical setup.
Further experiments could also make use of the analytic
representation by exploiting Boolean operators to combine
the SDFs of multiple bodies and evaluate overlap (e.g., for
uses in whole-body manipulation).

VI. CONCLUSION

We presented an online formulation of piecewise poly-
nomial signed distance functions. Starting from an arbitrary
prior shape, our method incrementally builds a continuous
and smooth distance representation from incoming surface
point clouds and normal data. The results display recon-
struction accuracy similar to Gaussian process and neural
network comparison models on a test set consisting of
various household objects. We have shown that memory
and computation-time requirements of our underlying model
do not increase with the total number of training points,
and highlight the possibility of real-time updates. Finally,
we validated our approach on a physical manipulator with
noisy observations by using the evolving distance model for
feedback-loop control.
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