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ABSTRACT

Face recognition systems generally store features (called embed-
dings) extracted from each face image during the enrollment stage,
and then compare the extracted embeddings with the stored em-
beddings during the recognition stage. In this paper, we focus on
the blackbox face reconstruction from facial embeddings stored
in the face recognition database. We use a convolutional neural
network (CNN) to reconstruct face images and train our network
with a multi-term loss function. In particular, we use a different
feature extractor trained for face recognition (which the adversary
has the whitebox knowledge of it) to minimize the distance of
embeddings extracted from the original and reconstructed face
images. We evaluate our method in blackbox attacks against five
state-of-the-art face recognition models on the MOBIO and LFW
datasets. Our experimental results show that our proposed method
outperforms previous face reconstruction methods in the litera-
ture. The source code of our experiments is publicly available to
facilitate the reproducibility of our work.

Index Terms— blackbox, embedding, face recognition, face
reconstruction, template inversion

1. INTRODUCTION

Applications of automatic face recognition systems tend toward
ubiquity and in particular, their use in authentication applications
is growing rapidly. In such systems, deep neural networks are
used to extract some features (a.k.a. “embeddings”) from face
images. These features are stored in the database of the face
recognition system during the enrollment stage, and are later used
for comparison during the recognition stage.

Among different types of potential attacks against face recog-
nition systems that have been studied in the literature [1, 2, 3], tem-
plate inversion attack can jeopardize both the privacy and security
of the enrolled users. In the template inversion attack, the adver-
sary gains access to the database of a face recognition system and
tries to invert the stored embeddings to reconstruct the underlying
face images. The reconstructed face images can reveal privacy-
sensitive information about the users, including age, gender, eth-
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Fig. 1: Sample face images from the FFHQ dataset (first row)
and their corresponding reconstructed face images from ArcFace
embeddings in whitebox (second row) and blackbox (third row)
template inversion attacks. The values indicate cosine similarity
between embeddings of the original and reconstructed face
images. The decision threshold corresponding to FMR = 103
is 0.37 for ArcFace on the MOBIO dataset.

nicity, etc. In addition, the adversary can use the reconstructed
face image to impersonate the enrolled users and enter the system.

Generally, methods for reconstruction of face images from
embeddings can be categorized into whitebox an blackbox. In
the whitebox methods, the adversary is assumed to have complete
knowledge of the feature extractor network and its internal pa-
rameters. However, in the blackbox methods the adversary does
not have any knowledge of internal functioning of the feature
extractor model and can only use it to extract embeddings for
arbitrary images.

In [4], a whitebox face reconstruction method based on
gradient-ascent-based optimization (with regularization terms)
was proposed. The authors also used the same loss function to
train a convolutional neural network (CNN) to reconstruct face
images. In [5], also a whitebox face reconstruction method was
proposed, where a CNN which was trained with multi-term loss
function (including a loss term to minimize the distance between



Table 1: Comparison with related works.
Ref.  Method Basis Blackbox Available code

1) optimization

41 2) learning X X
[5] learning v
[6] learning v X
[7] learning v X
[8] learning v v
[9] learning v v
[10] optimization v v
[11] optimization v X
[Ours] learning v v

embeddings of the original and reconstructed face images using
the feature extractor of the system).

In contrast to [4, 5], in [7, 6] whitebox methods were proposed
and were also extended to blackbox attacks. In [7], a multi-layer
perceptron (MLP) and CNN were used to estimate landmark
coordinates and generate face textures, respectively. Then, a
differentiable warping was applied to reconstruct face images. In
the whitebox attack, the authors used the warping function and
trained the MLP and CNN end-to-end with a multi-term loss
function, including a loss term to minimize the distance between
embeddings (extracted using the feature extractor of the system)
of the original and reconstructed face images. For the blackbox
attack, authors trained the MLP and CNN separately, and then
reconstructed the face image using the warping function. In [6],
a bijection-learning-based approach was used to train a generative
adversarial network (GAN) for face reconstruction. While the
authors proposed their method based on a whitebox knowledge of
feature extractor, they proposed to use distillation of knowledge
to train a student network from the face recognition model in
the blackbox attack. However, they did not report details on the
training of the student network (e.g., the network structure, etc.).

In [8, 10, 9] blackbox (only) methods were proposed to
reconstruct face images. In [8], the authors proposed two CNNs
based on two new blocks, NBNet-A and NBNet-B, and trained
each network structure with two different loss functions to re-
construct face images. In [10], athe authors proposed a greedy
random optimization over the latent space of StyleGAN [12] to
find a latent vector which synthesizes an image with embedding
close to the target embedding. In contrast to [10], in [9], authors
trained a MLP to find the latent space of StyleGAN [12] from
the embeddings and then generate the face image using pretrained
StyleGAN. Similarly, in [11], an optimization-based approach
based on the genetic algorithm is proposed to find the latent space
of StyleGAN [12] from the embeddings. Table 3 compares our
work with previous methods in the literature.

In this paper, we focus on blackbox face reconstruction from
facial embeddings. We use the convolutional neural network
proposed in [5] to reconstruct face images and train our network
with a multi-term loss function. In particular, we propose to use
a different feature extractor in our loss function and minimize the
embeddings (extracted from this model) of original and recon-
structed face images. Fig. 1 shows sample face images from the

FFHQ [12] dataset and their whitebox and blackbox reconstructed
versions from ArcFace [13] embeddings using our face recon-
struction network. We train our face reconstruction network for
state-of-the-art face recognition models and evaluate our trained
blackbox face reconstruction models on the MOBIO [14] and
LFW [15] datasets. The experimental results show that the pro-
posed network outperforms previous blackbox face reconstruction
methods in terms of an adversary’s success attack rate.

The remainder of the paper is organized as follows. In section
2, we describe our threat model and our proposed blackbox face
reconstruction method. Next, we describe our experiments and
discuss our results in section 3. Finally, the paper is concluded
in section 4.

2. PROPOSED METHOD
2.1. Threat model

We consider the situation where an adversary gains access to
the database of embeddings in a face recognition system, and
tries to reconstruct the face images from the face embeddings.
The adversary is assumed to have the blackbox knowledge of
the feature extractor of the face recognition system and can use
it to extract embeddings from each image. We assume that the
adversary has also the whitebox knowledge of another feature
extractor model, which has been trained for face recognition
purpose, and can use this feature extractor model for training the
face reconstruction model. The adversary can then use the trained
face reconstruction model to invert embeddings and generate face
images. The adversary can use the reconstructed face images to
inject as a query into the face recognition system.

2.2. Training Data

Let Fiy(.) denote the feature extractor of the target face recog-
nition system that the adversary is assumed to have blackbox
knowledge of it. The adversary can use the feature extractor
Fys(.) to generate a training dataset D = {(e;,1;)}Y, from
a set of face images Z = {I;}, with N face images, where
e, = Fsys(Ii) is the face embedding extracted from image I; using
Fiys(.). Then, the adversary can use the dataset D to train a face
reconstruction network.

2.3. Face Reconstruction

For our face reconstruction network, we use our network structure
proposed in [5], which includes multiple blocks, where each
block is composed of 3 cascaded convolutional layers with a skip
connection after each deconvolutional layer. We use 6 of these
blocks with 512, 256, 128, 64, 32, and 16 filters, and with kernels
of sizes 4 and 3 for deconvolution and convolution layers in each
block, respectively. In addition, Batch Normalization [16] and a
rectified linear unit (ReLLU) are used after each deconvolution and
convolution operations. Finally, a convolutional layer with a ker-
nel of size 3 and a sigmoid activation function is used to generate
the reconstructed face image. Let 1 denote the reconstructed face



image from embedding e = Fiy,(I). We train our network with
a multi-term loss function including:

* Mean Squared Error (MSE): To minimize the pixel-level
reconstruction error, we use the square of ¢s-norm of the
reconstruction error:

Luse(LD)=[1-1][3 (D

L]

Dissimilarity Structural Index Metric (DSSIM): To enhance
the reconstruction quality in terms of the Similarity Struc-
tural Index Metric (SSIM) [17], we use the DSSIM loss
term [18] as follows:

. 1—SSIM(LI
Lpssm(LI)= % @)

ID loss: To help the network to reconstruct the face image
with similar identity information, we use another feature
extractor Fj(.) trained for face recognition that the ad-
versary has whitebox knowledge of it. Then, we minimize
the square of the ¢>-norm of the difference between the
extracted features from the original and reconstructed face
images using Fjos(.) :

Lin(E1) = || Fioss (1) — Fioss (D12 &)

It is noteworthy that in whitebox methods, e.g., [5], the
same feature extractor of the target system is used for ID
loss, but we propose to use a different feature extractor for
the blackbox attack (i.e., Fioss 7 Fiys)-

For our total loss, we use a linear summation of the aforemen-
tioned loss term:

L= Lyse+aLlpssm+BLip, )

where « and (3 are hyperparamters, and are experimentally found
perform the best for «=0.1 and 5=0.005.

3. EXPERIMENTS
3.1. Experimental Setup

We use state-of-the-art face reconstruction models including
ArcFace [13] and ElasticFace [19] as well as three different FR
models with state-of-the-art backbones from FaceX-Zoo [20],
including AttentionNet [21], HRNet [22], and Swin [23]. Table 2
reports recognition performance of these models on the MOBIO
and LFW datasets. We use ArcFace and ElasticFace as Fjo;
and evaluate the performance of our method in blackbox attack
against other models.

To train our face reconstruction networks, we use the
FFHQ [12] dataset, which includes 70,000 face images (90%
train and 10% validation). We also evaluate our models on
the MOBIO [14] and LFW [15] datasets. The MOBIO dataset
includes face images captured by mobile devices from 152 people
and the LFW dataset includes 13,233 images of 5,749 people.
We use the face recognition models and build face recognition

Table 2: Recognition performance of face recognition models
in terms of true match rate (TMR) at false match rates (FMRs)
of 1072 and 102 evaluated on the MOBIO and LFW datasets.

MOBIO LFW
model
FMR=10"2 FMR=10"3 FMR=10"2 FMR=10"3

ArcFace 100.00 99.98 97.60 96.40
ElasticFace 100.00 100.00 96.87 94.70
AttentionNet ~ 99.71 97.73 84.27 72.77
HRNet 98.98 98.23 89.30 78.43
Swin 99.75 98.98 91.70 87.83

systems on the MOBIO and LFW datasets. Then, we use our
reconstruction model trained on FFHQ to invert enrolled embed-
dings and reconstruct face images. We inject the reconstructed
face image as a query to the system to evaluate the performance
of face reconstruction in terms of an adversary’s Success Attack
Rate (SAR) in entering the system when the system is configured
at False Match Rate (FMR) of 10~3.

We use the Bob toolbox [24] and PyTorch package in our
implementations. To train our face reconstruction networks, we
use the Adam [25] optimizer with the initial learning rate of 1073,
and we decrease the learning rate every 10 epochs, by a factor of
0.5. The source code of our experiments is publicly available to
help reproduce our results'.

3.2. Comparison with previous methods

As described in section 3.1, we use ArcFace and ElasticFace
as Fjoss and train our model to reconstruct face images from
embeddings extracted by other face recognition models. Table 3
compares the performance of our method with previous blackbox
methods? in terms of SAR. As this table shows, our method
outperforms previous blackbox face reconstruction methods in the
literature. Also, comparing the results for ArcFace and ElasticFace
as Fjo in our loss function, the networks trained with ArcFace
achieve better performance than the networks trained with Elas-
ticFace. This might be due to superior recognition performance
of ArcFace compared to ElasticFace as reported in Table 2

3.3. Discussion

Fig. 1 illustrates sample face images from the validation set
of the FFHQ dataset and their reconstructed face images from
ArcFace embeddings in the whitebox and blackbox attacks. In the
whitebox attack, we used the same feature extractor (i.e., ArcFace)
as Flos (similar to [5]) and in the blackbox attack, we used a
different feature extractor (i.e., ElasticFace) in our ID loss. Fig. 2
also shows the histogram of scores between ArcFace embeddings
extracted from genuine and zero-effort impostor pairs, as well as
the original and reconstructed face images in the whitebox and
blackbox attacks evaluated on the MOBIO dataset. As this figure
shows, the score distribution for reconstructed face images of

'Source  code: https://gitlab.idiap.ch/bob/bob.paper.
icip2023_blackbox_face_reconstruction

2 As indicated in Table 1, other previous blackbox methods such as [7, 6, 11]
do not have available source code.
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Table 3: Performance comparison with previous blackbox face reconstruction method in terms of adversary’s success attack rate (SAR)
at system configured at false match rate (FMR) of 102, In each case, the best two values are emboldened.

method MOBIO LFW

ArcFace ElasticFace AttentionNet HRNet Swin  ArcFace ElasticFace AttentionNet HRNet Swin
NBNetA-M [8] 0 2.38 0 0 0 432 10.90 1.24 1.60 3.82
NBNetA-P [8] 4.76 16.19 0.48 0 7.14 16.83 26.98 0.66 1.44 9.70
NBNetB-M [8] 1.90 3.80 333 7.14 8.57 10.98 21.44 3.22 447 11.23
NBNetB-P [8] 15.24 43.81 31.90 26.67 44.29 40.26 58.16 16.29 1842 40.76
Dong et al. [9] 3.33 8.10 10.48 6.67 333 13.21 12.61 3.90 407 12.38
Vendrow and Vendrow [10]  29.05 43.81 27.14 26.67 4524 57.70 53.03 21.12 18.85 46.84
[Ours] (Fjoss= ElasticFace) ~ 95.71 - 89.05 93.81 98.10 90.67 - 58.85 65.55 80.20
[Ours] (Fioss= ArcFace) - 98.10 92.38 97.62 99.52 - 92.27 62.20 68.99 82.21
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whitebox and (b) blackbox attacks against ArcFace evaluated on
the MOBIO dataset.

whitebox attack is slightly closer to genuine distribution than that
of blackbox attack, which is expected as we have the whitebox
knowledge of the system and use the same feature extractor in the
training. Meanwhile, the score distribution for reconstructed face
images of blackbox attack is still closer to the score distribution
of genuine pairs than the distribution of zero-effort impostor pairs.

To evaluate the effect of each term in our loss function, as
an ablation study, we train our network with different loss terms
in Eq. 4. Fig. 3 compares the reconstruction performance of
models trained with different loss functions in terms of SAR for
different values of the system’s FMR. According to these results,
the ID loss and the DSSIM loss terms improve the reconstruction
performance. In particular, the ID loss (using another feature

extractor method) significantly enhances the SAR in our method.

4. CONCLUSION

In this paper, we proposed a blackbox method to reconstruct face
images from facial embeddings using a CNN-based structure. We
used a multi-term loss function and in particular proposed to use

state-of-the-art face recognition models on the MOBIO and LFW
datasets. The experimental results show that our method outper-
forms previous blackbox face reconstruction methods in terms of
the adversary’s success attack rate in entering the face recognition
system. Furthermore, our ablation study shows that applying ID
loss using a different feature extractor can significantly improve
the success attack rate.

5. REFERENCES

[1] Battista Biggio, Paolo Russu, Luca Didaci, Fabio Roli, et al.,
“Adversarial biometric recognition: A review on biometric
system security from the adversarial machine-learning
perspective,” IEEE Signal Processing Magazine, vol. 32,
no. 5, pp. 31-41, 2015.

[2

[}

Javier Galbally, Chris McCool, Julian Fierrez, Sebastien
Marcel, and Javier Ortega-Garcia, “On the vulnerability of
face verification systems to hill-climbing attacks,” Pattern
Recognition, vol. 43, no. 3, pp. 1027-1038, 2010.

[3] Sébastien Marcel, Julian Fierrez, and Nicholas Evans,
Handbook of Biometric Anti-Spoofing: Presentation Attack
Detection and Vulnerability Assessment, Springer, 2023.

[4] Andrey Zhmoginov and Mark Sandler, “Inverting face
embeddings with convolutional neural networks,” arXiv
preprint arXiv:1606.04189, 2016.



[5]

[10]

[11]

[12]

[13]

[14]

[15]

Hatef Otroshi Shahreza, Vedrana Krivoku¢a Hahn, and
Sébastien Marcel, “Face reconstruction from deep facial
embeddings using a convolutional neural network,” in

Proceedings of the IEEE International Conference on Image
Processing (ICIP). IEEE, 2022, pp. 1211-1215.

Chi Nhan Duong, Thanh-Dat Truong, Khoa Luu, Kha Gia
Quach, Hung Bui, and Kaushik Roy, “Vec2face: Unveil
human faces from their blackbox features in face recog-
nition,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020,
pp- 6132-6141.

Forrester Cole, David Belanger, Dilip Krishnan, Aaron
Sarna, Inbar Mosseri, and William T Freeman, “Synthe-
sizing normalized faces from facial identity features,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 3703-3712.

Guangcan Mai, Kai Cao, Pong C Yuen, and Anil K Jain,
“On the reconstruction of face images from deep face
templates,” [EEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 5, pp. 1188-1202, 2018.

Xingbo Dong, Zhe Jin, Zhenhua Guo, and Andrew Beng Jin
Teoh, “Towards generating high definition face images
from deep templates,” in Proceedings of the International
Conference of the Biometrics Special Interest Group
(BIOSIG). IEEE, 2021, pp. 1-11.

Edward Vendrow and Joshua Vendrow, “Realistic face recon-
struction from deep embeddings,” in Proceedings of NeurlPS
2021 Workshop Privacy in Machine Learning, 2021.

Xingbo Dong, Zhihui Miao, Lan Ma, Jiajun Shen, Zhe Jin,
Zhenhua Guo, and Andrew Beng Jin Teoh, ‘“Reconstruct
face from features using gan generator as a distribution
constraint,” arXiv preprint arXiv:2206.04295, 2022.

Tero Karras, Samuli Laine, and Timo Aila, “A style-based
generator architecture for generative adversarial networks,”
in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019, pp.
4401-4410.

Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos
Zafeiriou, “Arcface: Additive angular margin loss for deep
face recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

Chris McCool, Roy Wallace, Mitchell McLaren, Laurent
El Shafey, and Sébastien Marcel, “Session variability
modelling for face authentication,” IET Biometrics, vol. 2,
no. 3, pp. 117-129, Sept. 2013.

Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller, “Labeled faces in the wild: A database for
studying face recognition in unconstrained environments,’
Tech. Rep. 07-49, University of Massachusetts, Amherst,
October 2007.

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

Sergey loffe and Christian Szegedy, “Batch normalization:
Accelerating deep network training by reducing internal
covariate shift,” in Proceedings of the International
Conference on Machine Learning (ICML), Lille, France, Jul.
2015, pp. 448-456.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli, “Image quality assessment: from error visibility
to structural similarity,” [EEE Transactions on Image
Processing, vol. 13, no. 4, pp. 600612, 2004.

Sahar Sadrizadeh, Hatef Otroshi-Shahreza, and Farokh Mar-
vasti, “Impulsive noise removal via a blind cnn enhanced by
an iterative post-processing,” Signal Processing, vol. 192,
pp- 108378, 2022.

Fadi Boutros, Naser Damer, Florian Kirchbuchner, and
Arjan Kuijper, “Elasticface: Elastic margin loss for
deep face recognition,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022, pp. 1578-1587.

Jun Wang, Yinglu Liu, Yibo Hu, Hailin Shi, and Tao Mei,
“Facex-zoo: A pytorch toolbox for face recognition,” in
Proceedings of the 29th ACM International Conference on
Multimedia, 2021.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng
Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang,
“Residual attention network for image classification,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 3156-3164.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al., “Deep high-resolution represen-
tation learning for visual recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo, “Swin transformer:
Hierarchical vision transformer using shifted windows,” in
Proceedings of the IEEE/CVF International Conference on
Computer Vision (CVPR), 2021, pp. 10012-10022.

A. Anjos, M. Giinther, T. de Freitas Pereira, P. Korshunov,
A. Mohammadi, and S. Marcel, “Continuously reproducing
toolchains in pattern recognition and machine learning ex-
periments,” in Proceedings of the International Conference
on Machine Learning (ICML), Aug. 2017.

Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in Proceedings of the International
Conference on Learning Representations (ICLR), San Diego,
California., USA, May 2015.



	 Introduction
	 Proposed Method
	 Threat model
	 Training Data
	 Face Reconstruction

	 Experiments
	 Experimental Setup
	 Comparison with previous methods
	 Discussion

	 Conclusion
	 References

