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Abstract

The successes of deep learning for semantic segmentation can in be, in part, attributed to its

scale: a notion that encapsulates the largeness of these computational architectures and the

labeled datasets they are trained on. These resource requirements hinder the applicability of

segmentation networks to scenarios where labeled data is expensive, or deployment conditions

do not allow for large networks. This dissertation aims at assuaging these problems by (a)

transferring the knowledge of trained networks to new domains without the need for labeled

data, (b) improving the computational efficiency of segmentation transformers by a differential

allocation of computation to input regions.

The first part of this dissertation focuses on reducing the amount of labeled data needed to

train these models by transferring knowledge from existing datasets and bridging the domain

gap between them. We tackle model adaptation, a problem where we adapt a source data

trained segmentation network with only unlabeled data from the target domain by improving

the network’s confidence of predictions. Next, we study test-time adaptation, where the goal is

to adapt to a plausible domain shift with access to only a batch of samples at inference time.

To do so, we train the network to be confident and stable to input perturbations. Experimental

results show that methods that improve parameter or input perturbation robustness largely

compensate for the absence of source data in the adaptation process.

The second part of this dissertation is on the computational requirements of deep networks.

We first present a method for patch pausing to improve the inference efficiency of segmenta-

tion transformers. Here, we stop processing input patches deemed to have been processed

enough to produce an accurate segmentation. This determination is done by computing

the network’s confidence of segmentation at intermediate layers. We then focus on compute-

aware evaluation methods for deep learning, focusing on optimizers. We argue that a fair

assessment must include not only the performance obtained but also the cost of finding the

hyperparameter configurations that result in that performance. An optimization algorithm

that achieves good performance with relatively little tuning effort and computational cost is

more valuable in practice than one that performs better, albeit only with more tuning. We

conclude that, under our experimental setup, Adam is the most practical choice.

Keywords: semantic segmentation, model adaptation, test-time adaptation, efficient trans-

formers, patch pausing, performance evaluation.
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Résumé

Les succès de l’apprentissage profond dans la segmentation sémantique peuvent être en partie

attribués à sa taille : une notion qui inclut l’étendue de ces architectures computationnelles

et des ensembles de données étiquetées sur lesquels elles sont entraînées. Ces exigences en

termes de ressources limitent l’applicabilité des réseaux de segmentation dans des situations

où les données étiquetées sont coûteuses ou où les conditions de déploiement ne permettent

pas l’utilisation de grands réseaux. Cette thèse vise à résoudre ces problèmes en (a) transférant

les connaissances des réseaux entraînés à de nouveaux domaines sans avoir besoin de données

étiquetées, (b) améliorant l’efficacité computationnelle des transformeurs de segmentation

en allouant de manière différentielle le calcul à certaines régions des données d’entrée.

La première partie de cette thèse se concentre sur la réduction de la quantité de données

étiquetées nécessaires à l’entraînement de ces modèles en transférant des connaissances à

partir de jeux de données existants, en comblant le fossé entre les domaines. Nous abordons

l’adaptation des modèles, un problème où nous adaptons un réseau de segmentation entraîné

sur des données source avec uniquement des données non étiquetées du domaine cible en

améliorant la confiance du réseau dans ses prédictions. Ensuite, nous étudions l’adaptation au

moment du test, où l’objectif est d’adapter un modèle à un changement de domaine plausible

en n’ayant accès qu’à un lot d’échantillons au moment de l’inférence. Pour ce faire, nous

entraînons le réseau à être confiant et stable face aux perturbations des données d’entrée.

Les résultats expérimentaux montrent que les méthodes qui améliorent la robustesse aux

perturbations des paramètres ou des entrées compensent largement l’absence de données

sources.

La seconde partie de cette thèse porte sur les besoins computationnels. Nous présentons tout

d’abord une méthode de pause de patches pour améliorer l’efficacité des transformeurs de

segmentation. Ici, nous arrêtons de traiter les patches d’entrée qui ont déjà été suffisamment

traités pour produire une segmentation précise. Cette détermination se fait en calculant la

confiance du réseau en la segmentation produite dans les couches intermédiaires. Nous nous

concentrons ensuite sur les méthodes d’évaluation pour l’apprentissage profond qui tiennent

compte des besoins en calcul, en particulier dans le cas des optimiseurs. Nous soutenons

qu’une évaluation juste doit inclure non seulement la performance atteinte mais aussi le

v



Résumé

coût de recherche des hyperparamètres qui permettent d’atteindre cette performance. Un

algorithme d’optimisation qui obtient de bonnes performances avec un effort de réglage et un

coût de calcul relativement faible a plus de valeur qu’un algorithme qui obtient de meilleures

performances, mais au prix de plus de réglage. Nous concluons que, dans notre configuration

expérimentale, Adam est le choix le plus pratique.

Keywords : segmentation sémantique, adaptation de modèle, adaptation en temps de test,

transformeurs efficaces, pause de patches, évaluation des performances.
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1 Introduction

Neural networks have long held great promise in their theoretical capabilities and have shown

practical utility for the past decade, starting with the first application to large-scale classifi-

cation (Ciresan et al., 2012; Krizhevsky et al., 2012), and have grown to revolutionize various

other domains, including language processing, and speech analysis (Zhang et al., 2022a).

These networks, trained on large datasets like the ImageNet (Deng et al., 2009), learn transfer-

able feature representations that significantly improve the performance of other recognition

tasks (Sharif Razavian et al., 2014). Recent empirical discoveries show that large networks and

large datasets are primal to performance improvements (Zhai et al., 2022; Kaplan et al., 2020),

and this is evidenced in Figure 1.1, where the recent trends show a nearly monotonic increase

in the dataset sizes and the model sizes that have resulted in the performance improvements.

Improvements in architecture have gone hand-in-hand with improvements to hardware like

the Graphics Processing Units (GPU), and Tensor Processing Units (TPU), and these hardware

improvements have, in turn, influenced the flavor of architectural improvements (Hooker,

2021).

2000 2005 2010 2015 2020

Year

104

106

108

Training dataset size

2010 2012 2014 2016 2018 2020

Year

107

108

109

1010

1011

1012

Inference FLOPs

Figure 1.1: Dataset and model size trends for computer vision publications over the years.
Datasets and model sizes have grown about four orders of magnitude since 2014. The perfor-
mance improvements for vision problems are indubitably attributable to the large increase in
dataset sizes and model improvements. Data from Sevilla et al. (2022).
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Introduction

These powerful feature extractors trained on ImageNet have been repurposed successfully

for several downstream vision tasks, including the one of interest in this thesis – semantic

segmentation. Segmentation refers to splitting the image into coherent parts. Several defini-

tions of coherence have been studied, like color and spatial coherence (Achanta et al., 2012),

and texture (Malik et al., 2001). In this thesis, we focus on one type where these parts are

consistent with object categories present in the image or the semantics of the image; hence

termed Semantic Segmentation. In the rest of the thesis, we use segmentation and semantic

segmentation interchangeably.

1.1 On data requirements to train segmentation networks

Segmentation networks are trained using a standard supervised training learning: given

a pixel-wise labeled training dataset, the network’s parameters are modified such that the

network can predict the labels of the training set as well as possible. These large computation

machines require vast amounts of data to be trained adequately. A few large densely labeled

datasets such as Cityscapes (Cordts et al., 2016), or Berkeley Deep Drive (BDD) (Yu et al., 2020)

exist and generally cover a small geographic region; Cityscapes was collected in Germany and

Switzerland, and BDD in San Francisco area. Networks trained on these datasets and deployed

in other places or lighting conditions perform poorer than expected (Chen et al., 2017; Dai

and Van Gool, 2018), as it violates the key assumption of test and train data being sampled

from the same distribution (Recht et al., 2019; Hendrycks and Dietterich, 2019; Jo and Bengio,

2017).

This difference between train (source domain) and test (target domain) is termed domain

shift, and the way to tackle it is dependent on the available information. See Table 1.1 for a

concise representation.

• When the domain shift between train and test is known, and it is possible to collect labeled

data from the target domain, transfer learning is performed. Transfer learning, or fine-

tuning, has become the de facto standard in language processing, where a large model is

trained on a large corpus possibly unrelated to the current problem, and a small labeled

set is used to tailor the network the current problem (Ruder et al., 2019).

• When labeled data from the target domain is costly to obtain, Unsupervised Domain

Adaptation (UDA) techniques are commonly used. UDA methods use labeled source data

and unlabeled target data for the adaptation process and have been prominent in semantic

segmentation (Toldo et al., 2020).

• UDA methods, while being appropriate for cases where obtaining labeled target data is

expensive, require source data for the adaptation process. This can be an unreasonable

expectation when source data cannot be shared, for instance, for legal reasons, like in

medical images. Model adaptation (MA) adapts a source-trained model using unlabeled

target data and is a relevant problem for these practical reasons. We study this in Chapter 2.

2



1.2 On computational requirements for segmentation networks

Table 1.1: We show the various scenarios proposed to handle the domain change problem.
S = {(xi , yi )}Ns

i=1 T = {(xi , yi )}Nt

i=1 are the labeled source and target data, and Sx and Tx /Tx ′

are the unlabeled data from the source, and target domains, L (·) denotes a generic applicable
loss function i.e., L that takes both data and labels can be construed to be a supervised loss,
and one that takes only data is an unsupervised loss. A testing process with ‘-’ denotes that the
testing procedure does not have steps other than the forward propagation of the data sample.
In this thesis, we focus on the last two rows, i.e., model adaptation, and test time adaptation.
A similar table has been presented elsewhere (Wang et al., 2021a; Teja and Fleuret, 2021a).

Strategy Train payload Test data Training process Testing
process

Baseline S Tx L (S ) -

Transfer learning S & T Tx L (S ) + L (T ) -

Fine-tuning T & f (·,θS) Tx L (T ) -

Unsupervised Domain Adaptation S & Tx ′ Tx L (S ) + L (Tx ′) -

Model Adaptation (Chapter 2) Tx ′ & f (·,θS) Tx L (Tx ) -

Test time adaptation (Chapter 3) f (·,θS) Tx - L (Tx )

• The above scenarios require prior knowledge of the domain shift that will occur at test time

and require data from the target domain at the train time. Some domain changes occur

gradually due to changing underlying systems and cannot be premeditated, making data

curation an impractical endeavor. For this reason, test-time adaptation (TTA) has become

an important problem, where the goal is to tackle plausible domain shifts at test-time with

access to a single batch of samples. We study this in Chapter 3.

Model adaptation (MA) and test-time adaptation (TTA) are two allied forms of source-free

adaptation i.e., they do not use source data during the adaptation process (Fang et al., 2022).

They differ in two key ways: 1) MA aims at generalizing to the target domain by learning from

target domain training data, whereas TTA aims at performing better on the specific target

set like transduction (Vapnik, 1998) and, 2) MA can use multi-epoch training, whereas TTA

predicts the labels for the current test batch of samples, and generally does not revisit past test

samples.

1.2 On computational requirements for segmentation networks

The largeness of the segmentation architectures translates to large training and inference

resources; training resources are both computational and data, whereas inference resources

are primarily computational, including memory. These requirements of these architectures

prohibit their usability in several scenarios e.g. mobile devices, and low-power devices. In

this thesis, we propose a method for improving the efficiency of segmentation networks at

inference. This is orthogonal to techniques for faster training or reducing the amount of

3



Introduction

labeled training data.

The problem of efficient inference has been dealt with in several ways. One way has been to

improve the efficiency of the architectural components or to simplify the architecture. Simplifi-

cations to the convolution layers include separable convolutions (Chollet, 2017) and rank-one

decomposition (Jin et al., 2014). These have further led to architectural simplifications like

the MobileNet family (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019). These

improvements to classification networks have seeped into the segmentation applications (Hao

et al., 2020, Section 3.1.7). Subsequent to the transformer (Vaswani et al., 2017) revolution,

several efficient models have been proposed (Tay et al., 2022).

Other avenues for improving the efficiency of neural networks are network pruning and

quantization. Pruning refers to removing network elements like weights or even layers. A

network can be pruned post-training, though recent papers have found more utility in pruning

through the training process (Kuzmin et al., 2019). Similarly, quantization of the network

parameters and activation has been used to lower the memory footprint of networks at

inference. Training methods for low bit widths have been investigated too (Wu et al., 2020).

The third avenue, and the one we pursue in this thesis, is reducing the amount of data that

is processed by a neural network. To motivate this, consider the image classification task of

dogs vs. cats. It is possible to classify an image as that of a dog with only the input regions that

belong to the dog while refraining from processing the rest of the image. This reduction in the

amount of input data processed results in better efficiency. This line of thinking is harder to

realize using convolutional networks on modern GPUs but is suitable for transformers that

treat input images as a sequence of patches, and has resulted in several works that investigated

either dropping or combining patches (Meng et al., 2022; Yin et al., 2022; Bolya et al., 2023).

We extend this to the problem of semantic segmentation.

1.3 Thesis Contributions and Outline

The four following chapters of this thesis are organized into two parts: the first part contains

the work on source-free methods of dealing with domain shifts based on Teja and Fleuret

(2021b,a), and the second part deals with computational constraints based on Courdier et al.

(2022); Teja et al. (2020). The chapters can be read in any order and contain the relevant prior

work.

Part 1: Dealing with domain changes

As seen in Table 1.1, traditional methods for Unsupervised Domain Adaptation (UDA) targeting

semantic segmentation exploit information common to the source and target domains, using

both labeled source data and unlabeled target data. We introduce the problem of model

adaptation to semantic segmentation, where a network trained on the source data is adapted
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to the target domain using unlabeled target data. To tackle this problem, we propose a method

that reduces the uncertainty of predictions on the target domain data. We accomplish this

in two ways: minimizing the entropy of the predicted posterior, and maximizing the noise

robustness of the feature representation. We show the efficacy of our method on the transfer

of segmentation from computer-generated images to real-world driving images, and transfer

between data collected in different cities, and surprisingly reach performance comparable

with that of the methods that have access to source data. We present this in Chapter 2.

Model adaptation seeks to generalize a model to the target domain. We study a more specific

case of this problem named test-time adaptation: we handle domain shift at inference time,

i.e., we do not change the training process (remains training on source domain data) but

quickly adapt the model at test time to handle any domain shift in the test samples. For this,

we enforce consistency of predictions of data sampled in the vicinity of the test sample on

the image manifold. We show experiments on tackling image corruptions and domain shifts

and find that small network updates at inference time significantly improve performance on

out-of-domain test data. We present this in Chapter 3.

Part 2: Dealing with computational needs

In Chapter 4, we study the problem of improving the efficiency of segmentation transformers

by using disparate amounts of computation for different parts of the image. Our method,

PAUMER, accomplishes this by pausing computation for patches that are deemed not to need

any more computation before the final decoder. We use the entropy of predictions computed

from intermediate activations of those patches as the pausing criterion and find this aligns

well with the semantics of the image. Our method has a unique advantage: a single network

trained with the proposed training strategy can be effortlessly adapted at inference to various

run-time requirements by modulating its pausing parameters.

We then focus on the meta-problem of evaluation methods in deep learning and concentrate

on optimizers. The efficacy of optimizers is often studied under near-optimal problem-specific

hyperparameters, and finding these settings may be prohibitively costly for practitioners.

In Chapter 5, we argue that a fair assessment of optimizers’ performance must take the

computational cost of hyperparameter tuning into account, i.e., how easy it is to find good

hyperparameter configurations using an automatic hyperparameter search. Evaluating a

variety of optimizers on an extensive set of standard datasets and architectures, our results

indicate that Adam is the most practical solution, particularly in low-budget scenarios.

We conclude the thesis in Chapter 6 with unanswered questions from our research and some

future directions.
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2 Uncertainty Reduction for Model
Adaptation in Semantic Segmentation

This chapter is based on

Teja, P. and Fleuret, F. (2021b). Uncertainty reduction for model adaptation in

semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 9613–9623.

2.1 Introduction

Domain changes between training and deployment are inevitable in several real-world prob-

lems and tackling this with fine-tuning requires producing annotated segmentation datasets

for the deployment domain. Producing new segmentation datasets is very laborious and

expensive; Cordts et al. (2016) reports that each image required about 90 minutes for labeling

and verification. Thus, owing to the large costs, both time and economic, creating annotated

datasets for each scenario is impractical, motivating the re-use or transfer of knowledge from

available images to the requisite application.

The problem of transfer for segmentation has been predominantly investigated in literature

(see Section 2.4) in two settings: adapting a model trained on synthetically generated images

to natural images, and adapting a model to cities different from the ones it has been trained

for. We, too, adopt these settings for study in this chapter. The synthetic-to-real images

adaptation has attracted a lot of attention as the cost of generating segmentation ground truth

for graphically rendered frames like GTA (Richter et al., 2016), or Synthia (Ros et al., 2016) is

substantially lower. Richter et al. (2016) labeled 24,966 frames at an average of 7 seconds per

frame, a significant drop from 90 minutes taken for Cityscapes. However, due to the nature of

their generation, these synthetic images have a significant domain gap to the natural images,

which results in a substantial drop in the performance of networks trained on synthetic data

when used on natural images. Similarly, given the existing real-world datasets like Cityscapes,

it is paramount that the knowledge learned on these datasets is effectively transferred to

different scenarios without providing annotated data for each scenario.
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A large portion of the methods dedicated to tackling this problem, like some reviewed in Sec-

tion 2.4, require the labeled source data to be available along with the unlabeled target data for

the adaptation process. We, in this chapter, focus on the problem where the source data itself

is unavailable, but the source-trained classifier is. This is similar to life-long learning (Silver

et al., 2013), where the goal is to adapt to several tasks over several domains, and the only

information payload carried over is the model itself. Differing from that, we are not concerned

with preserving the performance of the source task. The current problem of source data-less

transfer is pertinent when data-sharing restrictions exist on the source data; a common way

to circumvent this is to share the trained classifier from which the input data itself cannot

be reconstructed. A classical application is in medical image processing, where patient data

cannot be freely shared due to privacy concerns, but a trained model can be. Another relevant

application where we envisage such a setting is in search-and-rescue operations, where data

is collected on a mobile drone, and the segmentor network is adapted based on only the data

collected without needing to access the original labeled dataset. Thus, the problem of domain

adaptation in the absence of source data termed model adaptation (Chidlovskii et al., 2016) is

of practical significance.

In this chapter, we study the problem of model adaptation for semantic segmentation. To

the best of our knowledge, ours was the first work to do so. In the absence of source-labeled

data that previous works have effectively exploited, we enforce auxiliary properties desirable

in a system, namely confident predictions for the target data, and noise resilience, thereby

increasing the stability of classification to parameter choices. To this end, we propose a

method that uses feature corruption (Chidlovskii et al., 2016; Maaten et al., 2013; Ouali et al.,

2020), and entropy regularization (Grandvalet and Bengio, 2005; Vu et al., 2019). We find that

having access only to the source classifier, along with unlabeled target data, can result in

performance comparable to the case where source data is also available.

2.2 Handling the absence of labeled source data

2.2.1 A toy problem

To motivate our method, we consider the ideal case depicted on Figure 2.1. Let us consider a

simple case of binary classification of Y = {0,1} for a scalar input feature x ∈R. The probability

of classification is defined using a sigmoid function of the input x and a threshold t

p(Y = 1|X = x; t ) = 1

1+e−(x−t )
(2.1)

For illustration in Figure 2.1, we show the class conditional distributions, though we do not

use class information. With only the information of the feature distribution µX (x), our goal

is to reason about scenarios that are likely to generalize better. If the labels are available,

traditional wisdom tells us that Figure 2.1c is likely the ideal scenario to attain in terms of

generalization (Schapire et al., 1998). We make it a little more concrete here, in the case where
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tSt∗ x −→
(a)

t∗ x −→
(b)

t∗ x −→

µ(X |Y = 0)
µ(X |Y = 1)

(c)

Figure 2.1: Given only the feature distributions in 2.1a to 2.1c in a two-class scenario, which
one generalizes the best? In 2.1a, we show the distribution of features extracted by source
trained network and the corresponding source threshold on the target data. Tuning the
threshold to t∗ from tS is expected to result in better generalization. If we can modify the
feature extractor itself, reducing the uncertainty of classification over the domain gives us
2.1b. This can be achieved by penalizing the entropy of predictions of each of the data points.
We argue that while entropy is seemingly sufficient, we need to reduce the uncertainty in the
network’s predictions over a wide range of parameter choices to obtain better separation of
the data like in 2.1c, and thereby better generalization. Details in Section 2.2.1.

the labels are not available.

In Figure 2.1a, the feature x is given by a source-trained feature extractor, and tS is the cor-

responding learned threshold. It is apparent that such a threshold is likely ill-suited for the

target domain, as it places the decision boundary in a high-density region of the feature space,

contradicting the traditional cluster & continuity assumptions (Chapelle and Zien, 2005; Lee,

2013; Chapelle et al., 2010). However, if we change the threshold to t∗, we expect better gen-

eralization performance. Note that this is also the classifier for which the entropy of output

probability predictions over the distribution µX (x) is the lowest. We mathematically define

this idea and show numerical simulations for these cases in Appendix 2.B.

We would like to modify the feature extractor so that the class conditional distributions overlap

less than in Figure 2.1a. This can be achieved by imposing an entropy penalty on output

posterior predictions and using that penalty to train the feature extractor too. We show this in

Figure 2.1b. As the overlap of the class-conditional data distributions decreases, we expect the

generalization performance to improve.

The ideal scenario is shown in Figure 2.1c, where numerous thresholds can separate the two

classes, and we choose one that results in the least uncertain predictions of target data. One

can draw parallels to max-margin methods like the SVM, where one is interested in finding a

separator that is optimally distant from all classes. In a nutshell, we see that a classifier with

stable predictions for a range of parameter choices is likely to generalize better. This is, of

course, in our context where we do not have access to labeled training data. To accomplish

this, we need to go beyond entropy quantification of the predicted labels; we enforce stability

of predictions over noisy features x ±ϵ.
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2.2.2 Proposed method

Shared Backbone--
ResNet101

Main Decoder
ASPP

Aux Decoder
ASPP

Aux Decoder
ASPP

Aux Decoder
ASPP

Aux Decoder
ASPP
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Figure 2.2: An illustration of the proposed method. The main decoder is trained with Equa-
tions (2.3) and (2.5), whereas the backbone feature extractor is trained with a combination of
Equations (2.2), (2.3) and (2.5). At test time, we discard the auxiliary branches; thus, there is
no additional computation at inference.

We, first, formally define the problem. Let X ∈ RD be the input, and Y ∈ {1 . . .K } the labels.

Let S with density µS(x) be the source domain and T with density µT (x) be the target one,

where we do not have access to the labels of T while training. Let XS = {(xi , yi ) i = 1. . . Ns , xi ∼
µS(x), yi ∼ pS(y)} be the source data, and XT = {(xi , ) i = 1. . . Nt , xi ∼µT (x)} be the target data.

Let pT (y) be the target domain label prior that is unknown to us. Here µS ̸=µT . We do not have

direct access to XS , but have access to a network trained on XS . Let us denote that network by

f (x ,θS ) ≡ fS(x) where θS denotes the parameters of the network trained on the source data.

Let g and h denote the feature extractor and classifier respectively, whose composition is f

i.e., f = h ◦ g . Let also θg and θh be their corresponding parameters. In our case, the network

g refers to the ResNet-101 backbone, and h refers to the ASPP (Chen et al., 2018) decoder,

which we describe in Section 2.3.3. For convenience, h also subsumes the softmax layer, and

thus f (x ;θ) = p(y |x ;θ), where y is a vector of probabilities from which the predicted label

is sampled. In summarizing, we have fS and XT , and our goal is to modify fS such that its

performance is improved on T data.

Optimizing the feature extractor to generate robust features

The likelihood of predictions y for an input of x ∈ T is computed by f (x ;θ), on which an

entropy penalty can be imposed (Grandvalet and Bengio, 2005). However, with a trivial applica-

tion of this, for the illustration in Figure 2.1b, the network can learn to separate the distribution

by placing the threshold t∗ at any arbitrary point and shearing the feature distributions around

it, thereby being stable to the choice of the threshold instead of attaining separation of features

as in Figure 2.1c. For simple problems like the one in Figure 2.1, it can be achieved by enforcing

stability to input perturbations. However, in deep networks, the network can learn to denoise

the inputs in the initial few layers of processing. Using stronger augmentations like the ones

in Chen et al. (2020) is ill-suited for segmentation, as classification networks are expected to

12



2.2 Handling the absence of labeled source data

be invariant to such noise, whereas segmentation networks are expected to be equivariant.

This can be remedied by adding structured noise to inputs such that the layout of the input

objects is preserved (for example, modifying the colors of objects). We achieve this by adding

noise to the feature representation using dropout, similar to Ouali et al. (2020), that acts as a

structured noise in the input space.

Let ŷ i = f (x ; θ̂i ) be the output of the network using the i th instantiation of dropout, and

y = f (x ;θ) the output for the network without dropout. In such a case, we propose to compute

the uncertainty loss as

Lun = 1

N

N∑
i=1

(
ŷ i − y

)2
(2.2)

To implement Equation (2.2), we introduce dropout only between g and h. In the context of

Bayesian neural networks, such a method has been termed LastLayer-Dropout elsewhere (Ova-

dia et al., 2019). Instead of using a single branch that predicts the output with dropout

weights, we use multiple decoders ĥ that take in dropped-out features predicted by g . Thus

y = f (x ;θ) = h(g (x ;θg );θh) and ŷ = f (x ; θ̂) = ĥ(g (x ;θg ); θ̂h). Thus, each auxiliary decoder ĥ

sees only partial feature tensor and is required to come as close to reconstructing the original

label tensor. We, experimentally, find that freezing the main decoders’ weights θh while train-

ing the auxiliary decoders’ parameters θ̂h results in better performance. Our full method is

shown in Figure 2.2.

The use of multiple auxiliary decoders has been proposed in Meyerson and Miikkulainen

(2018) for defining pseudo-tasks for deep multitask learning and in Ouali et al. (2020) for semi-

supervised learning. Meyerson and Miikkulainen (2018), however, use ground-truth labels to

train each of the auxiliary classifiers. We note the similarities to several previous works that

focus on generating robust representations using various kinds of feature corruptions (Chen

et al., 2014; Globerson and Roweis, 2006) that are class agnostic, and ones that are class specific

like guided cutout (DeVries and Taylor, 2017). However, we experimentally find that advanced

forms of feature noising (like class-dependent noising or targeted cutout) do not work as well

as our method. We hypothesize that it is due to the unreliable predictions of the source-trained

network on target images.

The proposed uncertainty loss in Equation (2.2) improves the noise resilience of the net-

work. In addition, we use an entropy regularizer that minimizes the entropy of the network’s

predictions, which results in better empirical performance.

Lent =H
[

f (x ;θ)
]

(2.3)

where, H[] is the entropy of the probability distribution over all K classes for an input x . We

hypothesize that this is because the dropout noise modifies the decision boundary given by the

optimizer itself. Thus, it is beneficial to explicitly regularize the predictions given that estimate

of weights. We find that we do not need a diversity enforcing loss, as specified in (Krause et al.,

2010; Liang et al., 2020), to prevent degeneracies.
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Regularizing using the source trained model

We note that the losses in Equations (2.2) and (2.3) do not use the information in the source-

trained classifier, but enforce certain properties to be satisfied by the network on the target

domain. In Figure 2.1c, an interchanged labeling i.e., where class-0 is predicted class-1 and

vice-versa, results in the same loss value for Equations (2.2) and (2.3). To avoid such issues

and to infuse plausible class structure to the data, we use pseudo-labeling.

Pseudo-labeling or self-training has been a mainstay method in semi-supervised problems

before the deep learning era. However, owing to the availability of large-scale datasets, it has

been used to great success (Arazo et al., 2020; Lee, 2013; Xie et al., 2019) for several classification

problems. Traditional methods use the class with the highest predicted probability as the

ground truth for each unlabeled sample. However, in the case of a domain change, the

accuracy of such predicted pseudo-labels is low. So we use the following modification to the

standard definition

yPL =
argmax f (x ,θ) ifmax( f (x ,θ)) ≥ τ

IGNORE otherwise
(2.4)

i.e., we only consider as pseudo-labels the samples that are at least τ confident. The samples

with the IGNORE label do not contribute to the loss. However, choosing τ is a non-trivial task,

as too low a threshold will result in wrong labels, and too high a threshold will result in no target

data being bootstrapped for training. In this work we adopt the strategy of class balanced

thresholding (Zou et al., 2018), where τ is varied per class, such that a certain proportion of

points per class are always selected. We define the pseudo-labeling loss to be the cross-entropy

loss with the pseudo labels as defined in Equation (2.4)

LPL =−1T
yPL

log(y) (2.5)

where 1yPL is one-hot encoded vector of yPL , and log is applied element-wise.

Thus, the overall loss function being optimized is the combination of Equations (2.2), (2.3)

and (2.5):

L =LPL +λent Lent +λunLun (2.6)

where λent ,λun are the weights of the individual loss terms.

Our work is connected to recent work in interesting ways: if Equation (2.2) is construed to be a

form of self-supervision, our method can be interpreted as a form of test-time training (Sun

et al., 2020). Test-time training proposes to use an auxiliary task at test time that helps combat

domain shift from the training set. We differ in that we do not update the network at test

time but do so when given target domain data. Similarly, our work, conceptually, uses self-

supervision for domain adaptation, similar to (Sun et al., 2019), but doesn’t need access to

source labeled data. Additionally, our method can be interpreted as making the network a bit

Bayesian (Kristiadi et al., 2020), where instead of placing Gaussian posterior on the weights of

the penultimate layer’s weights, we use dropout distribution. As previously mentioned, our
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method has similarities to pseudo-tasks in multitask learning (Meyerson and Miikkulainen,

2018), which uses labeled data for training.

2.3 Experiments

2.3.1 A toy problem

To elucidate the utility of each of the terms in Equation (2.6), we use a toy problem as shown in

Figure 2.3. In Figure 2.3 a & b we show the source and target datasets; we use a rotated version

of the source data as the target data. In our case, we do not use the labels of the target data. We

train a small two-layer neural network with batch norm and ReLU activations. We provide the

exact architecture in Table 2.A.1 in the appendix. We take the outputs before the last classifier

layer as the features of the network and use the techniques that we described in Section 2.2.2

to train the network, except we do not use pseudo labeling for this problem. We use a feature

dimensionality of 2 and plot the target features in Figure 2.3c with the source classifier. It is

very apparent that the source network extracts features that do not transfer well. In Figure 2.3d,

with a simple entropy regularization on the target data, we see that the performance improves

tremendously. However, some blue points are very close to the separating line. To remedy

this, our proposed feature noise decoder (detailed in Section 2.2.2) pushes the points away

from the separating line. This can be interpreted as a form of increasing the stability of the

classification and thereby reducing uncertainty, which we hypothesize to be the key to better

generalization.

Source Data (a) Target Data (b)

0 5

0

2

4

6

Target Features:
Source-trained (c)

0 5

0

2

4

6

Target Features:
Entropy (d)

0 5

0

2

4

6

Target Features:
Noisy Features (e)

Figure 2.3: A toy example in R2 to illustrate our algorithm. The target data is unlabeled,
however, we shade it for illustration. The thick line in all the figures is the separator. In (a) we
show the source data and the classifier trained on that, and in (b) the unmodified classifier
on the target data. In (c) we visualize the features extracted by the source-trained classifier
on target data. With a simple entropy penalty on the target data, we get substantially better
performance (d). With the additional uncertainty loss, we see that the features extracted are
pulled further away from the separating line in (e). Details in Section 2.3.1.

2.3.2 Datasets and Evaluation

We demonstrate the efficacy of our method on the standard domain adaptation tasks of

GTA (Richter et al., 2016)→ Cityscapes (Cordts et al., 2016) (GTA-CS) and Synthia (Ros et al.,
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2016)→ Cityscapes (SYN-CS) and Cityscapes→NTHU Crosscity (Chen et al., 2017) (CS-CC), a

standard test setting used in several previous works (Section 2.4). Cityscapes consists 2975

annotated images, each of size 2048×1024, that act as our training set. It has 500 images as the

validation set, which we use to benchmark our method. It consists of 19 semantic classes for

segmentation. The GTA dataset consists of 24966 frames, of size 1914×1052 grabbed from the

famous game Grand Theft Auto. The ground truth is generated by the game renderer itself. It

shares the same 19 semantic classes as Cityscapes. Synthia has 9400 images of size 1280×760

synthetic images, and shares 16 classes with Cityscapes. For our method, we use a network

trained on Synthia or GTA, and adapt it to Cityscapes using the 2975 training images without

their ground-truth labels. Crosscity dataset has been recorded in four cities: Rome, Rio, Taipei,

and Tokyo with each image of resolution 2048×1024. Following (Chen et al., 2019a), we use

their experimental setup of 3200 unlabeled images as target training data, and 100 labeled

images as target test data. This adaptation task has 13 shared classes. We use the pre-trained

models provided by Chen et al. (2019a) for the source-trained model.

To evaluate our method, we use Intersection-over-Union (IoU) for each class and its average

mean-Intersection-over-Union (mIoU) over all classes. We report the metrics for all the 19

classes of GTA-CS adaptation, the 16 common classes for the SYN-CS experiments, and the 13

common classes in the CS-CC experiments. In accordance with some recent papers, we also

report a mIoU* comparing only 13 classes for the Synthia to Cityscapes adaptation task.

2.3.3 Implementation details

To facilitate a fair comparison with relevant works, we use a DeepLab V2 network (Chen et al.,

2018) with a ResNet-101 backbone (He et al., 2016a). Using the notation defined in Section 2.2,

g is the ResNet-101-based feature extractor, and h is the Atrous Spatial Pyramidal Pooling

(ASPP) decoder. The ResNet 101 backbone is pre-trained on ImageNet. ASPP (Chen et al.,

2018) is a multiscale decoder used to aggregate multiscale information for segmentation.

It has 4 parallel atrous convolutions of various rates, which capture long-range contextual

information from extracted features. We train the model on the source domain with stochastic

gradient descent with a learning rate of 2.5×10−4 with a weight decay of 0.0005, momentum

of 0.9. We use a poly learning rate decay scheduler with a power of 0.9. For the adaptation

experiments, we use a lower learning rate of 5×10−5, with other parameters staying the same,

with no learning rate decay. We also use a 10× the learning rate for ASPP decoders (Chen et al.,

2018) in our experiments. For all our experiments, we use λent = 1.0, λun = 0.1. We use the

defaults prescribed by Zou et al. (2019) to extract class-balanced pseudo labels. For the CS-CC

experiments, we run the adaptation for only 2 epochs, and for GTA-CS, SYN-CS for 6 epochs.
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2.3.4 Results

We show the performance of our proposed method on the tasks of GTA-CS adaptation in

Table 2.1, SYN-CS adaptation in Table 2.2, and CS-CC adaptation in Table 2.3. We obtain

at-par or better results than some of the classic works on unsupervised domain adaptation

(with source data). This work is, however, not a claim that source data is not necessary for

domain adaptation. The utility of source data has been exploited effectively by recent methods

through style transfer techniques (Yang and Soatto, 2020; Kim and Byun, 2020), thus, they

obtain higher performance than us. Our proposed method improves substantially on the

larger background classes, and we hypothesize this is because the source classifier can make

reliable predictions for these classes. The perceptual domain gap also seems to influence the

transfer performance, as we get comparable performance for GTA-CS and CS-CC experiments,

compared to the results we obtain for SYN-CS experiments.

Importance of loss terms

To correctly attribute performance to each of the terms in Equation (2.6), we ablate over the

loss terms in Table 2.4. Broadly summarizing, we find that the first choice of pseudo-labeling

results in a substantial improvement in performance over the source classifier. With each term,

we see that the performance increases, however, as described in Section 2.3.4, our method

also suffers higher variance. Thus, for a new use case, one might expect a small but consistent

improvement with pseudo-labeling, and other loss terms are useful if the method can be

tuned carefully. We show various additional ablations in Appendix 2.D and some qualitative

results in Appendix 2.E.

Table 2.4: Importance of each of the loss terms proposed. LDT refers to training with loss in
Equation (2.6) without freezing the decoders, and the last column L shows the performance
on freezing the main decoder. We see that each of the loss terms gives a consistent improve-
ment over the previous loss values.

Loss function LPL Lent Lent + LPL Lun + LPL LDT L

Eq 2.5 Eq 2.3 Eq 2.3 + Eq 2.5 Eq 2.2 + Eq 2.5 Eq 2.6 Eq 2.6

% mIoU 42.24 19.85 42.39 42.72 44.52 45.07

Variance analysis

To obtain a better estimate of performance, we run some of the baseline methods that we use

in Table 2.1 with five random seeds and show the performance. We use the publicly available

codes from the authors. The codes were executed for a maximum of 72 hours, a limitation

imposed by our computation resources. For each method, we change only the random seed

for each run and leave the rest of the hyperparameters to the default values set by the authors

in their codes. In Table 2.5, we show various statistics computed over the obtained runs. We
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2.3 Experiments

Table 2.5: Variance of the methods examined for the GTA→ Cityscapes. We show the mean,
standard deviation, minimum and reproduced (maximum) performance obtained over five
runs with different random seeds, and the official reported metrics from the paper. For
ADVENT, we show two rows to indicate the two testing strategies in their code: The first one is
after 90K iterations, and the second is the best-attained performance. We see that the common
strategy is to report the best-obtained result.

Method Performance Min Reproduced Previously

estimate Results Reported

AdaptSegnet (Tsai et al., 2018) 39.68 ± 1.49 37.70 42.20 42.40

ADVENT (Vu et al., 2019) (90K) 41.57 ± 0.73 40.73 42.73
43.80

ADVENT (Vu et al., 2019) (Best) 42.56 ± 0.64 41.60 42.39

CBST (Zou et al., 2018) 44.04 ± 0.88 42.80 45.03 45.90

Proposed Method 42.44 ± 2.18 39.71 45.06 –

Table 2.6: Variance of proposed method for the Cityscapes→NTHU Crosscity adaptation.

Rome Rio Tokyo Taipei

Performance
53.2± 0.8 52.37± 1.08 49.2± 0.71 49.48±0.76

estimate

see that the common trend in publications on UDA is to report the best-obtained performance.

While it is a pragmatic choice to use the best-obtained model as benchmarked on a validation

set, for deployments, it induces a systemic bias in the assessment of the true performance

of the system. Thus, we believe that a better characterization of the system’s performance is

through computing the average performance and the standard deviation, in addition to the

best performance obtained.

In Table 2.5, we find that merely changing the random seed can have a noticeable effect on

the performance of some standard systems, an observation made before (Madhyastha and

Jain, 2019; Bengio, 2012). The discrepancy between the maximum results in Table 2.5 and

the reported numbers can be attributed to hardware and software discrepancies, or budget

used. Vu et al. (2019) also remark that one needs to run the experiments a few times to reach

comparable performance1. Keeping in line with the standards of the domain, we report

the best-obtained performance in Tables 2.1 to 2.3, and show results of variance analysis in

Tables 2.5 and 2.6. Examining the mean and standard deviation obtained for our GTA-CS and

CS-CC experiments, we find that while our method achieves higher maximum performance,

it has a higher variance compared to the methods that use source data for the adaptation

process. We hypothesize that the proxy tasks used cannot act as suitable replacements for

1https://github.com/valeoai/ADVENT#training
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Chapter 2. Uncertainty Reduction for Model Adaptation in Semantic Segmentation

labeled data, in controlling and guiding the optimization process. We leave this analysis to

future work.

2.4 Related Work

Semantic Segmentation

Deep learning had its success in semantic segmentation with fully convolutional networks (Long

et al., 2015), which converted the full-connected layers to convolutional layers. Following this,

various networks that made several architectural changes to improve accuracy metrics (Yu

et al., 2017; Zhao et al., 2017; Chen et al., 2018), and computational requirements (Zhao et al.,

2018; Paszke et al., 2016; Romera et al., 2017; Orsic et al., 2019) have been proposed. To remedy

the data hungriness of these networks, domain adaptation, specifically unsupervised domain

adaptation, has been an oft-studied problem recently

Unsupervised Domain Adaptation

Based on the seminal work of adversarial domain adaptation (Ganin et al., 2016) that uses a

discriminator network to align features from both domains, several methods have been pro-

posed for segmentation on similar lines. Methods have been proposed that align intermediate

feature spaces (Hoffman et al., 2016; Sankaranarayanan et al., 2018; Du et al., 2019; Wang et al.,

2020), output space (Tsai et al., 2018, 2019).

Another family of methods uses pseudo-labeling to enrich the target domain training using

either hard labels (Zou et al., 2018; Dai et al., 2019; Zhang et al., 2019) or soft labels (Zou et al.,

2019). Chang et al. (2019) use a per-domain autoencoder to separate domain idiosyncrasies

from features relevant to cross-domain segmentation. Vu et al. (2019); Chen et al. (2019a)

propose an entropy-based objective, and an adversarial alignment of the entropy maps of the

two domains. This method has been extended to multi-domain adaptation (Saporta et al.,

2021).

A host of techniques includes style translation as a part of their network that is trained along

with the segmentation network (Hoffman et al., 2018; Li et al., 2019; Chen et al., 2019b; Murez

et al., 2018), or separately (Yang and Soatto, 2020; Kim and Byun, 2020).

Model Adaptation

Most of the previously mentioned methods need the explicit availability of source domain

data during adaptation too and have made tremendous strides in improving the segmentation

performance in that case. A few recent papers tackle model adaptation for classification

problems (Liang et al., 2020; Li et al., 2020; Chidlovskii et al., 2016). (Kundu et al., 2020)

proposes source-free domain adaptation in the case where label knowledge of the target
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domain is not available, and shows their efficiency on a set of classification problems with

varying levels of label overlap. As we argued in Section 2.1, to the best of our knowledge, this

problem has not been tackled in the context of semantic segmentation. Though the task of

segmentation can be construed to be one that of pixel-wise prediction, we emphasize that the

techniques cannot be interchangeably used. As the resource requirements of segmentation

networks are substantially higher than that of classification networks, methods proposed for

classification that use conditioned generation of target domain data (Li et al., 2020), or use

memory-intensive methods for reliable estimation of pseudo-labels (Kim et al., 2020; Liang

et al., 2020) are impractical.

Self-supervision for segmentation

Self-supervised learning exploits the structure in data by defining a pretext task so that the

network learns a good semantic representation of the input image. Examples include rota-

tion prediction (Gidaris et al., 2018), context prediction (Doersch et al., 2015), jig-saw puzzle

solving (Noroozi and Favaro, 2016),contrastive learningChen et al. (2020); He et al. (2020).

Self-supervised learning for unsupervised domain adaptation has been proposed to train

the feature extractor (Sun et al., 2019). However, the applications of self-supervised learn-

ing to segmentation have been limited, as the invariances enforced differ widely between

classification and segmentation problems. Some attempts to learn segmentation networks

include using very strong perturbation techniques like CutMix (French et al., 2019), using

consistency regularization through feature noising (Ouali et al., 2020), by using clustering for

pseudo-labels (Larsson et al., 2019). As described in Section 2.2.2, we note similarities of our

method to tasks proposed in (Ouali et al., 2020).

Multitask learning and robust classification

The use of multiple tasks to enrich the representations learned by a network has been used

quite often in computer vision (Zhang et al., 2014; Bilen and Vedaldi, 2016). These ideas have

been adapted to single-task learning by devising pseudo-tasks (Meyerson and Miikkulainen,

2018). These pseudo-tasks train the shared network structure to learn the task in multiple

ways and can be interpreted as using self-supervision. Similarly, increasing the robustness of

classification through feature noising has been studied extensively (Globerson and Roweis,

2006; Chechik et al., 2008; Vincent et al., 2010; Chidlovskii et al., 2016; Maaten et al., 2013).

Work on learning robust networks through pseudo-ensembling by reducing the variance when

dropout is used has been proposed (Bachman et al., 2014). Ideas of large-margin learning

have been extended to deep learning (Elsayed et al., 2018).
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Chapter 2. Uncertainty Reduction for Model Adaptation in Semantic Segmentation

Uncertainty modeling for neural networks

Our proposed method in Section 2.2.2 is very similar to the uncertainty modeling for neural

networks using Monte-Carlo (MC) dropout. MC-dropout (Kendall and Gal, 2017; Gal and

Ghahramani, 2016) uses dropout at test-time to sample various outputs and average them for

predicted posterior. Bayesian treatments of neural networks have been important owing to

their ability to predict uncertainty better and dealing with miscalibration problems (Kristiadi

et al., 2020). Such modeling has been used for medical imaging to estimate the confidence of

lesion segmentation (Nair et al., 2020), and for autonomous driving to estimate the uncertainty

of steering wheel angle prediction (Loquercio et al., 2020).

2.5 Conclusion

In this chapter, we focused on the problem of domain adaptation for semantic segmentation

in the absence of source data. In the absence of labels to guide the optimization, we propose

a method that reduces the uncertainty of predictions on the target domain data, which can

also be interpreted as increasing the stability of the feature extractor. We obtain performance

comparable to methods that use source data on the standard benchmark of tasks for semantic

segmentation transfer.
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Appendix - Chapter 2

Appendix 2.A Toy example’s network architecture

For the toy experiment presented in Section 2.3.1, we use a network from Kristiadi et al. (2020).

The architectural details of the network are given in Table 2.A.1.

Table 2.A.1: Architecture of the network used for the toy experiment in Figure 2.3

Layer name Description

Feature Extractor



Linear 2×20

BatchNorm

ReLU

Linear 20×2

ReLU



Classifier Softmax(2)

Appendix 2.B Entropy measurements

In Figure 2.1 and in Section 2.2.1, we glossed over the details of the toy problem. We provide

the details here.

Referring to Figure 2.1, we are trying to reason scenarios that, in the absence of labeled

target data, can be expected to result in good target performance. Our argument is that

reducing the uncertainty of predictions on the target domain is an effective strategy to improve

performance on the target domain. In order to do so, we concoct toy scenarios and analyze

their uncertainties. For this illustration, we use entropy as a measure of uncertainty.

Let us consider a two-class classification problem as shown in Figure 2.1. Let X be the

feature random variable, and Y ∈ {0,1} be the labels. Let us assume that the class con-

ditional distributions be normally distributed i.e., X |Y = k ∼ N (µk , σ2). Thus µX (x) =
1
2

(
N (x;µ0,σ2)+N (x;µ1,σ2)

)
, assuming uniform prior on Y . Let the threshold random vari-
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able T with a density µT (t ). This distribution is determined by a learning algorithm. Let Ŷ be

the random variable denoting the predictions whose probability is computed using a sigmoid

on the feature and a threshold as

ρ(x; t ) ≡ p(Ŷ = 1|X = x;T = t ) = 1

1+e−(x−t )
. (2.7)

The entropy of the above-defined categorical distribution is given by

H(Ŷ |X = x,T = t ) =−(
ρ(x; t ) log(ρ(x; t ))+ (1−ρ(x; t )) log(1−ρ(x; t ))

)
(2.8)

The entropy of classification over the entire domain X can be computed as

H(Ŷ |T = t ) =
∫

−(
ρ(x; t ) log(ρ(x; t ))+ (1−ρ(x; t )) log(1−ρ(x; t ))

)
µX (x)d x (2.9)

The above-defined marginal entropy is defined for a specific choice of the threshold t . To see

how the feature distribution itself influences the generalization, the entropy over all possible

thresholds is computed. The total entropy over all the thresholds possible is computed by

integrating over the entire range of t .

H(Ŷ ) =
∫ ∫

−(
ρ(x; t ) log(ρ(x; t ))+ (1−ρ(x; t )) log(1−ρ(x; t ))

)
µX (x)µT (t )d xd t (2.10)

We emphasize that t is the set of thresholds that can be generated by a learning algorithm.

However, we simplify it by using the domain X for this discussion.

We would like to train networks that result in low overall entropy in Equation (2.10). This

coincides with our argument that the features that can be separated by several choices of

threshold are likelier to generalize better. To visualize this, we run a few simulations that

compute the marginal and total entropy for various settings of feature distributions. In

Figure 2.B.1, we show the data distribution µX (x) for various µ0,µ1 values. Variance σ2 is fixed

to 1. In orange, we show marginalized entropy (Equation (2.9)). We scale it by a constant for

plotting purposes.

It is very apparent that the higher is |µ1 −µ2|, the lower the overall entropy. Given that the two

Gaussians are the class conditional distributions, the Bayes optimal decision boundary can

be computed to be µ1+µ2

2 , coincides with the point where Equation (2.9) is minimized, for all

scenarios except for the one with high overlap in Figure 2.B.1(a). Extending it, the lower the

Bayes risk, the better the generalization. Thus, the least entropy separation is also the best

separator we can achieve. We skip an important detail here: by extending the threshold search

to a value that is on the extremities of the X -axis, we can get a threshold that results in an

overall entropy that is very low. However, such a separator is practically useless. In our method,

we avoid this by using pseudo-labeling and initializing the network with the source-trained

weights.
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Figure 2.B.1: Illustration of the effect of the separation of the Gaussians on the entropy of the
classification.

We can see that for this simple scenario minimizing the entropy is a fairly good strategy in the

absence of labels to find near the optimal decision boundary.

Appendix 2.C Using squared error instead of entropy loss in Equa-

tion (2.2)

In Section 2.2.2, we proposed the uncertainty loss, and we use a squared error form instead of

the standard entropy-based uncertainty quantification. Here we provide a plausible expla-

nation that follows the argument in Chen et al. (2019a). Experimental evidence is provided

in (Ouali et al., 2020).

The traditional entropy regularizer has been used extensively in various applications like

semi-supervised learning (Grandvalet and Bengio, 2005), domain adaptation (Vu et al., 2019).

However, the gradient of the entropy penalty with respect to the softmax output is not well-

behaved for the probability is close to 1. We refer the reader to (Chen et al., 2019a, Figure 1) for

an illustration of this. However, squared loss and entropy loss can be viewed as a special case

of f -divergence.

Let P and Q be two distributions with PDFs p and q their density functions. Then their

f -divergence is defined as

D f (P ||Q) =
∫
R

f

(
p(x)

q(x)

)
q(x)d x (2.11)
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We get KL-divergence by using f (t) = t log t . Instead, using f (t) = (t − 1)2 gives the Max-

squared loss formulation in (Chen et al., 2019a). They find that using this instead of f (t) =
t log t results in better behavior for optimization. We find a similar empirical result that using

the squared error form for Equation (2.2) results in better results than using posterior entropy.

Appendix 2.D Experimental ablations

2.D.1 Sensitivity to auxiliary decoders

In the numbers reported in Tables 2.1 and 2.2, we use a dropout ratio of p = 0.5. We show an

ablation on the dropout values in Table 2.D.1. Intuitively, this value indicates the level of noise

resiliency that we expect in the network; a too-low value has very little use as it is equivalent to

having a single decoder without dropout, and too high a value destroys too much information

fed to the decoders. Thus an intermediate value like 0.5 is likely to be more appropriate for

our use. We find that our experiments support this notion in Table 2.D.1. For this comparison,

we use 5 auxiliary decoders. However, our proposed method is quite robust to this choice.

Table 2.D.1: Optimal feature dropout proportions for GTA → Cityscapes experiment.

Dropout (p) 0.2 0.5 0.8

Performance (mIoU) % 44.44 45.07 44.14

2.D.2 Number of auxiliary decoders

The auxiliary decoders play an important role in the level of feature stability induced. In-

deed Gal and Ghahramani (2016) show that the larger the number of samples drawn from the

dropout distribution, the better the approximation. In Table 2.D.2, we see that the number

of decoders plays an important role, but the method is fairly stable in its performance over a

range of decoder counts.

Table 2.D.2: Performance variation to the number of auxiliary decoders for GTA → Cityscapes
experiment.

# Decoders 1 3 4 5

Performance (mIoU) 43.5 44.20 44.67 45.07

2.D.3 Using single dropout decoder

In our method, we propose the use of multiple decoders instead of one, and we show the effect

of using a single decoder to decode the noisy features in Table 2.D.3. While it conceptually
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seems that using a single decoder should suffice, we see that using multiple auxiliary decoders

is helpful. Using multiple decoders forces the feature extractor to be more robust, whereas

using a single decoder forces the decoder to be more stable. However, the ASPP decoder is one

layer deep, its representation capacity is limited, and thus it is unable to do so, as evidenced in

Table 2.D.3.

Table 2.D.3: Utility of using multiple decoders

Method mIoU %

Single decoder with dropout 43.29

Multiple auxiliary decoders 45.07

Appendix 2.E Qualitative results for Cityscapes to Cross City Adap-

tation

In Figures 2.E.1 to 2.E.4 we show some qualitative improvements from our results for the

CS-CC experiments.

Input Image Ground Truth Source trained predictions Our predictions

Figure 2.E.1: Best five case results of adaptation for the Cityscapes to Rome (Cross City). The
first column is the test image, the second column is the ground truth, the third and fourth
columns are the source-trained model, and the results of our proposed method.
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Input Image Ground Truth Source trained predictions Our predictions

Figure 2.E.2: Best five results of adaptation for the Cityscapes to Rio (Cross City). The first
column is the test image and the second column is the ground truth, the third and fourth
columns are the source-trained model, and the results of our proposed method.
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Input Image Ground Truth Source trained predictions Our predictions

Figure 2.E.3: Best five results of adaptation for the Cityscapes to Taipei (Cross City). The first
column is the test image and the second column is the ground truth, the third and fourth
columns are the source-trained model, and the results of our proposed method.
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Input Image Ground Truth Source trained predictions Our predictions

Figure 2.E.4: Best five results of adaptation for the Cityscapes to Tokyo (Cross City). The first
column is the test image and the second column is the ground truth, the third and fourth
columns are the source-trained model, and the results of our proposed method.

2.E.1 Failure cases

In Figures 2.E.5 to 2.E.8, we show the five images that have least improved over the adaptation

process.
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Input Image Ground Truth Source trained predictions Our predictions

Figure 2.E.5: Worst five results of adaptation for the Cityscapes to Rome (Cross City). The first
column is the test image and the second column is the ground truth, the third and fourth
columns are the source-trained model, and the results of our proposed method.
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Input Image Ground Truth Source trained predictions Our predictions

Figure 2.E.6: Worst five results adaptation for the Cityscapes to Rio (Cross City). The first
column is the test image and the second column is the ground truth, the third and fourth
columns are the source-trained model, and the results of our proposed method.
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Input Image Ground Truth Source trained predictions Our predictions

Figure 2.E.7: Worst five results adaptation for the Cityscapes to Taipei (Cross City). The first
column is the test image and the second column is the ground truth, the third and fourth
columns are the source-trained model, and the results of our proposed method.
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Input Image Ground Truth Source trained predictions Our predictions

Figure 2.E.8: Worst five results adaptation for the Cityscapes to Tokyo (Cross City). The first
column is the test image and the second column is the ground truth, the third and fourth
columns are the source-trained model, and the results of our proposed method.
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3 Test time Adaptation through Pertur-
bation Robustness

This chapter is based on

Teja, P. and Fleuret, F. (2021a). Test time adaptation through perturbation robust-

ness. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and

Applications.

3.1 Introduction

The most oft-studied scenarios, like the one in Chapter 2, require prior knowledge of the

domain shift that will occur at test time and require data from the target domain at the train

time. For some problems in sensor data (Vergara et al., 2012), autonomous driving (Bobu

et al., 2018), the domain changes gradually and is linked to a physical process (say, change

of weather or time of day). In addition to the gradualness, these changes cannot always

be anticipated, and thus it is not possible to curate data and train networks for them. This

necessitates training strategies that do not need test domain data at train time.

In this chapter, we tackle the problem of handling domain shift at test time, a problem

previously termed test time training (Sun et al., 2020), or test time adaptation (Wang et al.,

2021a). Differing from model adaptation, the model is adjusted to (possibly) different domains

as the data arrives during inference. Owing to the nature of the problem, test-time adaptation

necessitates simpler, lighter methods compared to its train-time adaptation counterparts.

Several works have shown that one of the ways to improve generalization performance is to

train the network with various input data augmentations (Hendrycks et al., 2020; Cubuk et al.,

2019b). Networks are trained with multiple such augmentations for each training sample

with the original label. This is equivalent to training the network with original images and

adding a consistency regularizer that penalizes different outputs for augmentations (Leen,

1994). In this chapter, we propose a method for test-time adaptation in Section 3.3. Here,

we show that enforcing consistency of predictions over various augmentations of the test
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samples improves the model’s performance on corrupted data (CIFAR-10-C/100-C (Hendrycks

and Dietterich, 2019), CIFAR-10-C (Mintun et al., 2021)), domain shifts (VisDA-C (Peng et al.,

2018)), and on semantic segmentation drifts (GTA-CS and Cityscapes→Cityscapes-C). We

present preliminary results of an allied method in Appendix 3.F.

3.2 Related work

Data augmentations

Successes of deep learning can be partly attributed to training recipes like data augmenta-

tion (Krizhevsky et al., 2012), among others. There have been several attempts at designing

these augmentation strategies in the literature. Ratner et al. (2017); Cubuk et al. (2019a) pro-

pose to learn data augmentation per task using reinforcement learning. Recently, randomized

augmentation strategies like RandAugment (Cubuk et al., 2019b) and AugMix (Hendrycks

et al., 2020) have been shown to improve generalization performance, as well as calibration.

Data augmentations are the cornerstone of modern self-supervised learning methods (Chen

et al. (2020), and survey blog post (Weng, 2021)). A comprehensive survey has been presented

in Shorten and Khoshgoftaar (2019).

Consistency losses

Consistency losses were found to help semi-supervised learning problems (Rasmus et al.,

2015; Tarvainen and Valpola, 2017; Bachman et al., 2014; Sajjadi et al., 2016). The outputs

of the augmented data have been compared through JS-divergence in the current work and

in Hendrycks et al. (2020), mean-squared error (Sajjadi et al., 2016; Laine and Aila, 2017),

cross-entropy loss (Miyato et al., 2018). Consistency losses over augmented inputs have been

the mainstay in self-supervised learning literature like InfoNCE loss (Chen et al., 2020) and

cross-correlation (Zbontar et al., 2021).

Transfer learning

In addition to standard techniques like adversarial adaptation (Ganin et al., 2016), data

augmentation-based techniques have also been proposed to deal with domain transfer. Volpi

et al. (2018) propose that adversarial augmentation leads to better generalization for image

domains that are similar to the source domain. Pretraining with auxiliary tasks and using

consistency losses was found useful for domain adaptation tasks (Mishra et al., 2021). Huang

et al. (2018) use an image translation network for data augmentation for domain adaptation.

Augmented inputs have been used to predict multiple outputs, and fused by uncertainty

weighting in Yeo et al. (2021). The problem closest to ours is model adaptation (Chidlovskii

et al., 2016), where several recent works have shown the utility of pseudo-labeling, and entropy

reduction on the unlabeled target set (Teja and Fleuret, 2021b; Liang et al., 2020). In addition,
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methods that use GANs for image synthesis of target data also exist (Li et al., 2020).

Test time adaptation

Sun et al. (2020) proposed to adapt networks at test time by training networks for the main task

and a pretext task like rotation prediction at train time. At test time, they fine-tune the pretext

task network to adapt to distribution changes on-the-fly. This method modifies the training

procedure to be able to adapt on-the-fly. Recent works (Nado et al., 2021; Schneider et al.,

2020) found that adapting batch normalization statistics to the test data is a good baseline

for dealing with corruptions at test time. Tent (Wang et al., 2021a) takes this a step further

and fine-tunes batch normalization’s affine parameters with an entropy penalty. Important

questions about the sufficiency of normalization statistics are left unanswered in these works.

Our work differs from the existing works in test time adaptation, as we propose increasing

the robustness of the network to test samples. It has been shown (Novak et al., 2018) that

trained neural networks are robust to input perturbations sampled in the vicinity of the train

data; we extend this notion to test time adaptation, by enforcing this robustness as a proxy for

improving performance on the test data.

3.3 Perturbation Robustness (PEST)

3.3.1 Method for classification problems

Let p· ≡ p(y |·) = f (·,θ) be the trained model parameterized by θ on the source training set

i.e., f (·,θ) subsumes the softmax layer. Let x be a test sample and x̃ =A (x ;ζ) be an output

of data augmentation method with hyperparameters ζ ∼ pZ (ζ), with pZ being the density

of the augmentation hyperparameters. For a test sample x , we sample K augmentations

x̃k =A (x ;ζk ) for k ∈ [K ] where ζk ∼ pZ (ζ), compute the output probabilities as px = f (x ,θ),

p x̃k = f (x̃k ,θ) ∀k, for the original input, and the augmentations. Over these, we propose to

use a consistency loss as in Equation (3.1)

Lcons(px , p x̃k ) =
DK L(px ∥ p̄)+∑K

k=1 DK L(p x̃k ∥ p̄)

K +1
, (3.1)

where

p̄ = px +
∑

k p x̃k

K +1
(3.2)

is the average posterior density of predictions. Here

DK L(p ∥ q) =
∑

i
p i log

(
p i

q i

)

denotes the KL-divergence of the two distributions p and q , where p i denotes the index

i . We note that this loss was originally proposed by Hendrycks et al. (2020) for training
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with augmentations, and refer the readers to it for experiments about the specific form of

Equation (3.1). Mean-squared error over the posterior predictions (Tarvainen and Valpola,

2017; Berthelot et al., 2019) has also been successful in semi-supervised learning. The details

of augmentation methods (A (·; ·)) used are presented in Appendix 3.A.

In addition to the consistency loss in Equation (3.1), we use an entropy penalty (Wang et al.,

2021a; Vu et al., 2019; Grandvalet and Bengio, 2005).

Lent (px , p x̃k , p x̃2 ) = 1

K +1

(
H[px ]+

K∑
k=1

H[p x̃k ]

)
(3.3)

Here

H[p] =−
∑

i
p i log(p i )

is the entropy of predictions p, and the index i is over the number of classes. Contrary to (Wang

et al., 2021a), we tune all the parameters of the networks considered. The overall loss is given

by the sum of Equation (3.1) and Equation (3.3)

Lpest =Lcons +Lent (3.4)

Our loss function in Equation (3.4) enforces that the network predicts the same output for

each augmentation, in addition to being as confident as possible for each of them. We note

that Zhang et al. (2022b) proposes a nearly identical method in a concurrent work, and we

prove the equivalence in Appendix 3.E. In essence, the total loss in Equation (3.4) is the entropy

of the averaged posterior probabilities of the augmented inputs. Rewriting Equation (3.4)

Lpest =H
[∑K

k=0 p x̃k

K

]
(3.5)

3.3.2 Method for segmentation

The augmentations A we use for classification have a restriction that they are label preserv-

ing i.e., classification networks are invariant to these transformations. Consequently, Equa-

tion (3.4) is trivially applicable when the family of augmentations satisfies label conservation.

However, segmentation networks are equivariant to input transformations that modify the

input space. To elucidate this idea further, let an augmentation rotate the input by φ. For

classification, the network is invariant to this and predicts from the same set of labels. For

segmentation, the output is also rotated by the same φ. To avoid this issue, we restrict our

set of augmentation to only the ones that do not modify the input spatial structure like the

color space transforms: color jitter and random grayscaling. With this restriction to the

augmentation set, Equation (3.4) is applicable to the task of segmentation.

The overall algorithm for PEST for segmentation is shown in Algorithm 1. Here, episodic in
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Procedure 1 Test Time Perturbation Robustness
Input: Tx , source model f (x ,θ)
for each batch xB ∈Tx do

– Sample x̃B
k =A (xB ;ζk ) with ζk ∼ pZ (ζ) {In Section 3.3}

if problem is segmentation then
– Compute aligned outputs p x̃k =A −1( f (A (x,ζk ),θ)) ∀k

end if
– Compute loss L as in Equation (3.4)
– Compute updated network weights θ∗ and θ← θ∗

– Predict y = argmaxc f (x ,θ)
if episodic is True then

θ∗ ← θ {Reset weights to initial state}
end if
θ← θ∗

end for
Return: {y} ∀xB ∈Tx

Line 10 refers to resetting the weights to a previous state, possibly source weights. This was

empirically shown to be effective for some classification problems (Wang et al., 2021a; Zhang

et al., 2022b), and we use that for our experiments on semantic segmentation.

3.4 Experiments

3.4.1 Classification tasks

We show the efficacy of our method on the standard benchmarks used in Tent (Wang et al.,

2021a) for ease of comparison: corrupted CIFAR-10 and CIFAR-100, named CIFAR-10-C and

CIFAR-100-C respectively (Hendrycks and Dietterich, 2019), and VisDA-C (Peng et al., 2018).

CIFAR-10-C and CIFAR-100-C consist 15 corruption types that have been algorithmically

generated to benchmark robustness algorithms. VisDA-C dataset is a large-scale dataset that

provides training and testing data with 12 classes (real-world objects). Training data consists

of rendered 3D models using varying view-point and lighting conditions and the test data is

real images cropped from YouTube videos.

For each experiment, we sample two augmentations using either RandAugment (Cubuk et al.,

2019b) or AugMix (Hendrycks et al., 2020), and minimize the loss in Equation (3.4) using

SGD optimizer with a learning rate of 10−4, momentum 0.9, and weight decay of 5×10−4

for 5 iterations. For all the results presented, Unadapted refers to the performance of the

model trained on the source data of that task. Additional details of the augmentation methods

and datasets are presented in Appendix 3.A and Appendix 3.B respectively. We show our

main results in this section with AugMix, and present the comparisons to RandAugment in

Figure 3.C.1, and other ablations in Appendix 3.D.
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Table 3.4.1: Results of VisDA-C, CIFAR-10-C and CIFAR-100-C datasets. For the CIFAR-C
datasets, we present the % accuracy averaged over all corruptions here.

Dataset Method Accuracy (%)

VisDA-C

Unadapted 44.1

Tent (Wang et al., 2021a) 60.9

Proposed 67.2

CIFAR-10-C

Unadapted 56.5

Norm (Nado et al., 2021) 79.4

Tent (Wang et al., 2021a) 81.4

Proposed 81.2

CIFAR-100-C

Unadapted 53.2

Norm (Nado et al., 2021) 61.7

Tent (Wang et al., 2021a) 64.5

Proposed 65.7

Domain Adaptation

We use a ResNet-50 (He et al., 2016b) network that has been pre-trained on Imagenet, and use a

test time batch size of 64. With the results presented in Table 3.4.1, we see the proposed method

beats the existing methods by a significant margin of ∼ 6.2%. We find that lower intensity

of augmentations i.e.,, m = 1, n = 1 for Randaugment, and α = 1, depth = 3, severity = 2,

width = 1 for AugMix result in the best performance. We also found that our method is

relatively stable to small changes to augmentation parameters used.

Corruption (CIFAR-10-C and CIFAR-100-C)

We use Wide ResNet (Zagoruyko and Komodakis, 2016) pre-trained models from the Robust-

Bench code repository (Croce et al., 2020). For CIFAR-10-C, we use a WRN-28-10, and for

CIFAR-100-C we use WRN-40-2. These networks have been trained on the training set of

CIFAR 10/100. We use the augmentation hyperparameters as in domain adaptation experi-

ments, with the batch size changed to 200. In Table 3.4.1 and Appendix 3.C, we see that the

performance of our proposed method is comparable to Tent on CIFAR-10-C, and beats Tent

by a margin of ∼ 1% for CIFAR-100-C.

On the dependence of augmentations and corruptions

Here we study the dependence of the performance on the exact set of augmentations used

in AugMix or RandAugment in the above results. Mintun et al. (2021) proposes an alternative

set of corruptions termed CIFAR-10-C that they estimate to be widely different from the
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Table 3.4.2: Results on CIFAR-10-C. Our method can deal with corruption types that are widely
different from the augmentations in AugMix.

Dataset Method Accuracy

CIFAR-10-C
Baseline 58.9

Proposed 75.64

augmentations used in AugMix. We show results for our proposed method in Table 3.4.2. We

see that our method gives substantial improvements over the baseline source model, and

therefore the utility of the augmentations is to sample from the image manifold than to impart

specific invariance to those augmentations.

3.4.2 Dealing with image corruptions in semantic segmentation

We adopt the experimental setup in Chapter 2 and use GTA to Cityscapes (GTA-CS) (Richter

et al., 2016; Cordts et al., 2016) adaptation problem and add the Cityscapes to Cityscapes-C

adaptation (Kamann and Rother, 2020). Cityscapes-C uses the identical corruptions as CIFAR-

C datasets for which we showed results for classification experiments. For the GTA-CS experi-

ment, we use the same network (DeeplabV2) as Chapter 2, and for Cityscapes→ Cityscapes,

we use SwiftNet architecture with a ResNet-18 backbone (Orsic et al., 2019). We use the

source-trained models from Zou et al. (2019) and Courdier and Fleuret (2020), respectively. To

evaluate performance, we use the mean intersection-over-union (mIoU) metric.

For adaptation, we use SGD optimizer learning rate of 10−4 with a momentum of 0.9 and

weight decay of 0.0005. We use a batch size of 1, and use 2 augmentations due to a memory

constraint posed by our computational infrastructure.

Adapting batchnorm

To handle the small batch size problem, we use the method proposed in (Schneider et al.,

2020). We denote [µS ,σ2
S] to be the normalization statistics computed on source data. If

[µt ,σ2
t ] are the normalization statistics computed from a given batch of test samples, the final

normalization statistics [µeff,σ
2
eff] used in our method are

µeff =αµS + (1−α)µt

σ2
eff =ασ2

S + (1−α)σ2
t . (3.6)

We use a relative weight of α = 15
16 for the test data. We used episodic resetting as it gave

better results. We use Equation (3.6) for the "norm" results in Figure 3.4.1. We also combine

it with our proposed method in both Figure 3.4.1 and Table 3.4.3. We see that our method

always improves compared to the baseline, and outperforms Schneider et al. (2020) on most
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Figure 3.4.1: Cityscapes to Cityscapes-C adaptation on SwiftNet. We see that the in the
presence of noise, the source-trained network fails (< 1%) and hence the invisible bar. We
see that the proposed method improves the performance on the target domain on nearly all
corruptions.

Table 3.4.3: Results on GTA-CS. Our method consistently improves over the baseline case. Our
method makes the largest improvements on classes that already perform reasonably well, and
worsens on classes with lower unadapted performance.
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mIoU

Unadapted 71.62 18.70 67.88 16.83 9.84 34.42 27.41 6.16 78.15 21.51 67.06 57.16 20.49 58.91 16.39 12.23 6.71 20.24 12.62 32.86

Proposed 85.17 20.19 76.50 15.88 7.81 32.25 21.71 4.41 81.43 31.30 72.29 57.37 21.91 81.52 26.13 23.69 5.46 21.80 12.61 36.81

corruptions in Figure 3.4.1. We do not report Tent here as we found that it was worsening the

performance compared to the unadapted baseline. Our results in Table 3.4.3 and Table 2.1 are

not trivially comparable, as the experimental settings are widely different. Several targeted

improvements to test-time adaptation for semantic segmentation have been proposed in the

recent past, and they achieve better performance than the one presented here (Paul et al.,

2022; Wang et al., 2022a; Bahmani et al., 2022).

3.5 Discussion

Our experiments show that a consistency regularization on the input space (Equation (3.1))

improves performance on the test data. Interestingly, learning invariance to general syntheti-

cally created deformations leads to better performance even on data from different domains,

as shown in Table 3.4.1. However, the specific characteristics of the augmentations that result

in better generalization are unclear.
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3.5 Discussion

Previous studies found that networks with flat minima in the weight space generalized bet-

ter (Chaudhari et al., 2017; Keskar et al., 2016). Huang et al. (2020) consider neural networks

with flat minima analogous to wide-margin classifiers. Wide margin, in addition to being

interpreted as stability to perturbation of parameters, can also be seen as being robust to input

perturbations (Bousquet and Elisseeff, 2002; Elsayed et al., 2018). While these prior works

partially explain our proposed method, they do not explain how solely searching for a flat

region (in the input space) corresponds to a point in the weight space that generalizes.

Works on generalization prediction (Deng et al., 2022; Zhu et al., 2021; Ng et al., 2022) show

that agreement of predictions between samples and their augmentations and performance

on those samples are linearly related i.e., how the prediction of augmentations matches with

each other is also indicative of the network’s ability to classify that sample reliably. We use a

variation of this to enforce the consistency of augmentations. Similarly, ensuring consistency

of outputs to augmentations has been famous in the NLP domain (Ribeiro et al., 2020). In this

work, we reverse the process; we do not estimate the performance of a network by measuring

the consistency, but we use consistency as a loss function to improve the performance.

We find that the efficacy of our method, as well as that of Tent (Wang et al., 2021a), is dependent

on the batch size used (Section 3.D.3), which is a departure from any normal testing scenario,

where each sample is labeled independently. The use of a convex combination of source and

target statisticsEquation (3.6) (Zhang et al., 2022b; Schneider et al., 2020) partially alleviates

the problem. However, the overall performance is still lower than when using a larger batch

size or when we can use the entire source statistics as in Chapter 2.
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Appendix - Chapter 3

Appendix 3.A Augmentation methods

In this section we describe the augmentation methods RandAugment (Cubuk et al., 2019b),

and AUGMIX (Hendrycks et al., 2020) used widely in the main text.

3.A.1 RandAugment

Methods like AutoAugment (Cubuk et al., 2019a) use complex machinery like reinforcement

learning to deduce the optimal augmentation strategy for a problem. RandAugment proposes

to do the opposite: it randomly samples augmentations from a predefined list of augmenta-

tions and composes them functionally to output the augmentation for each data point. The

algorithm is shown in Algorithm 2.

Procedure 2 RandAugment

Input: O ← {Identity, AutoContrast, Equalize, Rotate, Solarize, Color, Posterize, Contrast,

Brightness, Sharpness, ShearX, ShearY, TranslateX, TranslateY}, x , m, n

{m is the maximum intensity of augmentations, n is the number of augmentations}

for i in 1 . . . n do

local_intensity ← randint(1, m)

sample ← random_choice(O )

x ← sample(local_intensity)(x)

end for

Return: x

3.A.2 AUGMIX

AUGMIX is a data augmentation technique that has been shown to improve model robustness.

Unlike RandAugment, where sampled augmentations are composed, AugMix mixes the results

of chains of augmentations in convex combinations. Increasing diversity by composing

augmentations can generate a sample that is off the data manifold and the authors argue that

their proposed way of combining generates realistic transformations. The specific algorithm
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Chapter 3. Test time Adaptation through Perturbation Robustness

is given in Algorithm 3.

Procedure 3 AUGMIX. Adapted from Hendrycks et al. (2020)

Input: O similar to Algorithm 2, k, α

xaug ← zeros_like(x)

(w1, w2, . . . wk ) ∼ Dirichlet(α,α, . . . ,α)

for i in 1 . . . k do

sample1, sample2, sample3 ← random_choice(O )

sample1, 2 ← sample1◦ sample2, sample1, 2, 3 ← sample1◦ sample2◦ sample3

op ← random_choice({sample1, sample1, 2, sample1, 2, 3})

xaug+= wi ·op(x)

end for

sample m ∼ Beta(α,α)

xaugmix = mx + (1−m)xaug

Return: xaugmix

Appendix 3.B Datasets

3.B.1 Corruption datasets – CIFAR-10-C, CIFAR-100-C

To benchmark the model robustness, Hendrycks and Dietterich (2019) proposed corruption

(along with perturbation) datasets. In this work, we consider the datasets that were derived

from the commonly used CIFAR-10 and CIFAR-100 datasets, named CIFAR-10C and CIFAR100-

C respectively. They consist 15 corruption types applied to the test data of the original datasets.

Each of the 15 corruptions has 5 levels of severity, and we present our results on the maximum

level of corruption. The corruptions can be grouped into four main categories – noise, blur,

weather, and digital. A summary is presented in Table 3.B.1.

Table 3.B.1: Summary of corruptions in CIFAR-10-C and CIFAR-100-C used in this work.

Noise Blur Weather Digital

Gaussian noise Defocus blur Snow Brightness

Shot noise Frosted Glass blur Frost Contrast

Impulse noise Motion blur Fog Elastic transformation

Zoom blur Spatter Pixelation

JPEG compression
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3.C Detailed results of CIFAR datasets
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Figure 3.C.1: Performance comparisons for CIFAR-10-C and CIFAR-100-C datasets for un-
adapted, Tent, Augmix, Randaugment variants of our method. Our proposed method, inde-
pendent of the augmentation strategy used, greatly improves over the baseline. It is also on
par or slightly better than Tent for all corruption categories.

3.B.2 VisDA-C

VisDA-C (Peng et al., 2018) is a large-scale dataset to benchmark unsupervised domain adap-

tation methods. It consists of three domains of 12 classes (object categories). The source

(training) data consists of renderings of 3D models from various viewpoints and lighting

conditions. The validation domain consists of real images cropped from MS-COCO. The target

(test) data also consists of real images cropped from YouTube bounding box datasets. All three

splits contain the classes: aeroplane, bicycle, bus, car, horse, knife, motorbike, person, plant,

skateboard, train, and truck.

Appendix 3.C Detailed results of CIFAR datasets

We show the detailed per corruption results of our CIFAR-C experiments in Figure 3.C.1. We

find that our method improves drastically when the baseline performance is low.

Appendix 3.D Ablations

In this section, we provide ablations of three important hyperparameters of our algorithm,

number of SGD steps, learning rate, and testing batch size. We use the VisDA-C experimen-

tal setup and show our results for RandAugment setup with default hyperparameters. The
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Figure 3.D.1: Ablation experiments. With an unadapted performance of 44.1%, we show the
importance of the factors. We see an asymptotically improving performance with the number
of SGD steps used. In (b), our method is relatively stable over a wide range of learning rates.
Our method is dependent on the batch size as in (c). The necessity of a larger batch size can
constrain our method’s direct applicability. This method

other hyperparameters remain the defaults set in the main chapter unless they are being

ablated. The three ablations refer to Figure 3.D.1. For all the ablations in this section, we show

performance as % accuracy on the test set.

3.D.1 Number of SGD update steps

The loss function in Equation (3.4) is minimized over several SGD steps, and we plot the evolu-

tion of performance with the number of steps. We see an asymptotic rise in the performance

with the number of steps, and we use 5 steps for all other steps. However, this increases the

run-time of our algorithm at test time, and thus we recommend a number dependent on the

running time requirements.

3.D.2 Learning rate

We change our learning rate on a logarithmic scale from 10−6 to 10−1, and we see that our

method is reasonably robust to the choice between 10−6 to 10−3, with the best learning rate

around 10−4.

3.D.3 Batch size

We find that our method is stable for a range of batch sizes but does have a lower threshold of

around 16. We hypothesize this is due to training the normalization layers in the networks

used. Our limitation is the hardware available to run larger batch sizes.
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3.E Equivalence to MEMO

Table 3.D.1: Ablations of the loss terms in Equation (3.4).

Unadapted Lcons L

44.08 63.41 67.1

3.D.4 Ablation of terms in Equation 3.4

Our loss function in Equation (3.4) is a summation of two terms. Here we present the results ob-

tained by considering each of the terms. We see that in Table 3.D.1, the usage of Equation (3.1)

leads to a performance higher than that of Tent, and the combination of Equations (3.1)

and (3.3) leads to better results, albeit at a higher run-time requirement.

3.D.5 Augmentation parameters

We vary the augmentation hyperparameters for both RandAugment, and AugMix in Fig-

ures 3.D.2 and 3.D.3. For this, we show results on CIFAR-10-C for each of the corruptions.

We show results with only consistency loss (Equation (3.1)), and width and brightness of

each circle represent the overall final accuracy. We find that for nearly all the corruptions, a

lower augmentation results in better performance than those with a higher augmentation.

We hypothesize this is because lower intensity augmentations result in samples closer to the

input sample and thus result in samples from the image manifold.

Appendix 3.E Equivalence to MEMO

MEMO (Zhang et al., 2022b) is another test-time adaptation method proposed concurrently

to our work (Teja and Fleuret, 2021a). Their method takes a test sample x and augments it to

generate B augmentations. The overall loss optimized is the entropy of the average posterior

probability.

p̄(y |x) := 1

B

B∑
i=1

f (x̃i ,θ) (3.7)

following the notation introduced previously.

Our proposed loss function in Equation (3.4) can be expanded to

L = DK L(px ∥ p̄)+DK L(p x̃1 ∥ p̄)+DK L(p x̃2 ∥ p̄)

3
+ 1

3

(
H[px ]+H[p x̃1 ]+H[p x̃2 ]

)
(3.8)

KL Divergence between two distributions can be written as

DK L(P ∥Q) =H[P,Q]−H[P ] (3.9)
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Figure 3.D.2: AugMix hyperparameters for CIFAR-10-C. Bigger and darker are better. We see
that lesser augmentations result in better results.
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where H[P,Q] is the cross entropy between P and Q defined as

H[P,Q] =−
∑

i
Pi logQi (3.10)

Expanding the first three terms using the definition of KL-divergence above, we see that the

entropy terms cancel. This gives us only the cross entropy terms.

L = H[px , p̄]+H[p x̃1 , p̄]+H[p x̃2 , p̄]

3
(3.11)

=H[
px +p x̃1 +p x̃2

3
, p̄] (3.12)

From Equation (3.2), we see that this simplifies to

K =H[p̄, p̄] =H[p̄] entropy of p̄ (3.13)

Thus, our loss function is almost identical to MEMO’s, with one minor difference. We use both

the original input and the augmentations to compute the average p̄. However, preliminary

experiments without the original and instead using multiple augmentations revealed that the

exclusion has little influence on the performance.

Appendix 3.F Consistent Pseudo-labeling

3.F.1 Proposed method

Pseudo-labeling (Lee, 2013; Rusak et al., 2022) and entropy minimization are equivalent under

the condition that the pseudo-labels are updated each iteration of training to be the soft labels

predicted by the network. To see this, consider the cross entropy loss with which pseudo-label

based training is done.

Lce =−〈y , log p〉 (3.14)

When y = p

=−〈p, log p〉 =Lent (3.15)

where y is the reference label vector, and p is the probability vector for classification.

In Section 3.3, we proposed a loss function for enforcing output consistency for augmented

inputs. In this section, we propose a loss that enforces consistency of soft pseudo-labels.

Borrowing the notation from Section 3.3: x is a test sample, and y be its unknown ground-

truth label and x̃ ∼ A (x̃ |x) be an output of data augmentation method A (·|·) with input x ,

and we sample K of them x̃1, x̃2, . . . x̃K .
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3.F Consistent Pseudo-labeling

For classification problems, the augmentation function A generates label preserving aug-

mentations. Consider the probability of common label distribution given the augmented

inputs.

p(y |x̃1, x̃2, . . . x̃K ) =
∏K

k=1 p(y |x̃k )p(x̃k )

p(x̃1, x̃2, . . . x̃K )p(y)
(3.16)

∝
K∏

k=1
p(y |x̃k ) (3.17)

Thus, our loss function, modeled after the entropy based pseudo labeling in Equation (3.14),

is the entropy of the random variable with density p(y |x̃1, x̃2, . . . x̃K ). On the right side only the

numerator has trainable parameters.

Lcons-pl =−H[Y |X1, X2, . . . XK ] (3.18)

In practice, implementing Equation (3.18) entails Hadamard product of the predictions for

each of the K augmentations, and renormalizing it to obtain the distributionµ(Y |X1, X2, . . . XK ).

In practice, the multiplication of probability vectors results in floating-point errors. Hence, we

compute µ(Y |X1, X2, . . . XK ) as the softmax over the sum of logits. If g (·) refers to the neural

network function that produces the logits, Equation (3.18) is implemented as

Lcons-pl =−H[Softmax(
K∑

k=1
g (x̃k ))]. (3.19)

Here

H[p] =−
∑
k

pk log(pk )

is the entropy of predictions p, and the index k is over the number of classes.

In comparison, from Appendix 3.E, we see that the loss function from Section 3.3 is

Lpest =−H
[

1

K

K∑
k=1

Softmax(g (x̃k ))

]
. (3.20)

3.F.2 Results

Here, we show the results of consistent pseudo-labeling on the CIFAR-C datasets. All the

experimental settings are identical to the ones presented in Section 3.4. For each of the

corruptions in CIFAR-C datasets, we compare the performance of PEST with Robust-PL in

Figure 3.F.1. Consistent PL almost underperforms PEST across all corruption categories. This

is at odds with the observations in Rusak et al. (2022), which suggest pseudo-labeling as the
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Figure 3.F.1: Comparison of Robust PL and PEST. It is apparent that across all corruptions
Consistent PL is at most equal to PEST in performance.

best alternative. However, Rusak et al. (2022) propose the use of robust losses for pseudo-

labeling instead of the standard cross entropy loss that we reinterpret as an entropy loss in

Equation (3.14).

56
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4 PAUMER: Patch Pausing Transformer
for Semantic Segmentation

In Part I, we presented work on source data-free adaptation techniques that aim at reducing

the amount of labeled data required for real-world problems by effectively reusing information

gained from the source domain to the target–inference domain. In this chapter, we focus on

the problem of efficient inference for segmentation transformers.

This chapter is based on

Courdier, E., Sivaprasad, P. T., and Fleuret, F. (2022). Paumer: Patch pausing

transformer for semantic segmentation. In 33rd British Machine Vision Conference

2022, BMVC 2022, London, UK, November 21-24, 2022. BMVA Press.

4.1 Introduction

Vision transformers (Dosovitskiy et al., 2021; Steiner et al., 2021) (ViT) have recently demon-

strated very strong performance on large-scale image classification tasks. These networks

break the images into a collection of patches (or tokens, interchangeably) and progressively

refine their representation by processing them through a series of residual self-attention lay-

ers (Vaswani et al., 2017). While their genesis was for image classification, recent methods

have adapted transformer architectures to various computer vision tasks (Khan et al., 2021;

Wang et al., 2021b; Chu et al., 2021), and specifically to semantic segmentation (Zheng et al.,

2021; Strudel et al., 2021; Xie et al., 2021).

While these large transformer architectures have led the progress on the accuracy front, there

have been several efforts to make them more efficient to be faster and process more data (Tay

et al., 2022). One way to achieve this is to reduce the number of processed patches. Some

works use multiscale approaches (Wang et al., 2021b; Xie et al., 2021) that gradually reduce the

number of patches as the processing progresses. Another option has been to drop the patches

that are not informative to the classification task (Yin et al., 2022; Pan et al., 2021; Marin et al.,

2022; Rao et al., 2021; Liang et al., 2022). For example, it is possible to classify an image as that
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Chapter 4. PAUMER: Patch Pausing Transformer for Semantic Segmentation

(a) Input Image
(b.1) Patches paused

after Layer 3
(c.1) Patches paused

up to Layer 5
(d) Output Seg-

mentation

(b.2) Entropy
Computed

(c.2) Entropy
Computed

(c.3) Patches pro-
cessed further

Figure 4.1.1: Illustration of our proposed method. Our method progressively stops processing
patches after they reach a low enough prediction entropy. The first column (a) shows the input
image. The second column (b.1) shows the patches that are stopped from being processed
after the third transformer layer in green. The third column shows additional patches paused
after the fifth layer in pink. In the bottom row, (b.2) and (c.2), we show the entropy computed
from the auxiliary decoders that are used to decide which patches to pause (Section 4.2.1). It
is apparent that the network automatically pauses easy parts of the image while allocating
more computation to the parts that correspond to boundaries and smaller and rarer classes,
as shown in (c.3) in red. Figure best viewed on a reader with zooming capability. Full details
are presented in Section 4.2.

of a dog with only the patches that belong to the dog while refraining from processing the rest

of the patches.

In this work, we are interested in patch-dropping in the context of semantic segmentation.

Unlike image classification, it is impossible to drop patches in semantic segmentation, as we

have to predict the labels for all the pixels. Instead, we redefine the problem in the context of

semantic segmentation to patch-pausing: Pausing a patch at a particular layer signifies that its

representation will not be updated by any subsequent encoder layer, does not contribute to the

feature computation of other patches, and is fed directly to the decoder. Consider segmenting

natural road scenes from Cityscapes (Cordts et al., 2016) in Figure 4.1.1, it is apparent that

some parts of the scene are relatively simpler to segment (say, the sky and the road). So, we

allocate lesser computation power to these patches by pausing their feature computation and

feeding them as-is to the decoder to produce the final segmentation map. Our argument is

supported by the findings in Raghu et al. (2021); they find that the representations of tokens

are primarily modified in the first half of the network and rely on the residual connections

to only marginally refine them in the later stages. This opens up an opportunity to reuse the

representations instead of recomputing them and thus improve the efficiency of segmentation

transformers.
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4.2 Patch-pausing transformer for Semantic Segmentation

Our criterion for token pausing is the time-tested posterior entropy of the segmentation

labels. We find that entropy is strongly indicative of lower error. Our method, called Patch

pAUsing segmentation transforMER (PAUMER), adds a simple linear auxiliary decoder to

predict labels and compute entropy and processes only the patches whose class prediction is

of high entropy, i.e., the network is not confident about predicting the labels of these patches

and processes them more. Based on the Segmenter (Strudel et al., 2021) architecture, we

show the performance of our method on the standard benchmark suite of ADE20K (Zhou

et al., 2017) and Cityscapes (Zhou et al., 2017). Our method pushes the pareto front of the

speed-accuracy trade-offs, and we find that we can operate at a 50% higher throughput with

a drop in mean intersection of union (mIoU) of 4.6% and 0.65% on ADE20K and Cityscapes

respectively, and for doubling the throughput, the drop is about 10.7% and 4.5% respectively.

4.2 Patch-pausing transformer for Semantic Segmentation
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Figure 4.2.1: Schematic of our proposed method. We modify Segmenter (Strudel et al., 2021)
to enable the pausing of patches, and feeding them directly to the decoder. Our proposed
PAUMER encoder adds a simple auxiliary decoder (a 1×1 convolution), and uses the predicted
posterior entropy H[Ŷ |X ] of each component of X to reorder the feature representation X . A
portion (τ) of this feature representation would be paused and fed to the decoder directly. The
rest of the features (of size N ′ < N ) are processed further.

Patch-pausing for semantic segmentation is tied to the notion that computation should be

non-uniformly distributed across the image. Some parts of the input need more computation

than others to obtain an accurate segmentation. This notion is difficult to realize in the case of

convolutional networks as convolution implementations in popular deep learning frameworks

handle only inputs with uniform coordinate grid, and thus need software optimizations (Lavin

and Gray, 2016) or require architectural simplifications like the use of 1×1 convolutions in

the network (Verelst and Tuytelaars, 2020). On the other hand, ViTs are ideally suited for this

purpose, as each transformer layer consumes a matrix of patch representations without any
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Chapter 4. PAUMER: Patch Pausing Transformer for Semantic Segmentation

regard to its inputs’ spatial location. Removal of patches from computation does not require

additional modifications to the transformer networks for them to apply heterogeneously

distributed computation across an image. This restricts the pausing pattern to operate at

a patch level, and these paused patches can be non-uniformly distributed over the image

coordinate grid. Our primary experiments are based on the architecture Segmenter (Strudel

et al., 2021), which uses a ViT backbone to extract patch representations, and predicts a

segmentation map using a transformer-based mask decoder. We describe this in detail in

Appendix 4.C

4.2.1 Using Entropy as a criterion for patch-pausing

How do we determine which tokens to pause, i.e., which ones do not need more processing?

Consider the unrealistic case when we can verify the correctness of the network’s predic-

tions. We could decode after each layer l ∈ {1 . . .L}, and stop processing tokens for which the

prediction is accurate enough.

In the absence of ground truth to determine which tokens can be paused, we propose to use

the entropy of label predictions as a proxy for the correctness of the network’s predictions.

We posit that our models, when confident about their prediction, are likely to be correct. To

sanity-check the aptness of entropy as a pausing criterion, we plot in Figure 4.2.2 the entropy of

predictions computed after every second layer in a segmenter. Specifically, we use a Segmenter

with ViT-Ti backbone pre-trained on Cityscapes, freeze its weights, and only train the one-layer

linear auxiliary predictor added after each layer. Each vertical plot is a histogram, and we see

a higher overlap of correct and incorrect predictions’ entropy in the initial layers. When a

token has been processed enough to predict the correct label, the entropy of the prediction is

generally low. Thus, pausing patches based on entropy results in representations that have

been refined enough to result in correct predictions.
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Auxiliary Decoder After Layer #
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Figure 4.2.2: Violin plot of entropy of predictions at intermediate layers. In this figure, we
plot the entropy distribution of the auxiliary predictions for 10% of images in the Cityscapes
validation set. The x-axis marks after which layer the prediction was made. For each layer, the
entropy distribution is shown for tokens correctly (in blue) and incorrectly (in orange) classi-
fied. We see that the entropies of the predictions for tokens correctly classified accumulate in
the low values in the later layers (blue spike on the bottom-right)
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4.2 Patch-pausing transformer for Semantic Segmentation

4.2.2 Training PAUMER- One training for many pause configurations

We base our network on Segmenter’s architecture (Strudel et al., 2021) detailed in Appendix 4.C.

A pause configuration (or configuration) refers to the proportion of patches paused at each

layer of the network. An obvious method is to train and test the same patch-pausing configu-

ration that satisfies our run-time requirements. Any changes to the run-time requirements

require retraining the network. For this, we propose a more general strategy that enables

multiple patch-pausing configurations at inference with just one trained model. For each

transformer layer l , we define a range of patch-pausing proportions (τlo
l ,τhi

l ). For each batch of

training samples, we sample uniformly one layer l ∈ {3, . . . ,L} and a patch-pausing proportion

τl ∼U [τlo
l ,τhi

l ], where U refers to a uniform distribution over the parameters. We compactly

represent this in Python’s dictionary notation as {l : τl }; here τl = 0 implies that no pausing is

done at layer l , and we ignore these layers in our notation. To facilitate the patch pausing, we

employ a single auxiliary decoder D A , parametrized by a 1×1 convolution, after the operations

of layer l (see Figure 4.2.1).

The outputs of the main branch of the network and the auxiliary branch are trained using the

traditional cross entropy loss.

Lmain = CE(y , ŷ) (4.1)

L l
aux = CE(y , ŷ l ) (4.2)

where y is the ground truth, and ŷ refers to the logits predicted by the main decoder (mask

transformer), and ŷ l is output at the lth layer using the auxiliary decoder. The total loss used

to train is a combination of losses in Equations (4.1) and (4.2).

Ltotal =Lmain +λL i
aux (4.3)

where λ is a scalar used to scale the contribution of additional losses.

At layer l , entropy is computed for each component of Xl as

Hl :=H[Ŷl |Xl ] =H[σ(D A(Xl ))], (4.4)

where σ is the softmax function applied to each pixel independently. With this entropy, we

pause the computation of τl of tokens with the lowest entropy and store them as X ′
l , and

continue with the computation using the rest of the tokens Xl (see Figure 4.1.1). Note that

there are other ways to use Hl to pause tokens, for example, by using a threshold on entropy.

However, doing so results in pausing and removing different amounts of tokens in each image

of a batch, which would require padding to be processed efficiently on a GPU, adding a

substantial overhead. Additionally, pausing a fixed amount of tokens allows for a deterministic

computation time.

To reassemble in the original order the patches that have been fully processed and the ones

63



Chapter 4. PAUMER: Patch Pausing Transformer for Semantic Segmentation

that have been paused, we use a patch assembler module (see Appendix 4.A for PyTorch-

like code). It takes XL and X ′
l , and reassembles them into the original shape of X0. To do

so, the pausing mechanism stores the indices of the patches that have been chosen to be

paused, in addition to the current feature representation. The assembler copies the paused

representation into the same indices stored previously. This reassembled output is finally fed

into the decoder (mask segmenter head) to compute the segmentation map.

Inference

Our training procedure of randomized pause configurations gives us the advantage of choosing

a pausing configuration that is informed by the run-time requirements i.e., mIoU and the

number of images processed per second. This configuration can have multiple pause locations,

each with different pause proportions. We show some results for configurations listed in

Table 4.4.1. The patch assembler accordingly assembles multiple paused patches {X ′
l }, and

the final representation XL . The specific configurations are chosen to display the adaptability

of the trained network to various inference time requirements and do not hold any specific

importance. Pause configurations can be added easily, as it does not influence the training

but only requires testing over the validation set.

4.3 Related Work

We now discuss some important prior work related to our method before showing the experi-

mental evidence.

Segmentation using Transformers

Transformers that were originally proposed for language processing tasks (Vaswani et al., 2017)

have been incorporated into vision (Dosovitskiy et al., 2021; Touvron et al., 2021), and several

improvements have been proposed (Khan et al., 2021). SETR (Zheng et al., 2021) adapted the

standard vision transformer (ViT) to segmentation by using a multiscale decoder on all the im-

age patches. Segmenter (Strudel et al., 2021) improved the decoder design by using a learnable

per-class token that acts as a weighting mechanism over the tokens’ representations. Seg-

former (Xie et al., 2021) redesigned the architecture with a multiscale backbone that does not

use positional encoding and an MLP-based decoder. Several improvements to the transformer

backbone have been shown to impact the downstream segmentation performance (Wang

et al., 2021b; Xu et al., 2021; Chu et al., 2021; Liu et al., 2021). These improvements to the

transformer backbones have indeed improved the efficiency, measured by frames processed

per second, the number of floating point operations per second (FLOPs), or images processed

per second.
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Network modifications for efficiency

Several components of the transformer architecture have been improved by approxima-

tions and simplifications to the attention mechanism, reducing the computation in the MLP

block (Tay et al., 2022). In the convolutional networks family, architectural modifications like

MobileNet (Howard et al., 2017, 2019), Efficient Nets (Tan and Le, 2019), SwiftNets (Orsic et al.,

2019) have been proposed with the explicit goal of improving performance throughputs.

Network pruning, where network weights are removed to reduce the operations by a network

has been studied extensively (Kuzmin et al., 2019). Lower precision training and inference

are used to reduce the memory footprint of the network (Dettmers et al., 2022; Wu et al.,

2020; Micikevicius et al., 2018). These avenues improve network efficiency through design

and modification, which can additionally influence the training dynamics. However, faster

training is orthogonal to our work, and we are interested in faster inference methods.

Token sparsification methods

Orthogonal to the architectural improvements, recent work has focused on reducing the data

processed, and our proposed method is a form of input-dependent reduction. Graves (2016)

proposed Adaptive Computation Time (ACT), where the network’s amount of processing for

each input to an RNN is decided by determining a halting distribution. It was adapted to

residual networks by Figurnov et al. (2017), which dynamically chooses to apply a differential

number of residual units to different parts of the input. This has been adapted to transformers

too (Yin et al., 2022), where the tokens are progressively halted as they are determined to

have been processed enough according to a similar criterion as ACT. DynConv (Verelst and

Tuytelaars, 2020) uses an auxiliary network to predict pixel masks, which indicates pixels of the

image that are not processed by a residual block. DynamicViT (Rao et al., 2021) extends this

formulation to transformers where they, similarly, use an auxiliary network to predict which

patches are dropped from being refined further. The auxiliary branches are trained using the

Gumbel-softmax trick (Jang et al., 2016) in both these methods. We consider the simplicity of

the steps the strength of our proposed method. Unlike DynamicViT (Rao et al., 2021), we do

not need techniques like Gumbel-softmax that are harder to optimize, and additional tailored

losses. Additionally, both A-ViT and DynamicViT drop a fixed amount of tokens for a given

image and do not provide the flexibility to vary the number of patches dropped, as our method

does.

Early-exit methods

Dynamic neural networks (Han et al., 2021) adapt the architectures or parameters in an input-

adaptive fashion. Specifically, early-exit methods find that deep neural networks can overthink

where a network can correctly predict before all layers process the input. It can even result in

wrong predictions due to over-processing (Kaya et al., 2019). Several methods to determine
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when to exit the network have been proposed. Branchynet (Teerapittayanon et al., 2016)

and Shallow-Deep nets (Kaya et al., 2019) use auxiliary classifiers to predict the output class

for vision convolutional networks and stop processing a sample if the entropy of a branch’s

predictions is lower than a predefined threshold. This idea was further exploited in NLP

literature. Zhou et al. (2020) extends this by using a patience parameter that tracks the number

of auxiliary classifiers which predict the same class. DeeBERT (Xin et al., 2020) proposes

a two-stage training, where the auxiliary decoders are trained after the main networks are

trained and frozen. Li et al. (2017) proposes a layer cascade for convolutional segmentation

networks that processes easy to hard parts progressively through the network. Their method

needs modifications of the network architecture, whereas we show that our proposed method

can be added with minimal effort. Our method is an early exit strategy, specifically for the case

of segmentation transformers. While similar methods have been examined in the literature, to

the best of our knowledge, we are the first to examine the patch-pausing problem of semantic

segmentation. Also, the randomized training presented in Section 4.2.2 has not been used

in this context, though similar ideas to reduce network width were studied in slimmable

networks (Yu et al., 2019).

4.4 Experiments

4.4.1 Datasets and Evaluation

We show the performance of our method using networks trained on Cityscapes (Cordts et al.,

2016) and ADE20K (Zhou et al., 2017). Cityscapes (CS) consists of 2,975 images in the training

set, in which each pixel belongs to one of 19 classes, and 500 images in the validation set, which

are used to benchmark the performance of our method. ADE20K is substantially larger, with a

training set of 25,574 images with 150 classes and 2,000 images to validate the performance.

The results for Cityscapes and ADE20K are presented below.

Our primary performance measure is based on the speed-accuracy trade-off, measured by

mean Intersection over Union (mIoU) metric and throughput in images per second. To

determine the number of images processed per second (IMPS), following Strudel et al. (2021),

we use images of size 512×512 with a batch size that optimally occupies a V100 GPU.

Methods compared

To assess the performance of our proposed method, we use the following baselines for com-

parison:

1. Baseline set by Segmenter, without any patch-pausing.

2. Random Pausing (RP): We train the network to handle pausing a proportion τ of ran-

domly chosen patches, instead of the lowest entropy ones.
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We examined an additional simple baseline of random pausing (without training) and found

the results not competitive enough to warrant reporting here. Also, some methods in Sec-

tion 4.3 can drop different patches per image. These methods can result in a decrease in FLOPs

(floating point operations), but this reduction cannot be realized in wall clock improvements

as modern GPUs parallelize computation over batch elements.

Table 4.4.1: Table of configurations. Each column represents a pause configuration, e.g. the
first column represents the configuration {3 : 0.2} implying pausing 20% of tokens after layer
3, using the notation introduced in Section 4.2.2. Each configuration here corresponds to a
marker in Figures 4.4.1a, 4.4.1b and 4.K.1.

Pa
u

se
La

ye
r Pause configurations

3 0.2 0.4 0.6 0.2 0.3 0.4 0.2 0.3 0.4

5 0.2 0.4 0.6 0.8 0.2 0.3 0.4 0.2 0.3 0.4

7 0.2 0.3 0.4

Training hyperparameters and Inference Configurations:

For our main experiments, we use Segmenter with ViT-Ti and ViT-S backbones (details in

Appendix 4.B). During training, we follow the procedure in Section 4.2.2 for every network

and dataset, and in particular, we pause a random amount of tokens τl ∼ U [0.2,0.8] at a

random layer l ∈ {3,4,5,6,7,8,9}. We initialize the model for our training with pretrained

segmenter weights, as we find this results in better performance, and train the model for

80,000 steps for Cityscapes and 160,000 steps for ADE20K. The auxiliary loss-weight λ is set to

0.1. Rest of the hyperparameters as kept the same as in Strudel et al. (2021). We implement

our method using mmsegmentation (MMSegmentation Contributors, 2020) and use their

pretrained models whenever available. At inference, we test the networks with the pause

configurations in Table 4.4.1. This list of pause configurations is not exhaustive and does not

hold any specific importance, but have been chosen to show the efficiency of our method in

trading off mIoU for higher IMPS.

Choosing pause configurations:

Determining the appropriateness of a pausing configuration incurs little additional cost, as

it only requires inference with a validation set for each configuration of interest (see Fig-

ures 4.4.1a and 4.4.1b). On a new dataset for which we train the network with the proposed

training procedure, we foresee two scenarios: (1) if the objective is to attain a specific through-

put, we can easily find configurations that match the requirement with a sweep over them

(Figures 4.H.1 and 4.H.2) by only timing them, and then evaluating the mIoU of the ones

that meet the requirement. (2) if the objective is to find a good throughput-mIoU trade-off:

First, we sweep through configurations that pause at only one layer (Figure 4.H.1), and we
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Figure 4.4.1: Results on Cityscapes and ADE20K for our proposed method PAUMER. Each
marker is a configuration from Table 4.4.1. We train a single model capable of handling various
pause configurations that can be chosen based on run-time requirements. It is apparent
that ADE20K suffers from a higher drop in performance when patch-pausing is employed.
However, PAUMER consistently outperforms the random training baseline.

pick the first layer and proportion. We fix this layer and ratio, then sweep through pausing

configurations at a second layer (Figure 4.H.2). We repeat this procedure until adding more

layers is no longer beneficial.

4.4.2 Results

Performance analysis

In Figure 4.4.1a, we plot the mIoU versus the number of images per second achieved by

baselines and our entropy patch-pausing for different configurations for Cityscapes. Each

point is the average value of three training runs. The leftmost point corresponds to the original

Segmenter model, the solid line to our proposed pausing strategy, and the dashed line to

random pausing with training. For both ViT-Ti and ViT-S backbones, a 50% increase of IMPS

can be achieved with a mIoU drop of about 0.7% and 0.6%, respectively. Further, for doubling

the IMPS, we see that the mIoU drops about 3.2% and 5.9% respectively. For the trained

random pausing using ViT-Ti, a strong baseline, the equivalent drops in mIoU are about 2.9%

and 8.8% to increase the IMPS by 50% and 100%, respectively. We show results for ViT-Ti and

ViT-S for ADE20K in Figure 4.4.1b. For the ViT-Ti backbone, we see that for a 50% increase in
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Figure 4.4.2: Performance comparison for ADE20K and Cityscapes. We compare to pretrained
models available in mmsegmentation (MMSegmentation Contributors, 2020) for each of these
datasets. Architectures devised for speed or accuracy outperform us on those criteria, but
PAUMER has the unique advantage that we can trade off one for the other using a tunable
hyperparameter. We use different colors for different architectures and different shapes for
architectural families.

IMPS, mIoU drops by about 2.8%, and a 100% increase in IMPS with a mIoU drop of about

10.7%, compared to random pausing performance of 5.4% and 13.5%. The drop in mIoU

is in contrast with the results of Cityscapes, where we could achieve a similar increase in

throughput with a much lesser drop in performance. We chalk this difference up to dataset

characteristics; ADE20K has almost an order of magnitude more classes, and the images are

smaller with cluttered scenes and numerous small objects, which may require more processing

to be classified correctly.

Generating these performance plots i.e., mIoU vs. IMPS is inexpensive, as no retraining is

involved and only needs inference on a validation set with reasonably chosen pause configu-

rations.

Comparison to other architectures

In Figure 4.4.2, we compare our method to a broad array of architectures for which pretrained

models are available in mmsegmentation (MMSegmentation Contributors, 2020). We include

both convolution-based architectures, and transformer-based ones. In the transformer family,

available networks have focussed on improving the performance, and thus are slower, but

more accurate than the PAUMER family of models. CNN-based ones that have been designed

to be more efficient are competitive or better in speed than our models. However, we have

the unique ability to tune the mIoU-throughput scores of our model without having to retrain

them.
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4.5 Discussion

The improvement in images processed per second is obtained by reducing the number of

patches processed. This might not necessarily hold in the case of networks with convolutional

layers interspersed, such as SegFormer (Xie et al., 2021) that uses convolution instead of

positional encoding, as convolution on unstructured sparse inputs is not highly optimized in

CUDA implementations. Thus, our method is not readily applicable to all transformer models.

In addition to architecture dependence, patch-pausing’s performance may depend on the

dataset. We attributed the difference between Cityscapes and ADE20K to inherent dataset

complexities by examining the performance of the auxiliary classifier; for ViT-Ti, it reaches

around 60% accuracy for ADE20K and 90% accuracy for Cityscapes. Examining the possible

relationship between patch-pausing performance and the dataset difficulty (Ethayarajh et al.,

2022) might shed some light on this issue.

Additionally, patch-pausing assumes that a paused token is not important to the feature

computation of other tokens, as it will not contribute further to the attention computation to

refine the representation of other patches. Performance (mIoU) indicates that it might have

little bearing, but this assumption needs to be investigated further.

Our method, while being input adaptive in choosing the patches to pause, chooses a fixed

proportion of them. This design is to exploit batch-level parallelism on GPUs. Selecting the

number of patches depending on the input batch has not been dealt with in this work.

4.6 Conclusion

Our method, PAUMER, is a first step in the direction of post hoc design for efficient inference in

semantic segmentation transformers. We do so by applying different amounts of computation

to various patches of an input image. Patches with high predicted auxiliary entropy are

processed further, whereas the rest are fed directly to the decoder skipping all the intermediate

computations. To run at a specified throughput (images per second), our method offers the

flexibility to choose an appropriate pause configuration without retraining the network.
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Appendix - Chapter 4

Appendix 4.A Pseudocode for Patch Pauser and Assembler

In Algorithm 4, we present pseudocode for both the patch-pausing mechanism and patch

assembler. The code is for illustrative purposes.

Appendix 4.B Backbone details

This chapter uses two transformer backbones: ViT-Ti(ny) and ViT-S(mall). We do not exper-

iment with ViT-B, ViT-L architectures, due to our computational resource constraints. In

Table 4.B.1, we describe the main architecture details of the ViT backbones.

Table 4.B.1: ViT architectural details used

Model Name Layers Embedding dim Heads Params

ViT-Ti 12 192 3 5.9M

ViT-S 12 384 6 22.5M

Appendix 4.C Brief introduction to Segmenter

Segmenter (Strudel et al., 2021) network ingests an input image I ∈RW ×H×3 and assigns one

of the K output classes to each input pixel. From I , the model first extracts non-overlapping

patches of size P , creating a total of N = W H
P 2 patches (also called tokens). Each of those

patches is then transformed using a linear embedding layer E : R3P 2 → RD , giving a feature

representation X0 ∈RN×D , as shown in Figure 4.2.1.

This feature representation is refined by processing through L transformer encoder layers Tl

(l ∈ [L]), where each transformer encoder layer consists of a multi-head self-attention (MHSA)

block followed by a two layers perceptron (FFN). The overall operation can be represented as:

XL := TL ◦TL−1 ◦ · · · ◦T1 ◦E(I ) ∈RN×D
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Procedure 4 Patch Pauser and Assembler Pseudocode

def patch_pauser(tokens, pause_ratio, keep_indices, paused_tokens):

# tokens (Xl ) refers to current set of tokens being processed. Note that this
might not be the total number of tokens, as one or more patch-pausing stages
could have happened.

,→
,→

# pause ratio is τ, pausing proportion
# keep_indices, paused_tokens are temporary arrays to store details for assembling

(see below).,→

_, total_tokens, _ = tokens.shape
to_process_count = N - int(pause_ratio * N)

# Compute aux entropy of tokens
aux_prediction = auxiliary_classifier(tokens)
probs = aux_prediction.softmax(dim=-1)
entropy = compute_entropy(probs)

topk_inds = entropy.topk(to_process_count)## topk is faster than sorting on GPU.
kept_tokens = tokens[:, topk_inds]

keep_indices.append(topk_inds)
paused_tokens.append(tokens) ## This is X ′

l

return kept_tokens ## This is Xl+1

def patch_assembler(X_L, paused_tokens, keep_indices):
# X_L (XL) refers to the final feature representation at the end of the encoder.

One or more stages of pausing have occurred before this. X_L is of the shape
BxN'xD.

,→
,→

# paused_tokens: the feature representations of the tokens prior to removing the
paused ones.,→

# keep_indices: The indices of the argsort of the auxiliary decoders' entropy.
for indices, tokens in zip(keep_indices[::-1], paused_tokens[::-1]):

tokens[:, indices] = X_L
X_L = tokens

return X_L
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Each Ti is residual in nature, i.e., Ti (x) = x + A(x) where A encompasses the self-attention and

the multi-layer perceptron.

After L layers of such processing, the refined features XL are fed into a decoder MD . The

chapter investigated two kinds of decoders: (a) a linear decoder that takes in the features in

XL ∈RN×D and produces logits ∈RN×K using a 1×1 convolution, (b) a mask transformer which

learns K class embeddings that are jointly processed with XL through several transformer

encoder layers (à la Ti ), and produces a logits ∈RN×K as a dot product between the features

and the learned class embeddings. The output of either decoder is reshaped to R
W
P × H

P ×K , and

then bilinearly upsampled to produce a logit map of size W ×H ×K . A softmax layer is used to

obtain a categorical distribution over the labels for every pixel. All the layers, E , Ti , MD are

trained using the standard cross entropy loss.

Appendix 4.D Patch-pausing’s limitations
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Figure 4.D.1: Evolution of the throughput with the number of layers using patch-pausing.

In Figure 4.4.1b, we investigated pausing up to three times in the network. It is tempting to

pause at more layers, but this entails two additional costs: first to compute the entropy and

rank the patches, and then the patch assembly as detailed in Appendix 4.A. These costs are

(ideally) offset by the reduction in the number of patches processed.

To illustrate this further, let us take the case of our experiment with ViT-T backbone (with 12

layers). In this experiment, we are interested in how the pausing patterns affect the throughput

computed in images processed per second. To simplify the analysis, we assume that we pause

a fixed proportion τ= 0.4.

In Figure 4.D.1, we show the distribution of throughput (in images/sec) vs. the number of

layers we pause tokens at. We use a box plot where horizontal lines indicate quartiles. For
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each value k on the x-axis, there are
(12

k

)
pause configurations.

Consider the case of pausing once. In this case, not all configurations of pausing are useful;

pausing too late may in fact be slower than the baseline of not pausing at all, as it incurs an

additional cost of auxiliary decoding and patch re-assembling that may offset the time gain

of not processing some patches. This trend is visible on Figure 4.D.1 and holds even as the

number of layers to pause increases.

We now focus on two cases of pausing: pausing after layers 3, (3, 5), (3, 5, 7) and 4, (4, 7), (4, 7,

10). These two configurations are plotted as lines on Figure 4.D.1. We see that pausing more

has benefits in the number of images processed, but this benefit can quickly plateau if we

pause at later layers of the network. Additionally, this analysis does not consider the mIoU at

all. Indeed, while pausing early on and at many layers is tempting, the drop in mIoU becomes

too high for those pause configurations to be useful (see Figures 4.4.1a and 4.4.1b). Thus, the

primary limitation is posed by the drop in mIoU rather than throughput.

Appendix 4.E Influence of the training pause ratio τl −τh

In Figure 4.E.1, we plot the mIoU of different pause configurations as a function of the through-

put for different values of the range of the pause ratio τl −τh introduced in Section 4.2.2. We

see that the results for various train pause ranges are relatively stable for low amounts of

inference pausing ratios. Segmenter’s standard deviation (over 3 runs) is 0.35%, and we see

that the absolute difference in the performance at a given IMPS is about 0.5%. This, however,

changes when the amount of pausing increases (each colored curve’s right corners), and when

the performance difference is higher (≈ 1%). More aggressive pausing at training seems bene-

ficial (0−0.9 performs the best). However, as a middle ground to the multiple configurations

investigated, we use 0.2−0.8 for all our experiments.
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Figure 4.E.1: mIoU vs. throughput for different values of the range of the pause ratio τl −τh

introduced in Section 4.2.2.
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Appendix 4.F Trading off mIoU for higher throughput

We present results for trading off mIoU for throughput. Specifically, we take all our runs (mIoU

vs. IMPS) data, and fit a linear spline, and use the resultant function to predict the mIoU for

8 intermediate IMPS within the range for which we have experimental results for ViT-Ti in

Figure 4.4.1a. This illustrates that we can choose a pause configuration that fits our run-time

requirements (IMPS), and that it works with the performance specified here.

Table 4.F.1: Trading off mIoU for speed. In Section 4.4.2, we showed the performance of mIoU
for 50%, and 100% increase in IMPS. Here we show numbers for a finer grid of IMPS, up to
doubling of IMPS.

Backbone

ViT-S
210 im/s

Images / second 252 276 300 325 349 373 397 421

mIoU of PAUMER 77.04 76.96 76.89 76.41 76.17 74.89 73.60 71.11

Diff to Segmenter -0.03 -0.12 -0.19 -0.66 -0.90 -2.18 -3.47 -5.96

mIoU of RP 76.68 76.08 75.77 74.79 73.32 70.75 67.60 62.64

Diff to Segmenter -0.39 -0.99 -1.30 -2.28 -3.75 -6.32 -9.47 -14.44

ViT-Ti
424 im/s

Images / second 508 557 605 654 702 751 799 847

mIoU of PAUMER 73.42 73.35 73.23 72.91 72.76 72.37 70.99 70.58

Diff to Segmenter -0.42 -0.50 -0.61 -0.94 -1.09 -1.48 -2.86 -3.27

mIoU of RP 72.59 71.96 71.35 70.64 69.56 68.66 65.07 64.98

Diff to Segmenter -1.26 -1.89 -2.50 -3.20 -4.28 -5.19 -8.78 -8.87

Appendix 4.G Influence of the auxiliary loss weight λ

In Figure 4.G.1, we plot the mIoU of different pause configurations as a function of the

throughput for different values of the auxiliary loss weight λ introduced in Section 4.2.2. We

can see that increasing λ pushes the network to be more robust to token-pausing but leads

to lower performance when pausing fewer tokens. Thus, λ can be tuned depending on the

use-case to favor either pausing a lesser or a larger number of tokens.

Appendix 4.H Interplay of Pause location and Pausing proportion τ

We showed the results for some configurations in Table 4.4.1. In this section, we study the

interplay between pause location and pause proportion τ. We show a sweep over pause

configurations in the Figure 4.H.1. For each layer, we choose 20 pause proportions in (0,1).

It is apparent that dropping at a later layer results in a lesser drop in mIoU but also does not

result in a large gain in IMPS. Thus depending on the desired run-time, one can choose a
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Figure 4.G.1: mIoU vs. throughput for different values of the auxiliary loss weight λ introduced
in Section 4.2.2. Lower values of λ lead to better performance when pausing few tokens but
worse performance when pausing more, and conversely for higher values of λ. Our chosen
value of λ= 0.1 is a trade-off that can also be modified depending on the use case.

pause location and pause proportion that gives the required performance.
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Figure 4.H.1: Pausing once at various layers for various pause proportions for ViT-Ti on
Cityscapes. We see that the highest gains in IMPS are achieved by dropping in earlier layers.

To examine this further, we plot the performance of pausing twice in Figure 4.H.2. Similarly

to the case of pausing once, here we sweep over 10 thresholds for each location, thereby

generating 100 configurations for a given tuple of layers. For those 100 configurations, we plot

the pareto front of performance in Figure 4.H.2. We also focus on the first pausing layer, as it

has a larger influence on the IMPS gain. We can see that pausing at earlier layers leads to a

higher increase in IMPS and that pausing small proportions at these layers leads to a slightly

higher drop in mIoU than pausing a higher amount in later layers.
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Figure 4.H.2: Pareto front of pausing at two layers for ViT-Ti on Cityscapes.

Appendix 4.I Using Early Exit at test time
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Figure 4.I.1: Comparison when segmenting with and without early exit at test time on
CityScapes and ADE20K.

In Figure 4.I.1, we study the use of early exit on a trained PAUMER. Early exit (see works in

Section 4.3) refers to stopping the processing of input once it is deemed to have been processed

enough. In our method, we pause tokens, i.e., we stop processing a token by the encoder, and

feed it to the decoder to predict the segmentation label. Here, we compare it directly using the

predictions of the auxiliary decoder itself, without stopped tokens being processed by the main

decoder. PAUMER can be run with or without early-exit depending on the task, and using early
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exit on a trained Segmenter is straightforward as it does not need any retraining due to the

use of auxiliary decoders. For the same pausing configurations as in Figure 4.4.1a, a network

with early exit runs at higher throughput with fewer FLOPs by design, but it may run with a

lower mIoU. On Figure 4.I.1, we see that for Cityscapes, it is beneficial to use PAUMER with

early-exit. This finding might not hold in general, as a complex mask decoder may be needed

for different datasets.

Appendix 4.J Comparing SETR, Segmenter, EarlyExit using Segmenter

200 400 600 800 1000
Images/sec

70

72

74

76

78

m
Io

U

Cityscapes

Method

Paumer

Paumer-Ti (SETR)

Early Exit

Model Size

ViT-Ti

ViT-S

Figure 4.J.1: We compare PAUMER on Segmenter, on SETR, and using an early exit variant
of PAUMER on Segmenter. Early exit fares better than PAUMER on Cityscapes. This may be
attributable to the dataset, as Cityscapes might not need a more complex mask decoder for
accuracy.

In Appendix 4.I we showed the results of early-exit. Here we examine the best performances

obtained for each throughput across pause configurations. We estimate this by computing the

skyline queries. We see that early exit performs consistently better on Cityscapes.

Additionally, we implement our patch-pausing strategy, PAUMER, on the network architecture

SETR (Zheng et al., 2021). SETR’s performance drops off more rapidly than Segmenter-based

patch-pausing. Note that we adapt SETR’s PUP decoder to use it with a ViT-Tiny backbone. In

particular, we reduce the number of channels of the decoder to 192, the number of convolu-

tions in the decoder from 4 to 2, and the upscale factor from 2 to 4.

Appendix 4.K Importance of task-specific pretraining

In Figure 4.K.1, we study the importance of initialization. We compare ViT-Ti pretrained on

Cityscapes (task-specific), and pretrained on ImageNet (generic) and study their impact on

performance. When using a generic pretrained model, our training with PAUMER is increased

to 160K iterations instead of 80K. It is apparent that using a task-specific pretrained model
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Figure 4.K.1: Importance of initialization for PAUMER. Task-specific initialization benefits
performances. We train ViT-Ti PAUMER: solid lines are from ImageNet pretrained backbones,
dashed lines are from Cityscapes pretrained Segmenters. Each marker is a configuration from
Table 4.4.1.

brings a relatively consistent benefit in this context.

Appendix 4.L Entropy as a measure of patch-pausing

In Section 4.2.1, we argued that entropy is a reasonable indicator of completion of processing.

For that, we used the illustration in Figure 4.2.2 to show the increase in separation of entropy

histograms for pixels predicted correctly and incorrectly. We expand that in Figure 4.L.1, to

analyze that to each class individually. The larger separation in entropy in the first few layers

of the network in prevalent in large classes like road, building, vegetation, car. As seen in

Figure 4.1.1 too, these larger classes are paused to gain IMPS. Smaller, rarer classes like train,

motorcycle, rider are tougher to learn and are unlikely to be paused (as evidenced by their

higher entropy).
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Figure 4.L.1: Entropy per layer for each class of Cityscapes. Continues Figure 4.2.2.
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5 Optimizer Benchmarking Needs to
Account for Hyperparameter Tuning

We presented work on improving the run-time computational efficiency of segmentation

transformers. In this chapter, we turn our focus onto the omnipresent problem of evaluation

methods that are computation-aware. We present work on benchmarking strategies for deep

learning with a focus on optimizers used in the field. The arguments presented are broadly

applicable to the evaluation of deep learning models, and several concurrent works have

studied that problem (Dodge et al., 2019; Musgrave et al., 2020). This chapter is based on

Teja, P., Mai, F., Vogels, T., Jaggi, M., and Fleuret, F. (2020). Optimizer benchmarking

needs to account for hyperparameter tuning. In III, H. D. and Singh, A., editors,

Proceedings of the 37th International Conference on Machine Learning, volume

119 of Proceedings of Machine Learning Research, pages 9036–9045. PMLR.

5.1 Introduction

With the ubiquity of deep learning in various applications, a multitude of first-order stochastic

optimizers (Robbins and Monro, 1951) has been in vogue. They have varying algorithmic

components like momentum (Sutskever et al., 2013) and adaptive learning rates (Tieleman and

Hinton, 2012; Duchi et al., 2011; Kingma and Ba, 2015). As the field grows with newer variants

being proposed, the standard method to benchmark the performance of these optimizers

has been to compare the best possible generalization performance. While it is certainly an

important characteristic to be taken into account, we argue that in practice, an even more

important characteristic is the performance achievable with available resources. A similar view

of performance measurement has been recently argued for in the deep learning community

owing to the strong debate on sustainable and GreenAI (Strubell et al., 2019; Schwartz et al.,

2019).

The performance of optimizers strongly depends on the choice of hyperparameter values such

as the learning rate. In the machine learning research community, the sensitivity of models

to hyperparameters has been of great debate recently, where in multiple cases, reported
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Table 5.1.1: Experimental settings shown in the original papers of popular optimizers. The
large differences in test problems and tuning methods make them difficult to compare. γ
denotes learning rate, µ denotes momentum, λ is the weight decay coefficient.

Method Datasets Network architecture Parameter tuning methods

SGD with momentum (Sutskever
et al., 2013)

Artificial datasets Fully-connected µ= 0.9 for first 1000 updates

MNIST LSTM then µ ∈ {0,0.9,0.98,0.995}.

other schedules for µ are used

& l og10(γ) ∈ {−3,−4,−5,−6}

Adagrad (Duchi et al., 2011) ImageNet ranking Single layer Perfomance on dev-set

Reuters RCV1 Handcrafted features

MNIST Histogram features

KDD Census

Adam (Kingma and Ba, 2015) IMDb Logistic regression β1 ∈ {0,0.9}

MNIST Multi-layer perceptron β2 ∈ {0.99,0.999,0.9999}

CIFAR 10 Convolutional network log10(γ) ∈ {−5,−4,−3,−2,−1}

AdamW (Loshchilov and Hutter,
2019)

CIFAR 10 ResNet CNN log2(γ) ∈ {−11,−10 · · ·−1,0}

ImageNet 32×32 log2(λ) ∈ l og2(10−3)+ {−5,−4, . . . ,4}

model advances did not stand the test of time because they could be explained by better

hyperparameter tuning (Lucic et al., 2018; Melis et al., 2018; Henderson et al., 2018; Dodge

et al., 2019). This has led to calls for using automatic hyperparameter optimization methods

(HPO) with a fixed budget for a fairer comparison of models (Sculley et al., 2018; Hutter et al.,
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Figure 5.1.1: Hyperparameter optimization budget affects the performance of optimizers.
We show the probability of finding a hyperparameter configuration for an optimizer that
performs the best at a given search budget on any task (sampled from our benchmark). This
is encoded by the height of the respective area in the chart. Generally, we see that tuning
more hyperparameters becomes more useful with higher budgets. On our 9 diverse tasks that
include vision problems, natural language processing, regression, and classification, tuning
only the learning rate for Adam is the most reliable option, even at large budgets.
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2019; Eggensperger et al., 2019). This eliminates biases introduced by humans through manual

tuning. For industrial applications, automated machine learning (AutoML, Hutter et al., 2019),

which has automatic hyperparameter optimization as one of its key concepts, is becoming

increasingly more important. In all these cases, an optimization algorithm that achieves good

performances with relatively little tuning effort is arguably substantially more useful than

an optimization algorithm that achieves top performance but reaches it only with a lot of

careful tuning effort. Hence, we advocate that benchmarking the performance obtained by an

optimizer must not only avoid manual tuning as much as possible but also has to account for

the cost of tuning its hyperparameters to obtain that performance.

Works that propose optimization techniques show their performance on various tasks as

depicted in Table 5.1.1. It is apparent that the experimental settings, as well as the network

architectures tested, widely vary, hindering a fair comparison. The introduction of benchmark-

ing suites like DEEPOBS (Schneider et al., 2019) have standardized the architectures tested on.

However, this does not fix the problem of selecting the hyperparameters fairly. Indeed, recent

papers studying optimizer performances may employ grid search to select the best values,

but the search spaces are still selected on a per-dataset basis, introducing significant human

biasSchneider et al. (2019); Wilson et al. (2017); Shah et al. (2018); Choi et al. (2019). Moreover,

as only the best-obtained performance is reported, it is unclear how a lower search budget

would impact the results. This leads us to the question: how easy is an optimizer to use, i.e.,

how quickly can an automatic search method find a set of hyperparameters for that optimizer

that result in satisfactory performance?

In this work, we introduce a simple benchmarking procedure for optimizers that addresses

the discussed issues. By evaluating on a wide range of 9 diverse tasks, we contribute to the

debate of adaptive vs. non-adaptive optimizers (Wilson et al., 2017; Shah et al., 2018; Chen

and Gu, 2018; Choi et al., 2019). To reach a fair comparison, we experiment with several SGD

variants that are often used in practice to reach good performance. Although a well-tuned

SGD variant is able to reach top performance in some cases, our overall results clearly favor

Adam (Kingma and Ba, 2015), as shown in Figure 5.1.1.

5.2 The Need to Incorporate Hyperparameter Optimization into

Benchmarking

The problem of optimizer benchmarking is two-fold as it needs to take into account

1. how difficult it is to find a good hyperparameter configuration for the optimizer,

2. the absolute performance of the optimizer.

To see why both are needed, consider Figure 5.2.1, which shows the loss of four different

optimizers as a function of their only hyperparameter θ (by assumption). If we only consider
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requirement #1, optimizer C would be considered the best, since every hyperparameter

value is the optimum. However, its absolute performance is poor, making it of low practical

value. Moreover, due to the same shape, optimizers A and B would be considered equally

good, although optimizer A clearly outperforms B. On the other hand, if we only consider

requirement #2, optimizers B and D would be considered equally good, although optimizer

D’s optimum is harder to find.

As we discuss in Section 5.3, no existing work on optimizer benchmarking takes both require-

ments into account. Here we present a formulation that does so in Algorithm 5.

Hyperparameter θ

E
xp

ec
te

d
lo

ss Optimizer A

Optimizer D
Optimizer B
Optimizer C

Figure 5.2.1: Illustration. It is important to
consider both the absolute performance of
optimizers as well as the tuning effort to get
to good performances.

Hyperparameter θ
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L

(θ
)

Optimizer F
Optimizer E

θ⋆F
θ⋆E

Figure 5.2.2: Illustration. While optimizer E
can achieve the best performance after care-
ful tuning, optimizer F is likely to provide
better performance under a constrained
HPO budget.

We have already established that fairly comparing optimizers needs to account for how easy it

is to find good hyperparameter values. When proposing new optimization methods, algorithm

designers often only specify the permissible set of values the hyperparameters can take, and

informally provide some intuition of good values. For example, for Adam, Kingma and Ba

(2015) bound β1,β2 to [0,1) and specify that they should be close to 1. These are valuable

information for users of their algorithm, but they do not allow to formally incorporate that

information into a benchmarking procedure. Instead, we argue that we need to redefine what

constitutes an optimizer so that prior knowledge over reasonable hyperparameter values is

included.

Definition. An optimizer is a pair M = (UΘ, pΘ), which applies its update rule U (St ;Θ) at each

step t depending on its current state St . It is parameterized through N hyperparameters Θ=
(θ1, . . . ,θN ) with respective permissible values θi ∈ Hi ∀i , and pΘ : (Θ→R) defines a probability

distribution over the hyperparameters.

In the example above, we could describe the intuition that β1,β2 should be close to 1 by the

random variables β̂1 = 1−10c1 , β̂2 = 1−10c2 , where c1,c2 ∼U (−10,−1).
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Procedure 5 Benchmark with ‘expected quality at budget’

Input: Optimizer O, cross-task hyperparameter prior ΘO , task T , tuning budget B
Initialization: Pre-compute a library of size ≫B with validation losses achieved on task T
with optimizer O using hyper-parameters sampled from ΘO .
Initialize l i st ← [ ].
for R repetitions do

Simulate hyperparameter search with budget B :
– S ← sample B elements from library.
– l i st ← [BEST(S), . . . l i st ].

end for
return MEAN(l i st ), or other statistics

Let L (Θ1) refer to the performance (say, test loss) of M with the specific hyperparameter

choice Θ1.

Let us assume that there are two optimizers E & F, both with a single hyperparameter θ, but no

prior knowledge of particularly good values, i.e., the prior is a uniform distribution over the

permissible range. Let their loss surface be LE and LF , respectively. As Figure 5.2.2 shows,

the minimum of LE is lower than that of LF (denoted by θ⋆E and θ⋆F ) i.e., LE (θ⋆E ) <LF (θ⋆F ).

However, the minimum of LE is much sharper than that of LF , and in most regions of the

parameter space F performs much better than E. This makes it easier to find configurations that

perform well. This makes optimizer-F an attractive option when we have no prior knowledge

of the good parameter settings. Previous benchmarking strategies compare only θ⋆E and θ⋆F . It

is obvious that in practice, optimizer-F may be an attractive option, as it gives ‘good-enough’

performance without the need for a larger tuning budget.

We incorporate the relevant characteristics of the hyperparameter optimization surface de-

scribed above into benchmarking through Algorithm 5. In the proposed protocol, we use

Random Search (Bergstra and Bengio, 2012) with the optimizers’ prior distribution to search

the hyperparameter space. The quality of the optimizers can then be assessed by inspecting

the maximum performance attained after k trials of random search. However, due to the

stochasticity involved in random search, we would usually have to repeat the process many

times to obtain a reliable estimate of the distribution of performances after budget k. We

instead use the bootstrap method (Tibshirani and Efron, 1993) that re-samples from the em-

pirical distribution (termed library in Algorithm 5). When we need the mean and variance of

the best-attained. performance after budget k, we use the method proposed by Dodge et al.

(2019) to compute them exactly in closed form. We provide the details of the computation in

Appendix 5.D.

Our evaluation protocol has distinct advantages over previous benchmarking methods that

tried to incorporate automatic hyperparameter optimization methods. First, our evaluation

protocol is entirely free of arbitrary human choices that bias benchmarking: The only free

parameters of random search itself are the search space priors, which we view as part of the
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optimizer. Secondly, since we measure and report the performance of Random Search with

low budgets, we implicitly characterize the loss surface of the hyperparameters: In terms

of Figure 5.2.2, optimizer-F with its wide minimum will show good performance with low

budgets, whereas optimizer-E can be expected to show better performance with high budgets.

Such characterizations would not be possible if one only considered the performance after

exhausting the full budget. Finally, our evaluation protocol allows practitioners to choose the

right optimizer for their budget scenarios.

Discussion of alternative choices In theory, our general methodology could also be ap-

plied with a different hyperparameter optimization technique that makes use of prior distribu-

tions, e.g., drawing the set of initial observations in Bayesian methods. However, those usually

have additional hyperparameters, which can act as potential sources of bias. Moreover, the

bootstrap method is not applicable when the hyperparameter trials are drawn dependently,

and repeating the hyperparameter optimization many times is practically infeasible.

In our protocol, we consider the number of random search trials as the unit of budget, and

not computation time. This is done so as to not violate the independence assumption in the

method by Dodge et al. (2019) in Appendix 5.D. We, empirically, show in Appendix 5.F that the

conclusions of this work are still valid when time is used as the unit of budget as well.

5.3 Related Work

Benchmarking of optimizers is a relatively unstudied subject in literature. Schneider et al.

(2019) recently released a benchmark suite for optimizers that evaluates their peak perfor-

mance and speed, and the performance measure is assessed as the sensitivity of the perfor-

mance to changes in the learning rate. Our work primarily takes its genesis from the study

by Wilson et al. (2017) that finds SGD-based methods as easy to tune as adaptive gradient

methods. They perform grid search on manually chosen grids for various problems and con-

clude that both SGD and Adam require similar grid search effort. However, their study lacks a

clear definition of what it means to be tunable (easy-to-use) and tunes the algorithms on man-

ually selected, dataset-dependent grid values. The study by Shah et al. (2018) applies a similar

methodology and comes to similar conclusions regarding performance. Since both studies

only consider the best parameter configuration, their approaches cannot quantify the efforts

expended to find the hyperparameter configuration that gives the best setting; they would be

unable to identify the difference between optimizer among B and D in Figure 5.2.1. In contrast,

the methodology in our study is able to distinguish all the cases depicted in Figure 5.2.1.

There exist few works that have tried to quantify the impact of hyperparameter setting in ML

algorithms. investigate tunability formally. For decision tree models, Mantovani et al. (2018)

count the number of times the tuned hyperparameter values are (statistically significantly)

better than the default values. Probst et al. (2019) define the tunability of an ML algorithm

as the performance difference between a reference configuration (e.g., the default hyperpa-
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rameters of the algorithm) and the best possible configuration on each dataset. This metric is

comparable across ML algorithms, but it disregards entirely the absolute performance of ML

algorithms; thereby being unable to differentiate between optimizers B and D in Figure 5.2.1.

In a concurrent study, Choi et al. (2019) shows that there exists a hierarchy among optimizers

such that some can be viewed as specific cases of others and thus, the general optimizer

should never under-perform the special case (with appropriate hyperparameter settings).

Like in our study, they suggest that the performance comparison of optimizers is strongly

predicated on the hyperparameter tuning protocol. However, their focus is on the best possible

performance achievable by an optimizer and does not take into account the tuning process.

Also, the presence of a hierarchy of optimizers does not indicate how easy it is to arrive at the

hyperparameter settings that help improve the performance of the more general optimizer.

Moreover, while the authors claim their search protocol to be relevant for practitioners, the

search spaces are manually chosen per dataset, constituting a significant departure from a

realistic AutoML scenario considered in our work. Since the focus is only on the best attainable

performance, it construed as being benchmarking theoretically infinite budget scenarios.

In recent work, Dodge et al. (2019) proposes to use the performance on the validation set

along with the test set performance. They note that the performance conclusions reached

by previously established NLP models differ widely from the published works when an addi-

tional hyperparameter tuning budget is considered. They recommend a checklist to report

for scientific publications that includes details of compute infrastructure, runtime, and more

importantly, the hyperparameter settings used to arrive at those results like bounds for each hy-

perparameter, HPO budget, and tuning protocols. They recommend using expected validation

performance at a given HPO budget as a metric, along with the test performance.

There has been recent interest in optimizers that are provably robust to hyperparameter

choices, termed the APROX family (Asi and Duchi, 2019a,b). Asi and Duchi experimentally

find that, training a Residual network (He et al., 2016b) on CIFAR-10, SGD converges only

for a small range of initial learning rate choices, whereas Adam exhibits better robustness to

learning rate choices; their findings are in line with our experiments that it is indeed easier to

find good hyperparameter configurations for Adam.

Metz et al. (2020) propose a large range of tasks and propose to collate hyperparameter

configurations over those. They show that the optimizer settings thus collated, which are

problem agnostic like us, generalize well to unseen tasks too.

5.4 Optimizers and Their Hyperparameters

In Section 5.2, we argued that an optimizer is a combination of an update equation and the

probabilistic prior on the search space of the hyperparameter values. Since we are considering

a setup akin to AutoML with as little human intervention as possible, these priors have to be

independent of the dataset. As we view the hyperparameter priors as a part of the optimizer
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itself, we argue that they should be prescribed by algorithm designers themselves in the future.

However, in the absence of such prescriptions for optimizers like Adam and SGD, we provide a

simple method to estimate suitable priors in Section 5.4.2.

5.4.1 Parameters of the Optimizers

To compare the tunability of adaptive gradient methods to non-adaptive methods, we chose

the most commonly used optimizers from both the strata; SGD and SGD with momentum for

non-adaptive methods, and Adagrad and Adam for adaptive gradient methods. Since adaptive

gradient methods are said to work well with their default hyperparameter values already, we

additionally employ a default version of Adam where we only tune the initial learning rate and

set the other hyperparameters to the values recommended in the original paper (Kingma and

Ba, 2015) (termed Adam-LR). Such a scheme has been used by Schneider et al. too. A similar

argument can be made for SGD with momentum (termed SGD-M): thus, we experiment with

a fixed momentum value of 0.9 (termed SGD-MC ), which we found to be the most common

momentum value to lead to good performance during the calibration phase.

In addition to standard parameters in all optimizers, we consider weight decay with SGD too.

SGD with weight decay can be considered an optimizer with two steps where the first step is

to scale current weights with the decay value, followed by a normal descent step (Loshchilov

and Hutter, 2019). Therefore, we conduct two additional experiments for SGD with weight-

decay: one where we tune weight-decay along with momentum (termed SGD-MW), and one

where we fix it to 10−5 (termed SGD-MC WC ) along with the momentum being fixed to 0.9,

which again is the value for weight decay we found to be the best during calibration. We

incorporate a “Poly” learning rate decay scheduler (γt = γ0 × (1− t
T )p ) (Liu et al., 2015) for

SGD-MC WC (termed SGD-MC D). This adds only one tunable hyperparameter (exponent p).

We also experimented with Adam with a learning rate decay scheduler (termed Adam-WC D),

but reserve this discussion for the Appendix 5.B, as it did not yield sizeable improvements

over Adam-LR or Adam in the problems tested. The full list of optimizers we consider is

provided in Table 5.5.2, out of which we discuss Adam-LR, Adam, SGD-MC WC , SGD-MW, and

SGD-MC D in the main chapter. The rest are presented in Appendix 5.B.

Manually defining a specific number of epochs can be biased towards one optimizer, as one

optimizer may reach good performance in the early epochs of a single run, and another may

reach higher peaks more slowly. In order to alleviate this, it would be possible to add the

number of training epochs as an additional hyperparameter to be searched. Since this would

incur an even higher computational cost, we instead use the validation set performance

as a stopping criterion. Thus, we stop training when the validation loss plateaus for more

than 2 epochs or if the number of epochs exceeds the predetermined maximum number set

in DEEPOBS.
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5.4.2 Calibration of Hyperparameter Prior Distributions

As mentioned previously, we use random search for optimizing the hyperparameters, which

requires distributions of random variables to sample from. Choosing poor distributions to

sample from impacts the performance, resulting in unfair comparisons, and may break requi-

site properties (e.g. learning rate is non-negative). For some parameters listed in Table 5.4.1,

obvious bounds exist due to their mathematical properties or have been prescribed by the

optimizer designers themselves. For example, Kingma and Ba (2015) bound β1,β2 to [0,1) and

specify that they are close to 1. In the absence of such prior knowledge, we devise a simple

method to determine the priors.

We use Random Search on a large range of admissible values on each task specified in DEEP-

OBS to obtain an initial set of results. We then retain the hyperparameters which resulted

in performance within 20% of the best result obtained. For each of the hyperparameters in

this set, we fit the distributions in the third column of Table 5.4.1 using maximum likelihood

estimation. Several recent works argue that there exists a complex interplay between the

hyperparameters (Smith et al., 2018; Shallue et al., 2019), but we did not find modeling these

to be helpful (Appendix 5.H). Instead, we make a simplifying assumption that all the hyper-

parameters can be sampled independently of each other. We argue that these distributions

are appropriate; the only condition on the learning rate is non-negativity that is inherent to

the log-normal distribution, momentum is non-negative with a usual upper bound of 1, βs in

Adam have been prescribed to be less than 1 but close to it, ϵ is used to avoid division by zero

and thus is a small positive value close to 0. We did not include p of the learning rate decay

schedule in the calibration step due to computational constraints and chose a fixed plausible

range such that the value used by Liu et al. (2015) is included. We report the parameters of the

distributions obtained after the fitting in Table 5.4.1. The calibration step is not included in

computing the final performance scores, as the calibrated priors are re-usable across tasks

and datasets.

5.5 Experiments and Results

To assess the performance of optimizers for the training of deep neural networks, we bench-

mark using the open-source suite DEEPOBS (Schneider et al., 2019). The architectures and

datasets we experiment with are given in Table 5.5.1. We refer the reader to Schneider et al.

(2019) for specific details of the architectures. To obtain a better balance between vision and

NLP applications, we added an LSTM network with the task of sentiment classification in the

IMDB dataset (Maas et al., 2011), details of which are provided in Appendix 5.A.

We aim to answer two main questions with our experiments: First, we look at the performance

of various optimizers examined. Related to this, we investigate what effect the number of

hyperparameters being tuned has on the performance at various budgets (Section 5.5.1).

Second, we consider a problem typically faced in an AutoML scenario: If no knowledge is

available a priori of the problem at hand, but only the tuning budget, which optimizer should
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Table 5.4.1: Optimizers evaluated. For each hyperparameter, we calibrated a ‘prior distribution’
to give good results across tasks (Section 5.4.2). U [a,b] is the continuous uniform distribution
on [a,b]. Log-uniform(a, b) is a distribution whose logarithm is U [a,b]. Log-normal(µ,σ) is a
distribution whose logarithm is N (µ,σ2)

Optimizer Tunable parameters Cross-task prior

SGD

Learning rate Log-normal(-2.09, 1.312)

Momentum U [0,1]

Weight decay Log-uniform(-5, -1)

Poly decay (p) U [0.5,5]

Adagrad Learning rate Log-normal(-2.004, 1.20)

Adam

Learning rate Log-normal(-2.69, 1.42)

β1,β2 1 - Log-uniform(-5, -1)

ϵ Log-uniform(-8, 0)

Table 5.5.1: Models and datasets used. We use the DeepOBS benchmark set (Schneider et al.,
2019). Details are provided in Appendix 5.A.

Architecture Datasets

Convolutional net FMNIST, CIFAR10/100

Variational autoencoder FMNIST, MNIST

Wide residual network SVHN

Character RNN Tolstoi’s War and Peace

Quadratic function Artificial dataset

LSTM IMDB

we use (Section 5.5.2)?

5.5.1 When to Tune More Hyperparameters

To answer the question, at which budget tuning more hyperparameters is preferable, we

compare Adam-LR to Adam, and SGD-MW to SGD-MC WC (Table 5.5.2). To this end, we show

performance for increasing budgets K in Figure 5.5.2. Plots for the other optimizers and

budgets are given in Figure 5.B.1.

On all classification tasks, Adam-LR and SGD-MC WC obtain higher performances on average

than Adam and SGD-MW, respectively, till the budget of 16. Moreover, the first quartile is

often substantially lower for the optimizers with many hyperparameters. For higher budgets,

both outperform their counterparts on CIFAR-100 and FMNIST on average and in the second

quartile, and Adam outperforms Adam-LR on IMDB as well. However, even for the largest

budgets, Adam’s first quartile is far lower than Adam-LR’s.
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On the regression tasks, tuning more hyperparameters only helps for SGD-MW on MNIST-VAE.

In all other cases, tuning additional hyperparameters degrades the performance for small

budgets and achieves similar performance at high budgets.

5.5.2 Summarizing across datasets
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Figure 5.5.1: Aggregated relative performance of various optimizers across datasets

We, now, turn to the question of how our choice of optimizer would change in a setting where

nothing is known about the problem, à la AutoML. AutoML setup. To this end, we summarize

performances across all datasets. First, for a given budget, we compute the probability that an

optimizer outperforms the others on a randomly chosen task. In Figure 5.1.1, we compare

Table 5.5.2: Optimizers and tunable parameters. SGD(γ,µ,λ) is SGD with γ learning rate,
µ momentum, λ weight decay coefficient. Adagrad(γ) is Adagrad with γ learning rate,
Adam(γ,β1,β2,ϵ) is Adam with learning rate γ,

Optimizer label Tunable parameters

SGD-LR SGD(γ,µ=0,λ=0)

SGD-M SGD(γ,µ,λ=0)

SGD-MC SGD(γ,µ=0.9,λ=0)

SGD-MC WC SGD(γ,µ=0.9,λ=10−5)

SGD-MC D SGD(γ,µ=0.9,λ=10−5) + Poly Decay(p)

SGD-MW SGD(γ,µ,λ)

Adagrad Adagrad(γ)

Adam-LR Adam(γ, β1=0.9, β2=0.999, ϵ=10−8)

Adam Adam(γ,β1,β2,ϵ)

Adam-WC D Adam-LR + Poly Decay(p)
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Adam, Adam-LR, SGD-MC WC , and SGD-MC D, because we found them to yield the overall

best results. First, the results reflect the findings from Section 5.5.1 in that tuning more hyper-

parameters (Adam) becomes a better relative option the more budget is available. However,

throughout all tuning budget scenarios, Adam-LR remains by far the most probable to yield

the best results.

Figure 5.1.1 shows that Adam-LR is the most likely to get the best results. However, it does not

show the margin by which the SGD variants underperform. To address this issue, we compute

summary statistics for an optimizer o’s performance after k iterations in the following way:

S(o,k) = 1

|P |
∑

p∈P

o(k, p)

max
o′∈O

o′(k, p)
,

where o(k, p) denotes the expected performance of optimizer o ∈ O on test problem p ∈ P

after k iterations of hyperparameter search. In other words, we compute the average relative

performance of an optimizer to the best performance of any optimizer on the respective task,

at budget k.

The results are in Figure 5.5.1 which show that Adam-LR performs very close to the best

optimizer for all budgets. In the early stages of HPO, the SGD variants perform 20% worse

than Adam-LR. This gap narrows to 10% as tuning budgets increase, but the flatness of the

curves for high budgets suggests that they are unlikely to improve further with higher budgets.

Adam on the other hand steadily improves relative to Adam-LR, and only leaves a 2-3% gap at

high budgets.

5.6 Discussion

The key results of our experiments are two-fold. First, they support the hypothesis that

adaptive gradient methods are easier to tune than non-adaptive methods: In a setting with a

low budget for hyperparameter tuning, tuning only Adam’s learning rate is likely to be a very

good choice; it doesn’t guarantee the best possible performance, but it is evidently the easiest to

find well-performing hyperparameter configurations for. While SGD (variants) yields the best

performance in some cases, its best configuration is tedious to find, and Adam often performs

very close to it. Hence, in terms of Figure 5.2.2, SGD seems to be a hyperparameter surface

with narrow minima, akin to optimizer E, whereas the minima of Adam are relatively wide,

akin to optimizer F. We investigate the empirical hyperparameter surfaces in Appendix 5.G

to confirm our hypothesis. We, thus, state that the substantial value of the adaptive gradient

methods, specifically Adam, is its amenability to hyperparameter search. This is in contrast

to the findings of Wilson et al. (2017) who observe no advantage in tunabilty for adaptive

gradient methods, and thus deem them to be of ‘marginal value’. This discrepancy is explained

by the fact that our evaluation protocol is almost entirely free of possible human bias: In

contrast to them, we do not only avoid manually tuning the hyperparameters through the use

of automatic hyperparameter optimization, we also automatically determine the HPO’s own
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Figure 5.5.2: Performance of Adam-LR, Adam, SGD-MC WC , SGD-MW, SGD-MC D at various
hyperparameter search budgets. Image is best viewed in color. Some plots have been truncated
to increase readability.
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hyperparameters by estimating the distributions over search spaces.

Secondly, we find that tuning optimizers’ hyperparameters apart from the learning rate be-

comes more useful as the available tuning budget increases. In particular, we find that Adam

approaches the performance of Adam-LR for large budgets. This is, of course, an expected

result, and in line with recent work by Choi et al. (2019), who argue that, with sufficient hy-

perparameter tuning, a more general optimizer (Adam) should never under-perform any

particular instantiation thereof (Adam-LR). Choi et al. (2019) claim that this point is already

reached in ‘realistic’ experiments. However, in their experiments, Choi et al. (2019) tune the

search spaces for each problem they consider, thereby assuming apriori knowledge of what

constitutes meaningful hyperparameter settings for that specific problem. Our results, which

are obtained with a protocol that is arguably less driven by human bias, tell a different story:

Even with a relatively large tuning budget, tuning only the learning rate of Adam is arguably

the safer choice, as it achieves good results with high probability, whereas tuning all hyperpa-

rameters can also result in a better performance albeit with high variance. These observations

suggest that optimizers with many tunable hyperparameters have a hyperparameter surface

that is less smooth, and that is why fixing e.g. the momentum and weight decay parameters

to prescribed ‘recipe’ values is beneficial in low-resource scenarios. Our observations are

supported by further experimental evidence in Schmidt et al. (2021), which finds that Adam

remains a practical choice across problems; it is not always the best performing optimizer, but

is a safe, well-performing choice.

Our study is certainly not exhaustive: We do not study the effect of a different HPO like a

Bayesian HPO on the results, due to the prohibitively high computational cost it incurs. By

choosing uni-variate distribution families for the hyperparameters to estimate the priors, we

do not account for complex relationships between parameters that might exist. We explore

this in Appendix 5.H where we use the notion of ‘effective learning rate’ (Shallue et al., 2019),

and we find that it helps improve the performance in the lower budgets of hyperparameter

optimization. We attribute this to the fact that SGDElrW is effective at exploiting historically

successful (γ,µ) pairs. However, the literature does not provide methods to incorporate these

into a probabilistic model that incorporates the causal relationships between them.

In the future, we suggest that optimizer designers not only study the efficacy and convergence

properties but also provide priors to sample hyperparameters. Our study demonstrates this as

a key component in determining an optimizer’s practical value.

5.7 Conclusion

We propose to include the process of hyperparameter optimization in optimizer benchmark-

ing. In addition to showing peak performance, this showcases the optimizer’s ease-of-use in

practical scenarios. We hope that this work encourages other researchers to conduct future

studies on the performance of optimizers from a more holistic perspective, where the cost of

the hyperparameter search is included.
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Appendix 5.A Architectures of the Models Used in Experiments

Along with the architectures examined by Schneider et al. (2019), we experiment with an addi-

tional network and dataset. We included an additional network into our experimental setup, as

DEEPOBS does not contain a word level LSTM model. Our model uses a 32-dimensional word

embedding table and a single layer LSTM with memory cell size 128, the exact architecture is

given in Table 5.A.1. We experiment with the IMDB sentiment classification dataset (Maas

et al., 2011). The dataset contains 50,000 movie reviews collected from movie rating website

IMDB. The training set has 25,000 reviews, each labeled as positive or negative. The rest 25,000

form the test set. We split 20% of the training set to use as the development set. We refer the

readers to DEEPOBS (Schneider et al., 2019) for the exact details of the other architectures

used in this work.

Table 5.A.1: Architecture of the LSTM network used for IMDb experiments

Layer name Description

Emb


Embedding Layer

Vocabulary of 10000

Embedding dimension: 32



LSTM_1


LSTM

Input size: 32

Hidden dimension: 128


FC Layer Linear(128 −→ 2)

Classifier Softmax(2)
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Appendix 5.B Performance Analysis

We show the full performance plots of all variants of SGD, Adam, and Adagrad we experimented

with in Figure 5.B.1.

Appendix 5.C How Likely Are We to Find Good Configurations?

In Figure 5.1.1 we showed the chance of finding the optimal hyperparameter setting for some

optimizers considered, in a problem-agnostic setting. Here we delve into the case where we

present similar plots for each of the problems considered in Section 5.5.

A natural question that arises is: Given a budget K , what is the best optimizer one can pick?

In other words, for a given budget what is the probability of each optimizer finding the best

configuration? We answer this with a simple procedure. We repeat the runs of HPO for a

budget K , and collect the optimizer that gave the best result in each of those runs. Using the

classical definition of probability, we compute the required quantity. We plot the computed

probability in Figure 5.C.1. It is very evident for nearly all budgets, Adam-LR is always the

best option for 4 of the problems. SGD variants emerge to be better options for CIFAR-100

and Char-RNN at later stages of HPO. For some problems like VAEs, LSTM, it is very obvious

that Adam-LR is nearly always the best choice. This further strengthens our hypothesis that

adaptive gradient methods are more tunable, especially in constrained HPO budget scenarios.

Appendix 5.D Computing the Expected Maximum of Random Sam-

ples

The following is a constructive proof of how to compute the expected value that the bootstrap

method converges to in the limit of infinite re-sampling. It is a paraphrase of Dodge et al.

(2019, Section 3.1), but due to inaccuracies in Equation (5.1) in their paper, we repeat it here

for clarity.

Let x1, x2 . . . xN ∼ X be N independently sampled values. Let the random variable Y be the

maximum of a random subset of size S from x1, x2 . . . xN where S ≤ N . For representational

convenience, let them be the first S samples. So, Y = max{x1, . . . , xS}. We are interested in

computing E[Y]. This can be computed as

E[Y] =
∑

y
y ·P (Y = y)

for discrete Y, with P (Y = y) be the probability mass function of Y. We can write

P (Y = y) = P (Y ≤ y)−P (Y < y)
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As xi ∀i are iid sampled,

P (Y ≤ y) = P ( max
i=1...S

xi ≤ y)

=
S∏

i=1
P (xi ≤ y)

= P (X ≤ y)S

P (X ≤ y) can be empirically estimated from data as the sum of normalized impulses.

P (X ≤ y) = 1

N

N∑
i=1

Ixi≤y (5.1)

Thus,

E[Y] =
∑

y
y(P (X ≤ y)S −P (X < y)S) (5.2)

A very similar equation can be derived to compute the variance too. Variance is defined as

V ar (Y) = E[Y 2]−E[Y ]2. The second operand is given by Equation (5.2). The first operand (for

discrete distributions) can be computed as

E[Y2] =
∑

y
y2(P (X ≤ y)S −P (X < y)S) (5.3)

Given the iterates (not incumbents) of Random Search, the expected performance at a given

budget can be estimated by Equation (5.2) and the variance can be computed by Equa-

tion (5.3).

Appendix 5.E Aggregating the Performance of Incumbents

In Algorithm 5, we propose returning all the incumbents of the HPO algorithm. Here we

propose the use of an aggregation function that helps create a comparable scalar that can be

used in a benchmarking software like DEEPOBS to rank the performance of optimizers that

takes into cognizance the ease-of-use aspect too.

5.E.1 Aggregating Function

For the aggregation function discussed, we propose a simple convex combination of the

incumbent performances and term it ω-tunability. If Lt be the incumbent performance at
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budget t , we define ω-tunability as

ω-tunability =
T∑

t=1
ωt Lt

where wt > 0 ∀ t and
∑

t wt = 1

By appropriately choosing the weights {ωt }, we can interpolate between our two notions

of tunability in Section 5.2. In the extreme case where we are only interested in the peak

performance of the optimizer, we can set ωT = 1 and set the other weights to zero. In the

opposite extreme case where we are interested in the "one-shot tunability" of the optimizer,

we can set ω1 = 1. In general, we can answer the question of "How well does the optimizer

perform with a budget of K runs?" by setting ωi = 1i=K. Figure 5.5.2 and Figure 5.B.1 can also

be computed as ωi = 1i=K.

While the above weighting scheme is intuitive, merely computing the performance after

expending HPO budget of K does not consider the performance obtained after the previous

K −1 iterations i.e., we would like to differentiate the cases where a requisite performance is

attained by tuning an optimizer for K iterations and another for K1 iterations, where K1 ≫ K .

Therefore, we employ a weighting scheme as follows: By setting ωi ∝ (T − i ), our first one

puts more emphasis on the earlier stages of the hyperparameter tuning process. We term this

weighting scheme Cumulative Performance-Early(CPE). In contrast, the second weighting

scheme, Cumulative Performance-Late (CPL) puts more emphasis on late stages of tuning,

and thus on obtaining a better performance at a higher tuning cost: ωi ∝ i . The results of the

various optimizers’ CPE is shown in Table 5.E.1. It is very evident that Adam-LR fares the best

across tasks. Even when it is not the best performing one, it is quite competitive. Thus, our

observation that Adam-LR is the easiest-to-tune i.e., it doesn’t guarantee the best performance,

but it gives very competitive performances early in the HPO search phase, holds true.

For a benchmarking software package like DEEPOBS, we suggest the use of CPE to rank opti-

mizers, as it places focus on ease-of-tuning. This supplements the existing peak performance

metric reported previously.

Optimizer FMNIST(%)↑ CIFAR 10(%)↑ CIFAR 100(%)↑ IMDb(%)↑ WRN 16(4)(%)↑ Char-RNN(%)↑ MNIST-VAE↓ FMNIST-VAE↓ Quadratic Deep↓

Adam-LR 91.6 78.8 42.0 85.9 95.3 56.9 28.9 24.3 89.9

Adam 91.3 77.3 38.1 83.4 94.5 54.2 33.1 25.7 95.4

SGD-MC WC 90.8 81.0 38.8 78.7 95.3 53.9 54.0 27.9 87.4

SGD-MW 90.5 79.6 33.2 75.2 95.0 44.4 35.2 26.5 87.5

SGD-MC D 91.1 82.1 39.2 80.5 95.2 49.6 54.3 29.8 87.5

Adagrad 91.3 76.6 29.8 84.4 95.0 55.6 30.7 25.9 90.6

Adam-WC D 91.6 79.4 35.1 86.0 95.1 57.4 28.6 24.3 92.8

SGD-LR 90.4 76.9 30.6 68.1 94.7 39.9 53.4 26.2 89.3

SGD-M 90.5 77.8 39.8 73.8 94.9 50.7 37.1 26.3 88.2

SGD-MC 90.7 78.8 42.0 79.0 95.0 55.5 54.1 28.5 88.1

Table 5.E.1: CPE for the various optimizers experimented. It is evident that Adam-LR is the
most competitive across tasks.
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Appendix 5.F Results for Computation Time Budgets

Using number of hyperparameter configuration trials as budget unit does not account for the

possibility that optimizers may require different amounts of computation time to finish a trial.

While the cost for one update step is approximately the same for all optimizers, some require

more update steps than others before reaching convergence.

To verify that our results and conclusions are not affected by our choice of budget unit, we

simulate the results we would have obtained with a computation time budget in the following

way. For a given test problem (e.g., CIFAR-10), we compute the minimum number of update

steps any optimizer has required to finish 100 trials, and consider this number to be the

maximum computation budget. We split this budget into 100 intervals of equal size. Using

the bootstrapTibshirani and Efron (1993), we then simulate 1,000 HPO runs, and save the

best performance achieved at each interval. Note that sometimes an optimizer can complete

multiple hyperparameter trials in one interval, and sometimes a single trial may take longer

than one interval. Finally, we average the results from all 1,000 HPO runs and compute the

same summary across datasets as in Section 5.5.2.

Figure 5.F.1 shows that the conclusions do not change when using computation time as budget

unit. In fact, the graphs show almost the exact same pattern as in Figure 5.5.1, where number

of hyperparameter trials is the budget unit.

Appendix 5.G Plotting Hyperparameter Surfaces

In Section 5.2, we hypothesize that the performance as a function of the hyperparameter,

e.g., learning rate, of an optimizer that performs well with few trials has a wider extremum

compared to an optimizer that only performs well with more trials.

In Figure 5.G.1, we show a scatter plot of the loss/accuracy surfaces of SGD-MC WC and

Adam-LR as a function of the learning rate, which is their only tunable hyperparameter. The

plots confirm the expected behavior. On MNIST VAE, FMNIST VAE, and Tolstoi-Char-RNN,

Adam-LR reaches performances close to the optimum on a wider range of learning rates than

SGD-MC WC does, resulting in substantially better expected performances at small budgets

(k = 1,4) as opposed to SGD-MC WC , even though their extrema are relatively close to each

other. On CIFAR10, the width of the maximum is similar, leading to comparable performances

at low budgets. However, the maximum for SGD-MC WC is slightly higher, leading to better

performance than Adam-LR at high budgets.

Appendix 5.H Interplay between momentum and learning rate

We ran an additional experiment using ‘effective learning rate’ (Shallue et al., 2019) that

combines learning rate γ, and momentum µ of SGD to compute the effective learning rate γeff.
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Intuitively, γeffquantifies the contribution of a given minibatch to the overall training. This is

defined as

γeff = γ

1−µ

We designed a variant of SGD-MW, called SGD-LReff, where we sampledγ andγeffindependently

from lognormal priors calibrated as usual, and compute the momentum(µ) as µ= max(0,(1−
γ

γeff )), hence accounting for the interplay between learning rate and momentum. We plot

the performance comparisons between SGD-MW and SGD-LReff in Figure 5.H.1, and provide

a plot of the aggregated relative performance in Figure 5.H.2. The results show that indeed

SGD-LReff improves over SGD-MW in the low-budget regime, particularly on classification

tasks. We attribute this to the fact that SGD-LReff is effective at exploiting historically suc-

cessful (γ,µ) pairs. For large budgets, however, SGD-LReff performs increasingly worse than

SGD-MW, which can be explained by the fact that SGD-MW has a higher chance of explor-

ing new configurations due to the independence assumption. Despite the improvement in

low-budget regimes, SGD variants, including the new SGD-LReff variant, remain substantially

below Adam-LR in all budget scenarios. Hence, our conclusion remains the same.
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Figure 5.B.1: Adagrad, Adam-LR, Adam, Adam-WC D, SGD-LR, SGD-M, SGD-MC , SGD-MW,
SGD-MC WC , and SGD-MC D
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Figure 5.B.1: We show the performance of Adagrad, Adam-LR, Adam, Adam-WC D, SGD-LR,
SGD-M, SGD-MC , SGD-MW, SGD-MC WC , and SGD-MC D over all the experiments. We plot
the on the x-axis the number of the hyperparameter configuration searches, on the y-axis the
appropriate performance.
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Figure 5.G.1: Scatter plot of performance of Adam-LR and SGD-MC WC by learning rate value.
For a better visibility, we shift the learning rate values of SGD-MC WC in such a way that the
minima of both optimizers are at the same position on the x-axis.
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Figure 5.H.1: Performance of SGD-MW, SGD-LReff, at various hyperparameter search budgets.
Image is best viewed in color. Some plots have been truncated to increase readability.
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Figure 5.H.2: Aggregated relative performance of SGD-LReff compared to other optimizers.
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6 Concluding remarks

6.1 Summary

In this thesis, we investigated various problems under the umbrella of efficient deep learning,

focusing on semantic segmentation. Despite the decade-long progress in deep learning for

computer vision, resource appetite plagues the field. In this work, we broke this appetite down

into two major components: (a) labeled data availability from the test domain, which hinders

the applicability of already available and trained models due to domain shift, and (b) compute

resource availability which hinders ready deployment onto low-power devices, and also a

resource-aware benchmarking of progress in deep learning.

We proposed the problem of model adaptation in semantic segmentation, a problem also

termed source-free adaptation in literature. Unsupervised domain adaptation techniques

address an important problem of transferring knowledge from one domain to another without

needing labels but require the source dataset for this process. This can be impractical as

semantic segmentation datasets are generally too large to lug around. We proposed a modifi-

cation in which, instead of the source dataset, a source-trained model is used for adaptation

along with the unlabeled target domain dataset. We use the confidence of predictions and

noise-robustness of features as important properties that correlate with the ability to make

correct predictions.

We extended those observations to an allied problem: test-time adaptation. Most real-world

problems do not come with strict prior knowledge of the domain changes in the test data.

Therefore, we shift the adaptation to inference time; the network is adapted to tackle possible

domain shifts in a given sample or batch of test samples. The previous observations of ‘good

properties’ like noise-robustness were reused. In lieu of feature robustness, we ensured that

the network’s predictions were invariant to input transformations. This simple loss function

was shown to improve performance in the presence of domain changes and image corruptions.

In the second part of the thesis, we turned our focus to the computational resources needed

for semantic segmentation. While previous works focussed on designing architectures for
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run-time efficiency, we took an alternative route where we modulated the amount of input

data to be processed by a transformer. This is based on the observation that different parts

of an image have varying degrees of difficulty of segmentation and that computation can be

heterogeneously distributed according to the difficulty of segmenting an input patch. We

experimentally showed that this distribution of computation could be achieved by using

posterior entropy to pause patches i.e., we do not update the representations of patches for

which the network is confident enough to segment. Our method has an additional advantage

in that the number of paused patches is a tunable hyperparameter, and we proposed a training

strategy that enables tuning this hyperparameter at inference without retraining.

Our final contribution was a benchmarking strategy that is aware of the computation cost

for optimizers used in modern deep learning. Previous methods for benchmarking primarily

examined the best achievable performance by a method with no consideration for the effort

expended for tuning the hyperparameters of that method. We argued that a method that

achieves good performance with little tuning is practically more relevant than one that reaches

a higher performance albeit with a lot of tuning. Consequently, we found that adaptive

gradient optimizers like Adam are easier to tune than SGD. Tuning only the learning rate

of Adam is likely to be a very good choice; it doesn’t guarantee the highest performance,

but it is the easiest to find well-performing hyperparameter configurations for. We applied

these arguments to optimizers for deep learning and have been applied to model evaluation

elsewhere (Dodge et al., 2019).

6.2 Future Work

We discuss the unanswered questions specific to the techniques presented in the thesis, and

the extensions and alternative avenues.

6.2.1 On adaptation in Part I

Effect of architecture on its adaptability:

For the methods for adaptation in Chapters 2 and 3, the architectures used were treated as

black boxes. For example, we used the DeepLabV2 model with ResNet backbone for adapta-

tion experiments and did not consider the specific architectural components of that model in

the adaptation. The relationship between adaptability and architectural components is not

fully understood. Studies show that normalization layers are important for domain adapta-

tion (Nado et al., 2021; Rusak et al., 2022), but they have only been demonstrated empirically.

We found, anecdotally, that a network without normalization layers is not amenable to adapta-

tion, but the theoretical backing for these remains to be provided. Similarly, transformer-based

models (Xie et al., 2021; Bai et al., 2021) were shown to have substantially better corruption

robustness (Kamann and Rother, 2020) compared to convolutional networks. A study ap-

portioning the value of various kinds of layers and architectures to adaptability and domain

robustness will be of great value to the field.
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Effect of training tricks on adaptability:

Several papers have studied the source model attributes and training recipes that influence

the transfer performance for fine-tuning (Neyshabur et al., 2020; Kornblith et al., 2019; Pinto

et al., 2021). In Chapter 3, we found that some models are more adaptable than others. The

only discernable difference is the set of augmentations used in training on the source data.

This presents an important unexplored part of the work: do some training recipes create more

adaptation suitable networks than others? This goes hand-in-hand with the point above about

architectural dependence.

Leveraging large pretrained models:

The goal in Part I was to adapt a trained network using an unlabeled target domain dataset.

Recent work in large-scale training methods for language (Brown et al., 2020), vision (Abnar

et al., 2022; He et al., 2022) has been shown to generalize very well to downstream tasks with

little to no data. Some preliminary studies have shown the utility of fine-tuning these large

models (Kumar et al., 2022). CLIP-like models have also explored joint representation learning

of text and images (Radford et al., 2021) and have been successful at segmentation with a text

prompt (Lüddecke and Ecker, 2022; Wang et al., 2022b). Given the powerful feature extraction

capabilities learned by these encoders, investigating their transfer performance would be

valuable.

6.2.2 On the efficiency of transformers in Chapter 4

Combining patch pausing with complementary methods:

Recent studies on improving the efficiency of transformers have focussed on patch merg-

ing (Bolya et al., 2023, ToMe) where redundant computation is reduced by merging patches

that are deemed to be similar. This line of thinking can be applied to PAUMER too, in which for

the patches we determine to need more processing, merging the redundant computations

can result in a boost in the throughput of segmentation transformers.

Image-level patch pausing:

Our method uses the design choice of a fixed proportion of patches due to its GPU cache

friendliness. On other devices like CPUs that are not constrained by the batch level parallelism

like the GPU (Kurtz et al., 2020), higher throughput may be achieved by an image-dependent

pause proportion, the criterion for which needs additional investigation.

Drop-in replacements for attention components:

On the efficiency of transformers front, implementation improvements like the FlashAtten-

tion (Dao et al., 2022) have reduced the computational complexity of self-attention and are

faster and use lower memory than their traditional implementations in PyTorch. A trivial

drop-in replacement with FlashAttention in Chapter 4 can yield additional throughput yields

to the proposed PAUMER.
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6.2.3 On fair evaluation methods

Effect of hyperparameter search method:

Our work in Chapter 5 proposes that the performance of a network or optimizers depends

on the hyperparameter search method itself, an aspect that is unexplored in our work. We

used Random Search for our experiments based on the computational benefits it offers. Using

Bayesian, multi-fidelity search methods (Klein et al., 2020) or human-like search (Xiong et al.,

2020) methods may shed additional light on the effect of the hyperparameter search method

on the conclusions reached.

Dependence of hyperparameters:

We made a simplifying assumption that hyperparameters are independent of each other, an

assumption that is known to be suboptimal (Loshchilov and Hutter, 2019). Without these

assumptions, more sample-efficient calibration methods are required to compute the prior

distributions. We leave the study of hyperparameter dependence to future work.

6.3 Final remarks

As deep models become increasingly integrated into our lives, it is imperative that we under-

stand and mitigate their failure modes on data with characteristics that were not encountered

during training, like domain shifts studied in this thesis. In particular, tackling these shifts as

they are encountered is ever so important.

The widely famous GPT-3 model (Brown et al., 2020) consumes the energy equivalent to

powering a 60W bulb for about four minutes to generate one page of text1. It is not an

exaggeration that improving the efficiency of these models is the need of the hour, a problem

we tackled for vision models. The final training cost of the final deployed model was set to be

about 4-5 million dollars, trained for nearly 20 years on a commercial GPU. Its performance is

astonishing, but at what cost? A true reporting of this would require incorporating the cost of

hyperparameter optimization (and failed experiments) into the overall costs to paint a holistic

picture of the effort required to reach the high performance it boasts of.

The successes of deep learning in the very recent past, whether in text processing, image

analysis, or joint understanding, are taking these modern networks beyond the confines of

a laboratory to the world at large. At this seemingly crucial juncture, the ponderings of this

thesis are vital for these advances to cement their utility in the real world.

1This is a back-of-the-envelope calculation based on the power usage given in https://www.freeingenergy.com/
what-is-a-kilowatt-hour/.
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