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ABSTRACT

Heterogeneous Face Recognition (HFR) aims to expand
the applicability of Face Recognition (FR) systems to chal-
lenging scenarios, enabling the matching of face images
across different domains, such as matching thermal images to
visible spectra. However, the development of HFR systems
is challenging because of the significant domain gap between
modalities and the lack of availability of large-scale paired
multi-channel data. In this work, we leverage a pretrained
face recognition model as a teacher network to learn domain-
invariant network layers called Domain-Invariant Units (DIU)
to reduce the domain gap. The proposed DIU can be trained
effectively even with a limited amount of paired training
data, in a contrastive distillation framework. This proposed
approach has the potential to enhance pretrained models,
making them more adaptable to a wider range of variations in
data. We extensively evaluate our approach on multiple chal-
lenging benchmarks, demonstrating superior performance
compared to state-of-the-art methods.

Index Terms— Face Recognition, Heterogeneous Face
Recognition, Domain Invariant Units, Biometrics.

1. INTRODUCTION

Face recognition (FR) has gained popularity as an access
control tool due to its effectiveness and user-friendly nature.
State-of-the-art FR methods often demonstrate outstanding
performance in real-world conditions [1]. Nevertheless, these
methods fail when applied in challenging situations such as
low light conditions or over long distances. Typically, FR
systems operate in a homogeneous domain, enrolling and
matching individuals using the same modality—usually em-
ploying facial images captured through an RGB camera. This
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Fig. 1. The proposed Domain Invariant Unit (DIU) frame-
work. The lower layers of the student model are trained in
a contrastive framework to learn invariant features, while su-
pervision from the distillation loss prevents overfitting.

approach proves inadequate when facing scenarios where
enrollment and the probe images exhibit heterogeneity.

There are several instances where face matching in het-
erogeneous environments can prove beneficial. Consider a
scenario in which the images used for enrollment originate
from a controlled setting, while the target images come from
a CCTV camera utilizing the Near Infrared (NIR) spectrum.
NIR images can be used for both day and night regardless of
illumination conditions. Similarly, the concept of matching
images across different domains, such as visible and thermal
images, proves beneficial in cases where the use of active il-
lumination is not feasible. It’s worth noting that although the
term “heterogeneity” often refers to various modalities in the
literature, discrepancies such as alterations in image quality
(as seen in long-distance recognition) can also introduce het-
erogeneity. Heterogeneous Face Recognition (HFR) systems
aim to facilitate cross-domain matching, allowing RGB im-
ages used for enrollment to be compared with images from
any diverse modality. This obviates the necessity for separate
modalities to undergo enrollment [2]. HFR is especially ad-
vantageous in scenarios where capturing good-quality visible
images is challenging.

While being highly beneficial, achieving HFR using FR
models trained using large-scale RGB datasets is challenging



due to the domain gap [3]. Moreover, the limited availability
of paired datasets with the target modalities makes training
invariant models from scratch challenging. Gathering large
data for these new modalities can be cost-prohibitive. As a
result, it’s important to devise a framework that requires only
a minimal set of paired data samples.

Several approaches have been proposed for heterogeneous
face recognition (HFR ) to extract invariant features that can
match cross-modal images. Feature-based methods such as
Difference of Gaussian (DoG) [4], and scale-invariant feature
transform (SIFT) [5] have been proposed for HFR to reduce
the domain gap. Another set of methods called common-
space projection methods aims to learn a mapping to project
different face modalities into a common shared subspace to
reduce the domain gap [6, 7]. Recent HFR methods [8, 9], pri-
marily use GAN-based synthesis due to its high-quality image
generation. While using pre-trained FR models in synthesis-
based HFR reduces the data needed for a new FR model’s
training, the synthesis increases computational costs, limiting
real-world applicability. In [10], a new HFR method called
Domain-Specific Units (DSU) was introduced. The authors
argue that high-level features of CNNs trained on the visible
spectrum can encode images from other modalities, indicat-
ing these features are domain-independent. Prepended Do-
main Transformers (PDT) [11] adds a separate module to a
pretrained FR network for the target modality, converting it
to an HFR network. In [12], authors treat different modali-
ties as different styles and try to match them by modulating
feature maps of the target modality using a conditional adap-
tive instance modulation (CAIM). In this work, in contrast to
domain specific units (DSU), we propose to learn domain in-
variant units (DIU). We achieve this in a teacher-student dis-
tillation learning setting, adapting the lower network layers
with a minimal set of paired samples. The main contributions
of this work are listed below:

• We formulate the Heterogeneous Face Recognition
(HFR ) problem in a teacher-student distillation frame-
work, leveraging a pretrained FR system as the teacher.

• The proposed approach can be used to improve pre-
trained models to more variability given a minimal
amount of paired data.

• We have evaluated the proposed approach in several
standard benchmarks to show the effectiveness of our
approach.

Finally, the protocols and source codes will be made avail-
able publicly 1.

2. PROPOSED METHOD

Several recent works [10, 11] have shown that conditionally
adapting low-level features can improve HFR performance.

1https://gitlab.idiap.ch/bob/bob.paper.icassp2024 diu hfr

For instance, Domain Specific Units (DSU) [10] proposes
to create a copy of the initial layers from a Face Recogni-
tion (FR) network and adapt them specifically for the tar-
get modality. Prepended Domain Transfomers (PDT) on the
other hand add a prepended module to the FR network specif-
ically for the target modality. While these approaches per-
form well, they introduce an asymmetry in the data flow. The
path for the source modality is always fixed (a pretrained FR
network trained on a large face dataset), meaning the HFR
training process has to always learn to map to this predefined
space. This paradigm implies that the HFR training regime
is invariably directed towards this pre-defined space. Such
a constraint potentially curtails the training framework’s ca-
pability to learn optimal invariant features. While training a
single model for both source and target modality is possible,
this will likely result in overfitting, especially given the lim-
ited volume of data typically found in heterogeneous datasets.

We propose to address this challenge by fine-tuning com-
ponents of a pretrained face recognition network in a domain-
invariant manner. More specifically, we aim to make the
framework more flexible so that the source and target modal-
ity can align well in the embedding space by learning invari-
ant layers. To counteract overfitting, we adopt a dual-strategy
approach: 1) Restricting the training process to a specified
subset of the lower layers, and 2) Incorporating supervisory
signals from a teacher network, thereby safeguarding against
catastrophic forgetting.

Let T denote a pretrained face recognition network with
parameters given by ΘFR, trained on a large-scale dataset.
Let heterogeneous image pairs from the source and target
modalities be represented by Xsi and Xti respectively. The
label yi signifies if the pairs correspond to the same identity
(1) or not (0). Given this, we define the embeddings from
the model T for the source and target modalities as eTsi

and
eTti

, respectively. In our formulation, the objective is to learn
a student network S parameterized by ΘHFR, such that the
embeddings obtained for Xsi and Xti belonging to the same
identity (yi = 1), eSsi

and eSti
align in the embedding space.

Note that the values of ΘHFR is initialized with ΘFR.
Now, we represent the weights of ΘHFR into two categories.

ΘHFR = {ΘDIUi=1,2,..,K
,ΘFrozen} (1)

Let ΘFrozen represent the layers that remain unchanged dur-
ing training, and ΘDIUi represent the ith DIU block out of a
total of K blocks that have been trained to learn an invariant
representation for both the source and target modalities.

To align the representation we use a cosine contrastive
loss function, denoted by LC :

LC(eSsi
, eSti

, yi) =(1− yi) ·max

(
0,

eSsi
· eSti

∥eSsi
∥2∥eSti

∥2
−m

)

+ yi ·

(
1−

eSsi
· eSti

∥eSsi
∥2∥eSti

∥2

)
(2)



Where m denotes the margin.
To ensure the stability of network training and prevent

overfitting to the limited HFR data, we enforce a criterion
such that the embeddings generated by the student network
for the source modality images should match those produced
by a teacher network. This approach resembles a distilla-
tion framework [13], wherein the student network is guided
to mimic the representation learned by the teacher [14, 15].
In this context, it can be seen as a form of self-distillation;
however, it is applied exclusively to images from the source
modality and is focused solely on adapting the DIU layers.

Here the distillation loss has the following form LDL:

LDL(eTsi
, eSsi

) = ∥eTsi
− eSsi

∥2 (3)

Now the combined loss function to optimize can be writ-
ten as:

L(eSsi
, eSti

, eTsi
, yi) =(1− γ) · LC(eSsi

, eSti
, yi)

+ γ · LDL(eTsi
, eSsi

)
(4)

where γ is a hyper-parameter to determine the contribu-
tion of each component in the total loss. The value of γ is
empirically selected as 0.75, and the value of m is set as zero
in all the experiments.

Pre-trained FR backbone: We employed the pre-
trained Iresnet101 face recognition model from AdaFace
[16]. Specifically, the model we used was trained using the
WebFace12M dataset [17], which contains over 12M images
representing more than 600K identities. The model processes
three-channel images with a resolution of 112 × 112 pixels.
Before inputting into the Face Recognition network, the faces
are aligned and cropped to align the eye centers with specific
coordinates. For single-channel thermal images, the data is
duplicated thrice during preprocessing.

Implementation details: The proposed Domain Invari-
ant Units (DIU) is trained using a teacher-student distillation
framework, complemented by a contrastive learning compo-
nent. This framework was implemented using PyTorch and
integrated with the Bob library [18, 19] 2. We employed the
Adam Optimizer, with a learning rate of 0.0001, and trained
the framework for 50 epochs with a batch size of 48. The mar-
gin parameter m at zero and hyperparameter γ to 0.75 in all
the experiments. We first initialize the student HFR models
using the weights from the teacher. Only a certain number of
lower layers of the student model are set as trainable, keeping
the remaining ones frozen. The source channel image embed-
dings, obtained from the frozen teacher network, along with
the contrastive loss acting on the student HFR network force
the trainable layers to learn invariant representations for both
modalities. During inference, solely the student network is
required for performing the HFR task.

2https://www.idiap.ch/software/bob/

3. EXPERIMENTS

Databases and Protocols: The Polathermal dataset [20],
offers polarimetric LWIR imagery alongside color images
for a total of 60 participants. We employed the five-fold
protocols suggested in [10] and presented the average Rank-
1 identification rate across the five folds. The Tufts Face
Database [21], consists of face images captured through dif-
ferent modalities, aimed for the HFR task. For assessing
VIS-Thermal HFR performance, we utilized the thermal im-
ages from this dataset, covering 113 identities. We follow the
standard protocols in [8] for reporting results. The SCFace
dataset [22], comprises high-quality images suitable for face
recognition during enrollment, whereas the probe samples
are of lower quality, originating from surveillance cameras at
different distances (heterogeneity in terms of image quality).
This dataset contains four protocols, categorized according
to the probe sample quality and distance: close, medium,
combined, and far, with the ”far” protocol representing the
most challenging scenario.
Performance Metrics: We evaluate the models based on
several performance metrics frequently used in recent litera-
ture, such as Area Under the Curve (AUC), Equal Error Rate
(EER), Rank-1 identification rate, and Verification Rate at
specific false acceptance rates (0.01%, 0.1%, 1%, and 5%).

3.1. Experimental results

The experiments conducted on various datasets and their re-
sults are elaborated in this section. For benchmarking, we
contrast our results with those of the state-of-the-art, specifi-
cally compared with the methods presented in [11, 12].
Experiments with Polathermal dataset: Experiments were
performed in the ‘thermal-to-visible‘ recognition scenario in
the Polathermal dataset, and the results are shown in Table
1. This table illustrates the mean Rank-1 identification rate
across the five protocols of the Polathermal ’thermal to visible
protocols’ (following the reproducible protocols outlined in
[10]). The introduced DIU method attains a mean Rank-1 ac-
curacy of 97.8% with a standard deviation of 1.28%, achiev-
ing the state-of-the-art performance.

Table 1. Pola Thermal - Average Rank-1 recognition rate
Method Mean (Std. Dev.)

DPM in [20] 75.31 % (-)
CpNN in [20] 78.72 % (-)
PLS in [20] 53.05% (-)

LBPs + DoG in [4] 36.8% (3.5)
ISV in [23] 23.5% (1.1)
DSU(Best Result) [10] 76.3% (2.1)
DSU-Iresnet100 [11] 88.2% (5.8)
PDT [11] 97.1% (1.3)
CAIM [12] 95.0% (1.63)

DIU (Proposed) 97.8%(1.28)

Experiments with Tufts face dataset: Table 2 showcases
the performance of the DIU method in comparison to other



state-of-the-art methods in the VIS-Thermal protocol of the
Tufts face dataset. This dataset poses significant challenges
due to variations in pose and additional factors. Extreme yaw
angles in the dataset lead to a performance dip for even the
visible spectrum face recognition systems, paralleled by a de-
cline in HFR performance. Nevertheless, the DIU method
achieves the highest verification rate (85.9% at 1% FAR) and
a Rank-1 accuracy of 82.94%. These results demonstrate the
robustness of the proposed approach.

Table 2. Experimental results on VIS-Thermal protocol of
the Tufts Face dataset.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

LightCNN [24] 29.4 23.0 5.3
DVG [25] 56.1 44.3 17.1
DVG-Face [8] 75.7 68.5 36.5
DSU-Iresnet100 [11] 49.7 49.8 28.3
PDT [11] 65.71 69.39 45.45
CAIM [12] 73.07 76.81 46.94

DIU (Proposed) 82.94 85.9 74.95

Experiments with SCFace dataset: We performed ex-
periments on the SCFace dataset in the visible images pro-
tocol. This dataset poses a challenge due to the quality dif-
ference between gallery (high-res mugshots) and probe (low-
res surveillance camera) images. We report the results on the
most challenging “far” protocol with very low-quality probe
images. From Table 3, it can be seen that the DIU approach
achieves the highest Rank-1 accuracy at 94.55%. This shows
that the proposed approach can address heterogeneity in terms
of image quality as well, meaning it can even be used to im-
prove the performance of pretrained models.

Table 3. Performance of the proposed approach in the SC-
Face dataset.

Protocol Method AUC EER Rank-1 VR@
FAR=0.1%

Far
DSU-Iresnet100 [11] 97.18 8.37 79.53 58.26

PDT [11] 98.31 6.98 84.19 60.00
CAIM [12] 98.81 5.09 86.05 61.86

DIU (Proposed) 99.65 2.73 94.55 82.73

Influence of the Number of DIU Layers: To understand
the impact of varying the number of adaptable DIU layers,
we performed an experiment on the Polathermal dataset, with
different number of DIU layers. The results are shown in
Tab. 4. Initially, it can be seen that adapting a greater number
of layers enhances performance. However, this improvement
plateaus at a certain point, after which performance begins to
decline. Among the 48 layers, the best results were achieved
when unfreezing up to the 24th layer.

Impact of γ : The hyper-parameter γ integrates the role of
contrastive learning in aligning embeddings with the guidance
of the teacher network during the distillation. To understand
the influence of this parameter, we conducted experiments on
the Polathermal dataset, examining how varying γ values af-
fect the resulting HFR performance. As evidenced by Tab.

Table 4. Performance with different number of DIU blocks.
1-6 indicates the blocks from first to sixth layers are adapted.
Experiment performed in Polathermal dataset.

Layers AUC EER Rank-1 VR (0.1% FAR) VR (1% FAR)

1 94.42±1.41 13.27±2.13 70.26±3.60 36.30±4.98 58.80±4.28
1-6 98.64±0.56 6.00±1.30 88.29±1.78 60.57±3.26 79.64±5.29
1-12 99.56±0.10 3.37±0.43 95.79±1.42 73.06±6.36 91.84±1.07
1-18 99.77±0.14 2.22±0.94 97.33±1.08 85.75±7.21 95.92±2.44
1-24 99.84±0.11 2.06±0.87 96.88±2.11 88.47±2.56 95.97±2.20
1-30 99.75±0.18 2.12±1.19 96.74±2.43 89.07±7.15 95.10±4.37
1-36 99.68±0.23 2.48±1.11 96.04±1.95 77.39±9.28 93.98±3.92
1-42 99.71±0.29 2.33±1.69 96.77±2.83 81.01±12.41 94.98±5.18
1-48 99.64±0.17 2.80±0.69 96.01±2.47 70.12±14.50 89.30±6.27

5, optimal performance is reached at γ = 0.75. Owing to
the adaptation of only a select number of lower layers, DIU
still achieves reasonable performance at γ = 0, which cor-
responds to supervision solely via contrastive loss. Incorpo-
rating the teacher’s supervision further improves the results,
achieving a peak AUC of 99.80%.

Table 5. Performance with different values of γ. Experiment
performed in Polathermal dataset.
γ AUC EER Rank-1 VR (0.1% FAR) VR (1% FAR)

0.00 99.75±0.10 2.07±0.57 97.13±0.66 66.97±22.62 94.86±2.23
0.25 99.72±0.23 2.17±1.58 96.82±3.01 80.91±13.14 93.92±6.35
0.50 99.77±0.16 2.25±1.27 96.27±2.37 85.49±7.64 94.15±4.60
0.75 99.80±0.16 2.02±1.06 97.82±1.28 87.50±6.85 96.34±2.53
1.00 92.45±1.41 16.88±2.13 69.23±2.71 33.10±1.51 50.22±3.70

Effect of FR architecture: To compare the effectiveness
of another architecture we considered the Iresnet50 model
which is much smaller than the Iresnet100 model. As shown
in Table 6, the performance is better for the bigger model for
the HFR task (as well as for FR), however the small model
still achieved good HFR performance showing the approach
can be extended to both small and large FR models.

Table 6. Comparison of FR architectures on Tufts Face
dataset.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

DIU (Iresnet100) 82.94 85.9 74.95
DIU(Iresnet50) 73.79 75.88 48.24

4. CONCLUSIONS

In this work, we introduce a novel approach for learning
domain-invariant layers called domain invariant units (DIU)
for the challenging task of heterogeneous face recognition.
Leveraging guidance from a pretrained face recognition net-
work, our method successfully extracts domain-invariant fea-
tures while optimizing a contrastive learning objective. Our
extensive experiments have showcased state-of-the-art per-
formance achieved by our proposed method across a range
of challenging benchmark datasets, demonstrating its effec-
tiveness and robustness. The source codes and protocols will
be made publicly available to facilitate the extension of our
work.
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