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From Modalities to Styles: Rethinking the
Domain Gap in Heterogeneous Face
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Abstract—Heterogeneous Face Recognition (HFR) focuses on matching faces from different domains, for instance, thermal to visible
images, making Face Recognition (FR) systems more versatile for challenging scenarios. However, the domain gap between these
domains and the limited large-scale datasets in the target HFR modalities make it challenging to develop robust HFR models from
scratch. In our work, we view different modalities as distinct styles and propose a method to modulate feature maps of the target
modality to address the domain gap. We present a new Conditional Adaptive Instance Modulation (CAIM) module that seamlessly fits
into existing FR networks, turning them into HFR-ready systems. The CAIM block modulates intermediate feature maps, efficiently
adapting to the style of the source modality and bridging the domain gap. Our method enables end-to-end training using a small set of
paired samples. We extensively evaluate the proposed approach on various challenging HFR benchmarks, showing that it outperforms
state-of-the-art methods. The source code and protocols for reproducing the findings will be made publicly available.

Index Terms—Face Recognition, Heterogeneous Face Recognition, Style transfer, Instance Normalization, Biometrics.
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1 INTRODUCTION

F Acial recognition (FR) technology has gained popularity in
the field of access control due to its high efficiency and user-

friendly nature. Most state-of-the-art FR methods achieve excel-
lent performance in “in the wild” conditions and even reach a level
comparable to human performance in recognizing faces [1], thanks
to the advancement of convolutional neural networks (CNN).
Typically, FR systems are designed to work within a homogeneous
domain, meaning that both the enrollment and matching phases
are conducted using the same type of data, usually facial images
captured with an RGB camera. Nonetheless, there are scenarios
where performing matching in a heterogeneous setting could be
beneficial. For instance, near-infrared (NIR) cameras, commonly
found in smartphones and security cameras, offer superior per-
formance across various lighting conditions and exhibit resilience
to spoofing attacks [2], [3]. Despite these advantages, developing
an FR system tailored for NIR imagery requires an extensive
collection of annotated training data, which is often scarce.

Heterogeneous Face Recognition (HFR ) systems are designed
to facilitate cross-domain matching (Fig. 1), enabling the compar-
ison of enrolled RGB images with NIR (or other types of) images
without necessitating the enrollment of separate modalities [5].
This approach proves to be invaluable, especially in conditions
where acquiring visible images is challenging. For example, ther-
mal images can be utilized for recognition purposes regardless
of the lighting conditions, making face recognition feasible day
and night, and even at considerable distances. HFR systems are
versatile and capable of processing and matching facial images
from diverse sources and modalities, which significantly broadens
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Fig. 1. This figure shows the facial images of the same individual
acquired using distinct imaging modalities (Images taken from MCXFace
dataset [4]). The task in HFR is to facilitate cross-domain matching while
overcoming the challenges posed by the domain gap.

the potential applications and utility of face recognition systems
across various challenging scenarios.

HFR extends the use of Face Recognition (FR) systems
to challenging scenarios, such as those involving low-lighting
or long-range, by capitalizing on the specific characteristics of
imaging modalities. HFR approaches effectively mitigate certain
constraints, broadening the scope and applicability of FR systems.
Despite its usefulness, developing a Heterogeneous Face Recogni-
tion (HFR ) system comes with its own challenges. Cross-domain
matching is challenging primarily because of the domain gap. This
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gap can lead to a drop in performance when face recognition (FR)
networks, which are typically trained on visible-light images, are
applied to images from different sensing modalities [6]. Moreover,
creating models that are robust to both visible and other modalities
is challenging, exacerbated by the limited availability of large-
scale multimodal datasets. Collecting large-scale paired datasets
for these additional modalities is not only challenging but can also
incur significant costs. Hence, it is essential to devise an HFR
framework that requires only a limited set of labeled samples for
training the models.

In our approach, we build upon face recognition networks pre-
trained with a large dataset of faces from the visible spectrum,
using it as our foundational network. We address the challenge
of different modalities by conceptualizing them as unique styles.
Our proposed framework is designed to bridge the domain gap
by adapting the network’s intermediate feature maps to align with
these styles. The core of our method is the introduction of a new
module, which we refer to as the Conditional Adaptive Instance
Modulation (CAIM ) [7]. The CAIM module can be integrated
seamlessly into the face recognition network’s intermediate stages.
This trainable module is capable of being trained from scratch,
transforming a standard face recognition system into an HFR
network capable of handling a variety of modalities, all while
requiring a minimal number of training sample pairs.

The main contributions of this work are as follows:
• We conceptualize the domain gap in Heterogeneous Face

Recognition (HFR) as a manifestation of distinct styles from
different imaging modalities, and address this domain gap as
a style modulation problem.

• A new trainable component called Conditional Adaptive
Instance Modulation (CAIM) is introduced, which can trans-
form a pre-trained FR network into a heterogeneous face
recognition network, requiring only a limited number of
paired samples for training.

• We implemented our approach with two different face recog-
nition models to evaluate the generalization of our approach.

• We demonstrate the robustness and effectiveness of our
proposed method through extensive evaluation on various
challenging HFR benchmarks.

Finally, the protocols and source codes will be made available
publicly 1.

The structure of the rest of the paper is organized in the
following manner: In Section 2, we review the previous literature
in Heterogeneous Face Recognition (HFR). The specifics of the
CAIM approach are elaborated in Section 3. Section 4 and 5
provide a thorough evaluation of the CAIM method, including
comparative analyses with state-of-the-art methods, followed by
in-depth discussions. Finally, Section 6 concludes the paper with
a summary of our findings and proposes directions for future
research.

2 RELATED WORK

The objective of Heterogeneous Face Recognition (HFR) methods
is to accurately match faces across images captured by different
sensing modalities. Yet, the discrepancy between these domains,
known as the domain gap, can impair the efficacy of face recog-
nition networks when performing a direct comparison of multi-
modal images. Therefore, it’s crucial for HFR methodologies to

1https://gitlab.idiap.ch/bob/bob.paper.ijcb2023 caim hfr

effectively close this modality gap. In this section, we review
recent literature on strategies proposed for addressing the domain
gap.

2.1 Invariant feature-based methods
Various strategies have been developed for Heterogeneous Face
Recognition (HFR) with the goal of extracting features that
remain consistent across different imaging modalities. Liao et
al. [8] introduced a technique that relies on the Difference of
Gaussian (DoG) filters combined with multi-scale block Local
Binary Patterns (MB-LBP) to capture invariant features. Klare et
al. [9] proposed a method employing Local Feature-based Dis-
criminant Analysis (LFDA), which utilizes Scale-Invariant Feature
Transform (SIFT) and Multi-Scale Local Binary Pattern (MLBP)
as feature descriptors. Zhang et al. [10] proposed the Coupled
Information-Theoretic Encoding (CITE) approach, which seeks to
maximize the mutual information across modalities within quan-
tized feature spaces. Approaches based on Convolutional Neural
Networks (CNNs) have also been applied to HFR, demonstrating
the versatility of deep learning models in this context [6], [11].
Roy et al. [12] proposed a method termed Local Maximum Quo-
tient (LMQ), specifically designed to identify invariant features in
cross-modal facial imagery. In [13], authors introduced a feature-
based approach for HFR for composite sketch recognition. This
approach involved extracting features using the Scale-Invariant
Feature Transform (SIFT) and the Histogram of Oriented Gradient
(HOG) from different facial components. These features were then
integrated at the score level, where the facial components were
combined using a linear function.

2.2 Common-space projection methods
Common-space projection methods aim to learn a transformation
that projects facial images from various modalities into a unified
subspace, thereby reducing the domain gap [11], [14]. Lin and
Tang [15] devised a method known as common discriminant
feature extraction to extract features from cross-modal images and
align them within a shared feature space. Yi et al. [16] utilized
Canonical Correlation Analysis (CCA) to correlate Near-Infrared
(NIR) and Visible Spectrum (VIS) face images. Lei et al. [17], [18]
introduced regression-based techniques to establish mapping func-
tions that bridge the gap between different modalities. Sharma and
Jacobs [19] developed a method based on Partial Least Squares
(PLS) to learn a linear mapping that maximizes the covariance be-
tween face images across modalities. Klare and Jain [5] proposed
a method for representing face images by their similarities to a
predefined set of prototype faces, followed by projecting these
representations onto a linear discriminant analysis subspace for
recognition purposes. In [20], authors suggested that the high-level
features in convolutional neural networks, when trained on visible
light spectra, are actually domain-agnostic and can be used to en-
code images from other sensing modalities. They adapt the initial
layers of a pre-trained FR model, termed Domain-Specific Units
(DSUs), to minimize the domain gap, training the entire system
in a contrastive learning setting. A challenge with this approach is
determining the exact number of layers to adapt, which requires
thorough experimentation to optimize. Liu et al. [21] proposed
a novel method known as Coupled Attribute Learning for HFR
(CAL-HFR), which uniquely does not require manual labeling of
facial attributes. This method utilizes deep convolutional networks
to map face images from heterogeneous scenarios into a shared

https://gitlab.idiap.ch/bob/bob.paper.ijcb2023_caim_hfr
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Fig. 2. Schematic diagram of the proposed framework: Layer 1 to Layer N represent the frozen blocks of layers from a pretrained Face Recognition
(FR) model. The CAIM module is inserted between the initial few blocks.

space. Additionally, they introduced the Coupled Attribute Guided
Triplet Loss (CAGTL), a specially designed loss function aimed at
addressing the issues of inaccurately estimated attributes in end-to-
end training. Recently, Liu et al. [22] proposed a semi-supervised
learning approach for modality-independent heterogeneous face
recognition (HFR) representation, termed as Modality-Agnostic
Augmented Multi-Collaboration representation for Heterogeneous
Face Recognition (MAMCO-HFR). This method introduces a
multi-collaborative face representation that leverages interactions
across various network depths to extract potent discriminative
information for identity recognition. Additionally, they proposed a
modality-agnostic augmentation technique that creates adversarial
disturbances to effectively map unlabeled faces into a modality-
agnostic domain.

2.3 Synthesis based methods
Synthesis-based approaches in Heterogeneous Face Recognition
(HFR) [23], [24] focus on creating images in the source domain
from those in the target modality. This synthetic generation fa-
cilitates the use of standard face recognition networks for bio-
metric identification. Wang et al. [25] explored a patch-based
synthetic method utilizing Multi-scale Markov Random Fields,
and Liu et al. [26] employed Locally Linear Embedding (LLE) for
establishing a pixel-wise correspondence between visible (VIS)
images and viewed sketches. The use of CycleGAN, as presented
in [27], for unpaired image-to-image translation has paved the
way for transforming target domain images to match the source
domain [28]. Furthermore, Zhang et al. [29] introduced a method
using Generative Adversarial Networks (GANs) to create photo-
realistic VIS images from polarimetric thermal images through
GAN-based Visible Face Synthesis (GAN-VFS). Several recent
approaches have been proposed using GANs for the synthesis of
VIS images from another modality, such as the Dual Variational
Generation (DVG-Face) framework [24], which achieved state-
of-the-art results in many challenging HFR benchmarks. Liu et
al. [30] introduced the Heterogeneous Face Interpretable Disen-
tangled Representation (HFIDR), a novel approach capable of
explicitly interpreting the dimensions of face representation. This
method focuses on extracting latent identity information for cross-
modality recognition and employs a technique to transform the
modality factor, enabling the synthesis of cross-modality faces.
In [31], authors proposed the Memory-Modulated Transformer
Network (MMTN) for HFR, treating the problem as an unsu-
pervised, reference-based “one-to-many” generation problem. The
MMTN incorporates a memory module to capture prototypical

style patterns and a style transformer module to blend the styles
of input and reference images at a local level. Recently, George et
al. [4] introduced the concept of Prepended Domain Transformers
(PDT), which prepends a trainable neural network module to a
pre-trained FR network, converting it into an HFR network. This
module translates feature representations to align cross-domain
embeddings in the feature space, without the need for explicit
generation of source domain images.

2.4 Challenges in HFR
In recent literature, Heterogeneous Face Recognition (HFR) meth-
ods, particularly those utilizing Generative Adversarial Networks
(GANs), have gained prominence for their synthesis-based ap-
proaches. These methods, such as DVG-Face and GAN-VFS [24],
[29] achieve reasonable results in generating high-fidelity images.
Leveraging a pre-trained FR model in such synthesis-based HFR
methods obviates the requirement for a vast amount of training
data to develop a new FR model. Nonetheless, the synthesis
step introduces a significant computational burden, which may
hinder its practical deployment in real-life scenarios. We propose
a different perspective: treating the domain gap between visible
images and images from other modalities as a variation in “styles”.
By adopting this viewpoint, we can address the domain gap
directly within the feature space through modulation of the feature
maps. This strategy eliminates the computational and memory-
intensive process of synthesizing images in the source modality.

3 PROPOSED METHOD

We follow the notations consistent with recent literature [4], [20],
[32], [33] to formally define the HFR task.

3.1 Formal definition of HFR
Consider a domain D that includes a set of samples X ∈ Rd and
a marginal distribution P (X) (of dimensionality d). The goal of a
face recognition (FR) system, T fr , can be characterized by a label
space Y with a conditional probability P (Y |X,Θ), where X
and Y represent random variables, and Θ denotes the parameters
of the model. In the training stage of an FR system, the con-
ditional probability P (Y |X,Θ) is typically determined through
supervised learning using a face dataset X = x1, x2, ..., xn and
their corresponding identity labels Y = y1, y2, ..., yn.

In the heterogeneous face recognition (HFR ) problem, we
assume the presence of two domains: a source domain Ds =
Xs, P (Xs) and a target domain Dt = Xt, P (Xt), both sharing
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the labels Y . The objective of the HFR problem, T hfr , is to
estimate a Θ̂ such that P (Y |Xs,Θ) = P (Y |Xt, Θ̂).

3.2 Proposed Framework

In our proposed approach, we consider face images from various
modalities as separate styles, considering the domain discrepancy
in the HFR challenge to be a manifestation of these style vari-
ations. We propose that by addressing the domain-specific style,
we can reduce the domain gap. To accomplish this, we employ
conditional modulation on the intermediate feature maps within a
pre-trained face recognition network.

Using the parameters ΘFR from a pre-trained face recognition
(FR) model developed on the source domain Ds, our strategy
does not alter the model’s original weights. Instead, we inject a
set of trainable network modules between the frozen layers of
the FR network, named CAIM , which are designed to modulate
the intermediate feature maps. The CAIM modules perform nor-
malization and style modulation on feature maps from the target
modality, to align the embeddings of corresponding samples from
both modalities in the embedding space. Figure 2 illustrates the
overall design of our proposed system. We incorporate the CAIM
modules primarily within the initial blocks of the network, as
these are more closely related to modality-specific characteristics.
An external gating mechanism is deployed to enable the CAIM
modules solely for the target modality data while allowing the
source modality data to pass unaffectedly, thereby mitigating the
risk of catastrophic forgetting.

The HFR task can be mathematically formulated as:

P (Y |Xt, Θ̂) = P (Y |Xt, [ΘFR, θCAIMi,i∈(1,2,..,K)
]) (1)

Where, θCAIMi denotes the ith CAIM block out of K blocks.
The CAIM blocks, specified by the parameters θCAIMi

, are
the only trainable components and can be fine-tuned in a super-
vised manner. When the system is trained, the CAIM module acts
as a pass-through for images from the source domain (Xs), effec-
tively allowing the network to produce the reference embeddings
through ΘFR. However, for images from the target domain (Xt),
the processing involves both the frozen network layers (ΘFR)
and the newly introduced CAIM blocks. The training utilizes
a contrastive loss function, as described by [34], to align the
embeddings in the shared representational space. The contrastive
loss is given as:

LContrastive(Θ̂, Yp, Xs, Xt) =(1− Yp)
1

2
D2

W

+ Yp
1

2
max(0,m−DW )

2

(2)

Where Θ̂ represents the network’s weights together with the
frozen weights, Xs and Xt denote heterogeneous image pairs.
The label Yp indicates whether the pairs share the same identity.
The margin in the contrastive loss function is denoted by m,
while DW represents the metric used to compute the distance
between the embeddings of the two images in a pair. The chosen
distance measure DW could be the Euclidean distance or the
cosine distance, depending on which is used to compare the feature
representations produced by the network. Further details on the
CAIM block’s design are provided in subsequent subsections.

3.3 Architecture of the CAIM block
Figure 2 illustrates the components of the proposed Conditional
Adaptive Instance Modulation framework. The CAIM blocks
are inserted between the frozen layers of the pre-trained face
recognition network. The detailed design of the CAIM block is
shown in Fig. 3. This block takes an input feature map along
with a global gating signal and outputs a feature map with the
same dimensions. The first component in the CAIM block is an
Instance Normalization (IN) layer that normalizes each feature
map individually, without trainable affine parameters. Following
this, a parallel Convolutional Neural Network (CNN) module
takes the original, un-normalized feature map to extract a shared
representation. This CNN module consists of two sets of 3 × 3
convolutional layers, each followed by a Rectified Linear Unit
(ReLU) activation function, and then a Global Average Pooling
(GAP) layer. To generate the scaling and shifting parameters
for the normalized feature maps, two dense (fully connected)
layers are appended to the shared representation. These dense
layers are tasked with calculating the parameters that modulate
the normalized feature maps. Furthermore, a residual connection
is incorporated into the network. When the global gate signal is set
to zero, the CAIM block acts as an identity function, obtaining the
same embeddings from the original pre-trained face recognition
network for the reference modality, effectively bypassing the
modulation process.

3.4 Style Modulation for HFR
In this section, we discuss using style modulation as a strategy
to bridge the domain gap between visible and other modalities,
starting with the application of Instance Normalization [35].

3.4.1 Instance normalization
Previous works have demonstrated that the statistical properties of
feature maps in deep neural networks (DNNs) effectively capture
the style of images [36]. Ulyanov et al. [35] showed that substitut-
ing batch normalization layers with Instance Normalization (IN)
significantly enhances style transfer. Instance Normalization layer
normalizes the feature maps, and this process can be represented
as follows:

IN(x) = γ

(
x− µ(x)

σ(x)

)
+ β (3)

Here, γ, β ∈ RC represent affine parameters learned from the
data, while µ(x) and σ(x) are calculated across spatial dimensions
for each individual sample, as opposed to across mini-batches in
BatchNorm.

Dumoulin et al. [37] subsequently extended Instance Nor-
malization to Conditional Instance Normalization (CIN). In this
approach, a set of parameters, γs and βs, can be learned for a
predefined set of styles, denoted by s.

In [38], Huang et al.introduced a network module named
Adaptive Instance Normalization (AdaIN), specifically designed
for image style transfer. This module is designed to align the mean
and variance of content features with those of style features in the
context of image style transfer. The authors suggest that Instance
Normalization facilitates style normalization by normalizing the
feature statistics, namely the mean and variance. The AdaIN
module operates by taking a content input x and a style input y and
aligning the channel-wise mean and variance of x to correspond
with those of y. Unlike other methods, AdaIN does not utilize
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Fig. 3. Architecture of the Conditional Adaptive Instance Modulation (CAIM ) block. The global gate signal activates the block. The gate signal
becoming zero deactivates this module and the entire module functions as an identity block in this case due to the residual path.

learnable affine parameters; rather, it dynamically computes these
parameters based on the style input.

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y) (4)

The normalized content input is scaled by σ(y) and shifted
by µ(y). Similar to Instance Normalization, these statistics are
computed across spatial locations.

Recent studies [39], have shown that mixing instance-level
feature statistics from multiple source domains probabilistically
can significantly improve domain generalization. This enhance-
ment is achieved by integrating a variety of styles during the
training phase, which leads to the development of a model that
is more robust and adaptable across different domains. A critical
aspect to note is that this mixing of styles and domains occurs
during the initial training phase of the model, where the model
is trained from scratch with inputs from various domains. This is
a crucial distinction, especially in the context of Heterogeneous
Face Recognition (HFR), where there is not enough target domain
data to do mixing in the training phase. Hence we often start
with a face recognition model that is already pre-trained on the
source domain. In the HFR context, we modify this approach
by conditionally modulating the feature maps instead of mixing
them, and adapting the concept to suit the specific needs of HFR.
This conditional modulation in HFR allows the feature statistics
of the target modality to adapt, enhancing the model’s ability
to recognize faces across varied domains without the need for
retraining from scratch.

3.4.2 Conditional Adaptive Instance Modulation
The Adaptive Instance Normalization (AdaIN) module, as pre-
viously mentioned, is adept at producing images that match or
emulate the style of another image. It is particularly useful in
creating images that adopt the style characteristics of a reference
image. In the context of Heterogeneous Face Recognition (HFR),
the objective is to adjust the style of target modality images so
that they align with the style of visible spectrum images. This
alignment is crucial to ensure that the final image embeddings
are consistent across different modalities. This is of particular im-
portance considering that the pre-trained face recognition network

is initially trained on a large dataset of visible spectrum images,
making it essential to align the styles between different modalities
for effective cross-modal recognition.

Consider an intermediate feature map in the face recognition
network, denoted by F ∈ RC×H×W . Here, C , H , and W
represent the number of channels, height, and width of the feature
map, respectively.

For the target modality, we would like to modulate these
feature maps such that the output embedding from the network
aligns for the source and target modalities.

To accomplish this, we modulate the intermediate feature map
using the CAIM block.

F̂ = CAIM(F) (5)

The CAIM block’s main component is similar to adaptive
instance normalization (AdaIN) particularly in its ability to nor-
malize and modify the style of target images. However, unlike
AdaIN which relies on an external style input, our approach
derives modulation factors directly from the raw input feature
maps using a CNN module. Furthermore, we combine this step in
a residual fashion while injecting the CAIM block into a pretrained
network.

To elaborate further, we first estimate a shared representation
from the input feature map by utilizing a shallow CNN network
with global average pooling.

ξf = GAP
(
CNN(F)

)
(6)

The σf and µf parameters are estimated from this shared
representation with two fully connected (FC) layers:

σf = FCσ(ξf ) (7)

µf = FCµ(ξf ) (8)

The estimated parameters are utilized to scale and shift the
normalized feature maps:

AIM(F) = σf

(
F− µ(F)

σ(F)

)
+ µf (9)

To ensure stable training, we incorporate a residual connection
in the proposed framework. Additionally, when incorporating this
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module, a gate is added to activate the module exclusively for the
target modality, leaving the feature maps of the source modality
unaltered.

The CAIM block can be represented as follows:

CAIM(F,g) = g ·AIM(F) + F (10)

Where, g denotes the gate, g = 1 for the target modality, and
g = 0 for the source modality (visible images).

3.5 Face Recognition backbone
To ensure reproducibility, we used the publicly available pre-
trained Iresnet100 face recognition model provided by Insight-
face [40]. The model was trained on the MS-Celeb-1M dataset
2, which includes over 70,000 identities. The pre-trained face
recognition model accepts three-channel images at a resolution of
112 × 112 pixels. Before passing through the FR network, faces
are aligned and cropped to ensure eye center coordinates align
with predetermined points. In cases where the input is a single-
channel image (like NIR or thermal images), the single channel is
duplicated across all three channels, without altering the network’s
architecture.

3.6 Implementation details
The Conditional Adaptive Instance Modulation (CAIM ) block
employs a contrastive learning approach, within a Siamese net-
work framework [34]. For all experiments, we set the margin
parameter to 2.0. The training used the Adam Optimizer with a
learning rate of 0.0001, over 50 epochs, and a batch size of 90.
We developed the framework in PyTorch and using the Bob library
[41], [42] 3. In this setup, the frozen layers of the pre-trained
face recognition network are shared between the source and
target modalities. The CAIM block, inserted between these frozen
layers, is operational exclusively for the target modality, activated
when the global gate signal is one (gate = 1). Conversely, for
reference channel images (visible spectrum) with gate = 0, the
CAIM block essentially acts as a bypass through the residual
branch. Only the CAIM block’s parameters are updated during
training. The experiments are reproducible, and the source code
and protocols will be made available publicly.

4 EXPERIMENTS

This section outlines the outcomes of a comprehensive series of
experiments carried out using the CAIM framework. Our main
objective was to assess the effectiveness of the CAIM method
in VIS-Thermal HFR , across various challenging datasets. Fur-
thermore, we compared the performance of the CAIM approach
against other heterogeneous settings such as VIS-Sketch, VIS-
NIR, and VIS-Low Resolution VIS. In all our experiments, we
used the standard cosine distance for comparison.

4.1 Databases and Protocols
The following section describes the datasets used (Fig. 4) in the
evaluations.

Tufts face dataset: The Tufts Face Database [43] is a col-
lection of face images from various modalities for the HFR task.

2http://trillionpairs.deepglint.com/data
3https://www.idiap.ch/software/bob/

Fig. 4. Sample images from source and target modalities from six
different HFR datasets. Images are from MCXFace [4], Tufts Face [43],
SCFace [44], Polathermal [45] CASIA NIR-VIS 2.0 [46], CUHK Face
Sketch FERET Database (CUFSF) [10] respectively.

For our evaluation of VIS-Thermal HFR performance, we use the
thermal images provided in the dataset. The dataset comprises
113 identities, consisting of 39 males and 74 females from
different demographic regions, and includes images from different
modalities for each subject. We adopt the same procedure as in
[24], selecting 50 identities at random for the training set and
using the remaining subjects for the test set. We report Rank-1
accuracies and Verification rates at false acceptance rates (FAR)
of 1% and 0.1% for comparison.

MCXFace Dataset: The MCXFace Dataset [4] includes im-
ages of 51 individuals captured in various illumination conditions
and three distinct sessions using different channels. The channels
available include RGB color, thermal, near-infrared (850 nm),
short-wave infrared (1300 nm), Depth, Stereo depth, and depth
estimated from RGB images. All channels are spatially and
temporally registered across all modalities. Five different folds
were created for each of the protocols by randomly dividing the
subjects into train and dev partitions. Annotations for the left and
right eye centers for all images are also included in the dataset. We
have performed the evaluations on the challenging “VIS-Thermal”
protocols of this dataset.

Polathermal dataset: The Polathermal dataset [45] is an HFR
dataset collected by the U.S. Army Research Laboratory (ARL).
It contains polarimetric LWIR imagery together with color images
for 60 subjects. The dataset has conventional thermal images and
polarimetric images for each subject. For our experiments, we use
conventional thermal images and follow the five-fold partitions
introduced in [20]. Specifically, 25 identities are used for training,
while the remaining 35 identities are used for testing. We report
the average Rank-1 identification rate from the evaluation set of
the five folds.

SCFace dataset: The SCFace dataset [44] consists of high-
quality enrollment images for face recognition, while the probe
samples are low-quality images from various surveillance sce-
narios captured by different cameras. There are four different
protocols in the dataset, based on the quality and distance of the
probe samples: close, medium, combined, and far, with the “far”
protocol being the most challenging. In total, the dataset contains
4,160 static images from 130 subjects (captured in both visible
and infrared spectra).

CUFSF dataset: The CUHK Face Sketch FERET Database
(CUFSF) [10] consists of 1194 faces from the FERET dataset [47],
where each face image has a corresponding sketch drawn by an
artist. Due to the exaggerations in the sketches, this dataset poses a

http://trillionpairs.deepglint.com/data
https://www.idiap.ch/software/bob/
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challenge for the HFR task. Following [48], we use 250 identities
for training the model and reserve the remaining 944 identities for
testing. The Rank-1 accuracies are reported for comparison.

CASIA NIR-VIS 2.0 dataset: The CASIA NIR-VIS 2.0
Face Database [46], contains images taken under both the visible
spectrum and near-infrared lighting conditions, with 725 distinct
individuals. For every person in the dataset, there are 1-22 visible
spectrum photos and 5-50 near-infrared (NIR) photos. The given
experimental protocols utilize a 10-fold cross-validation method,
wherein 360 identities are set aside for training. The evaluation’s
gallery and probe set comprise 358 distinct individuals. The train-
ing and testing sets have entirely separate identities. Experiments
are carried out in each fold and the mean and standard deviation
of the performance metrics are reported.

4.2 Metrics
We evaluate the models using various performance metrics that are
commonly used in previous literature, including Area Under the
Curve (AUC), Equal Error Rate (EER), Rank-1 identification rate,
and Verification Rate at different false acceptance rates (0.01%,
0.1%, 1%, and 5%).

4.3 Experimental results
The experiments performed in the different datasets and the results
are discussed in this section. For comparison, we compared the
results of CAIM against the paper baselines reported in [4].

4.3.1 Experiments with Tufts face dataset
The performance of the CAIM method and other state-of-the-art
techniques in the VIS-Thermal protocol of the Tufts face dataset
is presented in Table 1. This dataset is very challenging due to
variations in pose and other factors. The extreme yaw angles
present in the dataset cause a decline in the performance of even
visible spectrum face recognition systems, along with a similar
decline in HFR performance. Despite this challenge, the CAIM
approach achieves the best verification rate and ranks second
in Rank-1 accuracy (73.07%), following DVG-Face [24]. These
results demonstrate the effectiveness of the proposed method.

TABLE 1
Experimental results on VIS-Thermal protocol of the Tufts Face dataset.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

LightCNN [49] 29.4 23.0 5.3
DVG [50] 56.1 44.3 17.1
DVG-Face [24] 75.7 68.5 36.5
DSU-Iresnet100 [4] 49.7 49.8 28.3
PDT [4] 65.71 69.4 45.5
MAMCO-HFR [22] - 68.8 -

CAIM (Proposed) 73.07 76.81 46.94

4.3.2 Experiments with MCXFace dataset
Table 2 presents the average performance across five folds for
the VIS-Thermal protocols in the MCXFace dataset. The reported
values are the mean of the five folds in the dataset. The baseline
model shown corresponds to the performance of the pretrained
Iresnet100 FR model directly on the thermal images. It can be seen
that the proposed CAIM approach achieves the best performance
compared to other methods with an average Rank-1 accuracy of
87.24 %.

TABLE 2
Performance of the proposed approach in the VIS-Thermal protocol of

MCXFace dataset, the Baseline is a pre-trained Iresnet100 model.

Method AUC EER Rank-1

Baseline 84.45 ± 3.70 22.07 ± 2.81 47.23 ± 3.93
DSU-Iresnet100 [4] 98.12 ± 0.75 6.58 ± 1.35 83.43 ± 5.47
PDT [4] 98.43 ± 0.78 6.52 ± 1.45 84.52 ± 5.36

CAIM (Proposed) 98.97 ± 0.24 5.05 ± 0.91 87.24±2.75

4.3.3 Experiments with Polathermal dataset
We have performed experiments in the thermal to visible recog-
nition scenarios in the Polathermal dataset and the results are
presented in Table 3. The table shows the average Rank-1 iden-
tification rate in the five protocols of the Polathermal ‘thermal to
visible protocols’ (using the reproducible protocols in [20]). The
proposed CAIM approach achieves an average Rank-1 accuracy
of 95.00% with a standard deviation of (1.63%), only second to
the PDT approach [4].

TABLE 3
Pola Thermal - Average Rank-1 recognition rate

Method Mean (Std. Dev.)

DPM in [45] 75.31 % (-)
CpNN in [45] 78.72 % (-)
PLS in [45] 53.05% (-)

LBPs + DoG in [8] 36.8% (3.5)
ISV in [51] 23.5% (1.1)
GFK in [52] 34.1% (2.9)
DSU(Best Result) [20] 76.3% (2.1)
DSU-Iresnet100 [4] 88.2% (5.8)
PDT [4] 97.1% (1.3)

CAIM (Proposed) 95.00% (1.63)

4.3.4 Experiments with SCFace dataset
We conducted a series of experiments on the SCFace dataset
to evaluate the performance of the proposed approach using the
visible images protocol. The dataset presents a heterogeneity
challenge due to the quality disparity between the gallery (high-
resolution mugshots) and probe (low-resolution surveillance cam-
era) images. The results are presented in Table 4 and are based on
the evaluation set of the standard protocols. The baseline model
employed in this experiment is a pre-trained Iresnet100 model,
while the proposed CAIM model is trained using contrastive
training. It can be seen that the performance of the baseline model
improves with the proposed approach in most of the cases. In par-
ticular, the improvement is more significant in the “far” protocol
where the quality of the probe images is very low. The CAIM
module helps in adapting the intermediate feature map so that the
HFR framework is invariant to quality and resolution, leading to
improved results compared to the baseline. The proposed method
achieves comparable performance to the PDT approach in this
dataset.

4.3.5 Experiments with CUFSF dataset
In this section, we present experiments on the challenging task
of sketch to photo recognition. We report the Rank-1 accuracies
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TABLE 4
Performance of the proposed approach in the SCFace dataset, the

Baseline is a pretrained Iresnet100 model.

Protocol Method AUC EER Rank-1 VR@
FAR=0.1%

Close
Baseline 100.0 0.00 100.0 100.0

DSU-Iresnet100 [4] 100.0 0.00 100.0 100.0
PDT [4] 100.0 0.00 100.0 100.0

CAIM (Proposed) 100.0 0.01 100.0 100.0

Medium
Baseline 99.81 2.33 98.60 92.09

DSU-Iresnet100 [4] 99.95 1.39 98.98 93.25
PDT [4] 99.96 0.93 99.07 95.81

CAIM (Proposed) 99.92 1.86 98.60 94.88

Combined
Baseline 98.59 6.67 91.01 77.67

DSU-Iresnet100 [4] 98.91 4.96 92.71 80.93
PDT [4] 99.06 4.50 93.18 82.02

CAIM (Proposed) 99.58 3.24 94.57 84.65

Far
Baseline 96.59 9.37 74.42 49.77

DSU-Iresnet100 [4] 97.18 8.37 79.53 58.26
PDT [4] 98.31 6.98 84.19 60.00

CAIM (Proposed) 98.81 5.09 86.05 61.86

obtained with the baseline and other methods in Table 5 using
the protocols outlined in [48]. The proposed approach achieves
a Rank-1 accuracy of 76.38%, which is the best among the
compared methods. However, the absolute accuracy in sketch
to photo recognition is low compared to other modalities. The
CUFSF dataset contains viewed hand-drawn sketch images [53]
that appear holistically similar to the original subjects for humans.
Unlike other imaging modalities such as thermal, near-infrared,
and SWIR, sketch images may not preserve the discriminative
information that a face recognition network seeks, as they contain
exaggerations depending on the artist, making them more chal-
lenging for HFR . Nevertheless, the proposed CAIM approach
improves the performance significantly.

TABLE 5
CUFSF: Rank-1 recognition in sketch to photo recognition

Method Rank-1

Baseline 56.57
IACycleGAN [48] 64.94
DSU-Iresnet100 [4] 67.06
PDT [4] 71.08

CAIM (Proposed) 76.38

4.3.6 Experiments with CASIA-VIS-NIR 2.0 dataset
We conducted experiments using the CASIA-VIS-NIR 2.0 dataset
to demonstrate our proposed method’s efficiency in various het-
erogeneous situations, particularly in VIS-NIR recognition. Ob-
serving the baselines, there’s a smaller domain gap in this case,
with some pre-trained FR models trained in the VIS modality
achieving reasonable results. Given this, we employ stricter eval-
uation thresholds, using VR@FAR=0.1% and VR@FAR=0.01%
for comparisons. The dataset contains 10 sub-protocols, and we re-
port the average and standard deviation across these ten folds. The
findings, shown in Tab. 6, reveal that our proposed strategy out-
performs other state-of-the-art methods. These results showcase
the adaptability of our framework across diverse heterogeneous
scenarios.

TABLE 6
Experimental results on CASIA NIR-VIS 2.0.

Method Rank-1 VR@FAR=0.1% VR@FAR=0.01%

IDNet [54] 87.1±0.9 74.5 -
HFR-CNN [55] 85.9±0.9 78.0 -
Hallucination [56] 89.6±0.9 - -
TRIVET [57] 95.7±0.5 91.0±1.3 74.5±0.7
W-CNN [58] 98.7±0.3 98.4±0.4 94.3±0.4
PACH [59] 98.9±0.2 98.3±0.2 -
RCN [60] 99.3±0.2 98.7±0.2 -
MC-CNN [61] 99.4±0.1 99.3±0.1 -
DVR [62] 99.7±0.1 99.6±0.3 98.6±0.3
DVG [50] 99.8±0.1 99.8±0.1 98.8±0.2
DVG-Face [24] 99.9±0.1 99.9±0.0 99.2±0.1
PDT [4] 99.95±0.04 99.94±0.03 99.77±0.09
MAMCO-HFR [22] 99.9±0.1 99.8±0.1 -
CAIM (Proposed) 99.96±0.02 99.95±0.02 99.79±0.11

TABLE 7
Performance with different number of CAIM blocks. 1-5 indicates the

CAIM module is inserted in all blocks from first to fifth layers.
Experiment performed in Tufts face dataset.

Layers AUC EER Rank-1 VR(0.1% FAR) VR(1% FAR)

1 91.28 17.10 49.19 3.34 49.17
1-2 94.91 11.35 64.45 39.70 67.72
1-3 97.01 8.53 73.07 46.94 76.81
1-4 96.18 9.28 68.76 45.08 72.36
1-5 95.73 10.76 69.30 33.40 71.61

4.4 Ablation Studies
In this subsection, we conduct a series of ablation studies to better
understand the efficacy of various components and to assess the
generalizability of the CAIM approach.

4.4.1 Effect of number of CAIM blocks
To understand the effect of having a different number of CAIM
blocks, we performed a set of experiments in the Tufts face dataset
by inserting a different number of CAIM blocks in the pre-trained
FR network. We start by placing only one CAIM block after the
first block of the pre-trained FR layer. Then we increased the num-
ber of CAIM blocks from one to 5. The results of this experiment
are presented in Table 7. Our analysis reveals that adapting lower
layers is effective in minimizing the domain gap, as the high-
level facial structure is consistent across various modalities. In this
case, adding three CAIM blocks achieved the best performance
(this setting is used in all other experiments). Conversely, adapting
more layers does not bring significant improvements as they are
more task-specific. In our case, the task is face recognition which
is the same for both source and target modalities.

The optimal number of layers to adapt can vary depending on
the specific modality and architecture, but we have observed that
adapting layers “1-3” generally yields satisfactory results across
a diverse range of modalities. Consequently, we have consistently
applied these settings in all our experiments, though they may
not be optimal. Conducting additional experiments to determine
the optimal number of layers for each dataset and architecture
could potentially enhance performance. To evaluate this, we have
evaluated our approach on the CUFSF dataset with a different
number of layers, and the results are shown in Table 8. The results
indicate a modest improvement in rank-1 accuracy when layers
“1-4” are adapted. However, modifying additional layers poses
risks of overfitting and increased computational overhead (Table
12).
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TABLE 8
Performance with different number of CAIM blocks. 1-5 indicates the
CAIM module is inserted in all blocks from the first to fifth layers. The

experiment was performed in CUFSF face dataset for iresnet100
model.

Layers AUC EER Rank-1 VR(0.1% FAR) VR(1% FAR)

1 99.22 4.13 65.89 69.49 89.30
1-2 99.53 3.07 69.28 72.78 90.57
1-3 99.78 2.01 76.38 81.25 95.55
1-4 99.72 2.33 76.69 80.72 95.55
1-5 99.72 2.63 76.17 79.34 94.28

Additionally, we conducted experiments using the ElasticFace
model on the Tufts face dataset to determine the optimal number
of layers. In this scenario, adapting layers “1-4” proved more
effective than just “1-3”. This suggests that the number of layers
to tune can be further optimized for separate models and datasets.
Nonetheless, adapting “1-3” layers provides a reasonable trade-off
in terms of performance and computational overhead.

TABLE 9
Performance with different number of CAIM blocks. 1-5 indicates the
CAIM module is inserted in all blocks from the first to fifth layers. The

experiment was performed in Tufts face dataset for ElasticFace model.

Layers AUC EER Rank-1 VR(0.1% FAR) VR(1% FAR)

1 87.50 20.41 48.11 25.23 46.57
1-2 93.59 13.54 61.76 31.54 59.18
1-3 95.24 10.39 73.43 50.65 73.65
1-4 96.04 10.20 71.81 56.77 74.03
1-5 94.34 13.36 59.25 29.50 60.30

4.4.2 Effectiveness of components of CAIM block
Further to understand the effectiveness of the conditional opera-
tion, we conducted experiments using the AIM and Instance Norm
(IN) modules in an unconditional manner. These experiments
were conducted using the Tufts-face dataset, with the results
shown in Table 10. The conditional path in CAIM keeps the
original performance on the source modality intact and prevents
catastrophic forgetting when adapted to an extra modality. It can
be seen that an unconditional integration of the block violates this
premise and leads to inferior performance. These results underline
both the effectiveness and necessity of the conditional operation.

TABLE 10
Ablation experiments on Tufts Face dataset with unconditional block.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

AIM 6.82 3.71 0.19
IN 36.27 17.44 3.53

CAIM (Proposed) 73.07 76.81 46.94

4.4.3 Experiment with another FR model
To evaluate the effectiveness of the approach with models trained
with different loss functions, we have performed experiments with
models trained with ArcFace [63] and ElasticFace [64] loss func-
tions. We use the same iresnet100 architecture for both of these
models. The performance of the models is shown in Table 11. It
can be seen that both models perform comparably, showcasing the

effectiveness of the approach. Also, it is to be noted that, despite
the original models being trained using different loss functions,
the learning phase of the CAIM module is the same as described
in the previous section.

TABLE 11
Ablation experiments on Tufts Face dataset with ArcFace and

ElasticFace.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

ElasticFace [64] + CAIM 73.43 73.65 50.65
ArcFace [63] + CAIM 73.07 76.81 46.94

4.4.4 Computational Complexity

We have evaluated the computational load of the CAIM approach
applied to the iresnet100 architecture, particularly measuring
the overall computation in terms of floating point operations
(GFLOPS) and the number of parameters (expressed in millions of
parameters - MPARAMS). The results presented in Table 12 show
that the additional computational load and parameters required by
the CAIM approach are minimal. To be more specific, adapting
layers “1-3” results in a mere 0.6% increase in the number of
parameters and an 8.6% rise in computational requirements, while
converting the FR model to an HFR one.

TABLE 12
Computational complexity of the CAIM approach with different number

of layers in terms of floating point operations (GFLOPS) and the
number of parameters (expressed in millions of parameters -

MPARAMS).

GFLOPS MPARAMS

iresnet100 2.42 65.15
iresnet100 + CAIM(1) 2.56 65.22
iresnet100 + CAIM(1-2) 2.59 65.30
iresnet100 + CAIM(1-3) 2.63 65.58
iresnet100 + CAIM(1-4) 2.66 66.73
iresnet100 + CAIM(1-5) 2.69 71.32

5 DISCUSSIONS

We introduced a new strategy that adapts feature maps of the
target modality to align with the style of visible images, thereby
effectively reducing the domain gap between different image
modalities. To achieve this, we introduce a novel module called
CAIM that can be inserted into a pre-trained FR model, which
enables the conversion of a face recognition model to an HFR
model. Our experimental results demonstrate the effectiveness
and robustness of our proposed approach, with state-of-the-art
performance achieved in various HFR benchmarks. In five out
of six datasets, the proposed approach outperforms all other
approaches compared. Our method shows superior adaptability
in the feature space compared to PDT [4], whose transformations
are constrained by the PDT block’s receptive field, making our
framework more flexible. Our approach can convert an FR model
to an HFR model with less than 10% additional compute. The
proposed approach can be extended to newer FR architectures,
and can also be improved by better training methods.
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6 CONCLUSIONS

In this work, we introduce a novel framework for heterogeneous
face recognition by considering different imaging modalities as
distinct “styles”. Our proposed strategy transforms a conventional
face recognition (FR) model into a heterogeneous face recognition
(HFR) model by aligning the style of the target modality feature
maps with that of visible images. To accomplish this, we introduce
a novel network module named “CAIM”, which can be seamlessly
integrated between the frozen layers of a pre-trained FR network.
This new CAIM module is trained for HFR in a contrastive learn-
ing setup. Our experimental results showcase our method’s state-
of-the-art performance across several challenging benchmarks.
Our approach is versatile and compatible with face recognition
models trained using different loss functions. To encourage further
research and extensions of our work, we will make the source
codes and protocols available publicly.
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