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2École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
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Figure 1. Sample face images from the LFW dataset and their reconstructed images using our template inversion method from facial
templates extracted by ArcFace. The values below each image show the cosine similarity between the corresponding templates of original
and reconstructed face images. It is noteworthy that while our proposed face reconstruction network is trained on synthetic data the
reconstruction is generalizable on facial templates extracted from real face images. The decision threshold corresponding to FMR = 10−3

is 0.24 on the LFW dataset, and thus all these reconstructed face images pass this threshold.

Abstract

In this paper, we use synthetic data and propose a new
method to reconstruct high-resolution face images from fa-
cial templates in a template inversion attack against face
recognition systems. We use a pre-trained face generator
network to generate synthetic face images, and then learn
a mapping from the facial templates to the intermediate la-
tent space of the face generator network. We train our map-
ping network with a multi-term loss function. During the
inference stage, we use our mapping network to map facial
templates to the intermediate latent code and then generate
high-quality face images using the face generator network.
We propose our method for whitebox and blackbox template
inversion attacks against face recognition systems. We use
our model (trained on synthetic data) to evaluate the vulner-
ability of state-of-the-art face recognition systems on real
face datasets, including Labeled Faces in the Wild (LFW)
and MOBIO datasets. Experimental results show the vul-
nerability of the state-of-the-art face recognition system to
our template inversion attack. Our experiments also show

that our template inversion method outperforms previous
methods in the literature. The source code of our exper-
iments is publicly available to facilitate reproducibility of
our work.

1. Introduction

Applications of face recognition (FR) for automatic au-
thentication purposes are spreading and range from personal
(e.g., smartphone lock, e-banking, etc.) to large-scale (e.g.,
border control, national identity system, etc.) utilizations.
Typically, in automatic face recognition systems, some fea-
tures (also called templates or embeddings) are extracted
from face images and are stored in the system’s database in
the enrollment stage, which are later used for comparison.
Among different types of attacks are which are studied in
the literature against FR systems [14, 5, 15, 13, 24, 23], a
template inversion (TI) attack threatens both security and
privacy of users. It is because, in a TI attack, an adversary
can reconstruct the face images of enrolled users. The re-



constructed face images can reveal privacy-sensitive infor-
mation of the underlying user and also can be used by the
attacker to impersonate and enter the FR system.

In this paper, we focus on a TI attack against FR systems
and propose a new method to reconstruct high-resolution
face images from facial templates using a pre-trained face
generator network. We use StyleGAN [18] as a face gen-
eration network and generate synthetic face images. Then,
we build our training set by extracting face templates from
the synthesized face images. We also keep the intermediate
latent codes in the face generator network when synthesiz-
ing each face image in our training set. We learn a map-
ping from facial templates to the intermediate latent space
of the StyleGAN model using a multi-term loss function. In
the inference stage, we use the trained mapping to gener-
ate an intermediate latent code for StyleGAN and use the
remaining part of the StyleGAN network to generate the re-
constructed face image. We propose our method for white-
box (where the adversary knows the parameters and internal
functioning of the feature extractor of the FR system) and
blackbox (where the adversary does not have knowledge
about the internal functioning of the feature extractor of the
FR system) template inversion attacks against face recog-
nition systems. We evaluate the vulnerability of state-of-
the-art (SOTA) FR systems to our TI attack on two datasets
of real face images, including Labeled Faces in the Wild
(LFW) [16] and MOBIO [25] datasets. While our model is
trained on the synthetic data, the experimental results show
that on real data our model outperforms previous methods
in the literature. Our experiments also show the vulnerabil-
ity of SOTA FR systems to our TI attack. Fig. 1 illustrates
sample face images from the LFW [16] dataset and their
corresponding reconstructed face images.

To elaborate on the contributions of our paper, we list
them hereunder:

• We propose a new method to reconstruct high-
resolution face images from facial templates. We use
a pre-trained face generator network to synthesize face
images and extract facial templates from the synthe-
sized images as our training set. We also keep the in-
termediate latent codes in the face generator network
when synthesizing each face image in our training set.

• We use our synthesized training set and learn a map-
ping from facial templates to the intermediate latent
space of the face generator network.

• While we train our network on the synthetic face im-
ages, in the inference stage we use templates extracted
from the real face images and generate intermediate
latent code using our trained mapping network. The
generated intermediate latent code is used by the re-
maining part of the face generator network to recon-
struct the face image.

We should highlight that using synthetic face images as
training data in our proposed method has two merits: first,
the adversary does not need to find a dataset of real face im-
ages to use for training. Second, we can have correspond-
ing latent code for each face image and use it directly in our
training.

The remainder of the paper is organized as follows. We
first review the related works in the literature in Sec. 2.
Then, we describe our proposed method in Sec. 3, and
present our experimental results in Sec. 4. Finally, the paper
is concluded in Sec 5.

2. Related Works
TI methods in the literature can be categorized based

on the resolution of the reconstructed face images (i.e.,
low-resolution or high-resolution) and also the adversary’s
knowledge of the feature extractor of the FR system (i.e.,
whitebox or blackbox)

Most of the TI methods proposed in the literature gen-
erate low-resolution face images [33, 26, 7, 22, 12, 10, 29,
11, 2, 1]. In [33], authors proposed a whitebox method to
generate low-resolution face images. They used a gradient-
ascend optimization with regularization terms (to smooth
the reconstructed face images) to generate images that have
similar facial templates using a guiding image or random
initialization. They also trained a deconvolution neural net-
work with the same loss function. Similarly, in [26] a
low-resolution whitebox method based on deconvolution
neural network was proposed. The authors used a multi-
term loss function, where several loss terms improved the
image-level reconstruction and one term enhanced the facial
templates of the reconstructed face image using the white-
box model of FR model. In [7], authors trained a multi-
layer perceptron (MLP) and a convolutional neural network
(CNN) to estimate landmarks and face textures from facial
templates. Then they applied a differentiable warping to
combine estimated facial landmarks and textures and re-
construct low-resolution facial images in both whitebox and
blackbox TI attacks. In [22], authors proposed two CNN-
based networks, called NBNet-A and NBNet-B to generate
low-resolution face images in the blackbox TI attack. They
trained their models with two different loss functions (pixel
loss and perceptual loss using a pre-trained VGG-19 [27])
and proposed four different face reconstruction networks
(two network structures and two different loss functions).

In [12, 2, 1], generative adversarial networks (GANs)
are used to reconstruct low-resolution face images from fa-
cial templates. In [12], Pro-GAN [17] is trained to gener-
ate face images from facial templates in a bijection-learning
framework. While their method is proposed based on white-
box scenario, they use knowledge distillation to train a stu-
dent network and use the trained student network in their
method. However, no details about their knowledge distil-



Table 1. Template Inversion methods in the literature.
Reference Method Basis Resolution Whitebox/Blackbox Available code

Zhmoginov and Sandler [33]
1) optimization

low whitebox ✗
2) learning

Otroshi Shahreza et al. [26] learning low whitebox ✓

Cole et al. [7] learning low both ✗

Mai et al. [22] learning low blackbox ✓

Doung et al. [12] learning low both ✗

Akasaka et al. [2] learning + opt. low blackbox ✗

Ahmad et al. [1] learning low blackbox ✗

Vendrow and Vendrow [29] optimization high blackbox ✓

Dong et al. [10] learning high blackbox ✓

Dong et al. [11] optimization high blackbox ✓

[Ours] learning high both ✓

lation (e.g., the structure of the student network) are avail-
able. In [2], authors trained a generic GAN-based face gen-
eration model. Then, they trained a network to transfer the
target facial templates to templates of a known FR model.
Finally, they generated the reconstructed face image in the
blackbox scenario by optimizing the generated face image
in their GAN to have the same facial templates extracted by
the known FR model. In [1], a GAN-based method is pro-
posed to reconstruct facial images in the blackbox scenario.
They investigated the size of training set of face images that
the adversary needs in the training. However, all the train-
ing face images in their experiments are real face data and
they did not consider that the adversary can use synthetic
face images.

In contrast to low-resolution face reconstruction, there
are few methods in the literature that generate high-
resolution face images [29, 10, 11]. In [29], authors used
a grid-search on the input (noise) of StyleGAN [19] to find
the input (noise) vector that can generate a face image with
a similar facial template in the blackbox TI attack. Simi-
larly, in [11], authors applied optimization on the input of
StyleGAN [19] but solved the optimization with the Ge-
netic algorithm [28]. Instead of optimization, in [10] au-
thors used a learning-based approach and trained a network
to find the input (noise) vector of StyleGAN [19] from facial
templates. However, the main drawback of all these meth-
ods is that they find a vector in the input of StyleGAN that is
a random Gaussian noise in the main structure of StyleGAN
and has less control over the generated output compared to
intermediate layers of StyleGAN.

Table 1 compares our proposed method with previous
methods in the literature. Compared to most methods
in the literature that generate low-resolution face image,
our method generates high-resolution and realistic face im-
ages. In contrast to previous methods that generate high-
resolution face images using StyleGAN by finding an input
(noise) vector to reconstruct the face image [29, 10, 11],

we train a mapping form facial templates to the intermedi-
ate latent space of StyleGAN, which is shown to have more
control on the generated face image. We also propose our
method for both whitebox and blackbox TI attacks. Further-
more, our experiments show that our method outperforms
previous methods in the literature in terms of the adver-
sary’s success attack rate.

3. Proposed Method

We consider the threat model as described in Sec. 3.1 and
use the proposed face reconstruction method in Sec. 3.2 to
invert facial templates.

3.1. Threat Model

We assume a TI attack against FR systems with the fol-
lowing threat model:

• Adversary’s Goal: The adversary aims to invert face
templates stored in the database of the FR systems and
impersonate.

• Adversary’s Knowledge: The adversary has access to
the database of the face recognition system (complete
or partial) and also has whitebox or blackbox knowl-
edge of the feature extractor of the FR system.

• Adversary’s Capability: The adversary can use the re-
constructed face image to inject to the feature extractor
of the system as a query.

• Adversary’s Strategy: The adversary plans to train a
face reconstruction network and invert the facial tem-
plates. The adversary then uses the reconstructed face
image to impersonate by injecting the reconstructed
face image into the FR system.
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Figure 2. Block diagram of the proposed method

3.2. Template Inversion method

We assume that the adversary has access to a pre-trained
face generator network such as StyleGAN [18]. StyleGAN
is composed of two networks, a mapping network, and a
synthesize network. The mapping network MStyleGAN takes
a random noise z ∈ Z in its input and generates an inter-
mediate latent code w = MStyleGAN(z) ∈ W . Then, the
intermediate latent code w is fed to the synthesize network
SStyleGAN to generate the face image I = SStyleGAN(w).

The adversary can use the pre-trained StyleGAN to first
generate a training dataset of face images and their corre-
sponding facial templates. To this end, the adversary can
use the StyleGAN network to generate several facial im-
ages and then use the feature extractor to extract facial
templates. Let us assume that the adversary could gen-
erate a dataset {Ii|i = 1, .., N} where N is the number
of generated face images. Then, the adversary can build
D = {(ti, Ii)|i = 1, .., N} where ti = F (Ii) is the face
template extracted using feature extractor M(.) from face
image Ii.

After generating the training dataset D of the synthetic
face images and their corresponding facial templates, the
adversary can use this dataset to train a new mapping net-
work M(.) that generates the intermediate latent code ŵ =
M(t) for face template t and then use the synthesize net-
work SStyleGAN to generate face image Î = SStyleGAN(ŵ).
We propose training the weights of the mapping network
F (.) using the following multi-term loss function:

Ltotal = Lw + Lpixel + LID, (1)

where Lw, Lpixel and LID are the latent code loss, pixel loss,
and ID loss, respectively, and are defined as follows:

Lw = ∥w −M(t)∥22 , (2)

Lpixel = ∥I − SStyleGAN(M(t))∥2
2
, (3)

LID =
∥∥∥Floss(I)− Floss(Î)

∥∥∥2
2
. (4)

The latent code loss (Lw) minimizes the error of the gen-
erated intermediate latent code ŵ = M(t) in the intermedi-
ate latent space W of StyleGAN. The pixel loss (Lpixel) min-
imizes the pixel-level reconstruction error for the generated
face image Î = SStyleGAN(M(t)). The ID loss minimizes
the distance between the facial templates extracted from the
original and the reconstructed face images using feature ex-
tractor Floss(.). In the whitebox scenario, the adversary can
use the feature extractor of the target FR system (i.e., F (.)),
however in the blackbox scenario, the adversary can use an-
other feature extractor that has access to as Floss(.). Fig. 2
depicts the block diagram of the proposed method.

4. Experiments
4.1. Experimental Setup

We consider SOTA FR systems as target systems and
evaluate their vulnerability to our TI attack. We use Arc-
Face [8], ElasticFace [6], and also different FR models with
SOTA backbones from FaceX-Zoo [31], including Atten-
tionNet [30], HRNet [32], RepVGG [9], and Swin [21]. Ta-
ble 2 reports the recognition performances of these models.

To evaluate the vulnerability of these FR models, we use
the MOBIO [25] and Labeled Faces in the Wild (LFW) [16]
datasets. The MOBIO dataset includes face images of 150
subjects captured using mobile devices in 12 sessions (6-11
samples in each session). The LFW dataset contains 13,233
face images of 5,749 subjects collected from the internet, in
which 1,680 subjects have two or more images. For each
of the MOBIO or LFW datasets, we build a FR system and
then invert the enrolled facial templates to reconstruct face



Table 2. Recognition performance of face recognition models in
terms of true match rate (TMR) at FR system false match rates
(FMRs) of 10−2 and 10−3 evaluated on the MOBIO and LFW
datasets. The TMR values are in percentage.

model
MOBIO LFW

FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

ArcFace 100.00 99.98 97.60 96.40
ElasticFace 100.00 100.00 96.87 94.70
AttentionNet 99.71 97.73 84.27 72.77
HRNet 98.98 98.23 89.30 78.43
RepVGG 98.75 95.80 77.20 58.07
Swin 99.75 98.98 91.70 87.83

images. Next, according to our threat model described in
Sec. 3.1, we inject the reconstructed face images into the
feature extractor of the FR system as a query and evaluate
the adversary’s success attack rate (SAR) at different false
match rates (FMRs) of the FR system.

We use the Bob1 toolbox [4, 3] to build the pipelines
for the FR systems and evaluate the TI attacks against FR
systems. We also use the PyTorch package and trained
our template inversion models using Adam optimizer [20]
with the learning rate of 10−4 on a system equipped with
an NVIDIA GeForce RTXTM 3090. In our experiments,
we use the pre-trained model of StyleGAN32 to generate
1024 × 1024 high-resolution face images. We generated
25,000 synthetic face images for our training set in our ex-
periments. The source code of our experiments is publicly
available to help researchers reproduce our results3.

4.2. Comparison with previous methods

We compare the performance of our proposed method
with previous works in the literature with available
source code, including NBNet-A-M [22], NBNet-A-
P [22], NBNet-B-M [22], NBNet-B-P [22], Vendrow and
Vendrow [29], Dong et al. [10], and Dong et al. [11]. Ta-
ble 3 and Table 4 compare the performance of our method
with these methods in terms of adversary’s success attack
rate (SAR) against different SOTA FR systems at FMRs
of 10−2 and 10−3, respectively, on the MOBIO and LFW
datasets. For our method, we use ArcFace and ElasticFace
as Floss in our loss function (Eq. 4) to reconstruct face im-
ages from facial templates extracted from different FR sys-
tems and train a separate model for each FR model. As
the results in these tables show, our method outperforms
previous methods in the literature. In particular, compared
to [29, 10, 11] which used StyleGAN to generate high-
resolution and realistic face images our method achieves
superior performance. Comparing the results in these two

1Available at https://www.idiap.ch/software/bob
2Available at https://github.com/NVlabs/stylegan3
3Source code: https://gitlab.idiap.ch/bob/bob.paper.ijcb2023 face ti
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Figure 3. Sample real face images from the LFW dataset (first row)
and their reconstructed images from ArcFace templates in white-
box (second row) and blackbox (third row). The values below
each image show the cosine similarity between the corresponding
templates of original and reconstructed face images. The deci-
sion threshold corresponding to FMR = 10−3 is 0.24 on the LFW
dataset, and thus all these reconstructed images pass this thresh-
old.

tables with the recognition performances of FR systems re-
ported in Table 2, we observe that a FR system with a higher
recognition accuracy is more vulnerable to our attack. Com-
paring the results of ArcFace and ElasticFace in the loss
function of our method, the results show that ArcFace leads
to better SAR values, which may be due to the fact that
ArcFace has a better recognition performance than Elastic-
Face as shown in Table 2. Fig. 3 illustrates sample face
images from LFW dataset and their corresponding recon-
structed face images in whitebox and blackbox TI attacks
using ArcFace templates.

4.3. Ablation Study

To evaluate the effect of each loss term in our proposed
method, we perform an ablation study, where we train dif-
ferent mapping networks with different loss functions and
evaluate the adversary’s SAR in a TI attack against a FR
system. To this end, we consider a whitebox TI attack
against a FR system based on ArcFace on the MOBIO and
LFW datasets. Table 5 reports the effect of each loss term
in our proposed method. As the results in this table show,
each term in our loss function improves the reconstructed
face images in TI attacks against FR systems. In particular,
we observe that using the latent code loss (i.e., Lw) helps
the training compared to using all other terms except the
latent code loss term. This also highlights the use of syn-
thetic data in our proposed method where we have the cor-
rect latent code for each single image in our synthetic train-
ing dataset. When using the latent code loss, our ID loss

https://www.idiap.ch/software/bob/
https://github.com/NVlabs/stylegan3
https://gitlab.idiap.ch/bob/bob.paper.ijcb2023_face_ti


Table 3. Comparison with different face reconstruction methods in TI attacks against SOTA FR models in terms of success attack rate (SAR)
at systems’ FMR = 10−2 on the MOBIO and LFW datasets . For attacks using our proposed method, we use ArcFace and ElasticFace as
Floss in our loss function. The best two values in attack against each system is embolden. The values are in percentage.

method MOBIO LFW
ArcFace Els.Face Att.Net HRNet RepVGG Swin ArcFace Els.Face Att.Net HRNet RepVGG Swin

NBNetA-M [22] 2.86 10.0 4.76 4.76 6.19 6.67 14.30 37.13 10.37 20.19 10.64 13.18
NBNetA-P [22] 23.81 60.95 15.24 14.29 44.76 30.48 35.61 60.05 6.80 16.83 26.44 25.92
NBNetB-M [22] 20.95 30.0 21.43 25.24 21.43 27.62 26.91 52.99 17.62 31.74 18.18 27.00
NBNetB-P [22] 49.05 70.95 66.67 64.76 51.43 71.43 61.66 81.74 43.42 56.30 38.12 61.02
Dong et al. [10] 24.29 34.76 38.57 16.19 24.76 18.10 28.21 34.56 19.17 24.87 14.76 26.62
Vendrow and Vendrow [29] 69.52 74.29 55.71 43.81 39.52 70.00 77.00 79.37 46.52 49.52 22.4 66.07
Dong et al. [11] 87.62 90.95 80.48 71.90 44.29 82.38 87.26 89.00 55.40 59.46 28.60 69.07
[Ours] (Floss= Els.Face) 88.57 92.38 87.14 83.33 82.38 93.33 84.70 92.28 60.75 70.78 49.78 75.09
[Ours] (Floss= ArcFace) 96.67 93.33 90.48 91.43 86.67 93.33 92.32 92.71 67.49 77.23 56.30 78.60

Table 4. Comparison with different face reconstruction methods in TI attacks against SOTA FR models in terms of success attack rate (SAR)
at systems’ FMR = 10−3 on the MOBIO and LFW datasets . For attacks using our proposed method, we use ArcFace and ElasticFace as
Floss in our loss function. The best two values in attack against each system is embolden. The values are in percentage.

method MOBIO LFW
ArcFace Els.Face Att.Net HRNet RepVGG Swin ArcFace Els.Face Att.Net HRNet RepVGG Swin

NBNetA-M [22] 0 2.38 0 0 0 0 4.32 10.90 1.24 1.60 1.13 3.82
NBNetA-P [22] 4.76 16.19 0.48 0 14.29 7.14 16.83 26.98 0.66 1.44 5.72 9.70
NBNetB-M [22] 1.90 3.80 3.33 7.14 3.33 8.57 10.98 21.44 3.22 4.47 3.21 11.23
NBNetB-P [22] 15.24 43.81 31.90 26.67 23.81 44.29 40.26 58.16 16.29 18.42 15.24 40.76
Dong et al. [10] 3.33 8.10 10.48 6.67 9.05 3.33 13.21 12.61 3.90 4.07 3.22 12.38
Vendrow and Vendrow [29] 29.05 43.81 27.14 26.67 20.95 45.24 57.70 53.03 21.12 18.85 9.62 46.84
Dong et al. [11] 61.43 76.67 42.86 49.05 20.00 65.71 74.48 73.67 32.07 31.73 10.89 53.59
[Ours] (Floss= Els.Face) 80.00 87.62 78.10 78.10 68.57 79.05 71.31 80.41 36.92 43.13 29.33 61.63
[Ours] (Floss= ArcFace) 84.76 86.67 81.90 85.24 70.95 84.76 85.01 81.70 43.58 50.04 35.75 66.57

Table 5. Ablation study on the effect of each loss term in whitebox
attack against ArcFace in terms of SAR for a system with FMRs
of 10−2 and 10−3 on the MOBIO and LFW datasets.

Loss function MOBIO LFW
FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

Ltotal = Lw 43.81 13.80 47.69 27.54
Ltotal = Lw + Lpixel 40.00 13.81 45.61 25.98
Ltotal = Lw + Lpixel + LID 97.62 89.05 92.89 85.84
Ltotal = Lpixel + LID 0 0 0.32 0.02

also significantly improves the reconstruction compared to
other cases without ID loss. The pixel-level loss, however,
slightly degrades the SAR values but reduces the pixel-level
errors (e.g., hair color, etc.) in the reconstructed face im-
ages.

5. Conclusion
In this paper, we proposed a new method to reconstruct

high-resolution face images from facial templates in TI at-
tacks against FR systems. We used StyleGAN as a pre-
trained face generator network to synthesize a set of face
images. Then, we built our training set by extracting facial
templates from the synthesized face images. We trained a
mapping network from facial templates to the intermediate
latent space of StyleGAN using a multi-term loss function.
We used the trained mapping network to generate an inter-

mediate latent code for each facial template and generate the
reconstructed face image using the generated intermediate
latent code through the remaining network of StyleGAN.
We evaluated our proposed method on the real face images
from the MOBIO and LFW datasets. Our experiments show
the vulnerability of SOTA face recognition systems to our
TI attack. Experimental results also show that our template
inversion method outperforms previous methods in the lit-
erature.

We should note that in our experiments, we evaluated the
vulnerability of FR systems by injecting the reconstructed
face image into the feature extractor of FR systems. How-
ever, the injection of reconstructed face images may not be
feasible in practice in attacks against real face recognition
systems. Therefore, it is necessary to evaluate the vulner-
ability of FR systems in more practical scenarios, such as
presentation attacks using reconstructed face images, which
can be studied in future work.
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