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Abstract.High order perceptrons are often used in order to reduce the size of neural
networks. The complexity of the architecture of a usual multilayer network is then
turned into the complexity of the functions performed by each high order unit and
in particular by the degree of their polynomials. The main result of this paper
provides a bound on the degree of the polynomial of a high order perceptron, when
the binary training data result from the encoding of an arrangement of hyperplanes
in the Fuclidian space. Such a situation occurs naturally in the case of a feedforward
network with a single hidden layer of first order perceptrons and an output layer
of high order perceptrons. In this case, the result says that the degree of the high
order perceptrons can be bounded by the minimum between the number of inputs
and the number of hidden units.

A cknowledgements: This work was initiated while I was a postdoctoral fellow, supported
by RUTCOR and DIMACS—Center for Discrete Mathematics and Theoretical Computer
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1 Introduction

The usage of a single perceptron is very restricted, since limited to tasks which are linearly
separable. To extend the computational power of this model we can either introduce hidden
layers of non-linear functions or increase the possibilities of the perceptron by replacing its
linear combination of the inputs by a polynomial combination. The latter option leads to a
new model of unit called high order perceptron.

The computational power of a polynomial is such that neural networks with high order
perceptrons can be resumed to networks of a single unit. However, to restrict the com-
putational complexity as well as for the sake of the generalization, it is essential to limit
the complexity of the polynomial. This can be done by bounding either the degree of the
polynomial or its number of terms.

In the case of binary inputs coded as —1 and +1, there is no use to take a power of a
variable, since ¥ = £ Vk > 0 when z € {—1,+1}, and thus the degree of any polynomial
over n variables is at most n. Moreover, for any Boolean function f : {—1,+1}" — {—1,4+1},
the spectral representation, well known in harmonic analysis [3], is the unique polynomial of

the form:
fo)y= > wx ][] b, (1)
KC{1,...,n} keK
where the sum is taken over the 2™ possible subsets K of {1,...,n}. The number of non-zero

terms of this polynomial being usually exponential, it has to be limited to make this model
suitable for applications.

The computational power of feedforward networks where each unit is a high order per-
ceptron with a number of terms polynomial bounded in n, the number of inputs, has been
investigated in [1]. In this work we show how some a priori knowledge on a given set of binary
data can be used to bound the degree of the polynomial of a single high order perceptron,
while guaranteeing a correct learning of the data.

Binary data appears rarely as such in the real world. Quite often they results from
a preprocessing of data of a more general nature (e.g. continuous or nominal) expressed
through logical predicates (e.g. “is older than 507, “is red”, “has a rent higher than 0.27
times his income”). The main result of this paper states that in such circumstances, the
degree of the polynomial in (1) can be bounded by the size of the space of the original data.

A feedforward network with d inputs of continuous activations, one hidden layer of n
usual perceptrons a high order perceptron as output, presents a particular situation of this
type. The input space is continuous, let say JR?, and the hidden layer provides a mapping
of R? into {—1,+1}". Our main theorem will imply that the degree of the output unit can
always be bounded by min{d, n}.

2 Definitions and Notations

A Boolean function is a mapping f: {—1,+1}" — {—1,4+1}. A partial Boolean function is
a mapping f: D C{—-1,+1}" — {—1,+1}, and D is called the domain of f. An extension
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of a partial Boolean function f is any Boolean function that coincides with f on its domain.
The spectral representation of a Boolean function f is the polynomial of the form (1).

For any subset X of the Euclidian space IR?, X¢ denotes the complement R%\ X, while
X and X° denote respectively the closure of X and the border of X (n.b. X° = X N X¢)
, according to the usual topology of the Euclidian space. In IR?, a closed half-space of
paremeters w € IR? and wy € R is theset {z € R? | 27w > wo}. If H is a closed half-space
of IR? of parameters w and wy, H° clearly denotes the hyperplane {x € IR? | & w = wo}.
A finite subset of closed half-spaces in IR? is called an arrangement of IRY. A cell of an
arrangement H = {Hy,..., H,} of IR? is a non-empty intersection of n half-spaces among
Hy, HY,... H,, H:. The set of cells of an arrangement H is denoted Cy.

An arrangement H = {Hi, ..., H,} of IR? is in general position if

mkEKI{kO =0 VKg{lvvn}7|K|>d7 (2)
and Mwex Hp # 0 VK C{1,...,n},|K|<d. (3)
Condition (2) states that there are never more than d hyperplanes through the same point,

while condition (3) implies, among others, that there are no parallel hyperplanes. The
number of cells of an arrangement of n half-spaces in general position in IR? is given by the

min{d,n} n
v=y (1) ()

=0

well-known formula

which can be easily proved by induction and which is attributed to Ludwig Schlafli, a Swiss
mathematician of the 192 century.

To any arrangement H = {Hy, ..., H,}, we can associate an injective mapping ¢y : Cyy —
{—1,41}": the Boolean vector b = ¢y(C) is such that by, = 1 if C C Hy and by = —1 if
C C Hj. Let us denote Dy the subset ¢ (Cx) of {—1,41}". To each bipartition of the cells
of an arrangement H corresponds a partial Boolean function defined from Dy C {—1,+1}"

to {—1,+1}.

3 Main results

The main result presented in theorem 3.1 has been proposed independently by L. Gurvits [2]
in a slightly more general setting based on the VC-Dimension of classes of discriminators.
However, the algebraic approach used here to prove this result leads us to a stronger state-
ment expressed in theorem 3.2, which is completely new, to the best of our knowledge.

Theorem 3.1 For an arrangement H of n half-spaces in IR?, any partial Boolean
function f : Dy C {—1,41}" — {—1,+1} can be exactly represented by a
polynomial of degree < min{d,n}.

Proof: Since the spectral representation (1) of a Boolean function is of degree at most n,
we only have to show that a function defined on Dy has an extension whose spectral repre-
sentation is bounded by d.
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Let us first prove this result when the additional assumption of general position is made on
the arrangement H. An easy argument will then imply the result for arbitrary arrangements.
Let P¢ denote the set of all subsets of {1,...,n} of cardinality at most d. Note that
P4 = N9, Let AY be the N¢ x NP-matrix, with rows indexed by the Boolean vectors of
Dy, with columns indexed by the elements of P¢ and with £1 coefficients defined as follows:

ap K = H bk, Vb ¢ D'H, VK ¢ ’P?;i .

keK

To a partial Boolean function f : Dy — {—1,+1}, let us associate the Boolean vector
f € {-1,+1}P* indexed by the elements of Dy and such that f, = f(b). Similarly, let
us specify a spectral representation of the form (1) and of degree d by a vector w € R
indexed by P2. A necessary and sufficient condition for a partial Boolean function f : Dy —
{—1,+1} to have an extension with a spectral representation of degree at most d is that the
system

Alw = f (5)

has a solution in R

This system has a solution if matrix A is non-singular. This will be established by
induction on the number n of half-spaces in H.

Al as well as A2 are equal to the 1 x 1 matrix (41) which is non-singular.

To establish an inductive relation between A% and A2 .. consider the partition of Cy
mto C; WCs W Cs:

¢, = {CeCy| CTnH =0},
C, = {CeCy| CnH 0},
C; = {CeCy | CNH>#0 and C C H°}.
+ o+ - -+ o+ - ”’]G
+ = - 4+ + - - b
+ -+ - o+ -+ (lcz
A;i: + o+ o+ o+ + o+ 4+ d Cx
+ -+ - -+ - f}cg
+ + + + - - -/ 9 |

Figure 1: Simple illustration of the notations and the construction used.

Each cell C of the arrangement X = {Hy, Ho, H3} in IR? is denoted by a letter from a to g and
by ¢#(C), where + and — stand for +1 and —1. The corresponding matrix Ag is presented
on the right with its block structure.

This partition of Cx induces a partition of Dy as D; W Do D3, where D; = ¢3(C;),7 = 1,2, 3.
If pg - {—1,41}" — {—1,+1}" denotes the application that inverses the k™ bit of a Boolean
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vector, D; can be caracterized as follows:

Dy = {be Dy | pn(b) € Dn},
D, = {be& Dy | pn(b) € Dy and b, = +1},
D; = {be& Dy | pn(b) € Dy and b, = —1}.

By reordering its rows and columns, A% can be expressed by the block structure

B E
c F |,
D G

where the sets of rows of B and E, C' and F and D and G are indexed by Dy, D, and D3
respectively; and the sets of columns of B, C and D and E, F and G are indexed by P2 ,
and PI\PL, respectively.

Observe that on the one hand, there is a one-to-one mapping between C; U Cy and Cyy,

where H' = {H;, ..., H,_1}. Consequently,

(2)-5

On the other hand, any cell in C; has one face in H,, and thus there is also a one-to-one
mapping between C, and the set of cells of the arrangement {H; N H,,...,H,_1 N H,} in
the (d — 1)-dimensional subspace H,,. After removing n from each element of PN\ P | we
get Pl and thus F = A%

By definition of Dy and Ds, D3 = (D) and thus, by reordering rows in D and G if

necessary, we have
o C =D, since n ¢ K VK indexing the columns of C' and D;
o '=—G,since n € K VK indexing the columns of F' and G.

The determinant of a matrix does not change by reordering rows and columns or by replacing
a row by a linear combination of this row with others. Thus

B E B E
det(A) = det| C F | = det| C F
C -F 0 2F

= det ( g) det(2F) = det(AZ_ ;) det(24971) .

This recursive relation together with the initial statement on the non-singularity of A° and
Ag implies the non-singularity of Ai for any d,n > 0.

To generalize the proof to arbitrary arrangements (not necessarily in general position),
it suffices to observe that an arrangement H can always be slightly modified to provide an
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arrangement H’ in general position and such that there is a one-to-one mapping between Cy
and a subset of Cys. Thus a system of the form (5) based on H will be a subsystem of the
one based on H' and if the latter has a solution, so will the former. A

Theorem 3.2 For an arrangement H of n half-spaces in IR?, any partial Boolean
function f : Dy C {—1,41}" — {—1,+1} can be exactly represented by a
polynomial containing a term [[,cx br only for the K C {1,...,n} such that
|K| S d and ﬂkeKH,j 7£ 0

Proof: Following the same line than in the previous proof, we can show that det(Ax) =
det( A ) det(Ayn), where Agx, . x,yis a matrix defined in a similar way than A2, with one
row per cell in the arrangement {X;,..., X,} and one column per non empty intersection
Nrkex Xy; and where ‘H denotes an arbitrary arrangement {Hy,..., H,} in R% H' is the
arrangement {H,..., H,_1} in IR¢ and ‘H" is the arrangement {Hy N H,,,..., H,_1 N H,}
in the (d — 1)-dimensional space H,. A

4 Simple usage of the results

The two theorems presented in this paper provide ways to bound the complexity of the
polynomial of a high order perceptron, when the data that as to be learned is Boolean and
results from an arrangement of hyperplanes in a low dimensional Euclidian space.

To illustrate the interest of these theorems, let us consider a board of go which is a grid
of 19 rows and 19 columns. A compact binary encoding of each position requires at least
[log(19%)] = 9 bits. Any arbitrary subset of the 19? = 361 positions can be modeled by a
Boolean function and harmonic analysis tells us that this function has a spectral representa-
tion of the form (1) with 2° = 512 terms. On the contrary, a more natural encoding of each
position on 36 bits is provided by the introduction of 36 separating lines in the plane (18
horizontal and 18 vertical). Any arbitrary subset of the positions of the board is now mod-
eled as a partial Boolean function of 36 arguments, and the spectral representation would
lead to a polynomial with 23¢, which is a lot if we ignore that many of them will have a zero
coefficient for any subset of positions.

Theorems 3.1 and 3.2 precisely inform us about terms of the spectral representation that
will always have a zero coefficient. The 361 Boolean vectors come from an arrangement
embedded in IR? and by theorem 3.1 there exists such a polynomial of degree 2, 7.e. with at
most N2, = 1+36+630 = 667 terms. Because most of these lines are parallel, by theorem 3.2
we know that there is a polynomial of degree 2 with at most 1+36+ 182 = 361 terms. Thus,
the second encoding is more practical since it has an easy geometrical interpretation, and it
leads to a smaller polynomial.

It is interesting to note that this gain in the number of terms, from 512 to 361, is only
due to the fact that 192 is not a power of 2. For a board with n = 2* positions (e.g. a
chess board), the “geometrical” encoding of the board with the help of theorem 3.2, and
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the “compact” encoding would lead to two polynomials based on completely different sets of
variables, but with the same number n of terms, non-zero in the spectral representation of
any subset of the positions. Moreover, this analogy can be generalized to rectangular grids
of arbitrary dimensions.
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