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Abstract�Quantization of the parameters of a Perceptron is a central problem in

hardware implementation of neural networks using a numerical technology� A neural

model with each weight limited to a small integer range will require little surface of

silicon� Moreover� according to Occam�s razor principle� better generalization abili�

ties can be expected from a simpler computational model� The price to pay for these

bene�ts lies in the di�culty to train these kind of networks� This paper proposes es�

sentially two new ideas for constructive training algorithms� and demonstrates their

e�ciency for the generation of feedforward networks composed of Boolean threshold

gates with discrete weights� A proof of the convergence of these algorithms is given�

Some numerical experiments have been carried out and the results are presented in

terms of the size of the generated networks and of their generalization abilities�
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� Introduction

Arti�cial neural networks �ANN� are proposed today as alternative solutions for a wide variety of problems�
However	 in most of the real size applications	 the networks are simulated on conventional computers and
thus	 their inherent parallelism is not exploited� The hardware designer of ANN has to face many constraints	
in particular the quantization of the weights �when their storage is based on a numerical technology� and the
locality of the connections� In the present study	 training of ANN with discrete weights will be investigated�

Many papers already discussed the e
ect of the quantization of the parameters in neural networks	
but they are dedicated to a particular network and a particular training rule	 which has been elaborated
for models with continuous weights� In fact	 most of these studies are devoted to the backpropagation
algorithm �DG��	 HHP�
	 AM��	 HB��	 HH���� Since this algorithm is essentially a gradient descent	 it
requires a great precision for the parameters	 namely � to �
 bits per parameter if the training is done
�o
�chip�	 and �� bits per parameter otherwise� Conversely	 in our approach the discretization level of each
parameter is �xed to an arbitrary small value and then	 new training methods are designed for this particular
model�

A feedforward Boolean neural network realizes a mapping from an input space I to an output space O�
Given an unknown function � � I � O and a task T � f�ak� bk � ��ak��gpk�� � I � O supplying partial
information about �	 the goal of the training phase consists in determining a network that computes an
extension � of T 	 such that � is a good approximation of �� Thus	 a feedforward neural network realizes an
interpolation of the points given in the task	 and we will say that the model � built by the network gets a
good generalization property if it is close to the target function �	 according to a given metric on the set of
functions fI � Og� Lower bounds on p � jT j in order to ensure a good generalization have been derived
in �BH���� Since these bounds grow with the size of the network	 a better generalization of a given task T
should be achieved by a smaller network� Therefore	 the aim of all the constructive training methods is to
build small networks realizing the task�

Feedforward neural networks of predetermined architecture su
er from two major drawbacks� On one
hand	 it is intractable to decide if a given task can be loaded on a given feedforward network �Jud�
�� On
the other hand	 there is no way to determine the most adequate size of the network for a speci�c application�
When training a feedforward network to solve a particular problem	 we are always facing the following trade�
o
� if the network is too large	 it is easy to �nd a con�guration such that the network realizes the given
task but this solution will over�t the given task and will provide a poor generalization	 and in the opposite
situation the loading problem is di�cult to solve�

A natural way to circumvent these di�culties is to let the training algorithm modify the topology of
the network� A variety of training algorithms adapting the size of the network have been proposed� Some
of them	 called constructive algorithms	 essentially increase the size of the network until the job is fully
performed �MN��	 Fre�
	 GM�
	 SN�
	 RCE���	 while others start from a large network and try to prune it
during the training phase �SD��	 WHR�
	 Ree���� Finally	 other methods combine both strategies to adapt
the size of the network �dBZN��	 Def����

It is not the purpose of this paper to discuss in details the various facets of all these training algorithms
remodeling the size of the network� comparative studies based on a wide selection of these methods can be
found in �Fie��	 KY���� However	 we will recall in section � the main features of some of these algorithms in
order to locate our methods in their context� A formal de�nition of the neural model considered in this study
will be given in section �� The heuristic technique used to solve the discrete optimization problems arising
in each local training phase is brie�y described in section �� Sections � and � discuss the main constituents
of the new training methods proposed	 while the results of the numerical experimentations are presented in
section ��
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� Majority functions and majority networks

The neural model considered in the present paper is based on the perceptron of Rosenblatt �Ros���	 limited
to Boolean input and output activations� For simplicity in the de�nition of the majority function we will
use the antipodal form f�����g instead of the binary form f
� �g as a numerical representation for the set
of Booleans IB � fFalse�Trueg�

A function f � IBn � IB is a linear threshold Boolean function if and only if there exist w � IRn and
w� � IR such that

�b � IBn� f�b� � sgn�w� �w
�
b�� ���

where sgn is the sign function which returns �� if and only if its argument is positive� The vector w is called
the weight vector of f 	 w� is the threshold and its sum with the dot product w�

b is the potential of f for
the input b�

A Boolean perceptron is an n�input�single�output device able to compute any linear threshold Boolean
function of n arguments� A task T given by f�ak� bk�gpk�� � IBn � IB is coherent if bk �� bl implies
a
k �� a

l for every k �� l	 and it is linearly separable if and only if it can be computed by a single Boolean
perceptron� Many papers are devoted to the computational power of feedforward networks composed of
Boolean perceptrons� Clearly	 multiplying a weight vector and a threshold by a positive constant will not
change a Boolean function f 	 thus wi� i � 
� � � � � n can be assumed integers� In order to simplify the hardware
realization	 some of them limit the model to integer weights and threshold	 bounded by a polynomial in n	
the number of inputs �HMP���	 SB���� In this study	 we will focus our attention on a subclass of linear
threshold Boolean functions with weights limited to the smallest interesting set of values� f��� 
���g� For
linear threshold functions with arbitrary weights	 the convention for the value of sgn�
� is irrelevant since
w� can always be chosen such that the potential of f is never 
� In what follows	 the only purpose of the
threshold w� will be to set this convention� We will take w� � f��

� ��
�
�g	 thus f�b� � sgn�w�� for all b

orthogonal to w	 and w� is useless when kwk� is odd�

A linear threshold Boolean function de�ned by a weight vector w � f��� 
���gn and by a threshold
w� � f�

�
�g will be called a majority function� A majority perceptron is a gate of fan�in n	 able to compute

any majority function from IBn to IB� The main advantage of our choice for the threshold is that the class
of functions computable by a majority perceptron is closed under negation and under duality��

A majority network is a feedforward Boolean neural network where each node is a majority perceptron
and such that the underlying cycle�free graph is simple	 i�e� a pair of units is connected with at most one
edge� Having 
 in the range of the weights is relevant only in the context of training a neural network of
a given architecture� Otherwise	 when each connection can be maintained or suppressed independently	 the
value of each weight can be limited to the set f�����g� A preliminary study has pointed out the interest of
the simple computational model provided by the majority networks �May��	 May���� In the present study	
we will concentrate on single output neural networks�

Constructive training methods can basically be decomposed into a global strategy that decides where
to introduce a new neuron and which subtask the latter should perform	 and a local training technique
used to achieve the learning of the speci�c partial tasks on each new neuron� The problem of training a
single majority perceptron has been addressed in �May��	 MR���� E�cient algorithms have been proposed	
either for the maximization of the stability of the perceptron on the task �de�ned as minpk��w

�
a
kbk�	 or

for the minimization of the number of mistakes� Given the success of the discrete optimization tools used in
the resolution of these problems	 the new algorithms designed for the constructive training problem will all
exploit the same heuristic technique known as tabu search and brie�y presented below�

�The dual function fd of a Boolean function f is de�ned as fd�b� � �f��b��
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� Tabu Search

Tabu search is an e�cient meta�strategy used to �nd good solutions for any kind of optimization problems�
It is a local search procedure	 just as simulated annealing or genetic algorithms are� A discrete optimization
problem is de�ned by a �nite set S of feasible solutions and by a cost function c � S � IR which has to be
minimized� The use of tabu search requires the de�nition of a set of moves M � fS � Sg	 usually assumed
closed under inversion� The couple �S�M � can thus be represented as an undirected graph G � �S�E�	 with
�s� s�� � E if and only if �m �M� s� � m�s��
Tabu search will proceed by generating a sequence of solutions s�� s�� � � � in S	 with sk�� neighbor of sk

in G� At step k	 the choice of the neighbor is guided by the best value of c among the neighbors of sk� To
avoid cycling	 the most recent moves are stored into a queue called the tabu list 	 and any reverse move of
an element of this list is tabu and will be forbidden the time the corresponding element remains in the list�
Nevertheless	 it is possible that	 sometimes	 a move could be used without danger of cycling	 despite its tabu
status� For example	 when a tabu move leads to a better solution than the best solution encountered so far	
the tabu status will be overridden� The present description of tabu search is summarized and simpli�ed and
the reader who needs more information will �nd it in �Glo��	 HdW����
As far as the training problem of a majority perceptron is concerned	 the set of feasible solutions S is

clearly f
���gn � f��
�g� A move will consist either in a small modi�cation of one weight wi 	 wi � �

assuming that wi remains in the set f
���g	 or in the inversion of the threshold w� 	 �w�� The cost
function is the key component of tabu search� It is designed speci�cally for each method and will be detailed
in sections � and ��

� Constructive Methods

There are basically two categories of constructive training algorithms according to the sense of growth of
the network� The forward methods construct the network by adding new units beyond the existing part
of the circuit� Conversely	 the backward techniques insert new processing units between the input layer
and the layer most recently built� The tiling algorithm �MN��� and its simplest variant called the tower
algorithm �Gal��	 Nad���	 the decision tree algorithms �GM�
	 SN�
� or the parity machine �ME��	 MD���	
are typical examples of forward constructive algorithms	 while the construction of the network is backward
in the upstart method �Fre�
��

��� Forward methods

In a forward method	 the network is built layer by layer from the input to the output� In the present
description	 we will focus on the case where connections may occur only between two consecutive layers� In
this setting	 during the construction of layer h��	 only layer hmatters	 and all previous layers can be ignored�
The role of a new layer	 say of m units	 is the computation of a mapping � � IBn � IBm transforming the
previous problem f�ak� bk�g � IBn � IB into a new problem f���ak�� bk�g � IBm � IB	 presumably simpler�
The new task is then substituted to the old one and the same process is iterated until a linearly separable
task is obtained� During the elaboration of a mapping �	 ��ak� is called the internal representation of ak	
and the set of all the al with the same image than ak through � is the class of the internal representation
��ak� and is denoted �ak�� A class is unfaithful if it contains a pair ak�al with bk �� bl� The faithfulness of
all the classes de�ned by � is a necessary condition for the coherence of the new task f���ak�� bk�g�
Each mapping � is elaborated iteratively ����������� � � � ���m� � �� by increasing the dimensionality �i�e�

by adding a new hidden unit�	 without modifying the existing part� ��t��� � ���t�� �t��� � IB
n � IBt��� This

process is carried out until all the classes de�ned by the current mapping are faithful� Di
erent algorithms
propose di
erent strategies to achieve this goal� In the tiling algorithm	 when the mapping ��t� � ���� � � � � �t�
leads to some unfaithful classes	 one of them	 say �ak�	 is chosen arbitrarily	 and the new unit computing
�t�� is trained with the task f�al� bl�g	 with al � �ak�� Other heuristics have been proposed	 such as the
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partial task inversion �AG���	 where each new unit takes into account every unfaithful class in a particular
way�

��� Backward methods

Among all backward constructive methods	 one distinguishes those which construct a single hidden layer	 and
for the needs of this paper	 we will concentrate on them �Fre�
	 AG���� They construct their unique hidden
layer in the same way a forward method does for each layer	 only the stopping criterion is di
erent� The
iterative process building the mappings ����� ����� � � � goes until the new task is linearly separable	 instead of
halting when all the classes of the current mapping are faithful� The initial mapping ���� � IBn � IBm� can
either be considered as the identity �m� � n	 e� g� upstart� when the output unit is connected to the inputs	
or the empty mapping �m� � 
	 e� g� shift� when no jumping links connect the inputs with the output�

The methods mentioned above �see �Fre�
	 AG���� are backward	 since formally	 the output unit is
introduced �rst	 and then the hidden layer is elaborated� At each iteration t	 the current set fvkg of
potentials at the output unit is computed for every input ak� In these algorithms	 the binary representation
f
� �g is usually used for the set of Boolean values� Thus	 the introduction of a new hidden unit computing
�t�� � IBn � f
� �g will modify the values fvkg only for the subset of points ak for which �t���ak� � �	
since vk � w� �w���t��ak� � wt���t���ak�� The construction is complete whenever vk � 
 if and only if
bk � �� Various existing algorithms of this nature propose di
erent clever heuristics to choose the subset of
points which will be modi�ed at each step �e�g� shift algorithm �AG�����

To summarize	 forward as well as backward approaches construct sequences of transformations of the prob�
lem	 in order to simplify it until it is solvable by a single unit� These transformations are based on consider�
ations done beyond the non�linear functions sgn in forward methods	 while in backward techniques the set
of potentials before the non�linearity of the output unit controls the construction of the network�

� Forward Construction of Majority Networks

Using the existing local learning algorithms for minimizing the number of mistakes in a majority perceptron
�see �May����	 classical forward constructive methods such as the tiling algorithm could be applied in an
almost straightforward way to the construction of majority networks� However	 in this research we intend
to go beyond this simple adaptation by improving substantially the constructive technique�

In the following	 we present a global framework	 which will allow us to present several variations of
algorithms for training of majority networks� As a �rst illustration	 a straightforward adaptation of the
tiling will be shown�
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��� Skeleton of the algorithm

Input� T � f�ak� bk�g
Output� Majority network achieving T

Insert input layer
REPEAT

Start a new layer
REPEAT


 Set the parameters of the cost function c�w� w��
Insert a new majority perceptron
�w� w�� �� �
�

�
� �	 where �w� w�� are the weights of the new majority perceptron

REPEAT

�w� w�� �� argminfc�w�� w��� j �w
�� w��� � m�w� w���m �M�m not tabug

UNTIL stopping criterion is TRUE
UNTIL all classes are faithful
T �� f�ak �� ��ak�� bk�g	 where � is the mapping realized by the newly built layer

UNTIL newly built layer has a single unit

The variety of the algorithms discussed in the following sections will always use this skeleton of algorithm
and will only di
er in the de�nition of the cost function c�w� w�� at line 
	 fully speci�ed according to the
context� As we will see	 the essence of the algorithms lies in this cost function c�w� w��	 which will lead the
local search to the best weight con�guration of the new unit	 in the current context�
An adaptation of the tiling algorithm to majority networks can easily �t in this framework as follows� At

line 
	 pick an unfaithful class �ak�	 and de�ne the cost function c��w� w�� as

�k �
��fal � �ak� j bl �� sgn�w� �w

�
a
l�g
�� � ���

the number of mistakes in the class �ak� made by the current unit�
With this cost function	 the algorithm has no proof of convergence	 as the arguments used for Boolean

perceptrons does not hold when restricted to majority perceptron� We are now going to show how the cost
function can be improved	 and designed in order to guarantee convergence�

��� Ideal criterion for faithfulness

The cost function set up at line 
 and leading the training of each new unit	 is not ideal in the existing
forward approaches such as the tiling or the partial task inversion algorithms� The main cause is that	 in
order to always use the same local algorithm	 the local problem assigned to each new unit has to be of the
form�

Form �� �nd a linear threshold function minimizing the number of mistakes in a task f�ak��bk�gk�K
�where K � f�� � � � � pg and �bk depends on bk�	 or in other words �nd a linear threshold function
separating in a best way two sets of points T� � fak � k � K� �bk � ��g and T� � fak � k �
K� �bk � ��g�

This form is adequate for decision trees algorithms �BOS��	 Qui��� or to grow networks with a tree struc�
ture �GM�
	 SN�
	 dBZN���� Indeed	 one particular subtask is associated to each node of the tree and the
points out of this subtask have already been discarded by some parent node� This situation is pictured in
�gure �a� A parent node in a decision tree realizes the discrimination H and each of its two sons has to
perform a subtask containing only the points lying on one side of H or on the other�
The tiling algorithmworks exactly in the same way	 since each new unit focuses on one particular subtask

corresponding to an unfaithful class	 and the performances of this new unit over points out of this subtask
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Figure �� Di
erences between decision tree	 tiling	 and partial task inversion algorithms�

are ignored ��gure �b�� However	 in the elaboration of a layer potentially fully connected to the previous
one	 we might want to reduce the number of units by solving several subtasks with the same discriminator�

The partial task inversion algorithm aims at this goal	 even though the target of each unit is still of
form �� The subtask associated to each new unit contains several unfaithful classes and the outputs �bk are
de�ned as bk in some classes and are inverted in other classes	 according to a heuristic whose motivation can
be illustrated by �gure �c as follows� After the introduction of a �rst unit implementing discriminatorH	 let
assume that the two classes �containing the points on both sides of H� are unfaithful	 i�e� � �� �� � �� ��
Although we do not know whether � � � or not	 the idea of the partial task inversion is to assume that
they are di
erent	 since if � � �	 then � �� and consequently	 the choice of H was very bad and G would
have been much better� So	 in the very simple situation of �gure �	 after the introduction of a �rst unit
corresponding to discriminatorH	 the task associated to the second unit would contain all the points	 the �bk

of one class would be inverted so that if indeed � �� �� � � �	 the new problem will consist in separating
� and � from � and �	 and G will probably be the selected discriminator for that�
Obviously	 this example is very favorable to the partial task inversion and in practice things are much

more complex� In order to improve the faithfulness of several classes at a time	 we need a goal of a more
general form than form �� Assume that t units have already been introduced in a new layer	 and that they
provide a mapping ��t� with several unfaithful classes �ak� �� � � � � �aku�� Let T ki

� �resp� T ki
� � denote the sets of

points of the class �aki � with a target output �� �resp� ��� for i � �� � � � � u� To reach complete faithfulness
as quickly as possible	 the ideal criterion for a new unit computing �t�� would be to separate T

ki
� from T ki

�

for all i� However	 this should be done without imposing any relationship between �t���T
ki
� � and �t���T

kj
� �

for i �� j	 since the internal representation of the points in T ki
� di
er already from that of the points in T

kj
� 	

for i �� j� So	 the general form of the local problem that has to be solved by each new unit is�

Form �� given a collection of pairs of disjoint sets f�T ki
� � T ki

� �g
u
i��	 �nd a linear threshold function

separating in a best way each pair independently�

In the context of real weights	 a goal of form � is more di�cult to address than one of form �	 since the
objective function cannot be optimized using a gradient descent technique as for example the well known
perceptron algorithm does ��Ros��	 DH����� On the contrary	 when a local search algorithm is used	 there is
a lot of �exibility in the form of the objective function	 and we are going to exploit this freedom to optimize
at each step the ideal goal given by the form � and formally described as follows�

Practically	 at line 
 the list of faithful and unfaithful classes is established along with their cardinalities�
Using the de�nition of �k from equation ��� for the number of mistakes in a class �ak� made by the current
unit	 the measure of the quality of the separation of an unfaithful class �ak� is given by min��k� j�ak�j � �k��
Indeed	 if all the elements of the class are misclassi�ed	 it also means that the separation is optimal	 since
in the seek of faithfulness	 the orientation of the separator does not matter� The cost function will be�

c��w� w�� �
X

�ak���F

min��k� j�ak�j � �k�� ���
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where F denotes the set of faithful classes� Clearly	 c��w� w�� � 
 means that with the current unit	 all the
classes are faithful and thus	 the construction of the current layer is complete�

��� Short or narrow networks �

The cost function given by ��� corresponds to the ideal local goal as far as complete faithfulness is concerned�
Nevertheless	 in a more global perspective	 it is di�cult to discern the best goal that a unit should reach at
a given time� When the construction of one layer is achieved	 each class �ak� in the internal representation
will produce a single point ��ak� in the task for the next layer� Thus	 even if the main goal of each unit is
to increase the faithfulness of the current classes	 a solution which does not break the faithful classes into
small pieces will be preferred since it will lead to a smaller task for the next layer�
To illustrate this idea	 consider the extremely simple example of an exclusive�OR� T � f�������������

������������� ������������� ������������g� Two hidden units	 with w equal to �
� �� and ��� 
� re�
spectively	 produce � faithful classes and the problem for the next layer is again the same exclusive�OR�
Conversely	 two hidden units with w � ��� �� and w� equal to �

�
� and �

�
� respectively	 produce only �

faithful classes and lead to the following easy problem for the next layer� f������������� �������������
������������g�
In general	 if attention is paid exclusively to the increase of the faithfulness	 then each layer will be small	

but the task of the next layer might be harder to solve	 since it consists of a large number of points in a
low dimensional space� On the other hand	 more units will be used on one layer when a lot of care is taken
to avoid splitting the classes into small pieces	 but the next task will probably be easier	 since it will be of
smaller size and in a larger dimensional space� This is a trade�o
 between deep and narrow networks against
short and wide ones� or �time against space� in terms of computational resources�
Let �k denote the minimum number of points in the class �ak� of output �� or �� at the new unit�

�k � min
� ��fal � �ak� j ��al� � ��g�� � ��fal � �ak� j ��al� � ��g�� � �

with ��al� � sgn�w� �w�
a
l� denotes the output of the new unit for the input al� If a faithful class �ak� is

not divided	 then �k � 
� The worst case occurs when a faithful class is divided into two pieces of the same
size	 because we want to keep faithful classes as large as possible	 in order to have a smaller task for the
next layer� � de�ned as the sum of these values over all the faithful classes	 � �

P
�ak ��F �k	 measures the

shattering of the faithful classes� This parameter might be aggregated in the cost function which becomes�

c��w� w�� � ��c��w� w�� � ���� ���

where �i are positive weightings that give relative importance to each of the two elements of the function�
More sophisticated objective functions have been investigated and their description can be found in �Avi���	
but we will not discuss this approach in more details here�

��� Convergence

Classically	 the convergence proof for forward constructive methods is decomposed into two steps� the vertical
convergence	 which ensures the termination of the construction of each layer� and the horizontal convergence
which refers to the fact that at one point	 the new task f���ak�� bk�g will be linearly separable�

Lemma ��� The minimization at each new unit of the cost function c��w� w�� of equation ���
ensures the vertical convergence�

Proof� Observe that for any two distinct points ak�al � IBn	 it is always possible to �nd a
majority function f such that f�ak� �� f�al�� For this	 it su�ces to choose wi � aki for some i
such that aki �� ali and wi � 
 for all i such that a

k
i � ali� Therefore	 there is always a way to

adjust the new majority unit such that its introduction decreases strictly the quantity 	� de�ned
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as the number of pairs of points �ak�al� such that ��ak� � ��al� � both points are in the
same class�	 and bk � ��� bl � ��� Clearly	 	� � 
 if and only if all the classes de�ned by �
are faithful� Moreover	 any solution that have a non maximal cost function c��w� w�� �i�e� any
solutions except the worst� will lead to a strictly smaller 	� � �

The cost function c��w� w�� presented in ��� however	 may not have this property	 particularly when ��
��
is big� Therefore	 it is safe to place a barrier on the worst possible value of c��w� w�� when c��w� w�� is used�
We are going to place another barrier on an event that will very unlikely occur	 but which would compromise
the horizontal convergence� So	 the complete cost function becomes�

c��w� w�� �

����������
���������

��

������
if the new unit divides no class that was
unfaithful at line 
	 before introducing
the new unit

��

������
if	 with the new unit	 no faithful class
of size at least � and no unfaithful class
of size at least � remain

��c��w� w�� � ��� otherwise

���

Proposition ��� The minimization at each new unit of the cost function c��w� w�� de�ned in ���
ensures the global convergence�

Proof� The �rst barrier in c��w� w��w ensures that a solution dividing no unfaithful class will
never be chosen	 so the argument used in the proof of lemma ��� works and the vertical con�
vergence is guaranteed� When all the classes are faithful	 the new task built on the mapping �
will be smaller only if at least one class contains more than one point	 but that is precisely what
the second barrier aims at� If at each layer	 the new class is strictly smaller	 the process will
obviously terminate� To complete the proof	 we have to show that there is always a solution of
value � ���

Call P the property stating that there is either an unfaithful class of size at least �	 or a faithful
class of size at least �	 or both� Before the introduction of the �rst unit in a layer	 there is only
one class and it is unfaithful �if the problem is not trivial�� If this class has only two elements	
the problem is easy	 since two points can always be separated by one majority perceptron� So	
we will assume that P is initially veri�ed and we will show that in any case	 there is a majority
perceptron dividing at least one unfaithful class	 while keeping the property P �

If the construction of the layer is not complete	 there is at least one unfaithful class	 so let a�

and a� be two points of the same class but with b� �� b�� Since P holds	 there exists two distinct
points a	 and a
 in a same class with b	 � b
� Note however	 that one of the �rst two points
may be identical to one of the last two� It remains to show that there is a majority perceptron
separating a� from a

� while keeping a	 and a
 together�

Let I and J be the two non�empty sets of indices de�ned as

I � fi j a�i �� a�i g� J � fi j a	i �� a
i g�

Case �� I �� J � This case can be solved by setting all weights to 
	 except one of index in InJ �

Case �� I

�
J � Take i � I and j � JnI	 set wi � �� and wk � 
� �k �� j� If a	i � a	j 	 wj � ��	

otherwise wj � ��	 so that the potentials of a
	 and a
 are both 
� Since j 
� I	 a�j � a�j 	

and the potential of a� and a� are 
 and ��� An adequate choice of threshold will separate
these two points�

Case �� I � J and �i� j � I such that a�i � a�i � a	i � a
i and a
�
j � a�j � a
j � a	j � This case is solved

by setting to 
 all the weights except wi and wj	 which will take the same value if a
�
i � a�j 	

and opposite ones otherwise�
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Case �� I � J and �i � I� a�i � a�i � a	i � a
i or a
�
i � a�i � a
i � a	i � We can assume that a

�
i � a�i �

a	i � a
i � �i � I	 by exchanging a� and a� if needed� This is equivalent to a�i � a	i and
a�i � a
i � �i � I� Then there is j 
� I such that a�j �� a	j 	 otherwise we have a

� � a
	 and

a
� � a
 which contradicts b� �� b� and b	 � b
� By vanishing all the weights but wj and wi

for one i � I and by choosing wj � a�j 	 the potentials for a
� and a� will be 
 and ��	 while

these for a	 and a
 will be 
 and ��� A threshold of ��
� will solve the problem�

�

This proof of convergence is very rough since it leads to generous upper bounds such as O�p�� units per layer
and O�p� layers	 where p denotes the size of the task� It was not in the scope of this research to improve
these bounds	 and the numerical results will clearly show that they are largely over�estimated�

� Back�Forth Constructive Method

Principles of backward methods are di�cult to use with a bipolar representation f�����g for the set of
Boolean values since the value of every potential vk is moving up or down when a new unit is inserted�
However	 in this section we will see how the ideas of backward methods can be used to improve forward
constructions�

��� Back�Forth is backward

As discussed in section �	 by adding a unit in a layer	 we want to get internal representations as faithful
as possible and we would like the next task to be not too di�cult� Another way to reach these objectives
is to consider	 during the training of a new unit	 the set of potentials at the �rst unit which will be placed
on the next layer	 as it is done in backward methods� Even if this idea can be extended to general linear
threshold functions	 ternary weights are particularly convenient for this purpose� Actually	 when a unit uL�
is �rst introduced on a new layer L	 if it does not manage to completely achieve the task	 a supplementary
layer will be necessary� So	 the �rst unit uL��

� in next layer L� � can already be introduced and connected
to the unit in layer L with a weight of value �� without loss of generality�

input unit processing unit

+1

+1

+1

+1

u1
L+1

uL
t +1

  

Figure �� Introduction of a new unit uLt�� updated by the back�forth training method� The new unit is

connected to the �rst unit uL��
� of next layer with a weight of value ��� The rest of the network �in gray�
is unchanged during the training of the the new unit�
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Let vkt denote the potentials at unit u
L��
� after the introduction of t units in layer L realizing a mapping

��t� � ���� � � � � �t��

vkt �
Pt

s�� �s�a
k�

vk� � 
�
���

Thus the potentials vkt are calculated by temporarily setting all the weights between the current layer L and
the �rst unit uL��

� of the next layer to ���
To �t within the skeleton algorithm presented in section ���	 we can consider that unit uL��

� of the next
layer is not really introduced during the elaboration of layer L	 and only the set of potentials fv�t � � � � � v

p
t g is

calculated at line 
 according to equation ����
The set of potentials at the �rst unit in layer L � � is now used to guide the update of the new unit

uLt�� ��gure ��� The problem is similar to the training of a single unit	 except that the update of the
weights of a unit in a layer depends on the potentials at a unit in the next layer� Following the objective
function used in the well known �perceptron algorithm� for minimizing the number of mistakes in a task
�see �Ros��	 DH����	 our local search procedure will minimize the cost function c	�w� w�� de�ned in ��� when

applied to the �t� ��th unit in layer L

c	�w� w�� � �
X

k wrong

vkt��b
k � �

X
k wrong

�vkt � sgn�w� �w
�

a
k��bk� ���

where �wrong� refers to the output state of the �rst unit of layer L� � after the introduction of t� � units
in layer L� In order to distinguish between �strongly� and �weakly� misclassi�ed points	 we are introducing
a cost function of a more general form�

c
�w� w�� �

pX
k��

P
�
�vkt � sgn�w� �w

�
a
k��bk

�
� ���

where P is a penalty function from ZZ to IR� Note that this form allows also to consider correctly classi�ed
points in the objective function� However	 in this research we only experimented penalty functions of the
form�

P �x� �

�
��� x�d if x � 


 if x � 


� ���

If d � 
	 the cost function simply counts the number of mistakes and will be referred to as the constant
penalty cost function� The cost function of equation ��� is obtained from equation ��� by using a linear
penalty 	 i�e� by setting d � � in ���� Experiments have also been carried out with a quadratic penalty
�d � ���

��� back�forth is forward

In �May��� it has been shown that any Boolean function can be computed by a majority network of depth ��
So	 in principle a single hidden layer is always su�cient� However	 there is no certainty that after adding
su�ciently many units on a hidden layer	 each of which having been designed to minimize a cost function
of the form ��� and then kept up while further units are added	 there will �nally be zero errors in the �rst
unit of the next layer� Therefore	 this back�forth algorithm will still construct networks of several layers�
As before	 the stopping criterion for the construction of one layer is the faithfulness of all the classes�

Finally	 to ensure the vertical and the horizontal convergence	 the two barriers introduced in the cost function
c��w� w�� in ��� are maintained	 and the convergence proof is the same as in the previous section�

��� Local or not local �

A very important feature in the constructive algorithms mentioned in this work is the locality of the training�
A global strategy guides the construction by deciding when and where a new unit is added and what task
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it has to solve� but this task is solved locally on the new unit and once this is done	 the parameters of that
unit will never be reconsidered� If locality has the advantage of simplicity	 it certainly restricts the training	
and very likely	 some global training algorithms will lead to smaller majority networks with probably higher
generalization abilities�
Due once again to the �exibility of the optimization technique used	 any of the algorithms presented in

this paper can be used to update several units at a time� In the following section	 beside the algorithms
presented above	 we also experimented one version of the back�forth method where two units are trained at
the same time� The training of the �rst unit is done as before� At each further step	 we determine which
of the units in the current layer is the least helpful	 and this unit is trained again with a newly inserted
unit� The unit to be trained again is simply chosen as the one whose removal worsens the least the value of
c
�w� w��� Even if this is only a �small violation� of the locality rule	 in some cases it improves signi�cantly
the generalization results�

� Numerical Experiments

Many numerical experiments were carried out to test the performances of the algorithms presented in this
work� In all our experiments	 the tabu list length has been �xed to min��� n � ��� Moreover	 the training
of each new unit stops whenever the condition for the vertical convergence is ful�lled �all the classes are
faithful� or when at least �

 iterations have been done and there was no improvement during the last �

iterations�
The �rst series of tests concerns the ability of our methods to construct majority networks capable of

implementing exactly a given Boolean function� The second series of experiments will regard the general�
ization performances of the networks built with our algorithms� Results will be compared to those obtained
with the classical constructive algorithms	 such as the tiling algorithm	 the partial task inversion algorithm
and the shift algorithm �AG����

	�� Synthesis of Boolean functions

Let f be a Boolean function IBn � IB� We consider tasks of the form T � f�ak� f�ak�� j ak � IBng	
containing all the examples of the known function f � The purpose of this �rst series of tests on complete
tasks is to evaluate the size of constructed networks computing exactly the given function f �
Several quantities are of interest for measuring the size of a network� These are the number of layers	 the

number of neurons	 and the number of connections� In the framework of majority networks	 we will consider
a connection as non�existent if its weight is zero�
The �rst experiment was made on RANDOM functions� The output is chosen randomly to be �� or

��	 with the same probability	 for each input vector� The required size of the networks able to realize
such tasks is a measure of the ability of the di
erent algorithms to memorize information in a compact
way� Figure � shows the average sizes of the obtained networks	 over �
 runs	 with input size ranging from
� to �� Performances of our di
erent algorithms are compared to each other and	 in the last �gure	 we
compare our best two algorithms to the tiling	 the partial task inversion and the shift which build networks
of linear threshold Boolean units� In all �gures	 �Tiling �Majority�� refers to the simple adaptation of the
tiling algorithm to majority networks	 using local cost function c��w� w��� �Basic� refers to the algorithm
of section �	 with local cost function c��w� w�� and with weightings in equation ��� chosen as �� � �


and �� � �� These weightings make a hierarchy of the components of c��w� w��� we compare two solutions
according to c��w� w��	 and � is used only to break ties� �Back�forth� refers to the methods of section �	
with local cost function c
�w� w�� and with d of equation � speci�ed in brackets�
The size of the networks grows exponentially with the input size	 which is what could be expected since

there is no structure in a random function� We observe that the simple adaptation of the tiling algorithm
to majority networks builds deeper networks	 whereas the several back�forth approaches give networks with
fewer layers� It appears clearly that the �quadratic penalty� function �d � �� is superior to the �linear
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Figure �� Construction of RANDOM functions� Average size of networks built on complete tasks versus the
input size n�

penalty� function �d � ��� It could also be expected that optimizing two neurons together still improves
the results� Comparing our best algorithms with those for continuous weighted units	 we observe that their
performances are fair and even better than the tiling algorithm� In �GM�
�	 some similar experiments have
been carried out using decision tree algorithms to construct networks with continuous weights� For complete
random tasks of size n � �	 the authors report an average number of �
������ units over �

 runs	 which lies
between the tiling method ���������� and the simple back�forth with d � � ����������� The smallest known
feedforward network for such tasks uses ����� 
��� ������ ��� for n � �� hidden units	 with exponentially
growing weights �MGR�
�� Other numerical experiments on stochastic tasks comparing di
erent constructive
approaches	 including tiling and upstart	 can be found in �KBA�����

To test the majority implementations of classical Boolean functions	 experiments were made on the
PARITY function	 de�ned as f�x� � �ixi� The output value is �� if and only if the number of �� in
x is even� The other function we implemented with our constructive algorithms is the COMPARISON
function� Consider an input vector x � IBn �n even� written as x � �x��x�� with x��x� � IBn��� Then

COMPARISON can be de�ned as f�x� � �� if and only if
Pn��

i���x
�
i � ��

i�� �
Pn��

i���x
�
i � ��

i��	 that is
if the number with binary representation x� is smaller than the number with binary representation x�� It
is worth noting that COMPARISON is a linearly separable function that requires integer weights growing
exponentially in n� It has been shown however that a depth � and polynomial size majority network can
compute COMPARISON �AB����

Figures � and � show the average size of the networks produced by �
 runs versus the input size n for
complete tasks�

For small input sizes	 the algorithms constructed majority networks of size close to the smallest known
majority networks able to compute the PARITY function exactly �May���	 except the abnormality of the
method optimizing � neurons	 for n � �� This is due to the fact that	 in this particular case	 reoptimizing a
neuron does more harm than good� instead of realizing the function in � layers	 the algorithm reduces the
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Figure �� Construction of PARITY functions� Average size of networks built on complete tasks versus the
input size n�

task �in � layers� to the PARITY with input size �	 and then it needs � more layers� As before both simpler
algorithms ��Basic� and �Tiling �Majority��� generally build larger networks�
The networks obtained for the COMPARISON function are very small	 for all three algorithms	 due to

the simplicity of the function� It is interesting to see that such a computational kind of function can be
e�ciently implemented by majority networks�
Figure � shows the percentage of non�zero connections in the networks built by the back�forth algorithm

with d � � for RANDOM and COMPARISON� It appears that those networks are sparse	 and more as the
input size grows�
The network built by the �Basic� method for the ��PARITY function is illustrated in �gure �� It has

� hidden units while the smallest known network has only �	 but it can be considered as more robust in
the following sense� With the smallest known majority network	 for � among the �� possible input vectors	
the potential of the output unit is zero �the output relies only on w��	 while with the network illustrated in
�gure �	 this is the case for only � input vectors�
On the right�hand�side of �gure �	 a network constructed by the �Basic� method for the COMPARISON

function of � ��bits numbers is presented� From top�down	 the input units are x��� x
�
�� x

�
	� x

�
�� x

�
�� x

�
		 the

highest subscript denoting the heaviest bit� It is interesting to note the structure in this construction and
with little thinking	 it is easy to understand how this network works�

	�� Generalization

We now present numerical experiments done to test the generalization ability of the constructed networks�
As described in section �	 we consider a task T � f�ak� bk � ��ak��gpk�� � IBn � IB supplying partial
information on an unknown function �� The network will try to extract the most information	 so as to be
able to approximate � as well as possible�
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Figure �� Density of connections for RANDOM and COMPARISON� Average percentage of connections in
networks built on complete tasks by algorithm back�forth with d � � versus the input size n�

Our experiments were made with the ��CLUMPS function� A clump is a sequence of consecutive �� in a
vector	 considered cyclically� This function will output �� when the input vector contains � or more clumps�

It can be formally de�ned as f�x� � �� if and only if
���fi j xi � �� � �x�i mod n���g

��� � �� Networks
were built for an input size n � �� and trained on sets of p random points	 with p ranging from �

 to �

�
Their performances were evaluated over test sets of the same size� Figure � shows the average size of the
obtained networks and the average percentage of incorrect classi�cations	 over �� trainings� Performances
of the tiling	 the partial task inversion and the shift algorithms are also plotted�

The second function we used to test generalization is the ��SIMILARITY function �proposed in �AG�����
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Figure �� Two examples of networks constructed by the �Basic� method for ��PARITY and
��COMPARISON�
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Figure �� Generalization of ��CLUMPS� Average size and percentage of errors made by networks trained
on p randomly chosen examples in IB���

The input vector is partitioned into two pieces	 and the output of the function will be �� when at most �
corresponding components of the two pieces di
er� It can be formally de�ned as f�x� � �� if and only if��fi j xi �� xn

�
�ig
�� � ��

The third function is the COMPARISON function	 de�ned in section ���� For both of these functions	
an input size n � �
 was chosen and training was performed on sets of p random points	 with p ranging
from �

 to �

� Generalization was evaluated over test sets of the same size� Figures � and �
 show the
average percentage of incorrect classi�cations	 over �� trainings	 as well as the average number of units in
the constructed networks�

Generalization of the ��CLUMPS function is very good	 very much like the shift algorithm and much better
than the tiling algorithm� Of course	 our networks are bigger	 because a majority unit contains less infor�
mation than a real�weighted linear threshold Boolean function� Results of the ��SIMILARITY function are
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Figure �� Generalization of ��SIMILARITY� Average size and percentage of errors made by networks
trained on p randomly chosen examples in IB���
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� Generalization of COMPARISON� Average size and percentage of errors made by networks
trained on p randomly chosen examples in IB���

fair	 particularly for the algorithm optimizing � units at the same time	 which produces small networks with
a good generalization rate�
Finally	 our networks were able to learn very well the COMPARISON function	 with all three algorithms�

The error rate is smaller than � 	 even with p � �

 examples� This corresponds only to 
�
� of the total
number of input vectors in IB��� It can also be observed that the sizes of the networks were rather small�
Surprisingly	 in this case generalization is achieved by the simplest algorithm described in section ��
These generalization tests were also tried with the simple adaptation of the tiling algorithm to majority

networks� This algorithm generally built huge networks	 and sometimes it did not even converge� Indeed	
this algorithm does not have any convergence guarantee	 unlike the others that we designed�

� Conclusions

Training feedforward neural networks is a di�cult problem and it becomes even harder when the weights are
limited to integer values� However	 the consideration of restricted weights is highly relevant when targetting
VLSI implementation� Constructive training techniques are gaining interest since they avoid the problem
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of dimensioning the network� We propose two new heuristics for the construction of feedforward networks�
The �rst one is of a forward construction type �such as the tiling algorithm� but the novelty is the criterion
optimized at each step	 which is designed to build layers as narrow as possible� The second idea takes
advantages of both forward and backward approaches� Simple convergence proofs are given for these two
methods� Though these are general ideas which can be used to train feedforward networks with real weights	
we apply them for the construction of majority networks	 i�e� feedforward Boolean networks with ternary
weights in f��� 
���g� Numerical experiments are presented and it is encouraging to see that	 even if
majority networks provide a quite restricted computational model	 it holds the comparison with classical
networks�

A trade�o
 between local and global learning algorithms is conceivable where a constructive algorithm
inserts or updates more than one unit at the same time� The number of units introduced simultaneously
should not be too high since their update would become too complex	 but it appeared to be easy to train two
units concurrently� Furthermore	 this extension gives very good results on all our experimented problems�

The good generalization performances reached for COMPARISON demonstrate that a model with only
Boolean parameters is also able to realize Boolean functions intrinsically based on integers coded using
a binary representation� Moreover	 for exhaustive PARITY and COMPARISON tasks	 the best known
constructions for small n�s have always been found by our constructive training algorithm� This allows us to
imagine that such an algorithm could be a useful tool in the search for new constructions of other important
Boolean functions�

We have proven in �May��� that any Boolean function f can be computed by a majority network with
a single hidden layer� However	 we have not been able to �nd in the present work a constructive algorithm
with convergence guarantees and restricted to one hidden layer� For example	 we have unsuccessfully looked
for a global energy function which measures the performance of a single hidden layer network and which will
strictly decrease at each introduction of an appropriate unit on the hidden layer�

The experiments show that the presented theoretical upper bounds on the size of the networks constructed
by our algorithms are very loose� Even for the trickiest investigated problems ���SIMILARITY	 ��CLUMPS�	
our best method constructs networks of approximately ��
 units for tasks of �
 inputs and �

 examples�
This thus makes our approach reasonable for �on�chip� realization�

The originality and the e�ciency of back�forth is due to the fact that the parameters of a unit in layer
L are updated according to their e
ect on a unit in layer L � �� It should be mentioned that our usage of
this idea presented in the current work �see also �May��	 AM���� is not unique� In �TMPG���	 the authors
proposed a constructive feedforward algorithm producing a network of a single hidden layer� The network
is inspired by the parity machine� In order to have a linearly separable task between the hidden layer and
the output layer	 hidden units are added periodically and their tasks are de�ned according to the errors on
the output unit�
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