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Abstract

The following remarks have also been added in the appendix of the report, which is available at
ftp://ftp.idiap.ch/pub/reports/2000/rr00-17.ps.gz.

1 Things that should have been in the paper

1.1 On the experiments

We forgot to specify that the kernel used in all the experiments was a Gaussian kernel. Thanks to Flake!
for his remark on this.

In the conclusion of our paper, we said that we also implemented a classification version of the
algorithm which was similar to the one proposed by Joachims [3] and that our implementation was twice
as fast as SVM-Light. This assertion holds only for non-sparse data because SVM-Light has been specially
designed for sparse data, while it was not the case in the first version of SVMTorch. The current version,
which now includes sparse data format, is 1.33 times faster that SVM-Light for sparse data (and still 2
times faster for non-sparse data).

1.2 On the decomposition method

Since the publication of our technical report, we have been aware of many other decomposition algorithms
for regression problems that we have not even cited. We try here to resume their work and the relation
with our paper.

Shevade et al [8] proposed two modifications of the SMO algorithm for regression, based on a previous
paper from the same team [5] for the classification problem. Laskov [6] proposed also a decomposition
method for regression problems which is very similar to the second one from Shevade et al. In fact, it is
easy to see that Laskov’s method with a subproblem of size 2 uses the same selection algorithm as well
as the same termination criterion.

Their method for selecting the working set is very similar to the one we proposed, but while we propose
to select variables «; independantly of their counterpart o, they propose to select simultaneously pairs
of variables {a;, af}. Even if this seems to be a small difference, let us note that since o; af = 0 Vi,

'http://www.neci.nj.nec.com/homepages/flake/



one of the two variables a; or o is always equal to 0, and choosing the a; and the o independantly can
thus help to quickly eliminate half of the variables, thanks to the shrinking phase?, which of course have
a direct impact on the speed of our program.

Similarly, Smola and Scholkopf [9] also proposed earlier to use a decomposition algorithm for regression
based on SMO using an analytical solution for the subproblem, but again they propose to select 2 pairs of
variables (2 a and their corresponding a*) instead of 2 variables, which leads to a different mathematical
formulation. As for Laskov and Shevada et al, they do not use shrinking which is, in our opinion, the
main speed gain of our algorithm.

Finally, Flake and Lawrence [2] proposed again a modification of SMO for regression which uses the
heuristics proposed by Platt [7] and those from Smola and Schoélkopf [9] but works on a new variable
Ai = a; — o, which leads to a different analytical solution. In fact, all the analytical solutions proposed
by these authors are different but need to handle multiple cases for the solution, except our method.

1.3 On the convergence of the algorithm

In our paper, we did not talked about the convergence of our algorithm. A paper from Chang et al [1] talks
about the convergence of some SVM algorithms based on a decomposition method. However, using their
arguments, we cannot conclude that our algorithm converges to the optimum, even when no shrinking
is done. The hypothesis they use in their proof regarding their method to search for a feasible solution
is slightly different from our method and thus we cannot use their proof in our case. Keerthi et al [4]
also proposed a convergence proof for their method [5], but it applies only to their classification case.
However, we will see in the next section that it also applies to our classification method as well as our
regression method.

2 Remarks on the relation between many SVM algorithms

As we said in our paper, the algorithm we used in classification is the same, mathematically speaking, as
the one proposed by Joachims [3]. Let us now consider® the paper from Keerthi et al [5] which proposes
two algorithms based on Platt’s algorithm, SMO. In particular, let us focus on the second method they
propose and let us compare this method to the algorithm proposed by Joachims in the case of a working
set of size 2.

We strongly suggest to the reader to refer to the papers from Joachims and Keerthi et al in order to
understand the following notations which will not be re-explained here.

At each iteration, Keerthi et al propose to start by selecting two variables in their working set.
Following their notation, let us denote

Iy = {i:0<a;<C}

Il = {i:yizl,ai:()}

[2 = {i:yi:—l, Oéi:C}
[3 = {i:yizl,ai:C}

I4 = {i:yi:—l, OéiZO}

and let us denote also 4o, and iy, the index of the two selected variables. They verify

Filow = biow = maX{Fi i1 €lyUls UI4}

and
Fiup - bup - mln{Fz NS IO U Il U IQ}

2this is verified in practice
3Thanks to Patrick Haffner (http://www.research.att.com/~haffner) and Ryan Rifkin
(http://five-percent-nation.mit.edu/PersonalPages/rif/) who have stimulated our interest on this.



where
Fy =" ajy;k(zi, z5) — ys.
j

One can easily remark that F; = w;, where w; is the sorting variable used by Joachims in his paper.
Joachims defines the following constraints

di>0, Vi:a; =0 0
dlSO, Vi:ai:C

and select the following working set variables:

e the one that corresponds to the highest w; such that 0 < a; < C or such that d; = —y; verify (1),
and

e the one that corresponds to the smallest w; such that 0 < «; < C or such that d; = y; verify (1).

This is indeed equivalent to the choice made by Keerthi et al.
Both algorithms then solve the sub-problem and test the optimality of the general problem. The
algorithm from Keerthi et al stops when
blow - bup S T

where 7 is a tolerance factor defined by the user. The algorithm from Joachims stops when the following
conditions are verified:

Vi such that 0 < a; < C, A% — 7 <y; — Zj ayik(zs, £7) < A9+ 7
Vi such that a; =0, :(3; ajy;k(mi, ©5) +A%) > 1 -7 (2)
Vi such that a; = C, yi(3; ajyik(mi, ®;) + A) <147

where \¢? is defined as follows

S| 1
A= A > Vv =) ogyik(s, x5)
€A [ J J
with
A={i:0<a; < C}.
It is easy to see that equations (2) are equivalent to

Viely, \N9—7<—F <\l 41
\V/’L.E[lulg, FiZ—Aeq—T
V’L.EI3UI4, Fig—)\eq‘i—T.

Moreover, since —bjoy < A°? < —b,,p, if the optimality conditions from Keerthi et al are verified, then
Vi610UI3UI4, Figbup-FTS—)\eq‘{—T

and
Vi€IOUI1UI2, —Fig—blow-f-TSAeq-l-T

which implies the optimality conditions from Joachims.

Since the optimality test of SVM-Light is weaker that the one from Keerthi et al [4], it is easy to see
that one can apply their theorem to show that SVM-Light converges for subproblems of size 2 (as well
as our classification algorithm).

In the same way, one can show that the optimality test we used in our regression algorithm is weaker
than the general algorithm proposed by Keerthi et al [4] and it is easy to see that given the fact that our
algorithm uses a selection method that choose independantly the a and the a*, the proof from Keerthi
et al also applies to our regression algorithm when the subproblem size is set to 2.



3 Conclusion

In conclusion, we note that all these decomposition algorithms are extremely related. For instance, subset
selection algorithms from Keerthi et al and Joachims are strictly identical if the shrinking is not used
and for a working subset of size 2 in SVM-Light.

Moreover, it is very easy to see that the regression method from Laskov (again with a subset of size
2) is equivalent to the one from Shevade et al, which is the same as the classification one from Keerthi et
al. Note also that the method from Flake and Lawrence could be modified using the second modification
from Keerthi et al and would thus be enhanced.

Finally, we think that shrinking makes the main difference with regard to speed, and the selection
method we have chosen simplifies the resolution of the analytic quadratic problem and enables to obtain
a convergence proof for the regression problem.
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