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Advanced Spatia Data Analysis and Modeling with Support Vector Machines

M. Kanewski, A. Pozdnukhov, S.Canu,M. Maignan

Abstract-- The present paper deals with novel developments and application of Support Vedor
Machines (Support Vedor Classfier SYC and Support Vedor Regression SVR) for the analysis and
modeling of spatially distributed environmental and pollution information (categorical and/or continuous
data). SVC/SVR models are based on the Statistical Learning Theory or Vapnik-Chervonenkis (VC)-theory.
The SVC provide non-linear clasdfication by mapping the input spaceinto high dimensional featur e spaces
where a spedal type of hyper-planes with maximal margins (giving rise to good generalizations) are
constructed. SVR provide robust non-linear regresson of spatially distributed data. Real case studies of the
present paper deal with binary clasdfication problem of indicator variables, multi-classclassification of soil
types, and prediction mapping of radioactively contaminated territories. Geostatistical tods (variography)
is used to control the performance of the machines and for better understanding of the results. The
SVC/SVR arewell adapted to fuzzy environmental and pollution data.

Index Terms—environmental spatial data classification and mapping, support vedor machines,
geostatistics

l. INTRODUCTION

Recently the analysis and processng of spatialy distributed and time dependent information have
bewome a very important problem due to the comprehensive development of environmental and
palution monitoring retworks even leading to data mining problems from one side and much better
understanding of data analysis approacdhes (both model dependent and data driven) from another side.

The present paper deds with novel developments and adaptation of SV C and SVR, the models based
on Statisticd Leaning Theory or Vapnik-Chervonenkis (VC)-theory for the analysis and modeling of
spatialy distributed environmental and pdlution information (categorica and/or continuous data).

Statisticd Learning Theory is a general mathematica framework for estimating dependencies from
empiricd and finite data sets [1]-[4]. The basic ideaof SVM isto determine a ¢assifier or regresson
machine that minimizes Structural Risk consisting of the empiricd error and the complexity of the
model leading to good generali zaion error.

The SVM provides non-linea clasdfication (or regresson) by mapping the input spaceinto high
dimensional feaure spaces where aspedal type of hyper-planes with maximal margins (giving rise to
goodgeneralizations — low errors on vali dation data sets) are constructed.

In case of classificaion SVM are focusing on the marginal data (suppart vedors - SV) and not on
statistics such as means and variances. Only data points close to the dasdficaion dedsion boundaries
are important for the solution of the problem. Essentially the method is non-linea, robust and does not
depend on the dimension of input space

Recently first promising results on application of SVC/SVR for the spatialy distributed deta were
published [5]-[7]. The main attention was paid to hinary classification problems and to understanding
of SVR application to spatial data and interpretation of SVR hyper-parameters. Results of the SVM
clasgficaion were mmpared with indicaor kriging [6] as well. It was demonstrated that the use of
geostatisticd spatia correlation measures like variogram improved bah understanding of the machine
performance and interpretation of the results.

The main attention in the present paper is paid to: 1) the problem of SVC multi-classclassification of
environmental data — soil types that is important, e.g. in modeling of radionuclides verticd migration,
and 2) to SVR mapping of radioadively contaminated territories by Sr90 Chernobyl radionuclide.

Originally SVC were developed for the binary (2 clasg classificaion. Different generalization
schemes of 2-class classificaion problem to multi-class clasdficdion are @mnsidered in the present
study. The methoddogy and the results on soil types classificaion are mnsidered in detail . Radial basis
Gaussian functions (both isotropic and anisotropic) were used as the SVC kernels. Error surfaces
(training and testing errors and number of suppart vedors versus regularizaion parameter and kernel
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bandwidth) are used in order to tune hyper-parameters. Particularly, kernel bandwidths are tuned using
testing data sets and taking into account spatial variability of classes.

Severa approaches for the dassificaion of spatialy distributed data that were developed within the
framework of geostatistics can be found in the review [8].

The last part of the paper presents results on applicaion of Suppat Vedor Regresson to the
problem of prediction mapping of spatial data. Red case study is based on data on soil contamination
by Sr90 Chernobyl radionuclide in the most contaminated Briansk region of Russia. Sr90 has 30 yeas
half-time decay and is radiologicdly important.

Il. INTRODUCTION TO SUPFORT VECTOR MACHINES

The main concepts and principles of SVM are described shortly, starting from linedly separable
dichotomies. The presentation of the SVM theory is based on [1]-[4].

A. Principles of SVM

The following problem is considered. A set Sof paints (X;) is givenin R (we aeworkingin atwo
dimensional [Xy, X5] space. Each point X belongs to either of two classes and is labeled by Y [J{-
1,+1}. The objedive is to establish an equation of a hyper-plane that divides Sleaving al the points of
the same dass on the same side while maximizing the minimum distance between either of the two
classes and the hyper-plane — maximum margin hyper-plane.

Optimal hyper-plane with the largest margins between classs is a solution of the mnstrained
optimization problems considered below [1]-[4].

B. Linearly separable case

Let usremind that data set Sislinealy separableif there exist W O R*,b 0 R, such that

Y,(W'X, +b)>+1 i=1..N 1)
The pair (W,b) defines a hyper-plane of equation
W'X+b)=0.

Linealy separable problem: Given the training sample {X;,Y;} find the optimum values of the
weight vedor W and hias b such that they satisfy constraints

YW'X, +b)>+1 i=1..N )
And the weight veaor W minimizes the st function (maximization of the margins)
FW)=W'W/2 ©)

The st function is a cnvex function of VW and the constraints are linea in W,
This constrained optimizaion problem can be solved by using Lagrange multipliers. Lagrange
function is defined by

L(W,b,a) :WTXIZ—iai[Yi(\NTXi +b)-1]

where Lagrange multipliers a, = 0.

The solution of the nstrained optimization problem is determined by the sadde point of the
Lagrangian function L(W,b,a)which hes to be minimized with resped to W and b and to be

maximized with resped to O .
Applicaion of optimality condition to the Lagrangian function yields
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Thus, the solution vedor W is defined in terms of an expansion that involves the N training data.

Because of constrained optimization problem deds with a @mnvex cost function, it is passble to
construct dual optimization problem. The dua problem has the same optimal value & the primal
problem, but with the Lagrange multi pli ers providing the optimal solution.

The dua problemisformulated as foll ows:

Maximizethe objedive function

0 ©)

N N
Qa) = Zai -/ Z)Zaianin XX, (6)
Subjed to the @mnstraints
N
YaY =0 @)
1=1
a,20,i=1,..N 8

Note that the dual problem is presented only in terms of the training data. Moreover, the objedive
function Q(a) to be maximized depends only on the input patterns in the form of a set of dot products

{X"™%}i=12,.N -

After determining optimal Lagrange multipliers 4, , the optimum weight vector is defined by (4)
and biasiscdculatedas b=1-W'X?>, forY® =+1

Note, that from the Kuhn-Tucker conditionsiit foll ows that

a, [y WX, +b)-1]=0 ©)

Only @, that can be nonzero in this equation are those for which constraints are satisfied with the

equality sign. The rresponding paints X , cdled Suppart Vedors, are the points of the set S closest
to the optimal separating hyper-plane. In many appli cations number of suppart vedorsis much lessthat
original data points.

The problem of clasgfying a new data point X is smply solved by computing

F(X) =signW' X, +b) (10)
with the optimal weights Wand hias b.

C. SVM classification of non-separable data. Soft margin classifier
(allowing for training errors)

In case of linealy non-separable set it is not posshle to construct a separating hyper-plane without
allowing classification error. The margin of separation between classesis sid to be soft if training data
points violate the condition of linea separability.

In case of non-separable data the primal optimization problem is changed by using dack variables.

Problem is posed as follows: Given the training sample {X,Yi} find the optimum values of the
weight veator W and hias b such that they satisfy constraints

Y,(W'X, +b)>+1-¢&,, & =0,0i (11)



The weight vector W and the dadk variable & minimizethe st function
N
F(W):WTW/2+CZ£i 12
1=

where Cis auser spedfied parameter (regularization parameter is propartional to 1/C).
The dual optimizaion problem is the following: Given the training data maximize the objedive
function (find the Lagrange multipliers)

N N
Q(a) = Zai —(1/2)ZaianinXiTXj (13
1=1 1=1

Subjed to the mnstraints (7) and
0<a,<C,i=1,..N (14)

Note that neither the slack variables nor their Lagrange multipliers appea in the dual optimization
problem.

The parameter C controls the trade-off between complexity of the machine and the number of non-
separable points.

The parameter C has to be seleded by user. This can be done usualy in one of two ways: 1) C is
determined experimentally via the standard use of atraining and testing data sets, which isaform of re-
sampling; 2) It is determined analytically by estimating V C dimension and then by using bounds on the
generdli zation performance of the machine based on aVC dimension [1].

D. SVM non-linear classification

In most pradicd situations the dassificaion problems are nontlinea and the hypothesis of linea
separation in the input space ae toorestrictive.

The basic idea of Suppat Vedor Madhines is 1) to map the data into a high dimensional feaure
space (possbly of infinite dimension) via anonlinea mapping and 2) construction of an optimal
hyper-plane (application of the linea algorithms described above) for separating feaures. The first
item is in agreement of Cover's theorem on the separability of patterns which states that input
multidimensional spacemay be transformed into a new feaure spacewhere the patterns are linealy
separable with high probability, provided: 1) the transformation is non-linear; 2) the dimensionality of
the feature spaceis high enough [1]-[4]. Cover's theorem does not discuss the optimality of the
separating hyper-plane. By using Vapnik’s optimal separating hyper-plane VC dimension is minimized
and generalizeion is achieved. Let us remind that in the linea case the procedure requires only the
evaluation of dot products of data.

Let {¢ j (X)_}j=1 . denote aset of norHlinea transformation from the input spaceto the feaure
space m—isadimension of the feaure space Non-linea transformation is defined a priori.

In the nonlinea case the optimization problem in the dual form is foll owing:
Given the training data maximize the objedive function (find the Lagrange multipliers)

N

Q(a):Zai—(1/2)iaiajvmr<(xrxj) (19

Subjed to the constraints (7) and (14)
The kernel

K(X,Y)=¢" (X)¢(Y) = ifﬁj(x)fl’j(\() (16)

Thus, we may use inner-product kernel K(X,Y) to construct the optimal hyper-plane in the feaure
spacewithout having to consider the feaure spaceitself in explicit form.
The optimal hyper-plane is now defined as



N

f(X)=ZanjK(x,xj)+b 7
e

Finally, the non-linea dedsion function is defined by the foll owing relationship:
F(X)=signWTK(X,X )+b] a9

The requirement on the kernel K(X, X,-) is to satisfy Merce’s conditions [1]. Three @mmon types

of Suppat Vedor Madines are widely used:
1. Polynomial kernel

K(X,X;)=(X"X; +1)°

where power P is gedfied a priori by the user. Mercer’ s conditions are dways stisfied.
2. Radia basis function RBF kernel

K(X,X,)=exp-|x -, 1202

Where the kernel bandwidth O (sigma value) is gedfied a priori by the user. In genera,
Mahalanobis distance @n be used. Mercer’ s conditions are dways stisfied.
3. Two-layer perceptron

K(X,X,) = tan{B,X X, + B,}

Mercer' s conditi ons are satisfied only for some values of [ , Bi.

For all threekernels (learning madines), the dimensionality of the feaure spaceis determined by
the number of suppat vedors extraded from the training data by the solution to the nstrained
optimization problem. In contrast to RBF neural networks, the number of radial basis functions and
their centers are determined automaticdly by the number of Suppart Vedors and their values. In the
present study only the results obtained with the RBF kernel are presented.

1. SPATIAL DATA CLASSIFICATION. CASE STUDIES

Two classificaion case studies are mnsidered:

* Binary non-linea clasdficaion of radioadively contaminated territories (Briansk region, Sr90).
This part of the study is of methoddogica nature and follows the ideas presented in [5]-[6].
Training agorithms are extended with k-fold cross-validation (leave-k-out).

*  Multi-class classification of red soil types data in Briansk region, Russia. This case study is
important for prediction mapping of radioadively contaminated territories, when taking into
acount radionuclides vertical migration in soil .

The generic methoddogy for the analysis, modeling and presentation of spatially distributed data
foll ows the basic ideas presented in [ 10]. The main phases (steps) of the study are foll owing:

e Visudlizaion of data. Monitoring network analysis and description. Understanding of spatial
clustering (results of preferential sampling) and representativity of data.

e Comprehensive exploratory data anaysis.

e Comprehensive exploratory structural analysis (variography). Modeling of anisotropic spatial
correlation.

» Splitting data into training, testing, and validation subsets. In case of clustered data spatial
dedustering procedures can be sued.

* Trainingof SVC/SVR. Seledion of the optimal SV C/SVR hyper-parameters.

»  Spatial data dasdfication - categoricd data mapping.

e Spatial data mapping — spatial regresson.

e Comprehensive analysis of the residuals (statisticd analysis, correlation, variography)

* Understanding, interpretation, and presentation of the results.

A. Two class classification problem
Let us consider binary classificaion problem applied to Sr90 indicaor transformed variable



I(Sr90=0.3 Ci/kn.). Indicator transformation means, that 1(Sr90=0.3 Ci/km?) = | = 1 if Sr90<0.3
Ci/km? (class 1) and 1=0 if Sr90>0.3 Ci/km? (class 2). Thus, the problem is posed as a binary
clasdficaion problem after the indicaor transformation of Sr90 concentration. Here, the indicator is
chosen close to the median of Sr90 concentration.

In non-parametric geostatistics indicator transformation is widely used when modeling locd
probability density functions. expeded value of indicator at unsampled pdnt is an estimation of the
probabili ty density function at this point with agiven cut [9].

The post plot of indicaor values are presented in Figure 1. Variogram rose for the indicator variable
is presented in Figure 2. Let us remind, that variogram (semivariogram) is an important measure of
spatial continuity describing spatial correlation and widely used in geostatistics [9]-[10]:

y (h) = 0.5 Var{ Z(x+h)-Z(x)]

where h — is a separation vedor between points in space Variogram, estimated using indicaor
variable for several lag distances and in several diredionsis presented as a Variogram rose in Figure 2.
Geostat Office software [10] was used for computations. Anisotropic structure — different
correlations in different diredionsis evident.

Information on spatial correlation can be used in data pre-processng: one objedive car be a
transformation of input space (X) in order to have more isotropic spatial correlation structures. Also
thisinformation can be used to tune anisotropic SVM kernels when Mahalanobis distanceis used.
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Figure 1. Two classclasgfication problem. Training data set postplot. “O” —classl, “ m” —class 2.
1) SvCtraining

Two basic strategies were gplied for the SVM training: 1) splitti ng of original data set into training,
testing and validation subsets, 2) leare-k-out cross-validation. The first approach is a traditional
procedure when training data set is used to develop a model, testing data set is used to tune hyper-
parameters of the model, and validation data set is used for the generalizaion (expeded) error
estimation. Taking into acount spatial clustering— preferential sampling in space spatial dedustering
procedures were used to split datain order to have representative data sets. The simplest way to doit is
to cover the region urder study by aregular grid and to seled randomly one data from each gid cdl.
Random splitting was used as well .
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Figure 2. Variogram rose of Sr90 indicator variable.

There ae two hyper-parameters in SVM when RBF kernel is fixed: kernel bandwidth (sigma) and
regularization parameter C. In general, full covariance matrix (Mahalanobis distance) was used. In the
present study the results of the isotropic kernel RE mainly presented.

Basicdly, there is a general recommendation to put C as a big value when data ae not noisy and
there is no spedal need in regularizaion. In order to find the best (minimizing testing error) C and
sigma parameters training and testing error surfaces (training and testing errors versus sgma and C)
were estimated. It was found that, after some high C values, when sigma is fixed, training and testing
errors do not change. In our case it was about 100 at optimal sigmavalue. The eror curves along with
normalized number of Suppat Vedors (the number of Suppat Vedors divided by the number of
training data) are presented in Figure 3. The minimal testing error was achieved at sigma = 0.1. An
important observation, aready mentioned in [5] and [6] is that at the optimal paint the number of
Suppat Vedor has also minimum. This, in general, corresponds to small values of generalization
(expeaed) errors[1].
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Figure 3. Training and testing error curves and normalized number of Support Vectors. C=100.

2) Binary classification
The optimal SVC hyper-parameters were used for the cdegoricd data mapping (prediction of
caegoricd variable/class at unsampled padnts). The result is presented in Figure 4. Variogram rose
computed using the results of SVC clasdfication is presented in Figure 5. Except with some noise this
variogram rose follows the origina experimental variogram rose. Thus, classification model corredly
refleds basic anisotropic spatial correlations.
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Figure 4. SVM 2 classclassfication (categoricd data mapping). White zne — class 2. Kernel bandwidth = 0.1, C=100. Training
error = 0.08; testing error = 0.21; validation error = 0.24. “+” — Support Vectors; “O” — class2 of validation cata; “ m” — class1
of validation data.

Basicdly, by varying kernel bandwidth at some fixed C value, it is possble to cover wide range of
model’s complexity from overfitting at small sigma values to oversmoaothing at high sigma values.

In the following, ared case study on multi class classificaion using data on soil types in Briansk
region, Russia.

V. SVM MULTI-CLASS CLASSIFICATION

The aurrent sedion of the work deds with the soil types prediction mapping wing Suppat Vedor
Madines. The main objedive of the study is following: using available cdegoricd data on soil types
(measurements on an irregular monitoring networks) develop multi-class classfication Suppart Vedor
Madine to predict soil types at the unsampled pdnts (spatial prediction of categoricd variables). The
problem can be mnsidered as a pattern compl etion task as well .
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Figure 5. SVM classfication. Variogram rose of indicators after classfication.

In the present study, SVC are used for environmental spatial data dassficdion. Straightforward
generali zation of binary SVM classfication to multi classclassificaion (m classes) is the foll owing:

y; = arg max AMy K (x,x,)+b™ (19

The red case study deds with the soil types classification in Briansk region. This is the most
contaminated part of Russia by Chernobyl radionuclides. Actually, prediction mapping of environment



contamination includes bath physico-chemicd modeling of radionuclides migration in environment
and spatial data analysis and modeling [11]. Migration of radionuclides in soil depends on properties
of radionuclides, soil types, predpitation, etc. Variability of environmental parameters and initial
fallout at different scdes highly compli cates the solution of the problem.

The present problem deds with five dasses:

5 Clases data Number of data
Classl 392

Class2 48

Class3 333

Class4 52

Classb 485

The grid for predictions consists of 4321 pants (the boundary of the grid follows the boundary of
the region).
The influence of soil types on Sr90 verticd migration is presented in Figure 6, where Sr90 profiles
after 20 yeas of fallout are presented.

Sra0, profile after 20 years
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Figure 6. Radionuclide verticd migration in soil. Vertical profile of Sr90 dstribution after 20 years of fallout.

The mgjor classes (post plot of training data) are presented in Figure 7.
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Likeinthe cae of binary classficaion, original data were split into 3 subsets: training (310), testing
(500 and validation (500 dhta). Data were split several timesto understand fluctuations of the results.

Spatial correlation structures for two major classes are presented as Variogram rosesin Figures 8 and
9. Classes were mded as indicators with 1 corresponding to classand 0to all other classes. Different
correlation behavior is clealy observed.
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Figure 9. Class3 variogram rose.

A. SVC Training

There ae several posshiliti es for the multi-classclassificaion with SVM using binary models: one-
to-rest classification, pair-wise dassficaion, dired generalizaion of the SVM to multi-classproblems
and athers[1], [12], [13].

One-to-Rest class-insensitive dasdficdion. In this case m- models are developed from binary
classficaion by applying the most simple dgorithm. m-classfiers have the same kernel bandwidths.

Error curves give general overview of the problem without taking into acount different spatial
variability of classes. If classes have different variability at different scdes and diredions the “optimal
kernel bandwidth” charaderizes ssme averaged scde of variability. Of course, what is optimal for one



class can be over-fitting or over-smoothing for the others. Classinsensitive gproach is fast and gives
genera overview of the problem. In some @@ses it can gve satisfadory results. The more interesting
approach deds with adaptation of modelsto spatial variability of classes.

1) Class-Adaptive Approach
In this case for ead one-to-rest M models different optimal kernel bandwidths are tuned. Training
and testing error curves with classadaptive technique ae presented in Figure 10.
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Figure 10. One-to-rest multi-class classification. Testing error curves.

For ead one-to-rest model optimal kernel bandwidths minimizing testing errors were seleded.
Spatial predictions of categoricd variable (soil type mapping) with optimal m models are presented in
Figure 12.

The same egproach was applied with the generaizaion of binary mode using pair-wise
clasgficdions, both class insensitive and classadaptive. In this case m(m-1)/2 are developed. Example
of training testing and normali zed number of Suppart Vedors curvesis presented in Figure 11.

o SVM pairwise M-class classification. C=1¢2
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Figure 11. Pair-wise training and testing error curves and normalized number of Support Vectors. C= 100.




5 1.00
200
200
400
500

048

o

KX

Figure 12. SVM Mapping with class-adaptive bandwidths: Classl =0.026; Clas = 0.1; Class3 = 0.14; Class4 = 0.06; Class5 =
0.88.

In the present case pair-wise dassificaion did not improve significantly the results in comparison
with simpler one-to-rest adaptive model.

In conclusion, SVC is a promising approach for the dasdficaion of gpatialy distributed
environmental and pdlution data. The use of simple multi classclassification models (generali zations
to the binary models) with classadaptive gproacd efficiently reproduced spatial variability of classes.

V. POLLUTION DATA MAPPING WITH SUPFORT VECTOR REGRESSION

Let us consider applicaion of the Statisticd Leaning Theory for spatial data mapping of continuous
variables using Suppat Vedor Regresson model.

Assume Z[ IR isavariable to be predicted based on some geographica observations (x,y). Our work
aims at estimating a dependence between Z and the geographical co-ordinates based on empiricd data
(samples) Si=(Xi,Vi,Zi,€i), i = 1,...n, where

Xi,Yi, - are the geographicd co-ordinates of samples

Z; - are observed or measured quantities. It is assumed to be the redization of a random variable Z;
with an unknown probability distribution Py y(Z).

€ -isthe measurement acaracy for the observation Z;

n denotes the sample size

A 2.2 Prediction problem

Assuming f is a prediction function (i.e. a function used to predict the value of Z knowing the
geographicd co-ordinates), we define the mst of choosing this particular function for a given dedsion
process Firgt, for a given observation (x,y,Z) we define the e-insensitive ast function:

:Eﬂf(xy)—zl—s it f(xy)-Zpe (20)
O

IZ! £l f -
A(xy) } 0 otherwise

where € charaderizes me accetable aror.
Now, for all possble observations we define the global or generalisation error also known as the
integrated prediction error | PE:

IPE(T) :J'EZ(C((X, v,)Z, €, 1))w(X, y)dxdy (21)

where w(X,y) is ©me eonomicd measure, indicaing the relative importance of a mistake & point
(x,y). In case of non-homogeneous monitoring networks this function can take into acount spatial
clustering. Usually w(x,y) = 1, so that all positions ar/e assumed to be equally important.

B. 2.3 Empirical and Sructural Risk Minimization

1) 2.3.1 Function Modeling
Let us assume that solution is a function that can be decompaosed into two dfferent components: a



trend plus aremaining random process

((09) =3 W, (69)+ Y BiK (x,Y) @

=1
where Kj(x,y) is a basis of the trend component and ¢, k=1,.m is an orthonormal basis of the
remaining part (note that m can be infinity).

The omplexity of the solution can be tuned through ||W||2: el mMZ [1]. Thus, a relevant
strategy to minimise IPE is to minimize the empirica error together with maintaining ||W||2 small.
This can be obtained by minimising the foll owing cost function:

E . . . 1 2
minimize =
0 S Il
Esubjea to |f(x,y.)-Z|<¢, , fori=1,...n
When data lie outside of this epsil on tube due to noise or outliers making these wnstraints too strong
and impossible to fulfil, Vapnik suggested to introduce slack variables & , & . These variables
measure the distance between the observation and the € tube.

Note that by introducing the wuple (&; , &) the problem has now 2n urknown variables, But these
variables are linked since one of the two values is necessary equals to zero. Either the slack is paositive
(& = 0) or negative (§ = 0). Thus, Z; [f(xy)- £-&, f(xy)+ €+& ]

Following the idess as in the cae of SVM classificaiion we arive & the following optimizaion
problem:

- - - 1 2 n *
+C + & 23
minimise = ||w|| Zl(f, &) (23

Of(x.y)-Z -¢& <¢
subject to E1—f(xi,yi)+zi -g <&
HEEI >0 fori=1,..n

2) 2.3.2Dua formulation
A classcd way to reformulate a @nstraint based minimization problem is to look for the saddle

point of Lagrangian L:
LWE£a) = wlf mZ(a +E)- Z" (- F 0y +E +E)
Yo (F0%)=Z +& +8) =5 (1§ +1 &)

where O ,ai* 1, ,r]f are the Lagrangian multipliers associated with the anstraints. They can be
roughly interpreted as a measure of the influence of the constraints in the solution. A solution with
a;, = ai* = 0 can be interpreted as “the wrresponding data point has no influence on this solution”.
Finally, the dual formulation of the problem is as follows:

I 1& &, . il .
maximise -= (a; —ai)ifp (X, ¥)9, (X, .)E(g. -a;)
ZI:lJZl ~ k XI y k \ % y] j j (24)
-Se(a +a)+Y Z (a; —a,
2 ( ) Zl ( )
abjed to D: (a; —a)K;(x,y;) =0 forK; =1,...m

H 0<a/,a,<C fori,...n

By using kernel trick this problem can be solved without dired modeling in a feaure space (the
same ain ronlinea classficaion). To doso it is necessary to choose @ such that:



im(xi,yim(xj,yj) =6(0%, ). (x,.Y,))

Thisisthe caein reproducing kernel Hilbert space where G is the reproducing kernel. Functions @
are the eigen functions of G. In this case the solution can be formulated in the following form:;

(%)= S VG4 + 3 BK (%)

with V, =(a; —a;). This olution only depends on the kernel function G. The main resuits
were obtained with Gausdan RBF kernel and K;(x,y)=1.

VI. SVR MAPPING. CASE STUDY

Let us consider mapping of soil palution by Chernobyl radionuclide Sr90 in the Western part of
Briansk region, Russia

The cae study foll ows the basic methoddogy applied to the dassificaion in the previous ®dions.
An important development deds with comprehensive analysis of the residuals. In terms of geostatistics
useful information to be extraded from data and modeled with SVR is a spatially structured (spatially
correlated) information. From this point of view variography of the residualsis a powerful and efficient
toal for controlli ng the performance of SVR mapping.

The variogram rose of training Sr90 catais presented in Figure 13.
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Figure 13. Variogram rose of Sr90 raw data.

In case of regression when Gaussan RBF kerndl is fixed there ae three hyper-parameters: kernel
bandwidth, regularizaion constant C and € . Therefore, an error cube has to be etimated and analyzed
to find optimal SVR parameters. Some ideas on the seledion of hyper-parameters are discussed in [7].
Training and testing error surface ae presented in Figures 14, 15
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Figure 14. Training error surface, C= 1000. Axes correspond to X — kernel bandwidth; Y - € parameter.
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Figure 15. Testing error surface, C= 1000. Axes correspond to X — kernel bandwidth; Y - € parameter.

Normalized number of Suppat Vedorsis presented in Figure 16. The number of Suppat Vedorsis
monotonically deaeaing with parameter €. Let us note, that the largest reasonable order of €
corresponds to the standard deviation of data.
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Figure 15. Normalized number of Support Vectors. C= 1000. Axes correspond to X — kernel bandwidth; Y - € parameter.
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Figure 16. SVR mapping of SR90. Variogram of the training residuals of the model is pure nugget effect corresponding to the
nugget of raw data. “0” - training data, “+" — Support Vectors.
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The Sr90 concentration varies between 0 and 14 Ci/km? and the number of training data is 200
Regularization C parameter does not significantly influence eror curves when C>100Q At optimal
kernel bandwidth training error curves does not change below some value of € parameter which more
or less corresponds to the square root of nugget in original data, and then increases sgnificantly. At
fixed kernel bandwidth the number of Suppat Vedors monotonically deaeases (Figure 15). Some
discussions on error curves behavior can be foundin [7].



VII. 5. CONCLUSIONS

The problem of spatial data analysis and modeling with Suppat Vedor Madines was considered.
Both binary and multi-class classification problems were studied.

Multi-class problem was investigated using red data on soil types. Severa models generalizing
binary class SVC were gplied. It was found that simple one-to-rest model gives satisfadory results.
There ae till some open questions related to the seledion of kernel types, locd adaptation of SVC and
SVR, importance of data preprocessng, etc.

Spatial data mapping with SVR is an efficient nonlinea and robust approach able to extrad spatialy
structured information using raw data. High flexibility of SVR controlled by tuning hyper-parameters
can be dficiently used to model non-linea trends as well. Important and rather opened questions ded
with multivariate spatial predictions, when the quantity and quality of data for correlated variables is
different — the problem of spatial co-estimations; robustness of the solution, dired adaptation and
implementation of geostatisticd tools into SVC/SVR, understanding of the influence of data dustering
(preferential sampling).
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