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Abstract

Despite sophisticated present day automatic speech recognition (ASR) techniques, a single
recognizer is usually incapable of accounting for the varying conditions in a typical natural en-
vironment. Higher robustness to a range of noise cases can potentially be achieved by combining

the results of several recognizers operating in parallel.

One such approach is multi-band processing, mimicking parallel processing of frequency
subbands in human speech recognition as had been claimed by Fletcher. However, recent
findings in both human and automatic speech recognition have revealed insufficiencies, such as
the assumption of independence between frequency subbands, of the original multi-band ASR,
approach which often leads to reduced performance in the case of clean speech and wide-band

noise.

To overcome this problem, we propose and investigate a new set of “full combination” rules
which integrate acoustic models trained on all possible combinations of subbands, preserving
correlation information and leading to higher performance in all noise conditions. In this
development, particular attention was given to the theoretical basis for all of the rules developed
in terms of statistical theory, so that the assumptions that were necessary in each model become
clear. The new combination strategies are developed for both posterior- and likelihood-based

systems.

These new combination strategies are then also applied to the combination of diverse feature
streams, for example derived from multi-time scale analysis, which results in better exploitation

of the often used instantaneous and time difference features.

While combination may give the same weight to each expert, robustness of a multiple
stream system can be further enhanced when each stream expert is assigned a weight reflecting
its reliability. The new combination techniques are tested with several fixed and adaptive
weighting strategies, including relative frequency of correct classification, least mean squared

error, local signal-to-noise ratio, and maximum-likelihood based weights.

We will see how the new multi-band approaches, which are consistently trained in clean
speech, outperform original multi-band ASR models in both clean and noisy speech. Multi-
band processing improves over the baseline fullband recognizer only in the case of narrow-band
noise. However, combining multiple data streams from different time scales, using the same
“full combination” rules, has also shown to significantly improve over the baseline in wide-band

factory noise.
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Version Abrégée

Meéme si les techniques actuelles de reconnaissance automatique de la parole (RAP) sont tres
sophistiquées, un reconnaisseur isolé n’est en général pas capable de tenir compte des conditions
tres variables d’un environnement naturel typique. Un moyen d’obtenir une meilleure robustesse
a une certaine gamme de bruits consiste a combiner les résultats de plusieurs reconnaisseurs

travaillant en parallele.

Le traitement multi-bandes se base sur cette idée. Il simule le traitement en parallele de sous-
bandes de fréquences qui, selon Fletcher, est effectué lors de la reconnaissance vocale humaine.
Cependant, comme 'ont révélé de récentes découvertes dans le domaine de la reconnaissance
humaine et automatique de la parole, cette approche présente certains défauts, notamment celui
de considérer les sous-bandes de fréquences comme indépendantes les unes des autres. Cette
erreur a souvent entrainé une déterioration des performances dans le cas de parole claire ou de
bruit a large bande.

Pour remédier a ce probleme, nous proposons un nouvel ensemble d’approches de “full
combination” qui integrent des modeles acoustiques entrainés sur toutes les combinaisons pos-
sibles de sous-bandes, préservant ainsi 'information de corrélation et conduisant a de meilleurs
résultats dans toutes les conditions de bruit. Ces regles ont été élaborées dans le souci constant
de respecter la théorie des approches statistiques. De cette facon, les hypotheses utilisées dans
chaque modele sont également bien mises en évidence. Les nouvelles stratégies de combinaison
sont développées a la fois pour différents systemes & base de probabilités a posteriori, et pour
ceux qui s’appuient sur la vraisemblance. Par la suite, ces stratégies sont également appliquées
a la combinaison de différents flux de parametres caractéristiques dérivés, par exemple, d’une
analyse a échelles temporelles multiples. Cette technique permet une meilleure exploitation des

parametres caractéristiques instantanés et différentiels couramment utilisés.

Il est possible de combiner les experts en donnant & chacun le méme poids, mais on peut
encore améliorer la robustesse d’un systeme multi-flux en attribuant a chaque expert un poids
qui reflete sa fiabilité. Différentes techniques de combinaison sont donc testées en appliquant
plusieurs stratégies de pondération fixes ou adaptatives, qui comprennent la fréquence relative
de bonne classification, le critere de ’erreur quadratique moyenne, le rapport signal sur bruit

local, et le maximum de vraisemblance des poids de combinaison.

Nous verrons comment les nouvelles approches multi-bandes, entrainées exclusivement sur de

la parole claire, conduisent a des performances supérieures aux modeles multi-bandes classiques,
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et ceci aussi bien pour la parole claire que pour la parole bruitée. Toutefois, ce n’est que dans le
cas de bruit a bande limitée que le traitement multi-bandes est plus performant que le systeme
de référence travaillant sur le spectre entier. D’un autre coté, le fait de combiner des flux
de données multiples extraits & partir de différentes échelles temporelles en utilisant les mémes
regles de “full combination” a également apporté un gain significatif par rapport a notre systeme
de référence dans le cas de bruit d’usine a large bande.



Abstrakt

Trotz der heutzutage hochentwickelten automatischen Spracherkennungssysteme ist ein einzel-
ner Spracherkenner oft nicht in der Lage, die stérenden Einfliisse einer bestindig wechseln-
den akustischen Umgebung zufriedenstellend zu kompensieren. Hohere Robustheit gegen eine
Vielzahl von Stérungen unterschiedlicher Charakteristik kann hingegen erzielt werden, wenn
die Ergebnisse mehrerer, parallel arbeitender Erkenner kombiniert werden.

Ein Ansatz hierzu ist die Mehrband (“multi-band”)-Verarbeitung, die die vermutete Eigen-
schaft der menschlichen Wahrnehmung, einzelne Frequenzbander getrennt zu erkennen, simuliert.
Jiingere Arbeiten auf den Gebieten der menschlichen und maschinellen Spracherkennung haben
die Unzuldnglichkeiten dieser urspriinglichen Mehrband-Verfahren aufgezeigt, so etwa die inkor-
rekte Annahme einer unabhéngigen Informationsverarbeitung in verschiedenen Frequenzbéndern.
Es wird angenommen, dass dies der Grund ist fiir die oft verringerte Erkennungsleistung dieser
Systeme sowohl bei der Verarbeitung ungestorter als auch verrauschter Sprachsignale.

Zur I"Jberwindung dieses Problems wird eine Gruppe neuer Kombinationsregeln eingefiihrt,
die auf dem “full combination”-Ansatz basieren. Dieser integriert die akustischen Modelle aller
verfiigharen Kombinationen von Frequenzbindern, so dass sdmtliche Korrelationsinformation
zwischen den Frequenzbindern ausgeschopft wird. Dies fiihrt zu héheren Erkennungsraten in
allen hier getesteten Rauschvorkommen. In der mathematischen Entwicklung dieser Kombina-
tionsregeln wurde insbesondere acht gegeben auf die wahrscheinlichkeitstheoretische Grundlage
aller entwickelten Regeln, so dass die mathematischen Bedingungen, die fiir jede respektive
Regel zutreffen, hervortreten. Die neuen Kombinationsregeln werden sowohl fiir “a posteriori”-
Wabhrscheinlichkeiten als auch fiir Likelihoods entwickelt.

Die neuen “full combination”-Kombinationsregeln werden dann ebenfalls im Rahmen der
Mehrkanal (“multi-stream”)-Erkennung auf mehrere Merkmalsstrome angewandt. Diese wer-
den zum Beispiel durch die Verwendung mehrerer unterschiedlicher Analysezeitspannen (“mul-
tiple time scale analysis”) gewonnen, was in Verbindung mit den neuen Regeln zu einer besseren
Ausschopfung der Kurzzeitmerkmale und Langzeit-Ableitungsmerkmale fiihrt.

Kombinationsregeln kénnen jedem akustischen Model die gleiche Gewichtung geben. Die
Robustheit eines Mehrkanal-Systems kann jedoch gesteigert werden, wenn die Gewichtung dem
Mass an Zuverlassigkeit entspricht, das einem Merkmalsstrom zugeordnet werden kann. Ver-
schiedene statische sowie adaptive Gewichtungsverfahren werden daher entwickelt und im Rah-

men der neuen Kombinationsregeln ausgewertet. Sie basieren auf relativen Hiufigkeiten, dem
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kleinsten mittleren quadratischen Fehlerkriterium, lokaler Signal/Rausch-Schétzung, und dem

“maximum likelihood”-Kriterium.

Es wird gezeigt, dass die neuen (“multi-band”) Mehrband-Verfahren, die nur auf rauschfreien
Sprachdaten trainiert werden, die fritheren Mehrband-Verfahren an Erkennungsrate iibertreffen
auf rauschfreien sowohl als auch auf verrauschten Testsignalen. Nichtsdestotrotz ist Mehrband-
Verarbeitung nur in bandbegrenztem Rauschen von Vorteil. Die Kombination mehrerer Da-
tenkanile (“multi-stream”), auf der anderen Seite, erweist sich auch auf Sprachsignalen mit
(breitbandigem) Fabrikhallenldrm dem einzel-angewandten Erkenner iiberlegen, wenn das “full

combination”-Verfahren eingesetzt wird.
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CHAPTER 1

Introduction

Automatic speech recognition (ASR) promises to be a powerful means to ease human interac-
tion with computers. For this to become true, automatic speech recognizers need to provide
performance which is (almost) comparable to human performance for any application domain.
Unfortunately, up to now, automatic speech recognizers are highly sensitive to both speaker
and noise characteristics, degrading fast under mismatched training and testing conditions.
Here, the measure of “training and testing mismatch” is not the physical difference between
the training and testing data sets but the mismatch in how well the knowledge gained from the
training set applies to the unknown testing set.

If the testing or application domain and with that the expected speaker or noise charac-
teristics are known, an automatic speech recognizer can be trained for this application. Un-
fortunately, due to the nowadays increased use of mobile phones, which are often used as the
interface to automated telecommunication services, and laptops, which provide for speech in-
and output, the application environment is difficult to foresee and usually continuously chang-
ing. Moreover, although for some applications such as dictation systems and voice dialing, the
system could be trained for a specific user and acoustic environment, such a solution is not
satisfactory for most other applications. A lot of research is therefore dedicated to investigate
how automatic speech recognizers can be rendered more robust to noise.

1.1 Our search for increased noise robustness in auto-

matic speech recognition (ASR)

The different approaches to increase the robustness of an automatic speech recognizer comprise,
among others, more appropriate feature extraction, better acoustic modeling and advanced
decoding schemes. In this framework the goal of this thesis is to investigate and develop new
paradigms for noise robust ASR based on multi-band and multi-stream processing. Although
the latter is a generic term of the first, we distinguish these two approaches due to historical

reasons: multi-band processing was — as far as our research is concerned — investigated first and
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its principle was then generalized to multi-stream processing.

In multi-band processing, the entire frequency domain is split into frequency subbands
which are processed independently up to a certain point where the information from each band
is recombined. In multi-stream processing, either the entire frequency domain is considered
several times, each time employing different processing strategies, or other modalities, such as
visual representations, of speech production are included. The information from each of these
streams is correspondingly recombined later in the process. Both approaches try to better utilize
the inherent redundancy in the speech signal either by processing different parts of the signal
separately or by different processing of the same signal stream. If the streams are correlated, it
can be assumed that combination is best carried out on the feature level so that dependencies
between the streams can be modeled. In case when the streams are corrupted by noise, the
correlation between the streams is decreased. It can thus be assumed that the streams are
better modeled independently, as this is likely to result in independent errors conducted by
each stream recognizer due to train/test mismatch. Nothing can be done about these errors
when dealing with a single-stream (fullband) recognizer only. However, when combining the
outputs of two or more recognizers, independent errors coming from any one of them can be
dampened. Thus, the multi-band and multi-stream systems are expected to provide higher
noise robustness to any kind of noise than a single-stream system, without any knowledge of
the noise or the necessity of different training databases and noise adaptation phase.

In this thesis, we investigated several frame-level combination approaches, some of which
employ a reliability term for each subband or stream (possibly different for each speech unit).
Different ways to estimate these reliability factors will be proposed. The multi-band and multi-
stream strategies are developed on clean speech data and their noise robustness is tested and
evaluated on noise-corrupted speech with the noise stemming from various additive noise envi-
ronments. The different multi-band and multi-stream recognizers are compared amongst each

other as well as to the baseline fullband recognizers.

Our research is carried out in the framework of Hidden Markov Model (HMM) based speech
recognizers, where HMM emission probabilities are estimated through either Gaussian Mixture
Models (GMMs) or Artificial Neural Networks (ANNs). The former system will be referred to as
HMM-GMM recognizer, the latter as HMM/ANN hybrid. An HMM-GMM system outputs likeli-
hoods so that combination of different stream HMM-GMMs is carried out on these, whereas the
ANN in an HMM/ANN system outputs posterior probabilities which are used for recombination
in this case. After recombination, the posteriors are divided by the prior probabilities to obtain
(scaled) likelihoods for the Viterbi decoder.

1.2 Goals of this thesis

In the framework of this thesis, we discuss two principle approaches to enhance noise robustness
in an automatic speech recognizer. These are multi-band and multi-stream processing both
relying on independent processing and recombination of individual streams. It will be shown
how, in both approaches, the different streams can account for diverse mismatched conditions
due to their inherently different processing strategies, and how the streams can complement
each other at the combination stage.
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Improvement of multi-band processing In multi-band processing, the speech signal in
the spectral domain is split into several subbands which are processed independently for feature
extraction and possibly probability estimation before they are recombined for further processing.
In the case when noise only occurs in one frequency subband, it does therefore not mix with
the other clean feature coefficients which allow for reliable decoding of the clean part of the
speech. Similarly, in missing data (MD) processing as applied to robust ASR, it is tried to
segregate the different sound sources, such as speech and noise, in the input signal, and then
to recognize at each time frame the clean speech part only. This includes the necessity for
a noise detection algorithm and for the processing of continuously varying combinations of
(clean) feature coefficients. Moreover, only one fixed decomposition into clean and noisy data
(a so-called “MD mask”) is considered at each time frame.

Original subband processing misses important frequency correlation information among sub-
bands. We develop in this thesis, an approach to subband processing which provides a solution
to the problem of both loss of frequency correlation in multi-band processing and fixed MD
masks through a revised decomposition of the frequency band into an exhaustive and mutual
exclusive set of frequency subbands. This induces new combination strategies as described
below.

Investigating multi-stream processing In multi-stream processing, different possibilities
exist to incorporate additional knowledge sources. They can stem, among others, from different
data recordings (such as audio and visual streams), pre-processing, feature extraction, or from
a different choice, structure and training of the classifiers. In this thesis, we concentrate on
the use of different feature streams, from either different feature extraction techniques or the
same technique but employing different parameters and/or pre- or post-processing strategies.
Thus, the same (fullband) frequency domain undergoes different processing strategies leading to
different feature representations which are used in individual recognizers, the errors of which are
hoped to be complementary. The streams are recombined, just as in the multi-band approach,

later in the process to dampen the errors.

Improved classifier combination strategies For both approaches, multi-band and multi-
stream, the correct choice of features as well as combination strategy play an essential role for

the performance and robustness of the system.

We therefore investigate the advantages and disadvantages of several combination strategies.
One set of new combination strategies arises from the extension of the original subband approach
as described above, based on the integration of all possible subband combinations. These
are equally applicable to both multi-band and multi-stream processing. Other combination

&

strategies are motivated from research on human speech recognition, such as the “product of
errors rule” and “error correction in posteriors combination”. Where appropriate, all approaches

are derived for both posterior-based and likelihood-based systems.

Stream weighting according to stream reliability Due to the inherent characteristics
of each (subband or fullband) input stream and the changing environmental conditions during
the application of a speech recognizer, at a given point in time, some streams are more reliable
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than others. Reliability in this context signifies the trust we can have in the stream recognizer’s
output when it is applied under unknown and possibly mismatched condition. Depending on its
reliability, a stream recognizer should receive more or less weight in the combination procedure

in order to render the overall result as reliable as possible.

The combination strategies either naturally include weights due to their mathematical
derivation or can artificially be enriched by appropriate weights which account for the reli-
ability of each constituent. We will see that the weights can depend on (i) the stream index,
(ii) the speech unit (in our case the phoneme), (iii) the local data and/or (iv) any combination

of the former.

Different strategies for their estimation can be found in the literature which either employ
offline training of the weights or online adaptation during recognition. In the case of matched
training and testing conditions (of both the stream recognizers and the weights), the former
approach is capable of sufficiently reflecting the performance of each recognizer. In the case
of mismatched application, the latter approach is expected to more appropriately account for
unknown conditions, but usually also demands more complicated algorithms with possibly

slower performance due to increase in computational needs.

In this framework, new offline and online weighting schemes will be presented. The former
are based on least mean square error and relative frequency estimations. The latter employ
signal-to-noise ratio measurement and maximum likelihood estimation.

Experimental evaluations The proposed algorithms for combining multiple subband or
fullband streams, together with the different weighting strategies, are tested on a continuously
spoken digits database under noise-free (matched) conditions and under noise-corruption by
artificial band-limited and natural wide-band noise (mismatch). As our goal was to develop
systems which can easily generalize and adapt to unseen data, training is only carried out on

clean speech.

1.3 Structure of thesis

In Chapter 1 the main goals of this thesis were presented, namely investigation and improvement
of multi-band and multi-stream processing together with the search for improved classifier

combination and reliability weighting strategies.

In this thesis, we pursue the task of speaker independent, spontaneous telephone speech
recognition in clean and noisy environments through the use of multiple streams which are
processed in parallel, laying specific emphasis on training of the systems in clean speech only

and unknown application to speech corrupted by various different additive noise cases.

In Chapter 2 a short introduction to human speech processing is given. Early psychoacoustic
findings which motivated multi-band processing in ASR are presented, some of which have
meanwhile been revised. The more recent models are presented next and their influence on

multi-band processing are discussed.

In Chapter 3 the necessary background for ASR will be given for the general case of single-
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stream fullband processing. This involves presentation of statistical pattern classification before
coming to statistical sequence recognition by Hidden Markov Models (HMMs) as applied to ASR.
The recognizer which is mainly used in this thesis is a combination of HMMs and Artificial Neural
Networks (ANNs), which is refered to as HMM/ANN hybrid or, in the specific case when the
neural net is a Multi-Layer Perceptron (MLP), as in this thesis, as HMM/MLP hybrid. It is
described in the last section of Chapter 3.

A wide range of approaches to enhance noise robustness in automatic speech recognizers
exist. In Chapter 4 we discuss the most widely used and most promising strategies, involv-
ing robust feature processing, robust modeling, and the missing data approach. Multi-band
and multi-stream processing constitute another set of approaches to enhance noise robustness
through parallel processing of multiple complementary information streams.

In Chapter 5, the paradigm of multi-band processing is presented in its general form, before
we come to the description of previous multi-band research and its limitations. As early multi-
band processing did not take into account correlation information between subbands we present,
in the framework of this thesis, new approaches which circumvent this short-coming.

An essential part in stream combination is the recombination module. Different strategies
to probability combination have been investigated and are presented in Chapter 6. Where
appropriate, their mathematical formulae are developed for both posterior- and likelihood-based
systems.

Through the use of multiple complementary streams and an appropriate combination scheme,
multi-band and multi-stream approaches can achieve improved noise robustness as compared
to a single fullband-based recognizer. This can even be enhanced through the use of reliability
weights in the combination process. In Chapter 7 different reliability weighting strategies are

presented which have been investigated in this thesis.

In Chapter 8 the new approaches to multi-band processing are evaluated experimentally
on clean and noise corrupted data sets of continuously spoken digits. The newly developed
combination strategies as well as reliability weights are compared to standard combination
schemes and to fullband baseline systems. Most systems are HMM/MLP hybrids, however, for
the implementation of one of the weighting schemes we had to use HMM-GMMs.

Chapter 9 addresses multi-stream ASR. After illustration of the general approach to multi-
stream processing, its specific realization in this thesis is described, motivated from both recent
psychoacoustic findings and engineering reasons. Within this framework, the different streams
employed in this thesis consist of single- and multi-time scale feature streams. State of the art
research to multi-stream processing is also discussed.

In Chapter 10 the experiments to our work on multi-stream processing using HMM /MLP
hybrid systems are presented, employing the different proposed feature streams, combination
strategies and reliability weights. The same test bed as for the multi-band experiments is used.

Chapter 11 summarizes the research pursued in this thesis, presents the conclusions which

can be drawn, and gives some ideas for future directions in this account.
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CHAPTER 2

Background to human speech

processing (HSP)

Several developments presented in this thesis are inspired from human hearing properties.

In this chapter, we therefore give a short introduction to human speech processing. A
well-known model for assessing the functions of the human speech production apparatus by
time-invariant filters is introduced. We then turn to human speech perception, discussing some
of the most prevailing characteristics of the human auditory system which influenced, to a

certain extent, the development of specific automatic pre-processing units.

We then discuss the psychoacoustic motivations which led to multi-band processing. These
stem from Fletcher’s investigations on human auditory processing and his assumption of in-
dependent auditory bands. We then come to newer models which actually demonstrate the
insufficiency of Fletcher’s approach and show the necessity to revise both Fletcher’s model and
the multi-band approach based on it.

2.1 Human speech production modeling

The articulatory mechanism of speech production is often modeled with the so-called source-
filter-model as introduced by Fant (1960). In this model, the vocal tract is represented by a
time-varying filter, the source energy of which is the excitation signal. The glottis produces a
sound of many frequencies, and the vocal tract filters a subset of these frequencies for radiation
from the mouth. In the model, the excitation signal is approximated by either a generator
of periodic impulses for the creation of voiced sounds, or by a generator for white noise for
the production of unvoiced sounds in the excitation signal. By adjusting the degree the two
generators are involved in the production of a certain sound, mixed sources of excitation or no
excitation at all (for a speech pause) can also be modeled. In the notation of the “z-transform”
(Kunt, 1996), the signal produced in this way by one or more generators U(z) is then passed

on to a linear filter that represents the filter function of the vocal tract V(z). It enhances the
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respective resonance frequencies according to whatever sound is about to be generated and,
with radiation at the lips R(z), gives out the speech signal F'(z). The discrete signal can be
represented in the z-domain (Schukat-Talamzzini, 1995, p. 33) simply by

F(z)=U(z)-V(z)- R(z) (2.1)

This complete transfer function of speech production' is for practical reasons often approxi-
mated by only one filter H(z) ~ ﬁ, with the polynomial in 2= A(z) = "M a;z~" and
ap = 1, (which converges to a finite impulse response (FIR) filter). The speech production
model can then be written as:

F(z)=E(z) -H(z) = E(z) - (2.2)

A(z)
with E(z) the z-transform of the excitation signal and F(z) the z-transform of the produced
speech signal in the frequency domain. Speech signal F'(z2) represents the output at the speaker’s
mouth, directly after production. Linear systems of this form are referred to as all-pole or
autoregressive models. In Chapter 4, we will see various factors which act upon the signal F'(z)

before it reaches the listener or other (non-human) receivers.

The source-filter model forms the basis for many of the most standard feature extractors,
such as e.g. linear prediction (LP) modeling and cepstral analysis (Rabiner and Juang, 1993).

2.2 Human speech perception

In this section, we present some important characteristics of human speech perception, such as
the concept of critical bands, subjective pitch and the perception of loudness. Moreover, the
parallel processing which is conducted in human perception will be described. These phenomena
found in human speech processing were incorporated in to ASR processing units in order to
approximate human performance. Feature extraction based on knowledge drawn from the
human auditory system will be discussed in Chapter 4.

Critical bands In the inner ear, inside the cochlea, sound waves cause the basilar membrane
to vibrate up and down. A certain sound gives rise to a traveling wave on the basilar membrane
(von Bekesy, 1960). The distance the wave travels before it reaches its peak amplitude is a direct
function of the frequency of the sound. Because tones of different frequency give rise to maximal
vibration amplitudes at different locations along the basilar membrane, the spectral components
of a complex sound are separated along the basilar membrane according to frequency. The
basilar membrane can therefore be seen as a spectrum analyzer characterized by critical bands.
A critical band represents a certain frequency range, outside of which subjective responses,
such as loudness, change abruptly? (Rabiner and Juang, 1993). Based on these human critical
bands, a perceptually based frequency unit was created, the Bark scale, to link the absolute
frequency of a sound and the frequency resolution of the ear in terms of critical bands. A Bark
covers the frequency range of a critical band, increasing logarithmically with frequency.

I This actually only applies to voiced sounds (Schukat-Talamzzini, 1995).
2The loudness of a band of noise at a constant sound pressure remains constant as the bandwidth of the noise

increases up to the width of the critical band; after the range of the critical band has been surpassed, increased
loudness is perceived.
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Subjective pitch Another important subjective criterion of the perception of frequency con-
tent is the fact that frequency is not perceived linearly. These findings, stemming from psy-
chophysical experiments, have led to the introduction of another but similar scale, the Mel
scale, which defines, for each tone with an actual frequency f (measured in Hz) its subjective
pitch. As a point of reference, the pitch of a 1 kHz tone is thereby defined as 1000 Mels. By
adjusting the frequency of a tone such that it is half or twice the perceived pitch of a reference
tone, other subjective pitch values were determined (Rabiner and Juang, 1993).

Both perceptually based frequency scales, the Bark and the Mel scale, are widely used in
pre-processing of speech signals as we see in Chapter 4. They provide higher noise robustness

than linearly spaced frequency scales.

Power law of hearing Hearing sensation increases logarithmically as the intensity of the
stimulus increases. The perception of intensity is usually referred to as Ioudness. With the
help of auditory experiments it was found that loudness L is approximately proportional to
the cube root of intensity I: L = I%3, with a doubling of loudness being observed for a 6 to
10 dB increase in sound pressure levels (SPL) (Moore, 1997). This rule is called the power law

of hearing.

Equal loudness contours The human ear is not equally sensitive at all frequencies, being
more sensitive to sounds between 2 and 5 kHz and less sensitive at higher and lower frequencies.
(Thus, the range of 0 to 8 kHz is usually assumed sufficient for human speech perception,
whereas for music a wider range of up to 16 kHz is required). Thus, although the human
ear collects sounds ranging from 16-20 kHz (Schukat-Talamzzini, 1995, p. 38), it amplifies
the 2-5 kHz frequency range where much of the important speech information registers. The
sensitivity to different frequencies is more pronounced at low SPLs than at high SPLs which
can be illustrated by so-called equal loudness contours (Moore, 1997). The contours tend to

become flatter for high loudness levels.

Parallel and hierarchical organization The central auditory system is organized hier-
archically, with acoustic information being transferred and processed progressively from one
center to the next. This hierarchical organization is superimposed upon a parallel organization
in the form of separate, parallel channels connecting the various levels. Auditory information
is segregated across several parallel pathways which are represented by distinct populations
of neurons, exhibiting different response properties to acoustic stimuli. It is argued that the
different neurons process different attributes of the acoustic information.

We only briefly illustrated some characteristics of human hearing but they already give in-
sight into the possibilities which exist to model human characteristics in automatic processing.
We see in later chapters how they were brought to bear in feature extraction techniques in
automatic speech recognition systems, such as MFCC, PLP, and J-RASTA-PLP processing, and
significantly increase their levels of performance. Moreover, the description of human percep-
tion as processing heterogeneous information in parallel streams can be used to motivate similar

approaches in ASR, such as multi-stream processing employing diverse information streams.
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2.3 Psychoacoustic motivation to multi-band ASR

We concentrate on the illustration of important psychoacoustic findings which motivated the use
of multiple frequency subbands in automatic speech processing, synthesis and coding (Bourlard
et al., 1996b; Hermansky et al., 1996; Goldberg and Riek, 2000).

One of the most important investigations which can be seen as laying the ground for multi-
band automatic processing, is Fletcher’s study on human speech recognition, carried out be-
tween 1920 and 1950. His motivation was to measure the quality of the perception of speech
sounds in telephony to improve telephone speech intelligibility. In 1994, Allen (Allen, 1994)
summarized this work recalling its findings and making them more accessible to the speech
research community. For any work on multi-band processing, Fletcher’s results need to be well
understood and are, thus — based on (Allen, 1994) — discussed in detail in the following.

2.3.1 On Fletcher’s independent ‘articulation’ bands

First experiments in (Fletcher, 1953) were carried out on normal conversational speech over a
(modified) telephone channel. Fletcher already found that human speech recognition (HSR) is
strongly dependent on the effects of semantic context, confounding the measurement of phone
errors and therefore complicating intelligibility testing and increasing variability of the results.
He thus excluded context from his subsequent experiments by changing to the use of nonsense

4

Consonant-Vowel-Consonant, (CVC) syllables, such as “yif” or “moush”.

Fletcher used the term ‘articulation’ to denote the empirical probability of correct recogni-
tion of sounds having no context, such as the nonsense syllables used, and ‘recognition’ for the
empirical probability of correct recognition of sounds having context, such as words. For many
different speaker-listener pairs, the ‘articulation” was varied by (i) changing the signal-to-noise
ratio (SNR) of the speech signal, and (ii) low-pass and high-pass filtering the speech. After the
listeners had noted what they had heard, the error probabilities for the consonant (1—c¢) and

vowel (1—wv) sounds, respectively, were computed. An average CVC-phone ‘articulation’ s was

__ 2c+w
- 3

syllable ‘articulation’ score S, assuming independent C and V units. For perfect conditions, i.e.

calculated from the ‘articulation’ of all C’s and V’s (s ) along with an estimate of the CVC

very high SNR and no filtering, the average ‘articulation’ was 98.5%.

Fletcher found that CVC syllable ‘articulation’ S (i.e. the probability of correct identification
of a CVC syllable) is well predicted from the phone ‘articulations’ ¢ and v by the relation

S = v

~ s (2.3)

This shows that the three sound units are perceived as independent sounds which means that for
correct identification of the syllable all three sound units must be correctly identified. However,
we have to bear in mind that this is only true for nonsense CVC’s (which have maximum entropy
(Allen, 1994, p. 571)) as, for a meaningful word, context decreases the entropy. A similar finding
was more recently achieved by Bronkhorst et al. (1993) who also found that under conditions

of low noise, phones are perceived independently.
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Experiments with low- and high-pass filtering The newly discovered fundamental im-
portance of the phone ‘articulation’ to HSR led to the question of how humans decode phones.
For this, Fletcher studied phone ‘articulation’ s (i.e. context independent phone recognition)
for various frequency filters and noise conditions by low-pass L and high-pass H filtering the
speech. He found that the partial ‘articulations’ (i.e. the ‘articulations’ s;, and sy of the two
bands) did not sum to the wide band ‘articulation’ s.

After looking for a non-linear transformation A of the partial ‘articulations’ which would
make them additive, i.e. A(sp(fe,@))+A(sy(fe,a)) = A(s(a)) with f. being the high /low-pass
cut-off frequency and a the speech gain (used to vary the SNR), Fletcher found empirically A(s),
which he called the articulation index (AI):

As) ~ 2810l =5) (2.4)

logo(1 = smax)
where constant $,,q,, = 0.985 is the maximum ‘articulation’ and €,,;, = 1— 8z = 0.015 is the
corresponding minimum error. Since this is dealing with transformations of probabilities, the
additivity condition corresponds to a (statistical) independence assumption. Solving (2.4) for s
and with this e(4) = &2 . which describes

one gets wide band ‘articulation’ s(4) = 1 — &7 A s

min’
the error probability of the phone as the minimal error €,,;, to the power of the articulation

index.

According to Fletcher (1953), the articulation index accurately characterizes speech intelli-
gibility under conditions of frequency filtering and noise masking, and the AI can be interpreted
as a fundamental internal variable of speech recognition.

2.3.2 Fletcher’s product of errors rule

For the two band example of high- and low-pass filtered speech it can be followed from (2.4)

and its additivity assumption

log(1 —s) =log(1 —sz) + log(1l — sg) (2.5)
which becomes
1-s = (1—=s)-(1—spg)
€ = €L-EH (2.6)

using the error s = 1 — ¢ in (2.6). He found that this term was true for any value of the cut-off
frequency fe..

Equation (2.6) can be interpreted as stating that ‘articulation’ errors in the low-pass filtered
band e, are independent of the ‘articulation’ errors in the high-pass filtered band £ and vice
versa. It means that only if there is an error in both subbands, the whole phone is wrongly
recognized. This is equivalent to stating that the overall recognition is correct, if any subband
is correct. Fletcher thus thought to have shown that the phones are processed in independent
frequency channels, which he called articulation bands, and that these independent estimates
of a phone in each frequency band are merged in an “optimal” way.

Allen (1994) expressed the above to mean that we are listening to independent sets of phone

features in the two bands and are processing them independently, up to the point where they
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are fused to produce the phone estimates. Allen states that (2.6) “may be generalized to a
multichannel articulation band model” (Allen, 1994, p. 572) of K channels, where K is the
number of independent ‘articulation’ bands:

E=E€162...€K (2.7)

which is called Fletcher-Stewart multi-independent channel model of phone perception, follow-
ing Allen (1994) who writes that it was first proposed by Stewart but developed by Fletcher.
Following Bourlard (1999) and for ease of notation we simply refer to it as (Fletcher’s) product
of errors rule. Note that this model does not state how to identify the band in which recognition

is correct, as it is just intended as a description of human recognition performance.

The idea of independent articulation bands, which correspond to frequency subbands, which
are processed separately up to a certain point where their information is joint for phone es-
timates led to the multi-band approach in ASR. In ASR, however, the information from each
subband is commonly represented by recognition probabilities rather than error probabilities.

The multi-band approach will be discussed in Chapter 5.

Following Bourlard (1999), we discuss in Section 6.4 how the “multi-independent channel
model”, that is the “product of errors rule”, could also be realized in a speech recognizer, under

the obviously wrong assumption of independent and correct recognizers.

Local SNR dependency Subsequent research has shown (Green et al., 1991) that the kt*
band ‘articulation’ error ei, is determined by the local SNR (normalized to 30 dB) in each

critical band

SNR,
30 (2.8)

==

&k = (5mzn)

This relationship shows that the AI is determined by the SNR in each band and not by the
band energy, i.e. the local contribution of each band basically depends on the local SNRy. The
AT can then directly be written as:

K
1 SNR
As) = =3 2% 2.
(5) K 2730 (2.9)

In later works, the equally important frequency bands were substituted by 1/3- or 1/1-octave
bands which made the use of band-specific weighting factors necessary to render distributions
of each octave band to speech intelligibility equally important. In automatic multi-band pro-
cessing, a similar approach to weight the different subbands according to their inherent SNR

can be employed to render recognition more reliable. This is discussed in Section 7.4.1.

Fletcher’s studies motivated other scientists to investigate human intelligibility performance

under different tasks.

Miller and Nicely (1955), for example, carried out listening experiments on 16 English
consonants, spoken over voice communication systems with low-pass and high-pass filtering
as well as random noise. Their results also showed that human speech recognition on narrow
frequency bands was high. Miller and Nicely were especially interested in confusion between

sounds. They found that low-pass filtering and noise masking led to consistent patterns of
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confusions, leaving phonemes audible, while errors due to high-pass filtering seem to occur
randomly as consonants lose their intelligibility. Grouping the 16 consonant sounds into a
set of 5 articulatory features (such as voicing, nasality, etc.) showed that the perception of
each one of these features appears to be relatively independent of the perception of the others.
They argue that breaking down the measure of transmission into an estimation of each of
the 5 features separately corresponds to considering 5 different communication channels. If
all channels really were independent, the sum of the transmitted information in each channel
would equal the information transmitted by the whole channel. As articulatory features are not
independent and the sum of all transmissions results in a higher value than transmission of the

whole channel, it was concluded that this is an indicator of redundancy in the speech signal.

The argument of inherent redundancy in the speech signal further motivated multi-band
processing, as it suggests that there is sufficient information present in each of the subbands to

warrant a certain level of independent processing.

2.4 Recent psychoacoustic findings

New results from research on HSR illustrate the insufficiency of Fletcher’s AI formula described
in Section 2.3.1, when applied to more realistic test conditions. In these experiments, which
had been carried out in these works on HSR, not only low- and high-pass filtering but also
band-pass filtering of speech was investigated. This led to important results showing that
humans integrate frequency information from non-contiguous bands which, as is seen below,
often results in higher robustness than the use of adjacent bands of the same size. We will
see in Section 5.6 how these findings can be employed to improve the usually used multi-band

approach as applied in automatic speech recognition.

2.4.1 Discussion of the AI and subband independence assumption

Speech transmission index An extension of the articulation index, which was introduced in
Section 2.3.1, is the so-called speech transmission index (STI) which takes into account distor-
tions in the time domain (Houtgast and Steeneken, 1985) and non-linear distortions (Steeneken
and Houtgast, 1980). The STI was proposed by Steeneken and Houtgast for the measurement,
of speech transmission quality. For consistency with Section 2.3.1, we nevertheless only con-
sider degradation in the frequency domain, such as filtering. The band-specific parameter is
again the SNR which is modeled by the transmission index (TI;). Using seven octave bands,
Steeneken and Houtgast define the STI as

K
STI =) oy - Tl (2.10)
k=1

with K =7 and oy, being the importance-weighting of each octave band (3, aj=1). Just as for
the AI, the STI results from a (weighted) summation over frequency bands, and thus implicitly
assumes independence between frequency bands. However, in a later investigation, Houtgast
and Verhave (1991) found that the energy contents in neighboring bands can be correlated

for the case of continuous speech. Steeneken and Houtgast (1999) argue that (instantaneous)
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speech levels in adjacent bands show a high degree of co-variation so that the information
from these bands could be correlated and even redundant. As the original experiments leading
to the development of the STI only included contiguous bands, no effect of correlation had
been observed. However, practical experience with the STI, which also included non-contiguous
bands showed that intelligibility was underestimated by the STI for this kind of band-pass
filtered speech. Missing contributions of the gap in a non-contiguous band did not result in as
low intelligibility as estimated by the AI. Redundancy between bands was assumed to account
for this (Grant and Braida, 1991; Steeneken and Houtgast, 1999).

To investigate the discrepancy, Steeneken and Houtgast (1999) carried out more experiments
in which the octave bands which were included in the pass-band and their SNRs were varied.
The database comprised nonsense CVC-words only. The STI is calculated with the help of the

transmission index TI;, which is defined as follows:

SNRy + 15
T, = ——— 2.11
= S 2.11)

with 0 <TI <1. For the three selected SNR-values of 15, 7.5 and 0 dB the TI; thus had the
values 1.0, 0.75 and 0.5, respectively. Comparing the results between the sets of bands with
gaps and the sets of contiguous bands showed that the former resulted in relatively low STI
whereas the latter resulted in a relatively high STI value in relation to the CVC-word score.
This was attributed to overestimation of the total information content for bands without gaps.
It was therefore proposed that a reduced contribution from adjacent octave bands through a

redundancy factor could correct the discrepancy, leading to a revised version of the STI :

STIT = CM1T11 — ﬂl \ (TIlTI2) + CK2TI2 — ﬂ2 (TI2T13) + ...+ CKKTIK (212)

where K, o, and TIj are defined as in (2.10) and Eleak—Zf:_llﬁk =1. (Taking the root of the
TI;, factors is not essential but makes the terms in the expression more uniform). The effect of
the redundancy correction depends on the values of 3, and the simultaneous contribution to the
information content by the two adjacent frequency bands TI; and TIj1, which is given by their
product. Equation (2.12) takes account of the redundancy between the six neighboring octave
bands only, although it could be extended in a simple manner to also consider redundancy

introduced by non-adjacent bands, with a corresponding increase in the number of parameters.

The new STI,®> model was applied to earlier experiments using band-pass filtering in noise
producing adjacent octave bands only. Here, only a small improvement could be gained with the
new model, indicating that the original STI model was well suited for these conditions of pass-
bands without gaps. In the experiments on non-adjacent bands, the new model, which takes
into account the correlation between neighboring bands, resulted in a more accurate prediction
of intelligibility scores than the former, additive STT model. The frequency-weighting factors
ap and the redundancy-correction factors 3y, which were set up over various sub-sets of the
data, resulted each time in similar values.

Research by Grant and Braida Grant and Braida (1991) also addressed the question
regarding the additivity assumption of the information in frequency subbands and, with that,
the independence assumption of the bands. According to their analysis, the deviation from

3The subscript r indicates the revised STT model.
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the additivity assumption could be due to an overlap of the slopes of the filters which produce
the non-adjacent bands. On the other hand, they argue that closely-spaced frequency bands
could have been affected by self-masking. Finally, they also mention possible high correlation

between neighboring frequency bands.

The aforementioned investigations indicate that high correlation and redundancy exist in
the speech signal. The assumption of independent frequency bands is therefore no longer
sustainable. For the processing of frequency subbands in ASR, we thus have to ensure that
we appropriately account for the correlation and redundancy in the speech signal. A solution
is provided in Section 5.6 through a new model to multi-band processing where correlation

information between all (contiguous and non-contiguous) bands is considered.

2.4.2 TImportance of non-contiguous frequency bands

Experiments on speech limited by frequency other than only low- and high-pass filtering were
carried out in (Lippmann, 1996) and (Silipo et al., 1999). As we will see in this subsection,
good perception of such stop-band filtered speech sustain above findings on the importance of

non-contiguous frequency bands.

Investigating mid-frequencies Complementary to Fletcher’s work, who only studied high-
pass and low-pass filtering, Lippmann (1996) investigated the removal of mid-frequency speech
energy, simulating human hearing loss. The purpose of the study was to explore the importance
of high-frequency speech energy for consonant perception when mid-frequencies (from 800 Hz
to 4 kHz first, then raised to 8 kHz) are missing. Results show that speech energy at high
frequencies is most important when mid-frequency speech energy is not available. The addi-
tional use of high-frequency speech energy with low-pass filtered speech increased recognition
accuracy by almost 30 %. In similar experiments (French and Steinberg, 1947; Kryter, 1962)
where only the low-pass cut-off frequency was extended from 4 to 8 kHz, an overall gain of
only 10 % had been obtained. Moreover, Lippmann’s results show that listeners can integrate
acoustic cues from widely disparate frequency bands.

Intelligibility of combined channels Silipo et al. (1999) investigated whether detailed au-
ditory analysis of the short-term acoustic spectrum is required to understand spoken language.
For this, the spectrum was split into 4 1/3-octave channels, which they called “slits” (each well
separated by one octave from its neighbor(s)), and the intelligibility of each channel by itself
and in combination with up to 3 others was measured. It was found that human word recog-
nition remained high when 2 or 3 channels were presented simultaneously (60-83%) although
intelligibility of each channel by itself was less than 9%. The two center slits resulted in the
highest intelligibility, while the more distant slits were unable to profit from each other when
combined. Still, channel proximity did not always result in higher intelligibility. The authors
also point out that the intelligibility of their slits was much higher than that predicted by the

AT, which again suggests that revision of the AI is warranted.
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The above experimental results from HSR suggest that

e the information found in different (even dispersed) frequency regions is not uncorrelated,

e and that humans make good use of this correlation information and redundancy in the

speech signal.

It was especially emphasized by Lippmann, and Silipo et al. that a combination of high- and
low-frequencies (including a gap in frequency) often resulted in better recognition performance
than an increase of the low-frequencies by the use of a higher cut-off frequency (thus without
gap). These findings suggest that the multi-band approach which has been employed so far and
which does neither consider any combinations of subbands nor non-contiguous subbands does

not fully account for the way humans process frequency information.

We therefore propose in Section 5.6 a new approach to multi-band processing where not
only the individual subbands but also all combinations of subbands (including combinations
with and without gap) are employed in order to avoid excluding the joint information carried

by any combination of subbands, and also to more correctly model human speech processing.

2.5 Summary

Findings on the way the human auditory system functions are sometimes used in automatic
speech processing, such as in some feature extractors and in the multi-band approach, to ren-
der the automatic speech recognizer more robust to noise. For a better understanding of these
human-based processing steps, we presented some basic knowledge about human speech pro-

cessing and its modeling.

We illustrated Fant’s well-known source-filter model for human speech production, on which

several successful feature extraction techniques are based.

Perceptual experiments with humans have shown that humans appear to process speech
in separate, “critical bands”, and that frequency is not perceived linearly. This led to the
introduction of the Bark and Mel scales. Following, the power law of hearing and the “equal
loudness contours”, which describe the phenomenon of increased human sensitivity to a certain
frequency range, were discussed. Moreover, human perception was described to process hetero-
geneous information hierarchically and in parallel streams. We will see in following chapters
how these characteristics can be implemented in automatic speech processing units to render

them more noise robust.

Fletcher’s concept of independent subband processing in human speech perception was il-
lustrated, which is one of the main original motivations for multi-band processing in ASR.
Fletcher’s product of errors rule has, however, not yet been implemented and tested which will

be done in the framework of this thesis.

We then discussed the speech transmission index (STI), which is an extension to the ar-
ticulation index (AI), and measures the quality of transmitted speech. The STI has recently
been revised to better model more realistic application conditions than only high- and low-pass

filtered speech, such as stop-band filtered speech. The new-found importance of non-contiguous
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frequency bands with gaps is also sustained by other research. These new results confirm the
need to revise the usual approach to multi-band processing in such a way as to avoid the assump-
tion that subbands can be processed independently. A new approach will hence be introduced
in Chapter 5, the “full combination” approach to subband processing. It is based on a more
consistent theoretical analysis of subband expert combination and on the recent findings on

human auditory processing.
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CHAPTER 3

Useful background to statistical
pattern classification and

automatic speech recognition

The usual approach to ASR is to extract, at each time step, one feature vector from the entire
speech spectrum and to pass it through the acoustic model which calculates probability esti-
mates for each speech class. These probabilities are then used in decoding to find the most

likely sequence of words.

In the approaches pursued in this thesis, several feature vectors are extracted in parallel, ei-
ther from frequency subbands for multi-band processing, or from the entire speech spectrum for
multi-stream processing. They are then treated as separate information streams and passed on

to different acoustic models. The stream probability estimates are recombined before decoding.

In this chapter, we present the main features and underlying hypotheses of Hidden Markov
Model based ASR for the usual approach of one-stream (fullband) processing, but we will bare
in mind that the same applies to each of the separate streams in a multi-band or a multi-stream
system. As in this thesis, probability combination is carried out after each time frame, decoding
of the combined probability estimates can also be conducted as in a standard speech recognizer.

3.1 Structure of an automatic speech recognizer

A speech recognizer can be described as a chain of individual modules with one module pro-
ducing the input to the next. At each processing step the speech signal is transformed into a
new representation possibly with the help of additional, external knowledge sources. The goal
of most recognizers is to produce at its output an orthographic transcription of the recorded
utterance. In some cases, instead of an orthographic transcription, a machine-internal repre-

sentation of the recognized utterance is better suited for further processing such as translation
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or speech synthesis. In this thesis, we are interested in the correct orthographic transcription

at the word level of the recorded speech sequence.

Based on Figure 3.1, we give an overview of the most important parts employed in any

automatic speech recognizer.

Discretization In computer-based ASR, after the speech signal has been recorded, the real-
valued, continuous waveform needs to be transformed into an appropriate format for digital
processing, which first implies the use of an analog/digital (A/D) converter. Here, the speech
signal is sampled at equidistant points in time, and its amplitude is quantized. Following
Shannon’s sampling theorem (Shannon and Weaver, 1949), the speech signal has to be sampled
at a minimum of twice the maximal band-width to guarantee the possibility for reconstruction
of the continuous waveform from its sample values. In the example of telephone speech which
has a band-width of around 200 or 300 to 3200 or 3400 Hz (Rabiner and Juang, 1993, p. 308),
(Schukat-Talamzzini, 1995, p. 47)!, the sampling frequency is thus usually chosen at 8 kHz.
The originally continuous speech signal is now discretized in both frequency and time and thus
representable in a digital computer.

Short-term analysis Due to inertia of the human articulators, the speech signal does not
change too rapidly over time and can therefore be assumed short-term stationary in short
segments of 5 to 30 ms (Schukat-Talamzzini, 1995). These segments, which are obtained through
application of a windowing function, which only cuts out the interesting part of the signal, are
used to extract, at intervals of about 10 to 15 ms in time (so-called frames), characteristic
features from the signal. For this, the windowed time signal is usually converted to the spectral
or cepstral?> domain to enhance the robustness of the acoustic features. In general, the features
should be designed in such a way as to allow for good discrimination between the speech units by
encoding the content of the speech signal rather than speaker intrinsic characteristics as needed
in speaker verification or identification. In some cases, acoustic feature extraction reduces the

amount of information to be stored and processed by the computer.

Feature extraction and pre-processing Different feature extraction techniques have been
developed over time. Later on, knowledge gained from human auditory processing was incor-
porated in order to render performance of automatic speech recognizers closer to human-like
performance. This is often achieved by the use of non-linearities similar to those found in the
human auditory system, for example cube root compression to simulate the power law of hear-
ing as described in Section 2.2. In Section 4.2, we discuss several of the most commonly used
feature extraction techniques which are especially appropriate for recognition in noise due to
(different stages of) pre-processing, which are based on human auditory processing, employed
during feature extraction. Extraction of acoustic feature vectors is intended to provide a first
means to handle interfering noise from various sources and to derive acoustic representations
of the speech signal which are well suited to differentiate between the different speech sounds

as well as suppress irrelevant sources of variation.

IDifferent authors mention slightly different values in this respect.
2To obtain the cepstrum, the inverse Fourier transform is taken of the logarithmic spectral magnitude.
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Density estimation Most of the speech recognizers are nowadays based on the theory of
Hidden Markov Models (HMMs). Each speech unit is hereby modeled by one HMM. Such
speech units can be whole words or phonemes, depending on the size of the vocabulary which
is to be modeled. In the latter case, words are constructed, during recognition, from sequences
of phonemes, and sentences from sequences of words. An HMM assumes that each speech
unit can be modeled as a sequence of (static) acoustic vector segments, where each segment is
represented by the parameters of some invariable statistical function, which was fixed before-
hand. Generally, this density is supposed to be Gaussian and its parameters are estimated on
a representative sample space (the training sample space). If this training set is segmented in
terms of phonemes or states, training of the parameters is easily achievable. Usually, such a
segmentation is not given and powerful training algorithms are needed which either segment
the data iteratively or train the parameters without explicit segmentation. The trained model
parameters are then used during recognition to estimate the likelihood that an acoustic vector

has been produced by a certain HMM state.

Decoding in the testing phase The densities for each frame, together with the dictionary
and language model or grammar are passed onto the decoder. The dictionary defines for each
word in the database its constituent units, and the language model describes the connections of
the words which are linguistically possible within a language. It is the decoder which then finds
the best path (i.e. the best state sequence) through the search space of speech units, deciding
for the most likely path of all possibilities. The most commonly used algorithm for decoding is
the Viterbi algorithm (Rabiner and Juang, 1993).
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Figure 3.1: Illustration of a standard speech recognizer with training and testing phase.

3.2 Background to information theory

In this section, we give a short introduction to terms stemming from information theory which
will be needed during the development of this thesis. The formulae are based on (Jones, 1979;
Cover and Thomas, 1991; Applebaum, 1996).

Entropy and conditional entropy The entropy is a measure of the average uncertainty of
a random variable, and depends only on the probabilities of the components x; of the vector
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random variable z (Papoulis, 1991). For the discrete case, the entropy is defined as

ZP ) log, P(z;) (3.1)

where P(z;) is the probability of z;.

The smallest value of the entropy is 0 and occurs when P(x;) has a sharp peak (P(z;) = 1)
for one value of x; and zero for the rest. The largest entropy value arises when all z; have
the same probability. This can also be interpreted in such a way that, in the first case, no
information is conveyed as only exactly one value can occur, i.e. there is no uncertainty. In the
second case, though, all values of the random variable are equally probable, hence leading to
the largest value of uncertainty.

The conditional entropy is the entropy of a random variable given another random variable.
H(ylz) = ZP i, Y;) log, P(yjlzi) (3.2)

i,
with P(z;,y;) the joint probability function of z; and y;, and P(y;|z;) > 0. It is a measure

of the uncertainty that is still felt about y after it is known that = has occurred but without
knowing which value it has taken.

Mutual information Now H (y|z) is a measure of the information content of y which is not
contained in z; thus, the information content of y which is contained in z is H(y) — H (y|z).
This is called the mutual information (MI) of z and y, and is denoted by I(z,y), so that

I(x,y) = H(y) - H(ylv) (3-3)
P(l'z;yj)

i,

with P(z;), P(y;) the marginal probabilities. It is the reduction in uncertainty of one random
variable due to the knowledge of another random variable and, hence, can also be described as
a measure of the dependence between the two random variables.

MI is a special case of the more general quantity of relative entropy D(P;||P-), also refered
to as Kullback-Leibler divergence, which measures the asymmetric “distance” between two
distributions P;(z) and P»(x)

Py (z;)

D(P||P) = Pi(z;) ] —_—

( 1|| 2) ; 1(371) 08> P2(£L’l)

With this, the mutual information amounts to a relative entropy between the joint probability
P(z,y) and the product distribution P(z) - P(y).

(3.5)

Above formulae are only given for the discrete case. For the continuous case, it simply
suffices to substitute the sum operator by an integral in each formula respectively.

3.3 Statistical pattern classification

Statistical classification in the framework of automatic speech recognition could be seen, in a

very simplified way, as the automatic categorization of the acoustic feature vectors by assigning
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exactly one class label to each feature vector. These classes can either be concrete speech
units or clusters in the feature space. The classification is then carried out with the help of
models which represent the different speech units (or clusters). In practice, we do not want to
distinguish single speech units only, but we aim at recognizing entire speech utterances. As the
task would be too complex to create a model for each possible speech utterance, other more
refined techniques are needed, which will be described in the next section.

The classifier, that is the mathematical function for the assignment, is not available a priori
but has to be constructed with the help of the statistical information given by the feature

vectors of the training sample space.

In the following, we outline the statistical classifier whose decision rule is known to fulfill

the classification task in an optimal® way, as far as the classification error rate is concerned.

3.3.1 Optimal Bayes’ classifier

In ASR, the training space consists of a set of (high-dimensional) feature vector examples
which have been extracted from the training speech signals, and denoted X = {z1,... ,zr}
(with T the number of time frames obtained from feature extraction). The probability that
a pattern, i.e. a feature vector, belongs to a class wy (k = 1,...,K) is denoted P(wy) (with
0 < P(wy) <1), the prior class probability. If a class probability is conditioned on the feature
vector z, this conditional probability is denoted P(wy|z), the posterior probability. The optimal
Bayes’ classifier now states that a feature vector z can be optimally assigned to class k providing

the minimum probability of error, if class membership is decided according to the following rule
P(wg|z) > P(wj|z), Vi=1,...,K,j#k (3.6)

that is, the pattern has to be assigned to the class which has the highest posterior probability.
This optimum strategy is often called Bayes’ decision rule or MAP (Maximum A Posteriori)

criterion.

Generally, the posterior probabilities cannot be calculated directly, and can only be esti-
mated from the training data. Commonly, this estimation is simplified by making some assump-
tions about the distribution of the data, such as describing them by some parametrized model.
Defining the form of this parametrized model, usually separately for each class, we are left with
the estimation of the parameters of this model (for each class). (The trained parameters © will
then be used during classification to estimate the required probabilities). Most commonly, a
probability density function (pdf) p(z|wg) is used which is connected to posterior probabilities

via Bayes’ rule, so that maximizing of the posterior probability amounts to:

p(@|wi) P(ws)

arg max P(wi|z) = arg max (@)

= argm]?Xp(x|wk)P(Wk) (3.7)
since p(z) is constant for all classes. We thus see that in order to maximize the posterior we
want to find the largest likelihood, which is refered to as Maximum Likelihood (ML) criterion.

3«

optimal” in the formal sense of “Bayes optimal” and subject to certain conditions which will be introduced
below.

4In all of the work reported here, it is assumed that every z must belong to one of the classes wy. This is
known as “forced choice”. Under some conditions, this assumption is invalid, for example, when some sounds

may come from a different language, or be due to extraneous noise, such as coughs or typing sounds.
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This way of approximating posterior probabilities, though, has several disadvantages. First,
some assumptions are required about the form of the parametric model of p(z|wg). In most
systems, the density functions or likelihoods p(z|wy) are estimated using the model of a Gaus-
sian distribution, which is introduced below. Another drawback is that the prior probabilities
needed to convert the likelihoods back into posterior probabilities are usually hard to estimate.
Finally, the fact that the likelihoods are usually trained separately for each class results in poor

discrimination between the models.

In a subsequent section we will see how the posterior probabilities can also be estimated
directly which involves discriminant training. In principle, this will require the training of

parameters which are influenced by all of the input vectors, which can increase complexity.

3.3.2 Density estimation by GMMs

The most common choice for modeling the pdf p(z|wy,) are (multi-dimensional) Gaussian func-
tions. As one Gaussian function is usually not sufficient to appropriately model the distribution
of the acoustic feature vectors of a given class a weighted sum of Gaussian functions is con-
sidered instead, which is refered to as a Gaussian Mixture Model (GMM). In order to restrict
the number of parameters in this model, it is often assumed that the different components
of a d-dimensional acoustic vector are independent. The covariance matrices of the Gaussian
distributions are then diagonal.

A simple univariate Gaussian model is given by

1 7% (2—pp)?
p(zlwr) = =exp =~ 7k (3.8)
V2o
where pi (k=1,...,K) is the mean and oy, the standard deviation associated with class wy.

Assuming diagonal covariance matrix and writing o7, for the elements on the diagonal, the pdf
for a multivariate Gaussian distribution reduces to

d )2

1 1 (mi—gki
palwr) = [[ ——===exp “hi (3.9)
i1 V27
where p; denotes the i*"* component of pu,, and d the dimension of the acoustic vector.

While the Gaussian function is unimodal, any distribution can be approximated with a

Gaussian Mixture Model (with a sufficient number of mixture components) which is defined by

M
p(z|lwr) = Z P(my|wy) p(x|my, w) (3.10)
1=1
where P(m;|wy) is the mixture weight of mixture component m; (I =1,...,M) and class wy,

and p(x|m;,wy) the component Gaussian distribution. The weights P(m;|wy) are restricted to
be larger or equal to zero, and to sum to to one (3, P(m;|wi) = 1).

Given we have M Gaussian distributions per class wy (k =1,..., K) the number of param-
eters of the whole set of models amounts to (2dM + M)K.
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EM algorithm for GMM parameter estimation There is no analytical solution to esti-
mate the model parameters, i.e. the means, variances and mixture weights, from the training
data. An optimization scheme which can be used to find these parameters for each Gaussian
model of the GMM according to the ML objective is the Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977). In this approach, the parameter estimation problem is structured
to incorporate hidden variables, which represent information that is not directly observable but
that is assumed to be part of the model that generated the data. In the case of GMMs, such
hidden variables could for example be the index of the Gaussian which generated the data.

As we will see below, maximizing the likelihood corresponds to maximizing the expected
value of the logarithm of the joint density between the known and these hidden components
(Dempster et al., 1977; Bilmes, 1997). The prominent idea of the EM algorithm is thus to
maximize this expected value by updating the parameters which are used in the probability
estimation. After random initialization of the parameters, the calculation of the expected value
and the re-estimation of the parameters to maximize this expectation are iterated to converge.
As the EM algorithm is used in Chapter 7 to estimate the weights of similar mixture models,
we will discuss the algorithm here in little more detail.

Let us first show the correspondence between data likelihood maximization and maximiza-
tion of the expected value (Bilmes, 1997; Boite et al., 2000; Gold and Morgan, 2000). For this,
the expectation of the joint likelihood of the observed and hidden variables, usually refered to
as auxiliary function, is expressed as a function of old parameters © and new parameters ©.

For random (hidden) variable m;, observed random variable z and parameters 0, let

M
A(©,0) = ZP(ml|w,(:))logp(ml,a:|@) (3.11)
=1

M
= Y P(mlz,0)log(P(m|z, ©)p(z|©)) (3.12)
=1
M M
= Z P(my|z,0)log P(m;|z, ©) + logp(z|O) Z P(my|z,0) (3.13)
=1 =1
M
= Y P(mlz,0)log P(m|z,0) + log p(x|0©) (3.14)
=1
Choosing the new parameters to be equal to the old parameters and subtracting this new
expression A(0,©) from (3.14) one gets

M A
R R oA A P(my|x,©
logp(z|©) — logp(x]0) = A(©,0) — A(©,0) + > P(m|z,0)log PE#LU@; (3.15)
=1 T

The last term is a relative entropy which can be shown to be non-negative (Blahut, 1990). Thus,
if a change in the parameters increases A, the (logarithm of) the data likelihood log p(z|©) also

increases.

To illustrate the EM algorithm we assume here that a set of (independent and identically
distributed) vectors {z1, ... ,2¢,... ,z7} is modeled by a mixture of M densities. An unknown
probability density p(z|©) can always be decomposed as

M
p(x|®) = > P(my|®)p(z|my, ©) (3.16)
=1
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assuming M disjoint categories. As typically done for ML training, we try to approximate
the true densities by maximizing the likelihood p(z|®) or its logarithm. Considering m; as
the hidden random variable and knowing from (3.15) that an increase in the expectation of
log p(z,m;|0) will also increase the data likelihood p(z|©) we can write the expected value over

the T samples and M mixture components as

A(©,0) = E[log p(x, m|0)] = ZZP my|ze, ©) log[P(my|©)p(z¢|my, ©)] (3.17)
=1 t=1
The old parameters O describe the parameters which were used to generate the distribution
with which the expected value will be evaluated, and the new parameters © are to be optimized.
We can decompose (3.17) as

M T
ZZP ml|a:t, ) log P(m;|©®) +ZZP ml|mt, ) log p(z¢|my, ©) (3.18)

=1 t=1 =1 t=1
Assuming the subset of parameters in © of the two terms is disjoint, the terms can be optimized
separately. We can continue by assuming that p(z¢|m;, ©) = p(z¢|wy) is a simple Gaussian (with
diagonal covariance matrix and assuming x; is scalar) such as (3.8), and that P(my) is the weight
given to Gaussian m; in the model. With this we can write (3.18) as

2
Tt — U]
ZZP ml|a:t, ) log P(m;|©®) +ZZP my|e, )[—logal—% +¢|(3.19)

I=1t=1 I=1t=1 l

with ¢ a constant which will disappear in the following differentiations. To optimize this ex-

pression for the means, we set the partial derivatives to zero (g—;;“ = 0), getting
7

T

~. T i
> P(mjlz,0) (= — ) =0 (3.20)
t=1 g; g;
and thus
T
py = st Pl O)ze (3.21)

S, P(mylz:, ©)

Similarly, the optimum value for the variances can be derived

2 _ i Plmglae, ©) (1 — )’ (3.22)

’ i1 P(mjlzr, ©)

For the calculation of the mixture weights update formula, (3.19) must be supplemented with a
Lagrange term /\(Zl]\i1 P(m;|®©) — 1), as the mixture weights are probabilities which must sum
to one. Taking the partial derivative of the augmented A function and setting it equal to zero,

we get
T
P(m;|z:,0) + A =0 (3.23)
P(m; |9 tz; !
as the terms involving the means and variances can be disregarded. Summing (3.23) over all
components of m; yields A = =T, so that the weights can be expressed as
1z
P(m;|0) = > P(mjlz:,0) (3.24)

t=1
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Expression P(m;|zs, (:)) which is needed in each of the update formulae can be calculated
by Bayes’ rule, as
__ p(wimy, ©)P(m;|0)
Z;\il p(xi|m, ©)P(m|©)

which can be evaluated from the terms we have access to, that is (3.8) and (3.24), with the

P(mjl|z;, ) (3.25)

parameters from the previous optimization step.

Summarizing the EM After a functional approximation, such as a GMM, has been chosen
for the densities associated with each class, the EM algorithm in the present context can be

summarized as

e Initialize the parameters.

e Given these parameters, compute the estimates of the posterior probabilities for the hid-
den variables, i.e. P(mj|xy, ).

e With these posterior estimates, find the parameters that maximize the expected value
of the joint density for the data and the hidden variable. After iteration, these values

converge to give a local maximum likelihood for the observed data.

We will see in Chapter 7 how this algorithm can easily be used to adapt the weights in
a multiple stream system where each stream employs a set of GMMs for stream likelihood

estimation.

3.3.3 Discriminant probability estimation by ANN

In order to avoid some of the assumptions which are necessary to estimate the likelihoods
p(z|wy,), the posterior probabilities P(wy|z) in (3.7) can also be estimated directly. In (Bourlard
and Morgan, 1994), Artificial Neural Networks (ANNs) have been proposed to approximate the
unknown distribution of the data. The main difference between GMMs and ANNs is that ANNs

can actually be trained to directly estimate the posteriors.

One of the most widely used kind of ANN employed for statistical classification in the
framework of automatic speech recognition are Multi-Layer Perceptrons (MLP) (Ripley, 1996).

MLPs are feed-forward networks of an input layer, zero or more hidden layers, and an output
layer, each consisting of one or more units (also called neurons). A general structure of an MLP
can be seen in Figure 3.2. Each layer of an MLP is usually only connected to the previous
layer, and the connections between the units of one layer and that of the previous layer are
defined by the weights. The weights are estimated during training of the MLP. The output of
each unit is defined as the weighted sum of its inputs from the previous layer passed through a

differentiable non-linear transfer function:
vy = F(wl My (3.26)

-1
ij

where w!7 ™! is the weight from unit ¢ in layer (I — 1) to unit j in layer [, yf_l is the output of

unit ¢ in layer (I — 1) and f is typically a sigmoid transfer function f(y;) = m.
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Figure 3.2: Illustration of a Multi-Layer Perceptron (MLP) with one input layer (with (2¢)+1
time frames as input vector), one hidden layer and an output layer giving posterior probability
estimates for each class wy (k =1,...,K). Each layer [ is fully connected to its preceding layer
[ — 1 with the weights wﬁj_l’l between unit 4 (in layer [—1) and unit j (in layer [).

In the case of automatic speech recognition, an MLP is trained to associate an acoustic input
vector (which can consist of several frames of speech) with a desired output vector (i.e. the
“target” output). The output vector indicates the correct speech unit class corresponding to
the input and thus consists of zeros all over except for the correct class, which is indicated with
a one (supervised training). Training is usually accomplished via the error back propagation
algorithm which is described below (Bishop, 1995; Ripley, 1996).

Gradient descent in multi-layer networks In order to evaluate the appropriateness of
the network outputs, an error function can be defined which measures the distance of the
current output to the target output. Such an error function is a smooth function of the weight
parameters, and can be minimized in a variety of ways. In case of the “sum of squared errors”
function, for example, and a linear network, the solution for the weight values can be found in
a closed form by differentiating of the error function with respect to the weights. If a non-linear
activation function, such as a sigmoid is used (as in our case), and if, thus, the network is no
longer linear, or if a different error function is considered, a closed form solution is no longer

possible.

However, if the activation function is differentiable, the derivatives of the error function (with
respect to the weights) can be evaluated. These derivatives can then be used in a gradient-based
optimization algorithm to find the minimum of the error function, and with that good values
for the weight parameters. One such algorithm is e.g. gradient descent, which functions as
follows.

Given a differentiable error function E, the weights are first initialized at random. Following,
the weight vector is updated by moving a small distance in the weight-space into the direction
in which the error decreases most rapidly, i.e. the derivative has the largest negative value.
This process is iterated, generating a sequence of weight vectors {w;;(1), .., w;;j(n), .., w;; (N)}
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(connecting unit 7 to unit j) according to

wij(n+1) = wij(n) — n% (3.27)
with n being a small positive number, called the learning rate. The Error Back-Propagation
(EBP) algorithm (Rumelhart et al., 1986) first computes the output vectors for all training
input vectors and calculates the error function F. It then allows to calculate the gradient of
the error E versus every weight in the network by recursively back-propagating the error at
the output layer and updating the weights according to (3.27). Under suitable conditions, the
sequence of weight vectors will converge to a solution locally minimizing E. The choice of n
can be critical, since if it is too small, convergence is very slow, whereas if it is too large, the
correction process will overshoot and lead to divergence.

Statistical inference in MLPs For a proof that the outputs of MLPs (or ANNs in general)
in classification can be interpreted as estimates of posterior probabilities of output classes
conditioned on the input the reader is refered to (Bourlard and Wellekens, 1989; Richard and
Lippmann, 1991; Bourlard and Morgan, 1994, 1997). These proofs are based on the following
four conditions:

e The neural nets are sufficiently large, i.e. contain enough parameters, so that it can be
trained to a good approximation of the mapping function between the input and the
output class.

e The error criterion for gradient training is either the mean-squared difference between

outputs and targets, or else the relative entropy between the outputs and the targets.
e The neural nets are trained to a global error minimum (i.e. avoiding local optima).

e The system is trained in the classification mode; that is, for K classes the target is one
for the correct class and zero for all the others.

To ensure that the outputs of the MLP approximate posterior probabilities, the softmax
function f(y;) = % is often used (instead of the usual sigmoid) to normalize the output.
To get the target outputs which are needed for network training, the training data needs to
be labeled for each time frame. Such a segmentation can be obtained through iterative Viterbi

alignment of the training data, starting at a linear initialization (cf. Section 3.4.1).

3.4 Statistical sequence recognition by Hidden Markov
Models (HMMs)

In the last section we saw how in static classification a feature vector can be assigned to one
of the different classes (in our case speech units) by acoustic models of a certain distributional
form, the parameters of which are trained on the training data. Unfortunately, we are not
interested in recognizing a sequence of speech units but rather whole words and sentences. As
it is not feasible to construct an acoustic model for each possible sentence or even word, the
word models are constructed by concatenation of the speech unit models, and the sentence

models by concatenation of the word models.
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3.4.1 General approach

As we saw above, in order to guarantee optimal classification minimizing the error probability,
we are looking for the model which has the highest a posteriori probability. The same is true
for continuous speech recognition where the sequence of feature vectors describes much longer
utterances. Given an acoustic sequence X = {x1,...,z¢,... ,o7} with 2; € R?, we are thus
looking for the best model W} which has the highest posterior probability:

p(X|W;,0)P(W;]0)

PO, €) === %®)

(3.28)

where the class W; is the §t (0 < j < J) statistical model for a sequence. As it is usually
difficult to train P(W;|X, ©) directly, two assumptions are usually made to ease the task.

e It is commonly assumed that the components in ©® which are used to estimate the prior
probability P(W;) of a model are independent of the components in © which are used to
estimate the acoustic model p(X |W;). Thus, each of them can be estimated separately.

e Moreover, during recognition, p(X|0) is constant for all choices of j as it is independent
of the models.

We can then write the optimal decision rule as
Jpest = arg mjaxp(X|W]-, ©4)P(W;|OL) (3.29)

where © 4 is the set of parameters of the acoustic model, and ©y the set of parameters for
the language model, parameterizing the statistical distribution of all word sequences. The
parameters O, of the language model can be estimated on a large text database. We concentrate
on the calculation of the acoustic model p(X|W;, ©4) (thus we drop index A in the following),
which is usually realized in the framework of Hidden Markov Models, which are illustrated in
the following.

Hidden Markov Models

As pointed out above, Hidden Markov modeling assumes that the sequence of feature vectors
is a piecewise stationary process, that is, an utterance is modeled as a succession of discrete

stationary states, with instantaneous transitions between these states.

An HMM is defined as a stochastic finite state automaton over a set of L states W =
{q¢1,---,q.-.,qr}. In ASR we assign each state to one of the K possible classes (such as
phonemes) of a set Q0 = {wy,... ,wk}°. Each state is moreover ascribed a stochastic output

process to describe the probability of occurrence of some feature vector (see Figure 3.3).

Therefore, there are two concurrent processes in an HMM: the first models the temporal
variability of speech through the sequence of HMM states, and the second models the locally
stationary character of the speech signal through a set of state output processes. Since the

sequence of states is not directly observable, the Markov models are called hidden.

Swhere q; €92, and p(z|q;)=p(z|w(q;)) when w(q;) is the class associated with g;.
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Figure 3.3: Illustration of a three-states left-to-right Hidden Markov Model (HMM). A (stan-

dard) HMM is a stochastic finite state automaton, consisting of a set of states and transitions

between the states. Parameters specifying the HMM are, for each state ¢;, an emission prob-
ability (density) p(z:¢|q;), an initial state probability P(g;), and for each state transition, a
probability P(g;|gr) describing the possibility for transition from one state ¢ (at time (¢t — 1))
to the next state ¢; (at time ).

Assuming that the first stochastic process is described by a first-order, time-invariant Markov
model instantaneous transitions from one state g to the next state g; are parametrized by the
state transition probabilities P(qi|qx). The models used in automatic speech recognition are
usually left-to-right models allowing for transitions only from left to right, and loops which exit
and enter the same state. The first state of the sequence is selected at random, according to
the initial state probabilities.

The second stochastic process produces a feature vector z; € R? (at time t) according to the
feature vector distribution of that state. As the feature vectors usually consist of continuous
observations, these vectors or emissions are best modeled by continuous emission pdfs p(z¢|q;),
such as Gaussian or Gaussian mixture models which were described above. In the case when
MLPs are used to model the distribution of the data as described in the previous section, scaled
likelihoods are used instead which are obtained by dividing the posterior probabilities at the
output of the MLP by the class prior probabilities. This will be discussed in more detail in
Section 3.5.

Word and sentence Hidden Markov Models With the help of the dictionary, which
describes the possible pronunciations of each word, the words of a language are constructed
by concatenation of elementary speech unit HMMs; similarly, the sentences are constructed as

sequences of words using syntactic and semantic constraints as defined by the grammar.

We now have to bare in mind that a model W consists of a concatenation of elementary
HMMs and is made up from a sub-set of the L states ¢; (I =1,...,L). The set of parameters
present in a word or sentence HMM W are denoted as © and is a subset of the parameters of
the elementary speech unit HMMs.

The three problems When using HMMs for ASR, three problems have to be solved (Rabiner
and Juang, 1993; Bourlard and Morgan, 1994):
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e Parameterization and probability estimation

Given a model W and a word or sentence realization and its short-term acoustic feature
vector sequence X = {xy,...,zr}, what is the probability that the given model W
actually created this acoustic sequence, i.e. how can p(X|W, ©) be computed?

e Parameter estimation (Training)

How are the model parameters © to be adapted so that each model W; most accurately
predicts the most typical realization of the acoustic observation it is associated with? In
the case of ML criterion, the goal of the training is thus to find the best set of parameters
in order to maximize H;.Izl p(X;|W;,0;) where W; is the concatenation of the speech
sub-units corresponding to sentence X;, and ©; are its associated parameters, thus
J
O =ar iI|W;,0,; .
gm@ax H p(X;|W;,0;) (3.30)
j=1
where © is the whole set of parameters. Unfortunately, maximization of (3.30) in the
parameter space © does not have a direct analytical solution. However, in Section 3.4.2

an iterative procedure is presented to maximize (3.30), or its Viterbi approximation
J
. _
0" = argmax [ [ 5(X;, Q;1W;, 6;) (3.31)
i=1

where the parameters of the models are optimized iteratively to find the best parameters
and the best state sequence ;.

e Decoding

Given a set of Markov models with their trained parameters and a sequence of observations
X, how should the best sequence W* of elementary Markov models W be found to

maximize the probability that W* generated the observations, i.e.
w* = argmv;%xp(X|W, o) (3.32)

For continuous speech recognition, this problem is in general computationally intractable.

However, using the Viterbi approximation, we can solve the simpler problem:

Q" =arg maxp(X, Q| IV, ©) (3.33)

which gives the best sequence of states G* which is then transformed into the correspond-
ing sequence of words W*. It is computed by using (3.43) which is described in the next
section.

ML parameter estimation can be carried out in the framework of HMMs using Markov

assumptions so that the density for a complete sequence is broken up into a combination of

densities corresponding to subsequences, which will be described in the following.

3.4.2 Estimation of p(X|IV)

Following (Bourlard and Morgan, 1994), we assume that the acoustic parameters © are fixed

and assuming them implicit in each equation, the problem consists in calculating p(X|WW) given
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a sequence of observations X = {z1,... ,zp} of length T as well as a model W consisting of
L states. We denote path @ all sequences of T states which are allowed by model W, and ¢}
represents the statistical event {¢* = ¢;} that state | has been visited at time t.

The intuitive way of estimating p(X|WW') consists in summing the probabilities of all possible
paths admitted by the model:

pXIW) = > p(Q,X|W) (3.34)
QEW

With L the number of states in model W, it has to be summed over LT state sequences, so
that the number of operations which are needed for the estimation of p(X|W) is approximately
O(2T - LT) (Rabiner and Juang, 1993), that is, it increases exponentially with the length of
the acoustic vector sequence. As for longer utterances this would amount to an unsolvable
task, more efficient methods have been proposed such as a recursive calculation of the forward-
probabilities P (g}, X{|W ).

Forward recursion The likelihood p(X|WW) can be decomposed into the sum of joint densities
with the possible final states for the length 7" sequence

L

pXIW) = plal, XT W) (3.35)
=1

where X! describes the acoustic vector sequence ranging from the first frame to time frame ¢,
and ¢/ the state [ at time ¢. Thus, to get the complete likelihood, we need to find the joint
probability of the final state and all the data leading up to it. Factorizing p(qf, X7|W) into two

components, we get

L

plal, XEHW) =3 plap ' X1 W)p(af @elg ' X1 W) (3.36)
k=1

which is called the forward recursion and describes the probability that the model W has

generated the partial sequence X! and is in state [ at time ¢. Defining
a(I|W) = plq;, X7|W) (3.37)

expression (3.36) can be written as
L
a (W) =Y ary (kW) P(qf, el gy, X{7, W) (3.38)
k=1

When the recursion reaches the final frame, the complete likelihood is obtained by applying
(3.35).

Estimation of local contributions Let us now consider how the second term on the right-
hand side of the forward recursion can be calculated. We can decompose it according to

P(qlt: mt|q]t9717 Xf717 W) = P(qlt|q]t9717 Xf717 W)p(wt|qlt: q]t9717 Xf717 W) (339)

Swhere Xt = {z1,... ,2¢}.
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As such terms are difficult to estimate, the Markov assumption is made that the probability
of being in state ¢/ (at time t) depends only on the state at time ¢—1, and is conditionally
independent of the past, so that we can write

P(qflg, ", X1 " W) ~ P(qflq, ", W) (3.40)

Moreover, observations are assumed to be independent of past observations (i.e. acoustic vectors

are uncorrelated) and states, which amounts to

p(mt|qlt:qltcilef717W) :p(mt|qlt:W) (3-41)
With these simplifications, the forward recursion (3.38) becomes

L
a (W) =Y a1 (W) P(gflay™", W)p(aelgf, W) (3.42)
k=1

Thus, the total likelihood for a data sequence being produced by a particular model, can
be computed using a recursion which only depends on local emission p(z¢|gf, W), transition
P(qﬂq,tc_l, W), and initial state probabilities. To compute the emission probabilities of (3.42),
each state g of W has to be associated with a pdf describing p(z¢|qf, W). As x; is usually
continuous and high-dimensional, this is often done through GMMs such as (3.10).

Within the assumptions described here, the forward recursion yields the complete likelihood
and is functionally equivalent to, though more efficient than, the direct summation of the
likelihoods of all possible paths, as the number of operations required to compute p(X|W) is
reduced to the order O(L2T). Still, the procedure can be difficult to implement as it includes
both multiplications and additions of likelihoods and probabilities.

Viterbi approximation Besides numerical reasons it is often useful to find the single best
state sequence for an observation sequence, such as for data alignment. Thus, in the Viterbi
approximation only the most probable path is considered, instead of considering all possible
state sequences () which can have produced X. The Viterbi forward recursion is obtained by
replacing the summation in (3.42) by a maximum operator, which yields an approximation to
the complete likelihood p(X|WW),

_ L i — _
plai, Xi|W) = méax [p(q,~", X7~ W) P(g;la™" W) ] p(elai, ) (3.43)

where p(gf, X{|W) is the Viterbi approximation of the probability of the joint event that state
q; is visited at time t and the sequence X! is observed, given the model W. Again, when
recursion (3.43) reaches the final frame, approximation to the complete likelihood is obtained

by applying (3.35), where the sum is also replaced by the maximum operator.

3.4.3 Parameter estimation

The forward recursion presented in the previous section provides a means to determine complete
sequence likelihoods through a local product of state emission and transition probabilities with

a cumulative value computed from allowed predecessor states. As these emission densities and
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transition probabilities are not known a priori, they have to be estimated from the training
data. We will see how this can be achieved with the EM algorithm introduced in Section 3.3.2
which now takes the expected value over the space of all possible state sequences corresponding
to the models for the training data, in order to increase the likelihood of a complete sequence

of observations (given the models).

For this it is necessary to estimate the posterior probability for all possible states (within
the topology of the HMM) for each acoustic vector z; at time ¢, i.e. all possible paths through
the model have to contribute to the estimation of the parameters. We see in the following how
this can be achieved through the use of the above-introduced forward recursion oy (I|IW) and a
corresponding backward recursion [3;(I|WW) (Estimation (E) step of the EM). The probabilities
which are calculated with these recursions are then used in the M-step (Maximization step) of
the EM to estimate new parameters which maximize the likelihood. This algorithm is often
refered to as Forward-Backward or Baum-Welch training (Baum and Petrie, 1966).

As the exact state sequence for training of the models is usually not known, the states can
be taken as the hidden variables in the EM when applied to HMMs to maximize the likelihood
Z;.Izl log p(X;|W;,©) (Boite et al., 2000; Gold and Morgan, 2000).

As we saw above, maximizing the likelihood is equivalent to maximizing the expectation
of the joint probability of the observed and hidden variables (considering just one particular

sentence X! and its model W)
A0,0) = > PQIXT,0,W)log(p(X]Q,0,W)P(Q|O,W)) (3.44)
Qew

assuming conditional independence as usual, we can approximate the two last terms in (3.44)
T T _

as p(XT1Q,0,W) = [T, plailgf, ©,W) and P(Q|O, W) =~[Ii_, P(qflg;*,©,W), so that we

can write

T L
A0,0) = > > Pg|x],0,W)logp(xile, ©,W)

t=1 =1
T L L
+3 3N P(af,q) HIXT,0,W) log P(gflg), '©, W) (3.45)
t=1 =1 k=1
E-step Defining
Be(UIW) = p(X [ laf, X1, W) (3.46)

we can write the backward recursion as

L
BellW) =Y~ Ber (KIW)P(ag g, ©, Wp(we41 a0, W) (3.47)
k=1

which has been chosen such that P(q!, XT'|©, W) = a;(I|W)B:(I|W), which describes a complete
data sequence which has passed through a particular state [ at a particular time .

With the help of the forward and the backward recursions the posterior probabilities which
are needed to update the parameters can be derived

P(qf, X{10,W) _  aa(UIW)B(LW)
p(XT10, W) iy au(K|W)B (kW)

P(qi|X{,0,W) =
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i1 (W) P(gflay ", 0, W)p(ailaf, ©, W)B: (I|W)
L L N R
E Z atfl(k|W)P(q;|(I]tg_17eaw)p(mtmlt:@)W)ﬂt(”W)

k=11=1

P(qfv qi_l |X1Tv (:)7 W) =

M-step Maximizing the expected value (3.45) by setting its partial derivatives to zero, as had
been illustrated above when the EM was applied to GMM parameter estimation, the update
formulae for the transition probabilities and the state emission probabilities are found. In case of
Gaussian mixture emission probabilities, this involves updating of the mean vector, covariance

matrix for each class, as well as the weights.

After a probability estimator has been chosen for the densities associated with each state,
the EM algorithm for HMM parameter estimation can be summarized as

e Initialize the parameters.

e Given these parameters, apply the forward and backward recursions to estimate the pos-

terior probabilities for the hidden variables.

e With these posterior estimates, find the parameters that maximize the expected value of
the joint density for the data and the hidden variable.

e Iterate the last two steps as long as A continues to increase.

Viterbi training As in Viterbi estimation, in Viterbi training the parameters are optimized
in such a way as to optimize the likelihood of the best path only, that is, of the most probable
state sequence in the model. This corresponds to assuming that the posterior probabilities of
the states employed in the EM are either zero or one. The sequence of states which maximizes
the likelihood thus corresponds to a state segmentation, which is updated in each EM iteration.
The best sequence and with that the segmentation can be back-tracked from the end of each
utterance following the best path which had been found. With this and a given parameter
estimator for each state, training is now supervised, and the parameters can be optimized
over all observation vectors associated with each state. After calculation of new emission and
transition probabilities, these can be used to obtain a new segmentation.

Local probability estimation As we saw in Section 3.3.2, the approach which is usually
pursued to estimate the local emission probabilities p(z¢|q) is by modeling them with proba-
bility density functions, such as GMMs. We refer to these systems as HMM-GMMs. Estimating
the parameters of these models using the EM algorithm as described above, does not guarantee
that the parameters will also reduce the likelihoods of the incorrect models. Discriminant train-
ing which increases the likelihood of the correct model and, at the same time, decreases the
likelihood of the incorrect models can be achieved through the use of neural networks, which
was described for static classification in Section 3.3.3. In the following section, we will point
out how this approach can be realized also in HMM-based sequence-recognition systems.
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3.5 Hybrid HMM/ANN systems

The combination of HMMs with ANNs is refered to as HMM/ANN hybrid. In this approach,
the neural network is used to estimate the local probabilities of the HMMs, whereas the HMMs
continue to model the sequential character of the signal. This allows to avoid or at least reduce
some of the limiting assumptions of HMMs and, at the same time, to incorporate some of the
advantages of ANNs, such as their discriminability and their ability to include acoustic context.
More advantages will be discussed below.

Given that ANNs are trained to estimate posterior probabilities (assuming that each output
is trained to correspond to one state) and not likelihoods as in the case of GMMs, it is necessary
to convert the posterior probabilities to HMM emission probabilities. This is done by applying
Bayes’ rule to the output probabilities:

pilgr) _ Plgxle:)
() P(qr)

That is, the estimates of the posterior probabilities are divided by estimates of the class prior

(3.48)

probabilities. The scaled or normalized likelihood of the left-hand side can be used as an
emission probability for the HMM, as during recognition the scaling factor p(z;) is a constant
for all classes and does not influence the classification?.

Given the state prior probabilities, HMM training and recognition can be conducted just
as in the case of HMMs employing pdf’s to estimate the emission probabilities, i.e. Baum-
Welch training and Viterbi decoding. The only difference being that each posterior probability
needs to be divided by the respective prior probability, yielding scaled likelihoods. In the case
of Baum-Welch training, the scaled likelihoods are used in the forward-backward equations
to estimate posterior probabilities for each state and frame. The network is then retrained,
using these probabilities as targets. In some approaches, the HMM is given fixed transition
probabilities and only one state is used per sub-word unit. This way, HMM training is actually
no longer needed as the emission probabilities are obtained from the ANN, which is trained on
a labeled database, and with that all parameters which are needed for decoding are available.

Advantages HMM/ANN hybrid systems have several advantages as compared to HMM-GMMs
in which the emission probabilities are estimated by GMMs (Renals and Hochburg, 1995;
Bourlard and Morgan, 1997).

e First of all, the features do not have to be assumed uncorrelated. In the case of ANNs we
can even process several acoustic vectors at a time (as input to the ANN) which allows the
network to learn local correlation of the acoustic vectors. This is a simple mechanism to
introduce acoustic information from long temporal contexts into the recognition process.
Moreover, diverse features, such as mixtures of continuous and discrete measures, can
easily be combined.

"It has been found during experimental evaluation by our institute and others, that the theoretically necessary
division by prior probabilities can sometimes be disregarded or assumed to use equal priors to enhance recognition
performance. This seems to be the case especially for speech databases where class prior probabilities do not
vary much.
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e Second, ANNs can be trained discriminantly (when trained with discriminant criteria)
which long has not been the case for GMMs. Discriminant training attempts to model
the class boundaries, i.e. learn the distinction between the classes, rather than to build
as accurate a model as possible for each class. The combination of ANNs and HMMs thus
leads to HMMSs with local discriminative capacity. However, recent theoretical work shows
that global discriminant training of hybrid systems can also be performed (Bourlard et al.,
1995).

e Another important advantage is that performance of HMM/ANN hybrid systems on noisy
test data is usually found to be higher than that of an HMM-GMM.

e Posterior probabilities as estimated by ANNs have the advantage that they are inde-
pendent of the size of the input space, which is not the case for likelihoods where the
magnitude depends on the size of the feature space. Especially in the case of multi-band
processing when differently sized subbands are to be treated this can lead to a problem in
the case of Gaussian modeling. Thus, in the framework of multi-band and multi-stream
processing, the posterior probabilities at the output of the ANN make it easier to merge

multiple recognizers, each of them working on different input data.

Most of the speech recognizers employed in this thesis utilize HMM/ANN hybrids, where the
neural network is an MLP (referred to as HMM/MLP hybrid). For some developments where
we needed access to real likelihoods (and not the scaled likelihoods as output by an MLP) we
resort to HMM-GMM systems.

3.6 Summary

In this chapter, we presented important technical background knowledge in order to prepare the
ground for the theoretical and experimental developments in this thesis, which are based around
HMM-GMM and HMM/MLP hybrid systems. We first discussed the general structure of a state-
of-the-art automatic speech recognizer and gave some background knowledge to information
theory and on statistical pattern classification. The concept of the optimal Bayes’ classifier was
introduced and its approximation through probability functions whose parameters are estimated
on the training data was discussed. These probability functions can be densities, as in the case
of GMMs, for which the EM algorithm is used for ML training of the parameters. The posterior
probabilities of the Bayes’ classifier can also be estimated directly from ANNs, for which the
Error Back Propagation algorithm for MAP training of the parameters was described.

For continuous speech recognition, statistical sequence recognition is employed where se-
quences are modeled through concatenation of (elementary) Hidden Markov Models. Based
on the ML criterion we discussed estimation of the likelihood that the data X was produced
by model W (i.e. p(X|W) ) through application of the forward recursion, and pointed out the
assumptions of conditional independence which are needed to estimate the local contributions
in the recursion. The same forward recursion together with the backward recursion can be used

in EM training of the parameters of the models.

Local emission probabilities in the HMM are modeled by pdf’s (typically GMMs). In the
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HMM ANN hybrid, they are modeled by scaled likelihoods which are obtained from the posterior
probabilities from an ANN (typically an MLP) after division by their respective prior probabili-
ties. In this thesis, the first system (usually refered to as HMM) will be refered to as HMM-GMM,
while the latter (which is the recognizer which is mainly employed in the experimental work in
this thesis) will be refered to as HMM/MLP hybrid system.
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CHAPTER 4

Robustness in ASR

Human listeners have a strong ability to cope with speech under a vast variety of conditions.
The capability to unconsciously filter out interfering speech and non-speech signals which are
not part of the speech signal of interest has been manifested in speech perception experiments.
In psychoacoustics and neurophysiology, well-known mechanisms of human perception have
been established which describe these experimental findings as we saw in a previous chapter.
This knowledge can sometimes be used as to guide the construction of an ASR system and was
often shown to render automatic processing more reliable (see below). As well as this, pure
engineering based approaches have been developed which contribute their part in rendering
automatic systems more robust. Despite these efforts, automatic speech recognition is still far
below human standards.

In the following, we will see in more detail, the different causes of disturbance of the incoming
speech signal which can effect automatic speech recognition systems. We will then give an
overview of the different engineering approaches which are applied to this problem, discussing
more thoroughly the methods which are of interest to this thesis.

4.1 Causes of adversity

We start this section by giving a short introduction on the different kinds of perturbations
which are encountered between speech production and its reception. We point out which of
these disturbances we try to account for in the framework of this thesis, and discuss these in
more detail in the following sections.

4.1.1 Introduction

Between speech production and its reception, there are several stages at which the speech signal
can be disturbed (cf. Figure 4.1). Following Junqua and Haton (1996), they can be classified

into two broad categories:

41
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1. Speech and speaker variability

This category comprises style variations (e.g. formal, casual, spontaneous, read, dictated),
speaking rate (e.g. normal, slow, fast), stress (e.g. emotional factors, in noise, under
cognitive load), context (e.g. interview, free conversation) and voice quality (e.g. breathy,
whispery, tense). Inter-speaker variability (such as length and shape of the vocal tract,
physiology of the vocal cords, etc.) and intra-speaker variability (such as the physiological
and psychological state of the speaker, etc.) are implicitly included in each of the above

five sub-categories. They are summarized on the left-hand side of Figure 4.2.

These speech and speaker intrinsic factors are not investigated in this thesis. We concen-

trate on the second category:

2. Noisy speech and channel distortions

These noise cases are independent of the speech and the speaker but depend on the
transmission environment, as well as possible recording and reproduction devices. These
causes are summarized on the right-hand side of Figure 4.2. Noises induced in this way
can be linear in the power spectral domain, which is refered to as additive noise, or linear
in the logarithmic spectral or cepstral domain, which is refered to as convolutive noise,
or non-linear in both domains (Junqua and Haton, 1996).

Envi roﬁmental noise aditive noise Environmental noise
intended Receiver
words addltlve noise| Channel Distortion | additive noise

1 \ Microphone
Telephone
Room acoustics
Reverberation
stress convolutive noise
Speech and speaker variability Noisy speech and channel distortions

Figure 4.1: Illustration of the different causes of adversity which can occur between speech
production and reception.

Environmental noises, such as office environment noise or in-car and factory noises, are
usually additive (Junqua and Haton, 1996, p.160), though this is not always the case. Chan-
nel distortions can be divided into telephone distortion, microphone-induced distortions, room

acoustics and reverberation. They can be additive, convolutive or both.

Mathematical modeling Let s(¢) describe the (clean) speech signal at time ¢ as produced
by the speaker under certain conditions that might influence the speaker such as stress and
noise'. Signal s(t) is first recorded with the help of a microphone, which has the impulse
response Nmicro(t) and also picks up background (ambient) noise nq(t). The resulting signal

is then transfered by a (short- or long-distance) transmission channel, which behaves like a

!The phenomenon that a speaker alters his/her way of speaking in a noisy environment is referred to as
“Lombard effect”.



4.1. Causes of adversity 43

Speech and speaker variability Noisy speech and channel distortions
Channel
Style Variations digtortion
Voice (formal, casual, spontaneous, .
Quality read, dictated, ...) Noisy speech noise assumed
) additive and/or
(breathy, tense, Speaking convolutive
whispery, ...; Rate noise assumed additive
male versus
female) (normal, slow, (transportation,
fast) industry/military,
office environement, /~ (telephone- and
Context Stress ) microphone-induced,
room acoustics,
(interview, (emotional factors, reverberation, ...)
free conversation, under cognitive load,
man-machine dialogue, ...) \ in noise, ...)

Figure 4.2: Illustration of the two broad categories of causes of adversity on the speech
signal. Left part taken from Figure 4.1 in (Junqua and Haton, 1996, p. 128). The grey color
indicates noise cases which are not investigated in this thesis.

linear convolution filter h.pqn(t) and, moreover, can add noise no(t). Last but not least, there
is additive noise present at the receiver nz(t). The observed corrupted-speech signal y(t), which
arrives at the recognizer, is thus related to the noise-free and distortion-free speech signal s(t)

Stress
s(t)]
Lombard

] +ny (t) ® hmicr (t) + na (t) b2 hchan(t) +n3 (t) (41)
ni(t)

where ® denotes the convolution operator, and nq(t) is the background noise, Apicro(t) the
impulse response of the microphone, ns(t) and hepan(t) are, respectively, the additive noise and
impulse response of the transmission channel, and ns3(t) is the noise present at the receptor
(Gales, 1995).

For ease of mathematical modeling, the various additive and convolutive noise cases are,
respectively, taken together. We can then describe the signal y(¢) which arrives at the recognizer

in a simpler way as:
y(t) = z(t) @ h(t) = [s(t) + n(t)] ® h(t) (4.2)

where z(t) is the clean speech signal corrupted by additive noise n(t) only, h(t) summarizes the
convolutive noise cases. Normally, the data is not modeled in the time domain, so that (4.2)
needs to be transfered to the respective domain in which modeling is performed, such as the
spectral or cepstral domain. In the case of the spectral domain, (4.2) becomes

Y(f)=X(f)-H()=[S(F) + N(H]-H(]) (4.3)

under the assumptions that H(f) is constant over time and independent of the incoming signal
level.

Other noise classifications Noises can also be distinguished according to their time and/or

frequency distribution. Some noises are stationary, that is, the model which describes the
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noise does not change in time, or non-stationary, that is, the noise model changes in frequency
over time. Other characteristics for noises are periodicity (e.g. in the case of engine noise), or
impulsiveness (e.g. in the case of machine gun and some factory noises). Finally, noises can
also be described as narrow-band or wide-band noise, depending on whether they only cover a
certain, limited frequency region of the signal, or whether the whole signal is affected by the

noise.

4.1.2 Additive noise

Environmental noise is usually assumed additive and uncorrelated with the speech signal. As-
suming absence of convolutive noise, the recorded speech signal x(¢) can then be described
as a sum of the intended speech signal and an acoustic contamination from noise-like signals:

z(t) = s(t) + n(t). Additive noise can either be stationary or non-stationary.

Examples of additive noise occurrences Ambient noise already occurs in office environ-
ments due to type-writers, printers, ventilator noise from computers, or people speaking in the
background. The so-called Cocktail Party Effect is a well-known phenomenon. It refers to the
ability of a listener in a “cocktail party” to be able to listen to just one of the speakers as if
the others were not present, even though they may all be speaking at the same volume. On
the contrary to humans, such noise occurrences severely disturb automatic speech recognizers.
Moreover, in this noise case, also transient or impulse noise can be encountered, which is often

of high-intensity such as door slamming, phone ringing or passing cars.

A major use of speech recognition applications is for example in an automobile. Here,
the variety of ambient noises is even more striking. First, there are noise cases from out-
side the passengers’ area such as low-frequency engine noise, tyre and windshield wiper noise,
high-frequency noise from the air flow (increasing with speed), and non-stationary noise from
passing vehicles (traffic noise), possibly rain falling onto the car roof or other weather-influenced
conditions. Second, we encounter interferences from inside the car such as the radio playing
(speech and music), passengers talking and noise from the indicator warning signal. The SNR
in a passenger car can drop to -5 dB when the car is going at a speed of 90 km/h with the
window closed (Lecomte et al., 1989). Degan and Prati (1988) showed that for a car moving at
100 km/h? the noise power in the region between 1 and 6 kHz increased considerably as com-
pared to a stationary car with the engine turning at 4000 r.p.m. This means that the frequency
region which is supposed to be the most important for human speech recognition (cf. Sec-
tion 2.2) is also the region which gets the most perturbed in the car. Several publications have
demonstrated the difficult task of accurate speech recognition of an in-car application (Mokbel
and Chollet, 1991; Schless and Class, 1997).

The (real-environmental) additive noise cases which we chose for investigating the noise
robustness of our speech recognizers are a factory noise case and an in-car recorded noise case.
Moreover, artificial additive (stationary and non-stationary) band-limited noise was created.
They are described in Section 8.2.

2with the gear in neutral position and the engine off



4.2. Robust feature processing 45

4.1.3 Channel distortion

If the signal is recorded, the type of microphone and its (possibly changed) position can dras-
tically influence the speech signal (Acero and Stern, 1990). In (static and mobile) telephone
applications, there is, moreover, the distortion introduced by the telephony transmission chan-
nel. Due to a large variety of telephone gadgets and transmission line characteristics, such
attenuation distortions are hard to predict. The limited bandwidth of the transmission channel
of 200/300-3200/3400 Hz (Schukat-Talamzzini, 1995, p. 47) additionally restricts the quality
of the speech presentation. In the case of mobile telephone applications, the radio channel
has a continuous variable transfer function which provokes an even more severe degradation
of the speech signal (Degan and Prati, 1988, p. 43). Moreover, in cellular phones, the switch-
ing from one cell to the other can produce a switching noise (Moreno and Stern, 1994). For
these reasons, utilizing a speech recognizer over the telephone line which had been trained on
data not recorded over a telephone line or on a different transmission channel leads to a severe
degradation in recognition accuracy if the change in application environment is not accounted
for such as through the use of robust features and other techniques.

Room reverberation is another source of distortion noise. Walls and other objects in the
room where a speech recognizer is employed produce, at different degrees, reflections of the

speech signal which alter its spectrum.

In the experiments carried out in this thesis, we use speech data which was recorded over
the telephone line for both training and testing in order to concentrate on the influence from

the additive noise cases.

4.2 Robust feature processing

The notion of “(speech) features” was introduced above as a machine-internal, characteristic
representation of the speech signal. The use of reliable features is a key issue in the design of an
automatic speech recognition system. In order to emulate the robustness of the human auditory
system, many of the most effective acoustic features, which only came into existence over the
last decade, are based on human auditory characteristics. They incorporate mechanisms based
on psychoacoustic and neurophysiologic evidences such as critical band filtering, equal loudness
pre-emphasis, and non-linear energy compression which have been illustrated in Section 2.2.

The most widely used and most promising of these features will be presented in the following.

4.2.1 State-of-the-art acoustic features

Speech features which are directly calculated from the speech signal are hardly anymore used in
ASR, with the exception of the short-time energy, which is an effective measure to distinguish
between voiced and unvoiced sounds (Schukat-Talamzzini, 1995). Instead, spectral and cepstral
analyses are carried out which usually lead to more robust representations of the speech signal
than the time features. Moreover, these analysis techniques are often combined with processing

strategies based on human auditory characteristics.
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Along this line, critical-band filtering aims at modeling acoustic filtering in the human
cochlea. This implies narrow frequency bands for low frequencies and larger frequency bands
for higher frequencies. As we already saw, different approaches have been proposed to model
such critical-band representation, such as the Mel and Bark scale. The former is amongst others

used in mel-frequency cepstral coefficients, the latter in perceptual linear prediction processing.

MFCC features The processing for the more robust and still inexpensive mel-frequency
cepstral coefficients (MFCCs) (Davis and Mermelstein, 1980) can be seen on the right side of
Figure 4.3. After spectral analysis, the (power) spectrum is integrated within overlapping
critical band filters which follow the Mel scale. The spectrum is then pre-emphasized to ap-
proximate the unequal sensitivity of human hearing at different frequencies. To approximate the
power law of hearing, the spectral amplitudes are compressed by a logarithmic function. The
cepstral coefficients are then calculated through an inverse (discrete) Fourier transform (IDFT).
For spectral smoothing to suppress the effects of further nonlinguistic sources of variance, the

higher Fourier components in the compressed spectrum are ignored (“cepstral truncation”).

Perceptual linear prediction Perceptual linear prediction (PLP) analysis (see left side
of Figure 4.3) is based on linear prediction (LP) analysis but additionally includes auditory
properties through the computation of a compressed critical band spectrum (Hermansky, 1990).
To obtain an estimate of the auditory spectrum, the (FFT) spectrum is convolved with the
critical-band function. The integration step is this time done with trapezoidally shaped filters
which are applied at roughly Bark intervals (whereas triangular windows are used in MFCC
processing). The resulting Bark-scaled spectrum is multiplied by a fixed equal-loudness curve
(pre-emphasis). The amplitude of the output is compressed by a cube-root function which is
used instead of the logarithm to approximate the power law of hearing. After inverse (discrete)
Fourier transform (yielding autocorrelation coefficients), the autoregressive model is calculated
to smooth out details from the auditory spectrum. The autoregressive coefficients are then
usually transformed in to orthogonal parameters, such as cepstral coefficients. Nevertheless,
PLP analysis was found to be vulnerable to linear spectral distortions (Hermansky et al., 1992).
To alleviate this problem, PLP processing is often combined with a RelATive SpecTrAl (RASTA)
filtering method, which is described in Section 4.2.4.

Both the mel-cepstral analysis and PLP provide a feature representation which corresponds
to a smoothed short-term spectrum that has been compressed and equalized much as done in

human hearing.

4.2.2 Spectral and cepstral mean normalization

Convolutive noise can more easily be removed in the logarithmic spectral domain or in the
cepstral domain where the noise is additive (Deller et al., 1987).

In spectral mean normalization, the average of the input speech spectrum is measured over
the whole utterance (of T' frames) to approximate the channel transform function |H (f)|?, and
subtracted (in the logarithmic domain) from the noisy speech spectrum Y (f), as shown in (4.5).

Although some speech characteristics might also be suppressed due to this long-term estimate,
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speech speech
spectral spectral
analysis analysis
¢ power spectrum ¢
| Bark-scale : | Mel-scae :
L filterbank L __filterbank
} critical-band spectrum }
i equal-loudness ! i equal-loudness !
. pre-emphasis . pre-emphasis
| cuberoot | | logarithmic |
,  compression ! , compression !
{ auditory spectrum £
IDFT;
autoregressive IDFT
modeling
' '
cepstral analysis cepstral
to orthogonalize truncation
PLP cepstra MFCCs

Figure 4.3: Illustration of the different processing steps for PLP (left) and MFCC (right)
analysis. The dashed boxes indicate the processing modules which account for the perceptual
analysis and, thus, constitute the main differences to standard LP (in the case of PLP analysis)
or cepstral modeling (in the case of MFCC analysis). (Gold and Morgan, 2000).
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most of the (fast-changing) phonetic speech information will be preserved?.

log S(f) = logY(f) —log|H(f)? (4.4)
~ logY(f) ~ 7 Y logY (/) (45)
T

with S (f) an estimate of the original speech spectrum, Y (f) the spectrum after channel dis-
tortion, |H(f)|? the channel transfer function, and 7' the number of frames in an utterance
(Hanson et al., 1996). Additive noise is assumed to be negligible.

The same is possible in the cepstral domain, where the mean of cepstral vectors are sub-
tracted from the cepstral coefficients of an entire utterance on a sentence-by-sentence basis
(cepstral mean normalization).

In real-time implementations, it is difficult to obtain such long-term mean values. Instead,
a (weighted) average can be calculated over the preceding signal (of K <« T frames) instead of
the whole utterance to speed up the process (Hanson et al., 1996)

log S(f) ~ log¥(f) = arlogVi(f) (4.6)
K

4.2.3 Spectral subtraction

Spectral Subtraction is based on the assumption that noise and speech are uncorrelated and
additive in the time domain. Moreover, convolutive distortions are supposed to be negligible.
In this case, the noisy power spectrum is the sum of the noise power spectrum and the speech
power spectrum. Assuming that the noise characteristics change more slowly than those of the
2,

speech, an estimate of the noise power spectrum |N ()7, which is usually obtained in non-

speech intervals, can be subtracted from the power spectrum of the corrupted speech signal

[Y'(f)]? to approximate the clean spectrum |S(f)[2:

IS(HF = Y(HP - INHP (4.7)

For this method to be successful, a good estimate of the noise is needed and thus, a reliable
speech versus noise detector to identify pure noise portions. Due to spectral similarities between
many unvoiced speech sounds and certain background noises this is a difficult task, especially
at low SNR. For calculation of the noise estimates during non-speech periods, the background

noise is assumed to not vary significantly throughout the speech sections.

More recently, noise estimation techniques which no longer rely on speech pause detection
have been proposed (Hirsch and Ehrlich, 1995), which also allow for quicker adaptation to
slowly varying noise levels or spectra.

Subtraction of the noise power can result in negative values if the noise estimate exceeds
the real noise magnitude. This is usually accounted for by setting all negative values to a non-
negative threshold for example by half-wave rectification. (If the recovered speech spectrum is

then re-synthesized, these remaining isolated patches of energy produce residual noise called

3Subtraction of logarithmic spectra corresponds to a division of power spectra which explains the name
spectral “normalization”.
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“musical noise” which can be minimized by using non-linear subtraction techniques (Lockwood
et al., 1991)).

Spectral subtraction cannot be used in the logarithmic spectral or cepstral domain where

the noise is signal-dependent and can no longer be removed by subtraction.

4.2.4 Filtering of spectral or cepstral coefficients

Experiments on both human speech perception and machine recognition have shown the im-
portance of spectral transitions from one phoneme to the next, i.e. the time variations or dy-
namics of a speech spectrum, rather than the phoneme-internal constant parts (Furui, 1986a).
As compared to distortion noise, which is usually characterized by very low modulations, the
speech-specific variations happen over a shorter time period. Thus, assuming that slow-changing
variations in the spectrum are due to channel effects and anyhow carry little phonetic infor-
mation, spectral dynamics can be emphasized by suppressing the slower varying parts in the
spectrum.

RASTA filtering

One approach to suppress slow-varying changes in the spectrum is by RASTA (RelAtive Spec-
TrAl) filtering (Hermansky and Morgan, 1994; Hermansky et al., 1992) the short-term spectrum.
The low modulation frequencies can be suppressed by a simple high-pass or band-pass filter of
the parameter feature vectors. The filtering can be carried out in different spectral domains,
such as the linear spectral domain or the logarithmic spectral domain, depending on the kind
of noise that should be suppressed:

e linear spectrum to suppress additive noises

e logarithmic spectrum to suppress convolutive noise, such as linear distortion introduced

by the transmission channel.

RASTA filtering is carried out after decomposition of the spectrum into critical bands, such
as during PLP analysis or mel-cepstral analysis (and before auditory processing), as illustrated
in Figure 4.4. In the case of filtering in the compressed domain, the logarithm (or any
other non-linear compression function) is taken of the critical-band spectrum. Then the filter,
which has the transfer function (4.8) is applied to the (logarithmic) spectral component of each
frequency channel:

2427 4273 9,4
1—-0.982"1

H(z) =0.12* (4.8)
After the filtering, the conventional (PLP) analysis is resumed at the step after critical-band inte-
gration. In the case of non-linearly compressed spectral components, a following de-compressing
non-linearity is carried out, which for prior logarithmic compression is the exponential function.

The low cut-off frequency which approximates a sharp spectral zero at the zero frequency of
each channel, defines the fastest spectral change (i.e. the modulation frequency) which will still
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Figure 4.4: Tllustration of the different processing steps for RASTA-PLP analysis. The dashed
boxes are the RASTA processing modules, the dashed-dotted box indicates the perceptual anal-
ysis of PLP. Commonly, the compressing non-linearity is a logarithm and the expanding non-
linearity an exponential. (Gold and Morgan, 2000).
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be suppressed. It is usually located at around 0.26 Hz, so that the constant and very slowly
changing components of the respective frequency channel are filtered out (high-pass part). The
high cut-off frequency of the filter determines the highest modulation which will be preserved
by the filter; thus, also higher modulation frequencies than those usually found in speech can
be suppressed (low-pass part), such as frame-to-frame changes due to analysis artifacts. Thus,
the passband is established in the domain of critical band modulations to a range that appears
to be required for speech intelligibility (Gold and Morgan, 2000).

Simultaneous filtering of additive and convolutive noise To deal with both additive and
convolutive noise at the same time, an extension of RASTA filtering, called J-RASTA filtering,
can be used (Morgan and Hermansky, 1992; Koehler et al., 1994). For this, the logarithmic non-
linearity in the RASTA filtering procedure is replaced by a function which is nearly linear for
low values of signal power relative to noise (i.e. reducing additive noise effects) and logarithmic
for high signal power values (i.e. reducing convolutive noise effects). Thus, the filter is applied
on a function which is roughly identity in the case of additive noise, and logarithmic for the case
of convolutive noise. The exact form of the function is controlled by the value of the parameter
J, which is adapted according to the additive noise level (Koehler et al., 1994).

Time difference features

Another possible set of spectral dynamic features are the differenced coefficients of the static
features which measure the change in coefficients over time (Furui, 1986b).

First order derivatives can for example simply be calculated by taking the difference of

feature vectors of a certain distance m:
AZit = Titym — Tit—m Vi,t (4.9)

for short-term feature vector coefficient x; ; at time ¢. The derivative window m AT defines the
amount of time over which the derivatives are calculated and is usually different for the first
and higher order derivatives. The choice of the size of the window is crucial and not easy to
conduct. If the window is too short, differences pick up irrelevant details in the speech signal.
If the window is too long, on the other hand, no information is gathered at all.

Calculation errors can be introduced by the fact that the spectral features, on which the
derivatives are based, are calculated over very short analysis windows. Therefore, linear least
square regression, which considers all speech frames in the derivative window, is used to smooth
the derivatives:

m -
2 JTit
brip=1— Vit (4.10)

m

2. J?

j=—m

that is, the slope of the straight line is calculated which minimizes a least squares criterion of

the sum of the distances between the straight line and the 2m + 1 considered points.

Second order derivatives are obtained by simply applying the difference equation of (4.9) a
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second time:
AAl‘i’t = Al'i,t+m — Al'i,tfm VZ ,t (411)

with m depending on the span of time information that is to be considered: medium-term or
long-term information. The same is valid for second or higher order derivatives calculated via

regression (iterative application of (4.10)).

The time derivative features are usually concatenated to the static feature vector and passed
on to the classifier conjointly.

4.2.5 Linear discriminant analysis

In statistical pattern recognition, features which are orthogonal are often advantageous for
modeling purposes, such as in GMMs. In the two approaches illustrated below, the feature
vectors are directly and completely orthogonalized with the help of a given data set. A set of
orthonormal basis functions which span the feature space are computed from statistics estimated
on the training data, and then applied to the feature vectors. The basis functions can, if desired,
be ranked by order of importance according to special criteria.

Linear Discriminant Analysis (LDA) tries to find a linear transformation of one parameter
space into another by minimizing intra-class variance and maximizing inter-class variance (Duda
and Hart, 1973). The basis functions are determined as the eigenvectors of the “between”-to-
“within” covariance ratio. LDA assumes that the data in each class can be modeled by a single

Gaussian distribution that shares its covariance matrix with all the other classes.

Principle Component Analysis (PCA) (also termed Karhunen-Loeve (KL) transform (Bishop,
1995)) can be applied after LDA. Its basis vectors are obtained from minimizing the “mean
squared error” between the reconstructed and original set of vectors. PCA can select the di-
rection of greatest variance of the inter-class covariance matrix which allows for dimensionality
reduction of the final feature vector rendering the representation more compact.

Non-linear Discriminant Analysis (NLDA) is carried out in the so-called Tandem approach
(Hermansky et al., 2000; Ellis et al., 2001) where the speech features are post-processed by
an ANN (usually an MLP) before they are passed on to an HMM-GMM classifier. In order
to keep the network outputs approximately Gaussian distributed, the usually used softmax
non-linearity at the network output is removed (Sharma et al., 2000). The network outputs
are then diagonalized through KL transform for subsequent modeling using diagonal covariance

matrices.

4.2.6 Frequency difference features

A novel approach for the generation of robust spectral features is so-called Frequency Filtering
(FF) introduced by Nadeu and Juang (1994); Nadeu et al. (1997). In this method, instead of
taking derivatives over time, constant or slow-varying parts in the spectrum are removed by
taking the derivative over frequency (Nadeu et al., 2001; Gemello et al., 2000). This is based



4.2. Robust feature processing 53

on computationally simple first or second order FIR filters such as for example

=
=
N
N
Il

11—zt (4.12)
Hy(z)=2z—2z" (4.13)

which corresponds to simple differences over frequency Az} (f) = z(f) —z(f —1) and Azy(f) =

z(f + 1) — 2(f — 1) performing a combination of decorrelation and liftering?.

The filters are usually applied either to logarithmically® or cube-root compressed filter bank
energies (Nadeu et al., 2001; Macho et al., 1999), or to LP parameters, and substitute the
conventionally following Discrete Cosine Transform (DCT) or KL transform which are usually
used to decorrelate feature coefficients. The frequency-filtered parameters are thus not con-
verted into cepstral representation but stay in the spectral domain. In order to account for loss
of the first and last spectral values due to the filtering, a zero is appended at the beginning
and end of each spectral vector. For this reason, the energy coefficient is usually not included
in the feature vector as the endpoints of the feature vector consisting of the second and last
but one logarithmic energies already include energy information. Due to their spectral rep-
resentations these features seem to be especially suited for the design of classifiers which rely
on non-orthogonalized but robust features such as “missing data” processing, which will be

discussed in Section 4.4.

Tests with frequency filtered logarithmic energies showed competitive performance in clean
and improved noise robustness as compared to MFCC features.

The FF coefficients can, just as any other coefficients, also be augmented by their time
derivatives which renders them even more noise robust (Macho et al., 1999). This approach is
refered to as time and frequency filtering (tiffing).

4.2.7 Speech enhancement

Speech enhancement techniques try to recover either the waveform or the parameter vectors of
the clean speech from the noise-corrupted input signal. This way, the mismatch between test
data and the original training data is reduced.

Active noise cancellation An example of speech enhancement for additive noise is micro-
phone array processing, in which multiple microphones are employed. The first microphone
records the desired speech signal s(t) together with the ambient noise ny(t), whereas the sec-
ond microphone measures a secondary noise input ny(t) which is supposed to be correlated
with noise n1 () but not with speech input s(¢). Noise input ns(t) is then subtracted from the
corrupted-speech input s(t) + nq(t) of the first microphone. It has been shown (Widrow et al.,
1975) that noise ny(¢) in the primary input can be well eliminated from the corrupted speech,
when the noise na(t) is free from speech but coherent with noise ny(#). Sufficient coherence
of the two noise signals can only be achieved when the microphones have a maximal distance
of less than 5 cm from each other (Degan and Prati, 1988), which at the same time, makes it
difficult not to capture any speech with the noise-only microphone.

44iftering” means weighting in the cepstral domain.
5Note that if frequency filtering is applied to the linear spectral energies, it better attenuates additive white
noise components (Nadeu et al., 2001, p.13).
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Noise-cancelling microphone A way to overcome this problem is to use a special noise-
cancelling microphone which consists of a pair of microphones picking up the corrupted speech
signal, on the one hand, and the pure noise signal, on the other hand. Such a microphone
can for example be installed in a helmet used in an air-fighter, where one microphone picks
up the speech signal inside the helmet and the other microphone the noise signal from outside
the helmet. Use of noise-cancelling microphones in an automobile also result in good speech
enhancement. Again, satisfactory noise suppression is only achieved if the noise-cancelling
microphone is correctly positioned, which means located in the right angle and very close to
the speaker’s mouth. Too large a distance of 10 cm and rotation of more than 30 degrees
resulted in a decrease of 15 dB speech power for automobile and aircraft interiors (Degan and
Prati, 1988, p. 53). Unfortunately, in real-world applications where users demand ease and
comfort in application, such microphones would not find high acceptability.

4.3 Robust modeling

Several approaches for handling noise robustness in ASR systems have been introduced above,
most of which are based on the assumption that noise is present in the speech signal and either
should be removed or its influence should be diminished. Depending on the noise, this has to
be done in the spectral, cepstral or in both domains, making it difficult for one and the same
approach to account for all different noise cases. Approaches using model compensation or

robust training, on the other hand, allow the presence of noise in the recognition process.

4.3.1 Model compensation

In model compensation, HMMs are defined for both the speech signal and the noise signal simul-
taneously. In Signal Decomposition (Varga and Moore, 1990) and Parallel Model Combination
(PMC) (Gales and Young, 1992), concurrent additive signals, such as the speech and the noise
signals, are recognized simultaneously. This is achieved through the use of different sets of
parallel HMMs where each set models one part of the signal. The clean speech models which
are supposed to contain sufficient information about the statistics of the clean training data,
are combined with noise models, created with the help of available noise samples, which are
supposed to approximate the background noise. The combination is carried out by an appro-
priate mismatch function to create the corrupted-speech models. Recognition is carried out by
a three-dimensional Viterbi decoding, extended to a search through the combined state-space
of the model sets. The decoder attempts to simultaneously calculate the optimal state sequence
in both the speech and the noise models.

In predictive PMC, the corrupted-speech models are generated before any speech data from
the new environment has been observed. This is achieved by using models of various noise
sources, such as additive noise, stress or channel noise models, which are appropriately combined
to create the new corrupted-speech models (Gales, 1998).

On the down-side of both models, Signal Decomposition and PMC, it has to be mentioned

that the noise models need to be correctly trained for the respective noise and updated for
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each changed noise environment. Moreover, the extra computational cost involved in three-
dimensional Viterbi decoding can be prohibitive.

4.3.2 Robust training

Another possibility to account for various noise conditions at the same time is by training
of the recognizer for the various noise cases which are expected to be encountered during
the application phase (Hirsch and Pearce, 2000), or by narrow-band training in noise. These

approaches are discussed in the following.

Re-training Analogous to the enrollment process for new speakers in a speaker-dependent
system a “noise-independent” system can be approximated by re-training the system on new
testing conditions. Unfortunately, the collection of new data, which is inevitable for this ap-
proach, is expensive and time-consuming. Moreover, the demand of training time of the recog-
nizer itself, which can take hours or even days for large tasks, as well as storage requirements
must be considered. The fact that such a time- and resource-expensive re-training would be
needed for every new and unpredictable test environment quickly shows the limitations of this
approach.

Multi-style training Multi-style training pools training data from different acoustic envi-
ronments, such as various noise types and levels (Hirsch and Pearce, 2000), different speaking
styles (Lippmann et al., 1987) and/or microphones. It was shown that this approach signifi-
cantly increases recognition performance on the respective noise cases. Performance in a certain
noise condition, which was included in the multi-style training data, however, is reduced in com-
parison to the same system trained only on that noise (Acero, 1990). This increase in error rate
for matched conditions is due to a loss of acoustic discrimination through noise contamination.
The vast amount of training material, which covers all possible testing environments needed to
render a system powerful on all noise cases, is not available and it is questionable whether it
could ever be collected.

Narrow-band training A recent approach proposed by Dupont (2000) seems to alleviate this
problem of training data sparsity. It is based on two equally important parts, one is training
in noise, the other is decomposition of the frequency domain into subbands. In (Cerisara,
1999a; Dupont, 2000), it had been observed that when considering narrow frequency bands,
noise occurrences often exhibit little difference other than a difference in noise power. For this
reason, a subband speech recognizer which is trained on such a narrow frequency band with
any kind of noise will behave relatively robustly to any other kind of noise.

In (Dupont, 2000), a system of seven frequency subbands (each covering roughly four critical
bands) was found to work best for this approach. After critical band analysis, each subband
feature vector was normalized and passed onto a system (in this case an ANN classifier), the
goal of which it is to estimate a feature vector relatively insensible to noise. The output of
each such system is a new, more discriminative subband vector. The subband feature vectors
are then concatenated and passed onto a standard speech recognizer. For estimation of the
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robust parameters, the subband ANN classifiers are trained on a noise-contaminated database.
In order to cover the entire range of possible noise levels which can be encountered, the training
data is assembled from both clean data and data contaminated with white noise at different
SNR levels (0, 5, ..., 20 dB). Experimental results averaged over six different noise cases with
each at a range of SNR levels (5, 10, 15, 20 dB) resulted in a 30 % relative improvement in word
error rate of the seven subband system with contaminated training as compared to reference
(fullband and multi-band) systems using spectral subtraction or J-RASTA-PLP features for noise
robustness (Dupont, 2000, p. 199).

In (Cerisara et al., 1999a, p. 105), for comparison, only the recombination module (a Single-
Layer Perceptron) of a multi-band system was trained in white noise, whereas the subband
recognizers were trained in clean. The resulting multi-band system showed higher noise robust-
ness to most of the noise cases tested (i.e. white noise, high-frequency (pink) noise, low-frequency
(pink) noise, hair-dryer noise and car noise) than the same system whose recombination unit
had been trained on clean data. Tests in clean data, on the other hand, and also in canteen
noise, resulted in higher performance by the system whose recombination unit was trained in

clean speech than the one whose recombination unit was trained in white noise.

4.4 Missing Data (MD) approach

Missing Data approach Contrary to robust training or training of multiple streams which
usually ignores what exactly renders the recognizer more robust, in the “missing data” (MD)
approach the data to be recognized is analyzed in more detail. In their most general form, MD
methods (Cooke et al., 1994b, 1997, 2001; Morris et al., 1998) try to segregate the different
sound sources in the input signal, and then to recognize the evidence which has been assigned
to each of these speech sources. This implies the necessity to handle so called occluded speech
when some part of the spectral data frame is assigned to one source and another part to another

source.

Identifying reliable data The first problem in MD processing is therefore how to identify
the reliable spectro-temporal regions for the source to be recognized. This is usually achieved
with local SNR estimation. The noise spectrum is estimated for each data frame either just
once from the first few supposedly non-speech frames, or adaptively throughout the utterance.
Spectral data values for which the local SNR is less than 0 are then treated as if they were
not, available, or “missing”, while other values are treated as 100% clean. The decision that
each spectral value is either all speech or all noise is an important part of the basis for the
MD approach and is referred to as the maximum assumption. This is justified by the fact
that for logarithmically (or otherwise) compressed spectral power values a and b, if a > b then
log(a+b) = log[(1+ %)a] = log(a) +1og(1+ %) < log(a)+1log(2), soif a > 2, log(a+b) ~ log(a).

Hard and soft “missing data masks” Reliability estimation is performed in a separate
pass before recognition starts, and this information is stored as a “missing data mask” for each
spectral data value in each time frame. The decision as to which values are missing can be either
“hard”, in which case the MD mask P(not missing) values are discrete (P(not missing) = 1
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if SNR > 0, else = 0) or “soft” (Barker et al., 2000; Morris et al., 2001a), in which case
P(not missing) mask values are continuous, and are estimated by applying a suitable sigmoid
squashing function to the estimated SNR. (Barker et al., 2000).

Recognition with MD The second problem which arises with occluded speech is how to
carry out recognition on partial data? It will be seen below that, in the framework of GMMs,
HMM state emission probabilities are easily adapted to handle partial data while everything
else stays the same. When some part of the clean spectral data X is missing or uncertain,
the posterior probability P(Q|X) required for MAP decoding (cf. Section 3.4.1) cannot be
calculated directly. In this case the estimate for P(Q|X) which maximizes the probability of
correct classification is given by its expected value, conditioned on any knowledge (k) that we
still have about X (Morris et al., 1998, 2001a)

P(Q|X) = E[ P(Q|X)|X", X" k] (4.14)

where X' is the clean training data, X°°* is the observed noisy test data, and  is any other
knowledge on which the pdf for X may depend, such as the “bounds constraint” whereby lower
and upper bounds for X are given by 0 and X°". Decoding with clean speech finds Q* to
maximize P(Q|X) = %, where p(X) can be ignored because its value is not affected
by the choice of @. In this case

Q" = arg maxP Hp (z¢|qk) (4.15)

In the case where p(z|q) is a GMM, and each Gaussian component p(xz|m;,q) has diagonal

covariance, and if ¢ denotes a subscript over coefficients of z, then

p(zlq) = ZP (mulq) Hp (zi|mu, q) (4.16)

With missing data P(Q) is unaffected; for the most general case considered in the MD ASR
literature, which uses the soft MD decision together with the bounds constraint given above,
(4.16) becomes

p(zlg) = ZP mi|q) H a; + b;) (4.17)

where
a; = ®; p(xi|lmi, q) (4.18)

with ®; denoting the estimated probability that z; is clean, and where
obs
1—®;) [%
bi = %/ p(zilmy, q) dz; (4.19)
l’i 0
assuming additive noise and filterbank energy features, so that the unreliable features are
bounded below by 0 and above by the value of the feature in the noisy speech mixture z¢".

Without additional knowledge, it is assumed that they are distributed uniformly in [0, z¢%%].

In the case where the soft MD decision is used but the bounds constraint is not used, b;

above becomes zero (the integral becomes 1, but the —%= factor becomes —) In the case where

z°

the hard MD decision is used the same equations apply but ®; = 1 for z; present and 0 for z;

missing.
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Marginalization Let (z,,z,) denote the partition of data vector z into its present or “reli-
able” and missing or “unreliable” components respectively. When a hard MD decision is used
with no bounds constraint, the only difference with the clean data case, as far as MAP decoding

is concerned, is that p(xz|m;,q) becomes

p(slmi, q) = / p(zlmi, ¢) dzy (4.20)

Ty

i.e. each mixture component p(xz|m;,q) is replaced by its marginal p(x,|my,q) by integrating
over all of its unreliable components. We will see in Section 6.1.2 how marginalization can
also be applied to (likelihood-based) multi-band processing, in order to permit evaluation of
the likelihood for any subband combination from the single likelihood model which has been
trained for fullband data.

4.5 Multi-band processing

Multi-band processing is one of the major parts of this thesis and Chapter 5 is entirely devoted

to this subject. Hence, only a short introduction will be given here.

In multi-band processing, the speech signal in the spectral domain is split into several
frequency subbands, in order to separate possibly occurring noise from the clean frequencies.
Each subband (or combination of subbands) is then processed separately. The techniques for
feature extraction can be the same or different for each subband (Christensen et al., 2000). The

subband feature vectors can then

e cither be concatenated to form a fullband feature vector which is then processed just as
in the standard fullband approach (this is termed feature combination), or

e be processed independently by a recognizer for each subband to yield subband (speech
unit) probability estimates, which are combined before decoding. (The subband recog-
nizers are based on the same implementation as a respective fullband recognizer). This

approach is termed probability combination.

In the case of probability combination, the output probability estimates from the subband
recognizers can be combined at different levels, such as the state, phoneme, syllable, word or
sentence level. In our case, frame level (phoneme) probabilities are estimated by each sub-

recognizer and combination is carried out on these estimates throughout this thesis.

The strength of multi-band systems lies in the fact that possibly occurring noise in one
subband does not get mixed with neighboring subbands, as is usually the case in fullband
processing. In fullband processing, feature extraction is carried out only once for the whole
frequency domain, which results in a feature vector in which noise in any one subband is usually
spread over all features. Multi-band processing permits us to process each frequency subband
separately, so that the noise is not spread, and to down-weight or discard noisy subbands - if
they can be detected.

The multi-band approach is the subject of Chapter 5. Different combination approaches
will be discussed in Chapter 6 and weighting strategies in Chapter 7.
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4.6 Multi-stream processing

As we saw in the discussion on psychoacoustic studies on human speech perception in Sec-
tion 2.4, the speech signal possesses high information redundancy. It is hypothesized and
shown by recent publications in this area (Janin et al., 1999; Christensen et al., 2000; Hagen
et al., 2000), that the redundancy and diversity of the speech signal can be well exploited by
the use of various fullband streams representing the auditory (and/or sometimes visual, such
as lip movement) input signal (Dupont, 1997; Bourlard, 1999).

Such diversity can be achieved at different processing stages of an automatic speech recog-
nizer the structure of which was illustrated in Figure 3.1. In the feature extraction module,
diverse strategies can be employed as far as the kind and manner (i.e. window size) and the
pre- and post-processing strategies of the feature extractor are concerned. In the design of the
classifier, there are also numerous ways of obtaining diverse functional characteristics through:
(i) different random initialization or different structure of the models, (ii) different training
strategies and/or data (Mak, 1997), (iii) use of different classifiers the outputs of which must
be comparable.

Depending on the stage at which the diversity is achieved the combination of the fullband
streams can be achieved by simple concatenation of the (fullband) feature vectors, or demands
for more sophisticated combination strategies just as it is the case in multi-band processing.
Multi-stream processing can therefore be seen as a generalization of the multi-band approach.
Multi-stream processing is another major part of this thesis and Chapter 9 is devoted to this
subject. The same combination and weighting strategies as in multi-band processing can be

employed.

The scope of possibilities for multi-stream processing is large. Recently, it was found at
our (Hagen et al., 2000) and various other speech research laboratories (Janin et al., 1999;
Christensen et al., 2000) that employing several fullband recognizers trained on different under-
lying features, performs better than a monolithic model trained on any one feature stream alone
(also in the case when one of the streams was significantly worse than the others). Significant
performance improvement and noise robustness can thus be achieved by the combination of
complementary fullband streams using different features (Christensen et al., 2000; Janin et al.,
1999; Hagen et al., 2000). In this thesis, we concentrate on this approach to multi-stream

processing.

An important question which arises also in multi-stream processing of diverse feature streams
is up to which level the feature streams should be processed separately. Just as in multi-band
processing, the different feature streams could either be modeled jointly to capture correlation
or be independently processed up to a higher level for probability combination. Our approach
to multi-stream processing will demonstrate a new direction where this question no longer
arises but where consistent modeling of both strategies is employed. This approach is the “full
combination” approach originally proposed for multi-band processing which is discussed for

multi-stream processing in Chapter 9.
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4.7 Summary

In this chapter, we described a range of different causes of adversity with which an automatic
speech recognizer is confronted. We then came to the discussion of several of the most widely
employed and most promising strategies to handle noise-corruption in the framework of ASR.
Robust feature processing techniques, such as the MFCC, PLP and J-RASTA-PLP features, and
feature post-processing techniques as spectral and cepstral mean normalization, time differen-
tiation as well as LDA were presented. Other approaches to achieve higher noise robustness
include the calculation of frequency difference features or the use of spectral subtraction. We
discussed speech enhancement such as through noise-cancelling microphones and the approach

of model compensation. Robust training and modeling techniques were also described.

MD and multi-band processing were shown to share a similar approach to noise robustness,
as they both attempt to separate clean from noisy frequencies, and process them independently.
In the MD approach it is tried to separate reliable and unreliable feature coefficients for each
frame respectively, and base recognition on the reliable ones only. For this, a noise detection
algorithm is needed. In multi-band processing, on the other hand, estimation of the noise is not
required as several different frequency subbands are processed in parallel and independently.
Possible noise in one band can thus not spread into neighboring bands, and some part of the
spectrum will provide reliable information at each time frame. Finally, in the multi-stream
approach several fullband streams are being considered as complementary information streams
instead of frequency subbands. The latter two approaches are investigated in more detail in
subsequent chapters.

In the next chapter, we introduce the paradigm of multi-band processing, before coming
to the combination strategies as employed in both multi-band and multi-stream processing in
Chapter 6.



CHAPTER 5

Multi-band speech recognition

In this chapter, we introduce the general multi-band idea which the thesis will build upon.
Multi-band speech recognition was inspired by early Fletcher’s findings on human auditory
perception which suggested that the linguistic message gets decoded independently in different
frequency subbands.

In conventional (fullband) speech recognition, as was briefly outlined in Section 3.1, acoustic
feature vectors are extracted from the whole frequency band of input speech. Many feature
extractors further transform these spectral features linearly or non-linearly to decorrelate the
feature coefficients and enhance discriminability between feature classes. This can be done, for
example, by applying an inverse Fourier transform (IFT) or DCT to the log spectral values.
In the case when some of the feature coefficients are corrupted by noise the noise is spread to
the clean feature coefficients, due to these transformations. The probability estimation module
(which is normally trained on clean speech) is then confronted with mismatched data, resulting

in unreliable probability estimates.

In multi-band processing, the frequency band is split into a given number of subbands which
are processed separately to a certain point. In order to divide the speech signal into frequency
subbands, the speech waveform is usually first converted from the time to the frequency domain
representation. This is typically done by a Fourier analysis followed by (Mel or Bark scale
frequency) warping which reflects the human auditory function. In the (warped) spectrum
different frequency subbands can be easily distinguished!. Feature extraction and possibly
decorrelation of coefficients is conducted for each band separately, so that the noise does not

spread to neighboring subbands.

n the same way, division into subbands could also be performed by applying a bank of filters directly to
the time domain signal.

61
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5.1 Formal view of the multi-band approach

This section discusses the general idea of multiple stream decoding which allows for asyn-
chronous development of the streams and thus different segmentations in each stream, which
might more accurately account for the respective sequence of stationary segments.

When combining multiple input streams the different streams are usually supposed to act
in a synchronous way, that is, the different parameter groups are assumed to be synchronous.
From this follows that the segmentations of the different streams have to be identical, meaning
that the HMM state transitions have to occur at same instances in time for all streams. This can
be a rather restricting assumption, if the different streams are stationary at different moments
in time. Moreover, synchronous processing also implies that the topologies of the HMMs are
the same for each stream. In order to circumvent these restrictions, an approach to process
multiple, independent input streams was proposed, which allows for asynchronous development
of the streams (Bourlard et al., 1996b; Dupont, 2000).

Let us assume that there are I streams of information X; which are to be recognized.
Moreover, assume that model W corresponds to a possible transcription of a given utterance
and that this hypothesized model is the concatenation of J sub-models W; (j = 1,...,J)
representing the sub-word units. The choice of sub-word unit depends on the level at which
the recombination is to be performed, as for example the syllable or phoneme level. To process
each stream independently of each other up to the defined sub-word unit level, each sub-word
model W; is composed of I parallel models WJ’ (¢ = 1,...,I). For a given speech unit (j
fixed) the different HMMs do not interact with each other, and may have different topologies.
The topologies can be adapted specifically to each information stream. The resulting model
is illustrated in Figure 5.1. The parallel models W]’ are forced to recombine their respective
segmental scores at some temporal “anchor” points (denoted ® in Figure 5.1).

The recombination states ® are not regular HMM states since they are responsible for
recombining (according to the rules discussed below) probabilities or likelihoods accumulated
over a same temporal segment for all the streams. Since this needs to be done at all possible
segmentation points, a special case of HMM decomposition (Varga and Moore, 1990), refered
to as HMM recombination, has to be used for decoding (Bourlard and Dupont, 1996).

I
Win

Figure 5.1: General form of an I-stream recognizer with “anchor” points ® between speech
units (from (Bourlard et al., 1996b, p. 3)).
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As described in Section 3.4 for MAP decoding of the most probable word sequence, we follow
Equation (3.29). Applying Bayes’ rule and separating the acoustic model and the language
model, as discussed before, we are left with the need to maximize the likelihood p(X|W). We
thus want to find model W maximizing

J
p(X|W) = T p(xX;1W)) (5.1)
j=1
where X; represents the stream sub-sequence associated with the sub-word unit model Wj.
Assuming that there are different experts? E; for each input stream X; (i = 1,...,I) and that
these experts are mutually exclusive and exhaustive, it follows:

> P(E)=1 (5.2)

where P(E;) is the probability that expert E; is the best among all experts. It can then be
written

J
pXIW) = [ D p(x;, EW)) (5.3)

I
j=1i=1
I

J
HZ p(XI W} P(E;|W;) (5.4)

where X! represents the i*" stream of the sub-sequence X;, W/ the sub-word unit model for
the it" stream, and P(E;|W;) the reliability of expert E; given the considered sub-word unit.
In (5.4), it can be seen that, given any hypothesized segmentation, the hypothesis score may

be evaluated using multiple experts and some measure of their reliability.

In the specific case in which the streams are assumed to be statistically independent, an
estimate of the expert reliability is not needed, as the full likelihood can be decomposed into a

product of stream likelihoods for each segment model:

J T
log p(X|W) =) log p(Xi|W)) (5.5)

j=1i=1

More generally, any non-linear system could also be used to recombine the probabilities or
likelihoods:

J
MW=H {p(XW)),V¥i}) (5.6)

Different combination strategies are possible for f, such as non-linear combination by MLP
(Dupont, 2000, p. 100), and other non-linear combination strategies described in Sections 6.4
and 6.5.

During recognition, the best sentence model W maximizing p(X|W) needs to be found.

Different solutions have been investigated such as recombination at the sub-word unit level,

2In this thesis, an expert be defined as a trained classifier which has a fixed set of feature components at its
input and outputs class probability estimates.
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where the W;’s are the sub-word unit models composed of parallel sub-models, one for each
stream, as illustrated in Figure 5.1. This requires a significant adaptation of the recognizer,
as pointed out above. This can be realized by the HMM recombination algorithm (Bourlard
et al., 1996b).

State-level recombination Recombination can also be done at the HMM-state level. This
can be realized in many ways, including untrained linear, or trained linear or non-linear ways, as
the examples given in Section 5.4.1 will show. This amounts to performing a standard Viterbi
decoding in which local probabilities are obtained from a linear or non-linear combination of
the local subband probabilities. Although this approach does not allow for any asynchrony,
we will see in Section 5.4.2 that the synchrony constraint usually leads to at least as good
results as when asynchrony between the subbands is allowed. All the work presented in this
thesis employs the synchrony constraint by recombining at the frame level. The combination

strategies which are investigated in this thesis are presented in Chapter 6.

5.2 The multi-band paradigm

The usual approach to multi-band processing is based on the independence assumption between
subbands, so the bands should be chosen in such a way as to minimize overlap between the
subband frequencies. In each subband, a vector of features characteristic to this subband is
extracted, which is referred to as a feature sub-vector. This is shown in Figure 5.2.

Acoustic
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Figure 5.2: An illustration of multi-band processing, where the input speech signal in the
spectral domain is split into several frequency subbands which are then processed separately.
Noise in some feature components does thus not spread to other components in a different
subband.

After orthogonalization or further processing, the feature sub-vectors can be treated in two
ways: They are either concatenated and used to replace the original features (feature combi-
nation), or else each of them is processed by a separate subband recognizer (sub-recognizer)
trained on the respective subband and outputting subband probability estimates. In this case,
a statistical formalism is needed to treat and recombine the respective probability estimates.
This approach is refered to as probability combination. We, thus, distinguish between two main

approaches to multi-band processing:
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1. Feature Combination: In feature combination, the feature sub-vectors are recombined

before classification.

2. Probability Combination: In probability combination, the subband feature vectors are
passed to their respective subband classifier, the outputs of which are recombined after
classification.

These two approaches are examined in the following sub-sections.

Feature combination

Acoustic 5
3 Analysis [F=1
i 58 MLP s
HE | B Lk or GMM =g
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T = é > Analysis (8}
L NE:

two

Figure 5.3: Illustration of feature combination for two subbands with following MLP or
GMM probability estimation and HMM decoder. The MLP outputs scaled likelihoods or
posterior probabilities whereas the GMM outputs likelihoods.

Subband feature combination through concatenation of already pre-processed feature sub-
vectors, as illustrated in Figure 5.3, was first proposed in (Okawa et al., 1999). This approach
offers the advantages that, first, the separately processed feature sub-vectors do not spread
noise from one corrupted sub-set into others, as decorrelation and further transformations are
carried out on each sub-vector separately. Second, the recombination scheme is rather simple as
it only needs concatenation of the feature sub-vectors. We will see in the following sub-section
that in the case of probability combination more sophisticated and difficult recombination
strategies are necessary. While feature combination is simple, it does not allow the different
bands to be weighted separately according to their reliability. This constitutes a weakness in
feature combination because, as we see in the experiments (Chapter 8 and 10), an appropriate

weighting strategy can lead to performance improvements under certain conditions.

Concatenation of the feature sub-vectors results in one feature vector which can then be
modeled as in standard fullband processing. This implies that possible correlation between
feature sub-vectors can be captured by the acoustic model (Okawa et al., 1998), which usually
renders the model more powerful and reliable. Unfortunately, orthogonalization of the feature
coefficients is carried out in the feature sub-vectors only so that the sub-vectors themselves are

not orthogonal to each other.

Probability combination

One of the major advantages of multi-band processing — namely the fact that noise from

one subband is not spread into the others — is also guaranteed in probability combination, as
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Figure 5.4: Illustration of standard probability combination with MLP or GMM probability
estimation for two subbands. The MLP outputs scaled likelihoods or posterior probabilities
whereas the GMM outputs likelihoods.

pre-processing for both feature and probability combination is identical. In probability recombi-
nation, as illustrated in Figure 5.4, each sub-frequency region is treated as a distinct source of
information. During recognition, each subband recognizer outputs probability estimates which
need to be combined at some level of time segmentation, such as the phone, syllable or sentence
level, before the decoding process. Several studies have found that no significant improvement
was achieved when recombination was carried out at levels higher than the state level (Bourlard
et al., 1996a), even though these approaches make it possible to consider asynchrony between
the subbands (Mirghafori and Morgan, 1998b; Cerisara, 1999b; Mirghafori and Morgan, 1999;
Cerisara et al., 2000). For this reason, multi-band work in this thesis employs combination at

the frame level, which allows for standard (one-dimensional) Viterbi decoding.

Importance of combination strategy The combination process is an important part in
multi-band processing. The right choice in how to combine the probability estimates from the
different subband recognizers essentially influences the performance of the combined system.
Depending on the nature of the (subband) classifiers, whether they are likelihood-based, such
as in the case of HMM-GMMSs, or posterior-based, such as in the case of HMM/ANN hybrid
classifiers, the statistical formalism changes. A range of well-known strategies, such as the sum
and product rule, and the recombining MLP, are discussed in Section 5.4.1. New combination

strategies which have been investigated in this thesis are presented in Chapter 6.

Reliability weighting In most combination strategies, a weighting function can, or has to,
be employed to measure the relative reliability of each stream, and assign higher weights to
the more reliable recognizers. Reliability weighting constitutes a powerful tool in any multiple
recognizer system (Jacobs et al., 1991; Jordan and Jacobs, 1994; Hashem, 1997) especially in
the case of on-line adaptive weighting, which can account for changing environmental condi-
tions (Hagen et al., 2001). Well-known weighting functions within the multi-band approach are
for example based on SNR-estimates (Bourlard and Dupont, 1996) or the Mutual Information
criterion (Okawa et al., 1999), which estimate the reliability of each subband relative to the
others. Reliability weighting forms an important part of this thesis and is debated in Chapter 7.
Experimental results within multi-band processing are presented in Chapter 8.
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Training Standard training procedures for HMM-GMMs such as the Viterbi training or Baum-
Welch still hold for the subband models. The same is true if HMM/MLP hybrid systems are used
for which the respective training algorithms can as well be utilized in this context. Joint training
of all stream models and the weights have been proposed (Cerisara et al., 1999b; Kirchhoff and
Bilmes, 2000), the discussion of which though lies not within the scope of this thesis.

Choice of subbands Discussions on issues such as the choice of frequency subbands (their
number and location as well as possible degree of overlap (Bourlard and Dupont, 1996; Her-
mansky et al., 1996)), and the choice of subband feature extraction and recognizer techniques,
are abundant in other works. They are thus, not discussed in this framework but are briefly
described in Section 5.4.2.

5.3 Engineering motivation for multi-band processing

In Section 2.3 we discussed the psychoacoustic motivations for multi-band processing. In this
section, other than psychoacoustic motivation to multi-band processing are presented, which
comprise improved linear prediction and noise robustness as well as phonetic motivation, and

the issues of improved modeling and convergence of smaller subband experts.

Superiority of linear prediction in subbands Subband processing can be widely found
in data compression applications such as image or audio compression due to the coding gains
observed during subband processing as compared to fullband processing. Such gains arise from
the superiority of finite-length linear prediction in subbands to that in a fullband (Rao and
Pearlman, 1996). The prediction error variance of the fullband was found to always exceed the
total prediction error variance of the combined subbands (Rao and Pearlman, 1996). Moreover,
analyzing subband spectra with respect to their spectral flatness measure® shows that subband
differential pulse code modulation (DPCM)* provides coding gain over fullband DPCM (Rao
and Pearlman, 1996).

Noise robustness Environmental noises which can be encountered, rarely exhibit the same
characteristics in each frequency band. Some noises, such as siren and car noise, are known to
mainly affect certain frequencies. One of the prevailing motivation for multi-band processing
is the expectation for increased noise robustness towards (band-limited) noise. In conventional
feature extraction for fullband systems the corrupted speech features are mixed with the clean
features from the non-corrupted parts during orthogonalization or other feature post-processing.
As we saw, in subband processing this is not the case. Even if other than orthogonalized
(cepstral) features were employed, the (fullband) corrupted feature coefficients would affect
probability estimation which would no longer result in a reliable output. In the case when the
noise does not cover the whole spectrum, subband processing leads to some feature sub-vectors

3When the source spectrum is white, the spectral flatness measure (sfm) is 1, and when the source spectrum
is maximally correlated, the sfm is 0. The inverse of the sfm is a measure of the predictability of the source.

Thus, a smaller value of the sfm means lesser entropy and more predictability.
4In DPCM the difference between a data sample and the linear prediction of this sample from past samples
is encoded.
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being unaffected by the noise; thus, probability estimation in these subbands can be judged
as being reliable because the input data corresponds more closely to the (clean) data used for

training.

Phonetic motivation In (Ghitza, 1994), it was proposed that different frequency regions
have different dynamic characteristics. Through independent processing of each frequency re-
gion, the type of feature extraction and the size of the analysis window used in each band
can be well adapted to the dynamic characteristics of each frequency subband. In the same
way, spectral information which characterizes a certain phoneme is often limited to a specific
sub-region of the spectrum. For this reason, certain phonemes could be better modeled if only

a restricted frequency region was considered.

Improved modeling In the context of ANN systems, combining the outputs of several trained
ANNS is similar to using a single ANN with sub-networks working in parallel. The combination
weights are the connectionist weights of the output layer. The main difference between the two
setups is that, when the trained sub-ANNs are combined, all connectionist weights are fixed and
only the combination weights need to be estimated. On the other hand, when a large ANN is
trained, it includes all the sub-networks, and thus a vast number of additional parameters would
need to be trained simultaneously. Although increase in computational power and decrease of
costs would make it possible to train large ANNs, this can quickly result in over-fitting of
the data when the number of the model parameters gets large as compared to the size of the
database used for training. For this reason, several smaller models may sometimes be preferable
to one large model. In general we can state that the smaller the dimension of the input features,
the smaller the size of the models can be. Reduction of the number of necessary parameters can
lead to improved performance for a given data set, even though information is being discarded,
as the mapping in the lower dimensional space can be better specified by the fixed quantity of
data (curse of dimensionality) (Bishop, 1995). This often also implies better convergence of the
training algorithm, as the learning task is easier. High computational power might therefore be
better utilized for parallel processing of several smaller models than for the processing of one
large model at a time.

5.4 Overview of previous research

We now come to the state of the art research in the framework of multi-band processing. We
point out the probability combination approaches which are mainly used in these approaches

before describing the different investigations in more detail.

5.4.1 Probability combination approaches in previous research

Motivated by Fletcher (1953)’s assumption of independent subband processing in humans,
the original multi-band approach and its recombination schemes only consider the individual
frequency subbands as streams and for these also only one expert per stream. Later on we will
see how also the combinations of subbands should be considered. In order to distinguish between



5.4. Overview of previous research 69

these two approaches, we will refer to the first one together with its probability combination
strategies as the “standard” approach to multi-band processing. In this section we present
several standard approaches to the combination of single-subband experts, the standard sum
rules, the standard product rules, and non-linear recombination by MLP. As already pointed
out, in case of posterior-based systems, after combination the posterior probabilities are divided
by the respective class prior probabilities to convert them to scaled likelihoods which can be
used in the Viterbi decoder.

Sum rules In this section, we discuss several realizations of the “original” sum rule which
have been used so far for posterior-based systems. No mathematically correct derivation can
be given as the set of events b;°> (i = 1,..., B) is not exhaustive, though it was often assumed
to be.

The “standard” sum rule (STD Sum) for posteriors is written as follows:

B

Plgilz) = 3 Plalbi,2)P(bil2) (5.7)
z;1

~ > Plaglei) P(bilz) (5.8)

where B is the number of frequency subbands and P(q|z;) the probability estimate from expert
i which is trained on subband data x;. P(b;|z) is the reliability term which depends on both

the expert 7 and the acoustic vector .

When the assumption is made that the choice of the best classifier is independent of the
input vector P(b;|z) = P(b;), expression (5.8) results in the (static) weighted arithmetic mean
rule (STD AritHM MEAN): P(qi|z) ~ EZBZI P(qk|zi)P(b;). In (Dupont, 2000) further variations
of the sum rule are discussed where e.g. a dependency on the specific state g is added to the
weight yielding P(qg|z) ~ Zszl P(qg|z;)P(bilz, qk)-

These standard sum rules have several disadvantages. First, it was found in ASR that in
the case of matched training and testing conditions (i.e. in our case clean test data) smaller
frequency bands do not supply the recognizers with enough information to render performance
satisfying (Hermansky et al., 1996; Cerisara et al., 1998; Tibrewala and Hermansky, 1997). Too
much correlation information is lost so that under matched conditions a multi-band system is
no longer competitive as compared to a standard fullband system. Second, in the case of totally
mismatched (i.e. corrupted) speech, it might be advisable to disregard all frequency bands and
only rely on prior information (for a given speech frame). These extreme but very realistic cases
are not considered in standard subband decomposition schemes where the recombination unit
forces probability estimates from at least one subband expert. We will see in Section 5.6 how
a set of mutually exclusive and exhaustive events can be defined which also takes above cases

into consideration.

The respective combination strategies for likelihoods can be derived from the posterior-
based formulae via Bayes’ rule and are, thus, not explicitly stated here (but are included in the

summarizing tables in Appendix D).

5%p,” denotes the event that “subband i must contain the best selection of data”.
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Product rules for likelihoods Non-linear recombination by product rule is one of the most
widely used combination strategies for likelihood (and posterior) estimates. The “standard”
product rule for likelihoods (STD PropucT) writes as

B
palg) =~ []pla) (5.9)

i=1
where p(z;|qy) is the stream likelihood of the i** stream of z. Introducing exponential weights,

(5.9) results in the standard geometric mean (STD Geom MEAN) rule:

B
pala) ~ O[] (wilar) (5.10)

i=1

with ©; = Hileik a normalization constant, where 6, = fx pYi(zi|qr)dx;.

Product rules for posteriors Turning to the posterior-based approach, the decomposition
of the full posterior probability into the respective stream probabilities is derived, assuming
conditional independence of the acoustic vector components (cf. derivation of (6.24) in Section
6.2), as

[T, P (qelz:)
P(grlr) = G)k@P(g:T)—l(qk)

(5.11)
with O and © as in (6.23) and (6.24). After normalizing the right-hand side in order to assure
that the posterior probabilities sum to one, this is the geometric mean (STD GeEom MEAN)
for posteriors. The second term in (5.11) is independent of g, and therefore disappears after
normalization (such as in (6.23)).° In the case when all weights are equal to one, we refer to
this approach as product rule (STD Propucr) for posteriors.

This rule is essentially different from the often used “product rule” which assumes indepen-
dence of the posterior probabilities of one class given the data from different streams, which
amounts to assuming equal class priors. This rule is for example employed in (Kirchhoff et al.,
2000; Kirchhoff and Bilmes, 2000):

B
P(gle) = O] Plarlz:) (5.12)
i=1
In this thesis, this combination rule is refered to as the “independence assumption” (STD
InpEP Asmpr) rule. As we see in the experiments, the product rule (5.11) as derived from the
likelihood-based case usually leads to more robust results than the independence assumption
for posteriors (5.12).

When recognizer outputs are combined by multiplication, the recognizers which possess low
entropy, dominate in the combination more than they dominate when combined by addition.
This could be one of the reasons why the product rule, though theoretically based on an incorrect

independence assumption, results in good performance of automatic speech recognizers.

6For this reason, it is not necessary to assume full independence.
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Non-linear recombination by MLP The most promising non-linear recombination scheme
is one that can approximate any possible combination function. This can be achieved by the
use of an MLP as the combining unit. The inputs to the MLP are, in this case, the probabilities
at the output of each of the different classifiers, which are to be combined. The net’s outputs
are estimates of the posterior probabilities for the considered classes. The training of the MLP
parameters © corresponds to classical MLP parameter training. We can note this combination
scheme by writing

P(qrlz) = f(O,{P(qwl|z:),Vi, k'}) (5.13)

with f the non-linear mapping function realized by the MLP, and © the set of MLP parameters.

This approach has several advantages. First, the input to the recombining MLP does not
necessarily need to consist of estimates of posterior probabilities or likelihoods of each class but
can be any kind of parameters. The MLP classifies the parameters at its input independently of
their interpretation. For this reason, one can introduce, for example, linear (Fukunaga, 1990;
Haeb-Umbach and Ney, 1992) or non-linear discriminant analysis (LDA or NLDA) (Fontaine
et al., 1997) before the recombining MLP in order to reduce the dimension of the input vector.
LDA computes discriminant features with the help of a linear transformation of the input
vectors into output vectors of smaller dimension such that class separability is maximal. For
NLDA it suffices to remove from the classifier MLPs the last layer”, as each hidden layer of
an MLP automatically performs an NLDA (and the last hidden layer of the MLP needs to be
smaller than the input layer). Moreover, the recombining MLP can treat, just like every MLP,
several temporal frames at once, thus considering context information which could, also for the

recombining MLP, help the classification task.

In the case when training and testing conditions are alike, recombination by MLP gives
among the best results (Mirghafori, 1999; Hermansky et al., 1996; Bourlard and Dupont, 1996),
which is due to its capability of approximating any non-linear function. This is achieved by its
large number of parameters which, though, first need to be trained. This combination rule thus
involves extensive training and is difficult to quickly adapt to new conditions. As soon as we are
confronted with a certain mismatch between training and testing conditions other combination
schemes are therefore often more appropriate. One way to adjust a recombining MLP to new
testing conditions is by re-training it for the new environment which is time consuming and
demands sufficient training data. Besides this, “multi-style” training could be used as described
in Section 4.3.2, which however does not result in as good performance as when training for a
specific noise. Moreover, in a recombining MLP it is not convenient to down-weight streams in
case additional knowledge about the unreliable streams is available. Finally, it is also impossible

to incorporate new streams without having to retrain a new recombining MLP.

5.4.2 Description of various multi-band research approaches

Based on the psychoacoustic studies outlined in Section 2.3, several different approaches to
multi-band ASR have been investigated over the last years, such as the possibility for asynchrony
between the bands, and different feature processing strategies applied in each band.

7in the case when there are more or at least two hidden layers.
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Work by Nikki Mirghafori Mirghafori (1999) investigated the possibility of developing
specialized phone-like classes for each subband. This was based on findings by Ghitza (1994)
where phonetic feature transmission was shown to be better in a multi-band system than in a
traditional fullband system, possibly due to certain bands distinguishing better among certain
phonetic categories. In (Mirghafori, 1999), the subband classes leading to most of the confusions
were fused in order to reduce the number of classes and enhance generalization. This resulted
in improved frame level discrimination, but no significant reduction in word error rate. During
this analysis, it was found that phonetic transitions do not always occur synchronously among
subbands. Asynchrony of the bands was investigated on the word- and multiple-state level,
which significantly increased computation. Unfortunately, no improvement in word recognition
accuracy was achieved. The author argued that by disregarding synchrony between bands,
important information might be lost, and that relaxation of the synchrony constraint might

only be advisable for very particular phone transitions.

Mirghafori worked with a subband system of four subbands, the recognizers being HMM /-
MLP hybrid systems. High recognition performance on the NumBERs95 database (cf. Section 8.2)
was obtained only when the multi-band system was combined with the fullband system by
multiplying the (scaled) likelihoods from both systems (Mirghafori and Morgan, 1998a). This
result was enhanced when a PLP-feature based subband system was combined with a RASTA-
PLP based fullband system. Combination of two different fullband systems, one using PLP
features, one RASTA-PLP features did not result in the same improvement.

Work by Christophe Cerisara Contrary to most of the studies on subband processing,
which utilize HMM/MLP hybrid systems as (subband) classifiers, Cerisara (1999a) developed
a multi-band system employing (second-order) HMM-GMMs (Mari et al., 1997). The (four)
normalized subband likelihoods were combined by themselves, as well as in combination with the
normalized fullband likelihood using either a weighted sum or a recombining MLP. It was found
in general that the system of all 5 bands (i.e. including the fullband recognizer) outperforms a
system consisting of the 4 subband classifiers only, except in the case of very low SNR. (< 0dB).
When the noise level was not too high (above 0 dB SNR), best recognition was achieved when

all five streams were combined with a recombining MLP.

Moreover, two algorithms for asynchronous combination of the subbands were proposed,
with combination being carried out at the sentence level or after smaller speech segments, such
as phonemes. The latter is based on the “two-level dynamic programming” (Rabiner and Juang,
1993) and the “level building” (Myers and Rabiner, 1981) algorithms. Finally, a global training
algorithm was developed facilitating simultaneous training of both the HMM-GMM classifiers
of all subbands and the recombination unit. The algorithm is based on the Minimum Classi-
fication Error (MCE) criterion. Tests in clean and noise-corrupted speech showed performance
improvement of the globally trained multi-band system compared to the reference system.

Work by Stéphane Dupont Several acoustic feature extractors as well as combination
schemes were investigated in the framework of multi-band and multi-modal speech recognition
by Dupont (2000). Special emphasis was placed on robustness to additive noise. In the multi-
modal speech recognizer, in addition to a standard speech recognizer, a module for visual

analysis of the speaker’s lip movement was employed. By the use of different sets of HMMs for
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each stream of the multi-band or multi-modal system, asynchronous development of the different
streams was made possible in two different ways: (i) the HMMs in each stream cooperate with
the models in the other streams in such a way as to resynchronize the paths through the HMM
states in each stream at pre-defined “anchor” points, as was discussed in Section 5.1. (ii)
use of multi-dimensional HMMs in which each composite state consists of a combination of
constituent states. The contribution of the composite state is calculated from the contribution
of each constituent state. The topology of the composite HMM allows all possible paths to be
pursued as defined by the original constituent HMMs. This approach has the advantage that
normal (one-dimensional) Viterbi decoding can be employed as combination is carried out at

the frame level.

Releasing the synchrony constraint between streams did not result in any robustness gain,
just as it was the case in (Mirghafori, 1999). Audio-visual speech recognition, on the other
hand, led to a reduction in error rate of up to one third in the case of additive noise (with
synchrony constraint) as compared to the acoustic recognizers alone. Finally, the approach of
“narrow-band training” as discussed in Section 4.3.2, was developed in this work.

Work by Hermansky et al. In (Hermansky et al., 1996), the authors compare multi-band
systems of 2 and 7 frequency subbands on an isolated digits task. Different (linear and non-
linear) recombination strategies of the logarithmic likelihoods were carried out, with the non-
linear scheme, which uses an MLP for recombination, consistently leading to better performance.
It was shown that both subband systems were comparable to the fullband classifier in clean
conditions, but were more robust in the case of additive (artificial) sinusoidal noise. The authors
also investigated the influence of combinations of subbands on the recognition performance
of the multi-band system. Using the 7-subband system, the performance of different setups
was compared: (i) sub-sets of the seven sub-recognizers were combined by a recombining MLP
(probability combination), and (ii) single sub-recognizers were trained on different combinations
of the seven input features streams (feature combination). This resulted in a total of 127 possible
combinations for each of the two configurations, only the most promising of which were actually
set up and tested. Manually choosing the best sub-recognizer for each word, the performance
of both systems stayed the same for all SNR-values (ranging from clean to 0 dB). This suggests
that, at any given point in time, at least one of the 127 combinations exhibits extremely high
noise robustness. A similar approach based on (a priori) SNR estimates was tested, in which the
subbands with an SNR-value below a certain threshold were left out of the recognition task. This
resulted in close to optimal performance. A majority vote among all available sub-recognizers

still yielded about half the error rate of the conventional fullband recognizer.

Work by Hervé Glotin Our colleague Hervé Glotin (Glotin, 2000) investigated in the frame-
work of “full combination” processing (see Sections 5.6 and 6.1 for derivation and explanation
of this approach), the interfacing of multi-band models with speech reliability cues like voicing
(Berthommier and Glotin, 1999a,b) and localization (Glotin et al., 1999) in order to reinforce

robustness.

In (Glotin and Berthommier, 2000), for example, based on the fact that most of the speech
segments are voiced, the speech harmonicity cue is exploited in order to derive a time—frequency

reliability weighting scheme. This estimation method was evaluated together with direct inte-
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gration of the a priori SNR values. The average word error rates for a panel of noises at different
SNR-levels showed that these functions improve recognition in case of stationary band-limited
noise. On non-stationary noise, however, they are less efficient compared to constant weighting
(that is, when no information about the SNR is given), as well as on wide band noises compared
to the baseline (J-RASTA-PLP) fullband recognizer. However, other experiments show that the
harmonicity cue is efficient in the case of multi-stream ASR. (Neti et al., 2000) (see Section 9.3).

5.5 Limitations of previous multi-band processing ap-

proaches

As could be seen in the last section, previous multi-band systems (when used by their own) do
not for all noise cases lead to higher performance than a regular fullband recognizer. Under
certain conditions even an increase in word error rate is encountered. In the following, we
discuss some of the problems with which standard multi-band processing is confronted.

Loss of information Some of the aforementioned advantages of multi-band processing can,
under certain conditions, become disadvantages. Reduction of input data, which allows for
smaller sized models, also includes severe reduction in information, resulting in smaller recog-
nition rates of each subband recognizer. This can easily be illustrated in the case of stop
consonants, the main characteristic of which is that their energy is equally distributed over
frequency. This characteristic is lost when the frequency domain is split into separate subbands
and thus, these phonemes become rather difficult to recognize. In this respect, not only the
decreased quantity of information plays a major role, but also the possible loss of spectral cor-
relation between the subbands is responsible for lower performance of the subband recognizers.

Choice of number, position and features of the subbands Another issue in multi-band
processing is the choice of the number and position of the frequency subbands, which usually
has to be decided before the models are constructed, as well as choice of features which are
extracted in each of the subbands. Several studies (Hermansky et al., 1996; Cerisara, 1999a;
Christensen et al., 2000) have shown that no “generic” rule of thumb can be established for
either of these choices and that the optimal system varies according to the application. The
same is true for the recombination module. Its selection is especially crucial, as it is this module
which is expected to dampen the errors committed by each of the subband recognizers.

Inadequacy for realistic noise Multi-band systems work well on band-limited (stationary
and non-stationary) noise (Hermansky et al., 1996; Bourlard and Dupont, 1997). Unfortunately,
it should be mentioned that noises are not as band-limited as would be required to fully exploit
the advantage of a multi-band system. In most cases where a standard multi-band system is
employed under real-environmental noise, it cannot compete with the performance of a regular

fullband recognizer.
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Unmotivated additional use of the fullband recognizer To overcome this problem, a
certain modification to the standard multi-band approach has recently gained increased pop-
ularity. In this modified approach, the standard fullband recognizer is added as another in-
dependent recognizer to the multi-band system (Haton et al., 1999; Mirghafori, 1999). This
strategy is similar to the combined fullband and subband approach investigated in (Bourlard
and Dupont, 1997; Mirghafori and Morgan, 1998a) and yields higher recognition performance
than either of the systems alone. Although the combination of the fullband recognizer and
the subband system improves recognition performance, in one way or an other, this approach
has no sound mathematical motivation, and even contradicts the assumption of independence

necessary for these multi-band approaches.

In the framework of this thesis, we introduce possible solutions to the mentioned problems
of multi-band processing, such as the problem of (i) reduced information in each subband (and
loss of cross correlation information), and (ii) the demand for prior choice of position and
number of subbands. The proposed solution to the first problem is “full combination” subband
processing which is presented in the next section. Its detailed implementations for posterior-
and likelihood-based systems will be described in the next chapter. A solution to the second
problem is presented in Section 6.1.2 through marginalization applied within the likelihood-
based “full combination” approach. Here, any subband likelihoods can be derived from the
fullband likelihood without training other than the fullband expert.

We will see in the experiments how the proposed implementations can better account for
real-environmental noises as well as artificial band-limited noise.

5.6 Full combination approach to subband processing

As discussed in Section 2.3, Fletcher (1953) had thought to show that humans process frequency
bands separately, and that correct recognition in any band leads to correct recognition of the
entire input. More recent findings in HSP, however, have shown that high correlation and re-
dundancy exist in the speech signal between both adjacent and non-adjacent frequency regions.
Moreover, it was shown that humans can integrate even dispersed frequency information to
make significant use of such correlation. This dispersed information can sometimes result in
higher robustness than the use of adjacent frequency bands. In psychoacoustic experiments it
was found that combination of high- and low-frequencies (including a gap in frequency) often
resulted in better recognition performance than a broadening of the low-frequency band by the
use of a higher cut-off frequency (thus without gap).

In multi-band ASR it was up to now assumed that subbands could be processed indepen-
dently, with each subband modeled by a distinct recognizer. In the case of noise-corrupted
speech in one subband, correct recognition on the remaining clean subbands could then pro-
vide enough information to decode the entire input data. In case of clean speech and speech
corrupted with wide-band noise, however, experiments in ASR have shown that a multi-band
system of this type very often leads to decreased performance as compared to a fullband rec-
ognizer, due to missing cross correlation information. To model more closely what is actually

going on in humans and to obtain higher performance in both clean and (wide-band) noise
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corrupted speech by a multi-band system, we have to find a revised model which also exploits
correlation information between (adjacent and non-adjacent) subbands. This should be done
by integrating also dispersed frequency information, when some frequency regions are missing,

in order to exploit this correlation and redundancy in the spectrum.

Thus, at each time frame, as much clean correlated information as possible should be mod-
eled. In the MD approach (see Section 4.4), noise corrupted frequencies in each frame are
detected and excluded, while the remaining reliable data is modeled as a single stream. How-
ever, accurate noise detection is very difficult. In the “full combination” (FC) approach taken
here, data is divided into subbands and recognition is performed on every possible combination
of subbands, after which the output from these experts are integrated by one of several possible
combination strategies.

The FC paradigm for multi-band ASR

For most application areas, the position of the noise is not known and can be in any subband
and any number of subbands. We therefore have to find a way in which we can consider all

possible subsets of the frequency domain in order to find the clean dataset.

For this, let us define the set of all possible combinations of B subbands, which include
the streams consisting of no, one, two etc. (adjacent and non-adjacent) subbands up to the

combination of all subbands, as C, and the set of events b; (i = 1,...,B = 25) as follows:

B denotes the set of events b; that data in combination i is clean speech data, and
data not in combination i is completely uninformative and can therefore be regarded as

missing.

On the assumption that each subband is either completely clean or completely uninformative,
such a set of events is mutually exclusive and exhaustive, as only one combination of subbands
can be the largest clean combination, and one or other must be the true clean combination,
because all possible combinations have been considered. Denoting P(b;) the probability that

event b; occurs, we can write:

B
P(U;b;) = P(b; mutually exclusive
(Ub) = L PB)  (mutmally ) _

= 1 (exhaustive)

Note that, in order to be able to refer to a ‘subband’ and ‘combination of subbands’ in one term,
we use the term ‘(data) stream’ to account for both. If some subbands are not corrupted by
noise, it is likely that the best stream is the largest combination of clean subbands®. However,
under wide-band noise conditions it can also be the case that some less noisy subset carries
more useful information than the empty set.

Let us now consider how this new FC approach to subband processing can be implemented
in a speech recognizer. Considering all possible combinations of subbands means that features
have to be extracted not only in the nominal subbands but also in each combination of subbands

8This is under the assumption that the stream acoustic models are trained on clean speech only.
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which, in the case of B subbands, amounts to B = 28 feature streams (note that this includes
the empty set). Data within each feature stream can be further processed for decorrelation
and/or other transformations, as required’. We can then associate with each event b; an expert
1 which has at its input the clean data defined by event b;.

As in usual multi-band processing, we can thus distinguish between probability combination

and feature combination also for the FC approach.

Probability combination In the usual multi-band approach, the set of events (U; band i
is clean and all other bands are missing) is not exhaustive as it does not cover all possible
positions of missing data. In this approach, the fullband posterior probability needed for MAP
decoding is estimated through some combination function of the posterior probabilities from B

subband recognizers
P(arlz) = f(P(gklz1) - .. P(ar|z:) - - Pak|zB)) (5.15)

Similarly, combination of B likelihood-based subband recognizers can be carried out.

In full combination processing, the probability estimates of all B = 2” subband-combination
recognizers are needed, where the events U;b; € B are now mutually exclusive and exhaustive.
In (posterior-based) probability combination, a recognizer has thus to be trained on each of the
B feature streams, as shown in Figure 5.5 for the case of two subbands. Realization of the FC

approach in posterior- and likelihood-based systems is discussed in Chapter 6.
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Figure 5.5: Illustration of full combination processing with MLP or GMM classifiers for
two subbands. Features are extracted from all possible combinations of subbands.

A further advantage of FC processing over “standard” subband processing is that the ques-
tion of how many subbands are to be chosen and the exact position of the subbands gets less
important as in the FC approach all subbands are considered by themselves and in combination

and thus correlation between all subbands is considered.

Feature combination For feature combination, all possible feature streams would be con-
catenated. Due to the highly redundant information in the concatenated feature vector, a
principal component analysis (PCA) (cf. Section 4.2.1) should be carried out to extract only

the most representative features for each class, thereby orthogonalizing the feature vector and

9This is an important advantage of the FC multi-band approach over the MD approach, where decorrelation
etc. cannot be applied without spreading noise over all of the data.
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reducing its dimensionality. The resulting feature vector is then processed as for a regular

fullband recognizer.

Advantages over MDD processing

As we saw in the discussion of MD processing (cf. Section 4.4), ASR under noisy conditions can
often be improved by simply ignoring the parts of the spectral signal which are most affected
by noise. MD processing does not rely on any assumptions about the noise type or level,
but, on the other hand, this approach also involves serious drawbacks. First, mismatch is not
easy to detect, and, second, the need to avoid mixing clean with noisy spectral coefficients
rules out the possibility of data orthogonalization (e.g. the use of cepstral features), which
results in unacceptably low performance in clean speech. In FC multi-band processing, we can
exploit the advantages of MD processing, that is, ignoring the unreliable parts, while avoiding
its disadvantages, because multi-band processing is not so strongly dependent on mismatch
detection, and is not restricted to spectral features. This is realized through the use of multiple
“missing data masks” which, in reality, are the definitions of the subbands and combinations of
subbands. This way we do not have to detect the exact mismatch for each coefficient, but can
instead integrate over all possible positions of mismatched data, by combining experts trained
on each subband combination. Within each subband combination, the spectral features can
then also be orthogonalized.

The marginalization approach used with MD techniques (Cooke et al., 1997; Morris et al.,
1998) can also be applied to FC multi-band processing which will be shown in Section 6.1.2.

5.7 Summary

In this chapter, we described multi-band processing for ASR where the speech data in the
frequency domain is split into several frequency subbands. After feature extraction and possi-
ble further acoustic processing, the feature sub-vectors from the different subbands are either
concatenated (feature combination) or independently processed for acoustic modeling before

probability recombination.

In the framework of HMMs, the parallel subband streams can be recombined at different
levels. In case of recombination other than the frame level, special decoding algorithms are
needed to allow for asynchrony of the streams. In this thesis, only combination at the frame

level is employed, thus standard Viterbi decoding can be used.

We then discussed engineering motivations for the multi-band approach, as well as previous
multi-band processing and its combination strategies, such as the standard sum and product
rules and the recombining MLP. These approaches are often found to encounter several limita-
tions, due primarily to loss of correlation information, and are generally inadequate in realistic,
wide-band noise conditions. These limitations have led us to the development of the “full com-
bination” approach, which not only considers the separate frequency subbands as information
streams, but also all possible combinations of subbands. Psychoacoustic and engineering reason

motivating the FC approach, and its advantages as compared to MD processing, were discussed.
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Combination of the probability estimates from each stream can be carried out according
to different rules which will be discussed in the next chapter, together with the details of FC

implementation.
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CHAPTER 6

Combination strategies

In the previous chapter, we described different strategies for the recombination of subband
probabilities. In each of them, we have to combine likelihoods or posteriors according to a
function (usually a weighted sum) which often depends on weights representing the reliability

of each subband stream. Estimation of the weights will be discussed in the following chapter.

In this chapter, we present the probability combination strategies which were developed in
the framework of this thesis. These comprise combination schemes based on the full combination
approach introduced in the preceding chapter. Moreover, we present new combination strategies
which were motivated from models of human speech perception. Each of the combination
strategies is presented for the posterior-based case as well as for the likelihood-based case,
where reasonable. The posterior probabilities need to be converted to (scaled) likelihoods
after recombination and before the decoding stage. The likelihoods need to be normalized
before combination to account for the different range they usually cover. As combination of
the probability estimates from each classifier is conducted on the frame level, regular (“one-
dimensional”) Viterbi decoding can be carried out on the combined (scaled) likelihoods.

Despite the fact that the preceding chapter was concerned with combining subband experts,
the expert combination strategies discussed in this chapter are not specific to subband expert
combination, but can be applied to combinations of experts trained on any (preferably comple-
mentary) data streams. More specifically, the combination strategies presented in this chapter

are also an important part of the multi-stream approach which is presented in Chapter 9.

6.1 FC sum rule

In the “full combination” approach to subband processing, which was introduced in Section
5.6, all possible combinations of streams are being considered at each frame in time.

81
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6.1.1 FC posterior decomposition

For posterior decomposition, a separate expert is trained for each of the B = 28 possible
combinations, where B is the number of frequency subbands. Introducing the hidden variable
bi (i =1,...,B) indicating which band subset is clean, as defined in Section 5.6, and with the

bi’s being mutually exclusive and exhaustive, P(qi|z) can be expressed as

B

P(gelz) = ZP(Qk,bi|ﬂf) (6.1)
181
B

= ZP(qk|xi)P(bi|x) by definition of b; (6.3)

P(qi|bi,z) = P(qx|z;) follows from the definition of b;. P(b;|z) is the reliability term for each
expert. If b; is true, then P(gg|z;) should be accurately estimated by expert ¢ (which was trained
on clean data). Otherwise the estimate will not be reliable. Different approaches to how this
weighting term can be estimated are discussed in Chapter 7. We refer to combination rule (6.3)

as the (adaptive) FC weighted arithmetic mean or simply as FC Sum rule for posteriors.

If we make the assumption that the reliability of a classifier is independent of the input
vector then P(b;|z) = P(b;) and we arrive at the static FC weighted arithmetic mean, which
can be written as

B
P(grlz) =~ Y Plqelas)P(b:) (6.4)
i=1
If P(b;) are uniformly distributed, this is just the simple average of the outputs from each
classifier corresponding to class gy.

A limitation of posterior-based FC In the case of posterior-based experts (such as MLPs),
it is necessary to train 22 (MLP) experts, and the approach is thus limited to a small number
of subbands. We, therefore, propose in Section 6.3 an approximation scheme which estimates
the probabilities for each combination of bands based on the single band experts only.

An advantage of likelihood-based FC We see in the following section how with FC for
likelihoods, under certain conditions the stream likelihoods can be derived from the fullband
likelihood without training other than the fullband expert.

6.1.2 FC likelihood decomposition

We derive two different equations for FC likelihood decomposition. It will be seen in Section
7.3.4 that these equations, though only slightly different, have important and distinct theoretical
advantages.
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First possibility for likelihood decomposition We can convert the sum rule for posteriors
(6.3) to a sum rule for likelihoods by using Bayes’ rule.

Plale) _ N~ Plale) o,
Plg) ; P(qr) Plbi) (6.5)
plela) _ -~ p@ila) oo
@ = 2 ey T 00
where
K
pla:) = plwilae) Plar) (6.7)
k=1

Expression (6.6) will be refered to as likelihood-based FC Sum rule 1. This rule shows the
necessity in likelihood-based recombination by sum rule to normalize the likelihoods p(x;|qx)
by dividing by the respective density p(x;). Likelihoods are not comparable before normalization
because their scale depends on the different dimensions, and distributions, of the vector z; in
each subband combination.

As decoding is independent of the full data density p(z), it can be ignored on the left side
of (6.6).

Second possibility for likelihood decomposition With b; defined as above we obtain a
second likelihood-based FC sum decomposition as follows

B
plela) = > p,bilgr) (6.8)

i=1

B
= Y pllbi, qx) P(bilar) (6.9)

i=1
This, which will be refered to as likelihood-based FC Sum rule 2, has exactly the same form
as (3.10) for a mixture pdf, except that the event m; = “z is from mixture i” is now replaced
by the event b; = “largest clean combination is i”. However, p(z|b;,qx) in (6.9) cannot be

evaluated directly because b; tells us that part of z is missing. To overcome this problem we
can use the following intuitive approximation
p(xlbi,qe)  p(@ilgk)
p(z) p(xi)
which also avoids the scaling problem which would have occurred if we only had p(z|b;, q) =
p(xilgr)-

(6.10)

It can be shown by rearranging (6.6) and (6.9) that

p(x|bi,qr)  p(xilgr) P(bi|r) (6.11)

p(z) -~ p(xi) P(bilgk)
Expression (6.10) is therefore true when P(b;|x) = P(b;|qr), which will often be approximately

true. The reliability weights P(b;|qx) in rule (6.9) are conditioned only by the class identity gy,
whereas the weights in (6.6) are conditioned only by the local data x. It will be seen in Section
7.3.4 that the approximation (6.10) is essential for the purpose of estimating the ML weights
for the likelihood based FC Sum rule 2 (6.9).
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Limitation of these two approaches The above two approaches can be implemented as
in the posterior-based approach (Hagen et al., 1998; Morris et al., 2001b), with one expert per
event b; which amounts to B = 28 (likelihood-based, such as GMM) experts that need to be
trained. In this way, the number and definition of the subband feature streams have to be
defined and fixed beforehand. This is a restricting condition as (i) it can never be known in
advance which grouping of subband features (although all combinations of these are considered)
will result in the most reliable classification, which moreover can vary from task to task, and
(ii) considering all feature vector components as separate streams would lead to too large a
number of experts to be trained. If we could find a way to only train one (GMM) expert and
then induce during recognition from this expert all possible combinations of reliable subband
pdfs, this problem could be overcome'. In the following we are going to show how this can be
achieved using the marginalization approach as described for MD processing in Section 4.4.

FC likelihood decomposition using marginalization

In the FC Sum rules for likelihoods (6.6) and (6.9), we sum over all possible positions (i =
1,...,B) of reliable subbands. Under the condition that subband combination coefficients are
selected from fullband coefficients without further processing (such as orthogonalization within
a combination), the parameters for the marginal pdfs p(x;|q;) can be obtained directly from
the parameters for the fullband pdf by marginalization.

Following the derivation which led to expression of the marginal pdf (4.20) for the data
“present” in MD processing we can derive the state likelihoods p(z;|qx) for each stream i by
integrating over the unreliable, that is, “missing” part = = = — x; of the data, which is
disregarded in the respective stream:

pilar) = / p(alar) e (6.12)

I
T;

For the mixture pdfs of M mixtures m; as commonly used for likelihood modeling it holds:

M
[pteladz; =[S Plmjlap(eing.a) iz (6.13

z! o I=1
l 3 }
= > Plmjla) [ plelmja) de] (6.14)
=1 zri=—00
M
= > Plmjlae)p(zilm;, qr) (6.15)
j=1

M
= > Pmjla) [ plzami, a) (6.16)
j=1 les;

where s; denotes the set of feature coefficients in subband combination i. Note in (6.14) we
used f;;foo p(x|m;, qr) dol =[5 p(xilmy, qp)p(@i|m;, qi) dz} = p(zilmj, qx). In the case

-
Ii— oo

However, the equally important problem of having to evaluate and then combine all of these separate expert
probability estimates would remain. See Section 6.3 for ways of reducing the computational complexity of
obtaining FC probability estimates.
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where each mixture component pdf p(z|mj, g) is modeled as a diagonal covariance Gaussian,
with mean pj, and variance vector ‘7]2'1@: the mean and variance vectors for the marginal pdf
p(xi|mj, qx), 1.e. pijr and U?jk, are simply obtained by striking out the rows and columns from
the mean vector 15, and covariance matrix a?k corresponding to the missing components (Cooke
et al., 1994a).

Substituting (6.16) back into (6.6) (and (6.7) for calculation of the normalization factor) we
get the full combination formulae using marginalization (FC Sum (Marg)) for likelihood-based

systems.

In the case when each stream only comprises one feature component, the above implemen-
tation of the FC approach can be interpreted in MD terminology as a weighted sum over all

possible sets of hard MD masks using marginalization without bounds.

Preliminary experiments employing marginalization in FC multi-band ASR revealed that
although this avoids the need to train more than one fullband expert, the remaining problem
of having to evaluate the marginal likelihood for every combination of subbands is still very

computationally expensive, and this prevented us from running further experiments.

Bounded marginalization

Marginalization above involves integration over an unbounded interval for all “missing” data
components. Following the MD approach (cf. Section 4.4), we can also apply bounded marginal-
ization, so that the observed values of coefficients being treated as unreliable are not completely
ignored. In the case where we bound each observation above by its observed value and below
by zero, the stream state likelihood for (6.6) (and (6.7)) becomes (continuing from (6.13))

o zay=efy
1
plela) = D Pmjla) [] plemlms a) [] =5 / p(x@ylmj, qr) dzqy (6.17)
j=1 heEs; igs: T() 2y =0

Substituting (6.17) back into (6.6) (and (6.7) for calculation of the normalization factor),
we get the full combination formula using bounded marginalization (FC Sum (BNDED MARG))

for likelihood-based systems.

In the FC approach each combination i can be seen, for one frame, to correspond to one
hard MD mask. This shows that no noise estimator is needed in FC processing as it is the
case for MD processing, but instead all possible combinations of masks are considered at each
time frame. Which coefficients are considered as reliable and which ones as unreliable is thus
defined by their membership to a certain combination, i.e. all coefficients within subbands
of a combination are reliable whereas all coefficients of subbands not in the combination are
unreliable.
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6.2 FC product rule

One of the main advantages of the FC approach is the fact that no assumption of independence
or conditional independence between subbands is needed. Moreover, by integrating over all
possible positions of clean data (in the FC Sum rules) it is assured that for each time frame
the most reliable combination of bands is included in the combination process. On the other
hand, the assumption that the events b; (cf. Section 5.6) are exhaustive is open to question?.
Experimental results have often shown that, despite the limitations of the inaccurate indepen-
dence assumption between the different recognizers working on each combination of subbands,
the recombination by a product can be a more effective method of combining the outputs of
multiple classifiers than the sum rule (Haberstadt and Glass, 1998; Christensen et al., 2000;
Dupont, 2000; Hagen and Bourlard, 2000; Kirchhoff et al., 2000; Meinedo and Neto, 2000), as
will be seen in Chapter 8.

6.2.1 FC product rules for likelihoods

Under the inaccurate assumption of independence between the different recognizers, the full
likelihood can be decomposed into a product of B stream likelihoods for each state g, (k =
1,...,K), according to the FC Probuct rule for likelihood-based systems:

B
plelar) =~ []w(ila) (6.18)

i=1
with p(z;|qr) the state likelihood of expert ¢, which was trained on part z; of data x only.

In a product, a single expert can suppress recognition of a certain class g when the proba-
bility for this class is close to zero.

The FC Propucr in (6.18) can also be implemented as the weighted FC geometric mean
(FC Geom MEeAN) of likelihoods, motivated by the fact that the reliability of the input streams
can be different®. In the weighted geometric mean exponential weights w; are included for each
expert likelihood:

B
pla) ~ O [P (wilar) (6.19)

i=1

with O = ﬁ a normalization constant, where 8, = [ p"i(x;|qr) dz; so that [p(z|qr) dz=1.
Except for the case where all w; =1, no probability theoretical derivation of this rule has been
proposed in the literature*. For this reason the weights are usually constrained to be > 0, but

may or may not be made to sum to one.

2The full set of events {b;} is only exhaustive if each subband is either 100% clean or 100% uninformative or
“missing”, which is not necessarily true.

3This non-linear combination formula is equivalent to a linear weighted sum of the logarithms of the likeli-
hoods log p(zi|qx)-

4For the case when all weights are one (w; = 1 V), such as in (6.18), 0,3 equals one so that the normalization
constant Oy also amounts to one.
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6.2.2 FC product rules for posteriors

Under the assumption of conditional independence used in (6.18), we can derive for the posterior-
based case the FC Propuct rule as follows:

Plae) = —5p(elan) (6.20)
= 0 ] otk (6.21)
_ Play) vy Plalzap(z:)
ol g P(q) (622
B
= 0P 5(g) [[ Plaxl=:) (6.23)

where © is a normalization constant, independent of gz, such that >, P(qx|z)=1.

In the case where p(z|g;) in (6.20) is replaced by the weighted geometric mean in (6.19), we
obtain the weighted FC GeEom MEAN rule for posteriors

B
P(grl) = 0,0 P (q) [] P (qil:) (6.24)

i=1

with ©y, as defined for (6.19).

6.3 Approximation of FC (AFC)

Most multi-band systems which are nowadays still employed utilize only one expert per band.
As we saw in Section 5.6 the FC approach offers advantages over these one expert per band
systems. However, one disadvantage of FC is that the number of experts required can be a
problem when the number of subbands is much greater than three or four. We, therefore,
propose an estimation strategy which approximates the FC setup, but which only uses the
single-stream experts, i.e. the experts from standard multi-band processing. With this, every
standard multi-band system can easily be extended to an approximated full combination (AFC)
system. In AFC we approximate each combination probability from the probabilities from the
single band experts which are part of this combination.

Under the assumption of conditional independence between subbands (1) in a combination x;
p(zilgr) = [1ieq, P(T(@)lqr), we can derive the posteriors P(gi|z;) for each subband-combination

from the single-subband posteriors P(qx|z(;)) in this combination (i.e. [ €x;) as follows

Plade) = ™ p(aila) (6.25)
P(q
S I steolar (6.26)
_ Pla) 11 P(qk|z@y)p(za))
= (6.27)
p(z;) P P(qr)
= o P ") [] Plarlzq)) (6.28)

lex;
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where O is a normalization constant independent of ¢y, such that Zszl P(q|z) =1, that is
1
0=—% (6.29)
w1 P12l (g ) Tlieq, Plawlzay)

where |z;| is the number of subbands in z;.

These approximated combination posterior probabilities (6.28) can now be used in any
combination strategy where separately trained posteriors are used. For the AFC Suwm rule we
thus substitute them in (6.3).

6.4 Product of errors rule

Fletcher’s multi-independent channel model for human phone perception, summarized in the
“product of errors rule”, was an early description of the error characteristics of low level human
speech perception. It is depicted in Section 2.3. It implies that humans possess an ideal ability
to detect which articulation bands are correct and which ones are incorrect. This ability is not
(yet) available for ASR due to lack of infallible automatic detection of which recognizers are
correct. However, it is surprising that the product of errors rule itself has actually never been

used for the purpose of stream combination.

In order to apply Fletcher’s product of errors rule to recombine stream error probabilities we
define the error probability of stream i (i = 1,..., B) for phoneme gy, as e(qi|z;) = 1—P(qk|x;).
We can then derive the product of errors rule (PoE) from (2.7) for a multi-band system of B

bands as follows:
B

P(gilz) =1 - JJ(1 - Plgxlz:)) (6.30)

i=1

6.5 FError correction in posteriors combination (ECPC)

A model for quantifying the influence of contextual information on human recognition per-
formance was recently proposed by Bronkhorst et al. (1993) and is presented in detail in
Appendix C. This model was set up to describe how humans incorporate time contextual

information to correct recognition errors.

In the model, the recognition of a written or spoken word is described as the independent
recognition of the constituent letters or phonemes, where each constituent can be correctly or
incorrectly recognized. The probability of (correct or incorrect) recognition for all constituents
in a word are then multiplied to calculate the probability of correct recognition of the word.
It is argued that in HSP, the mis-recognized constituents are then corrected in a subsequent
processing step which is modeled in Bronkhorst et al. (1993) by multiplication with a correct-
ing weight. To account for all possible combinations of correctly and incorrectly recognized
constituents within a word, it is summed over all possible combinations of these, i.e. over all

possible recognition “events” of a word.

Although the authors state that it is not a model for the recognition process itself, we

show here how the ideas behind this model can be used in combination with the FC approach.
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In our framework, we want to calculate the probability of correct recognition of the frequency
information of one time frame, and a constituent is thus the phonetic information in a subband,

which can be correctly or incorrectly recognized.

Subband probability of correct or incorrect recognition In multi-band ASR, we can
interpret the probability of correct recognition of a constituent (such as a letter or phoneme)
to correspond to the probability of correct recognition of a the information in a subband.
The probability of erroneous recognition (for a mis-recognized constituent) then corresponds to
the probability of incorrect recognition of a subband by its expert, that is, the expert’s error
probability.

Following Bronkhorst et al. (1993), a recognition event (which the authors termed “percept”
(cf. Appendix C)) consists of a certain combination of correctly and incorrectly recognized
subbands. The probability of occurrence of such an event is calculated from the probabilities of
all (correctly and incorrectly recognized) subbands. Thus, there are as many recognition events
as there are possible combinations of correctly and incorrectly recognized subbands. One such
an event is illustrated in Figure 6.1 for an example of five subbands, two of which are corrupted
by noise, and thus result in erroneous recognition.

frequency
/l ~ 1 Plgils)
noise — P(qkl|z4)
Sl P
— P(gx|z2)
| Pl
— time

Figure 6.1: Example of a corrupted time frame, where 2 frequency subbands of 5 are corrupted
by noise and were mis-classified.

In (Bronkhorst et al., 1993) it is implicitly assumed that the constituents, i.e. the subbands,
are statistically independent, so that a recognition event S; can be expressed by the product
of correct subband probabilities P(gy|z;) and subband error probabilities 1—P(qx|z;), which
describe this event. For a subband system of B subbands, the set of events S; thus amounts to

So = Plgklz1)P(gk|z2) - Plak|zs),
S1 = (1= P(gklr1))P(qk|z2) - - - P(qklzs) + - +
P(qglz1) -~ P(grlzp-1)(1 — Plak|zp))

Sg = (1= Plgklz1))(1 — Pgklz2)) --- (1 — P(grlzp))
(6.31)
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which includes for each S; (j =0, ..., B) all permutations within the set of (B—j) correctly
recognized subbands.

Correcting factors for mis-classified subbands In Bronkhorst et al. (1993)’s model it is
assumed that a listener has a certain chance w of correctly guessing a mis-classified letter or
phoneme in a word using context. If an automatic recognizer is “asked” to make a (random)
guess at an element it previously mis-classified, the probability of correct classification would
remain equal to the phoneme prior probability.

Following Bronkhorst et al. (1993), we now multiply the probability of occurrence of each
recognition event S; by the chance w’ of correcting all j error probabilities in an event, and
explicitly sum over all possible events ¢ = 1,... ,B. With this, we obtain the recognition
probability of the combined system of B subbands for phoneme g as

B
P(grlz) ~ Zuﬂ'sj (6.32)
B
~ ST Plaley) [T —Plgele)) we (6.33)
i=1 jec; lEc)

where ¢; is the set of correctly recognized subbands, ¢} the set of erroneously recognized sub-
bands of event ¢ (i=1,...,B), and ¢/ the number of mis-classified subbands in set ¢;. We name
(6.33) the ECPC® (Error Correction in Posteriors Combination) formula.

Combining ECPC and FC

Comparing the FC Sum rule (6.3) to the ECPC formula (6.33) we can see that both (i) add
over all possible combinations of (reliable) subbands and then (ii) multiply by a correcting
term which is different for each combination. The main difference between the two approaches
is that in ECPC the error of the unreliable subbands is not discarded but multiplied as error
probabilities to the posterior probabilities of the reliable subbands. In ECPC the probability
of correct recognition of the reliable data is approximated by a simple product of the reliable
subband probabilities, whereas in the FC approach a separate expert is used to estimate the
probability for each reliable combination. We were, thus, interested in combining the two
approaches in order to not degrade performance due to a coarse approximation of the subband

combination probabilities when applying ECPC as is.

For each subband combination i (i = 1,...,B), there also exists a subband expert working
on the data which is not part of combination 4, that is, on 2} = 2 — ;. The error probability of
this expert is thus used instead of the product of error probabilities of the single-subband experts
[ € ¢} in (6.33) to model the error probability of the unreliable data «} for each combination.
With this we can write the combined FC-ECPC formula as

P(gx|z) Zqu 1 — P(gy|z})) we (6.34)

5This can also be read as “Easy-Peasy” meaning “very easy” in English child’s speech.
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with ¢ the number of subband error probabilities corresponding to combination i. For each
position of clean data z; (i = 1,...,8B), the error of the corrupted part of the data zj is
not discarded but, for each combination, multiplied as an error probability to the posterior
probability of the clean data. It is then summed over all possible combinations i. The error in
each event is accounted for through the multiplication by the error correcting term we. Tt is

initially approximated by w = P(qx) as motivated above.

6.6 Other combination strategies

Besides the before-mentioned, maybe best-known combination schemes, a large number of other
combination strategies can still be found in the literature. In (Kittler et al., 1998; Kirchhoff
et al., 2000) for example, the maximum, minimum and median rules are discussed, as well as
the Vote rule. Moreover, we present the “Union model” as described in (Ming and Smith, 1999;
Ming et al., 2000) for its slight similarity to the FC approach.

In this section, B denotes the number of experts being combined, as these rules are not

specific to subband expert combination.

Maximum rule The maximum rule (Maxmum) approximates the posterior probability of a
class by the maximum over the posterior probabilities (for this class) from the different experts:
max?Z | P(qi|z;)

P(gr|z) =
2521 maxlel P(qw |5Uz)

(6.35)

The maximum rule and the sum rules can be categorized as OR functions as the output prob-
ability is large when any of the input probabilities is large.

Minimum rule The minimum rule (Minimum) approximates the posterior probability of a
class by the minimum over the posterior probabilities (for this class) from the different experts:

minf:1 P(qi|z;)
K :
D k=1 mlnszl P(qx|:)

The minimum rule and the product rules can be described to implement AND functions which

Plgklr) =

(6.36)

result in a large output probability only if all of the input probabilities are large.

Median rule The median rule (MeDIAN) is motivated by the observation that the (arithmetic)
mean rule is highly effected by wrong classification of outliers. If an outlier class is given a high
posterior probability by one of the experts, the mean value will be distorted and thus result in
wrong classification. As the median is a robust estimate of the mean, this can be exploited as

another, more robust combination rule:

med?ﬂp(%h‘i)
S o=y med?, Plgy|a;)

P(qil) = (6.37)
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Vote rule In voting, it is counted how many votes each class ¢ received from the experts.
The class with the highest number of votes is selected. The main advantage of this rule is the
fact that it can be used with almost any classifier, for example if they do not output posterior
probabilities or likelihoods. In the case where we are given posterior probabilities, the vote rule

(Vore) can be written as follows:

B
B A
P(gr|z) = 72’:]_}3 L (6.38)
with
1 : if Pgrlz;) = max®_, P(qu|z;
Api = (qr|z:) Xpr—1 P(aw]7:) (6.39)
0 : otherwise

a (k x i)-matrix of zeros and ones, where a one in row ¢ indicates for which class ¢ expert i

had highest posterior probability.

This decision rule can also be described as a “hard-level combination” as the outputs of
the experts are first binarized before they are used in the combination scheme. The other
three combination strategies mentioned in this section as well as the sum and product rules are
“soft-level combination” rules as the estimates of the posterior probabilities from each expert
are directly used for the decision (Kittler et al., 1998).

The combination rules can be adapted for the likelihood-based case by using Bayes’ rule.

The resulting likelihood-based combination strategies are given in Table D.1 in Appendix D.

Combination by entropy criterion For each frame and each posterior-based MLP expert,
the entropy of the MLP is calculated according to

K

Entropy = — Z P(qi|z) log P(qr|x) (6.40)
k=1

where K is the number of output classes gy.

The entropy is a measure of the confidence an expert has in its outputs. In the case when
an expert is 100% sure about its outputs (that is, it outputs ‘1’ for only one and the correct
class, and ‘0’s for the other classes), the entropy value will be zero. In the other extreme case,
when an expert cannot decide on any class (that is, all classes receive the same probability), the
entropy value is highest (— log % > 0). The probability vector which is passed to the decoder
is thus the output vector from the expert which had the smallest entropy value.

Combination by “Union model” At this point, we would like to remark on the similarity
of a recently introduced model, called the “Union model” (Ming and Smith, 1999; Ming et al.,
2000; Jancovic and Ming, 2001) to the FC approach.

The “Union model” for multi-band noise robust ASR proposes that the likelihood p(x|q)

is evaluated via combination of B likelihood-based experts trained on subbands z1,...,xp as
follows
B
p(x|gr) =p(x1 Vas V...V zplgr) =1 — H(l — p(i|gr)) (6.41)

i=1
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The derivation of this model is based on four assumptions:

1. A continuous observation vector can be regarded as a discrete random variable.
2. P(correct) = P(any subband expert correct) (Fletcher’s product of errors rule).
3. Subbands (z1,... ,zp) are independent when conditioned on gj.

4. For any subband z; and state qx, p(z;|qk, ©) is much smaller when z; is noisy than when

x; is clean.
and one identity, that for discrete and independent events a; (i =1,... ,B):
B
P(V;a;) = P(any a;) = P(not none of a;) = P(—A; —a;) =1 — H(l — P(a;)) (6.42)
i=1

Expression (6.41) follows from identity (6.42) under assumptions 1, 2 and 3 above. The attrac-
tion of this model is that under assumption 4 the effect of noisy subband z; in (6.41) will be
small, because the factor (1 — p(z;|gr)) will be approximately equal to one. This way of eval-
uating the likelihood should therefore be automatically robust to noise. However, assumptions

1 to 4 above are open to the following respective criticisms:

e Probability densities do not follow all of the same rules as probabilities for discrete events.
As a result assumption 1 is false and (6.41) would be highly inaccurate even if all of the

other assumptions below were true.

e Fletcher’s product of errors rule is approximately true for humans when data is divided
into two subbands, but in ASR no single one-band expert can match the performance of
a fullband expert when all data is clean. Exclusion of the fullband expert will therefore
always lead to reduced ASR performance in clean speech.

e Subbands (or multiple data streams) (z1,...,zp) are generally not independent, even
when conditioned on g;. Ming et al. (2000) provide formulae which can avoid this as-

sumption of independence, but they do not use them.

o p(zi|qr, ©) is not always much smaller when z; is noisy than when z; is clean. It is
not uncommon that noisy data from one phoneme resembles clean data from another

noise-like phoneme.

As each p(z;|qr) factor in (6.41) is typically much less than one, it is easy to see that this
expression, when expanded, is dominated by product terms with smaller numbers of factors,
irrespective of whether each factor is noisy or not. The authors of the “Union model” reduced
this problem by selecting only terms in (6.41) with the same number M of p(z;|g;) factors
(or no factors). This they referred to as the “Union model of order M”. Optimal selection of
model order was then achieved by performing recognition with all model orders and selecting
the result from the model for which the duration model gave the maximum likelihood.

The “Union model” shows some similarities with our FC multi-band model. The main
differences are as follows. First, our model for combination of posterior probabilities P (g |x;)

(6.3) was derived from the rules of probability without making any of the above assumptions
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(though our AFC model, as presented in Section 6.3, does use assumption 3). Second, when
Bayes’ rule is applied to (6.3) to obtain the rule for combination of densities (6.6), this rule still
differs from the “Union model” rule in a number of important ways. One is that it introduces
a weight estimate for each expert. Another is that densities p(z;|qr) are always “scaled” by
dividing by p(z;), so that the tendency for contributions from likelihood experts with fewer

inputs to dominate the sum does not arise.

6.7 Summary

In this chapter, we presented various strategies for the recombination of stream probability
estimates, such as posterior probabilities and likelihoods, stemming from multiple (subband or
fullband) recognizers. The “full combination” (FC) rules combine the stream probabilities of
a set of mutual exclusive and exhaustive experts. We saw how the posterior-based approaches
need the training of the whole set of mutually exclusive and exhaustive experts, whereas in
likelihood-based processing the stream likelihoods can (under certain conditions) be easily cal-
culated from the fullband pdf. For the FC sum rules, no assumptions are needed. In the FC
product rules the streams are assumed to be independent. An approximation to (posterior-
based) FC processing was presented which only employs the single-stream experts, thus being
easier applicable for a high number of streams.

We then presented another set of new combination strategies which were motivated from
models of human perception: the “product of errors” rule and the “error correction in posteriors
combination” approach. The latter was combined with the FC Sum rule so that for each
combination the error probability of the expert which has the unreliable part of the data at its
input is multiplied to the probability of correct recognition of the expert working on the reliable

part.

Finally, a set of well-known combination strategies such as the minimum and the maximum
rule were described. In Appendix D, the standard approaches (Tables D.1) and the new

combination strategies (Tables D.2 and D.3) are summarized.

The newly introduced combination strategies will be evaluated in subsequent chapters in the
framework of both multi-band and multi-stream processing. They will be compared to standard
combination strategies as well as a regular fullband recognizer. Some combination strategies
can or have to employ reliability weighting factors which can further enhance performance.
Possible ways for weight estimation will be presented in the next chapter.



CHAPTER 7

Weighting strategies

Multi-band and multi-stream systems can achieve higher noise robustness than a one-stream
recognizer already through the diversity and complementarity of their constituent streams,
and an appropriate combination strategy. However, all combination strategies discussed in the
previous chapter involve weights (reliability of the different experts), which were set to uniform
values so far. Another additional possibility to enhance performance of the combined system is
through the optimization of weights in the combination process, where the probability estimates
from each expert are weighted according to their respective reliability.

In this chapter, we investigate different weighting strategies, comprising both stationary

(assuming stationary noise) and non-stationary (assuming non-stationary noise) weights.

We start by presenting weighting functions as proposed in the literature. We then come
to the new weighting approaches developed in this thesis. These include estimation of fixed
weights, which have to be trained prior to application, and adaptive weights, which are esti-

mated during recognition.

7.1 Introduction

In order to adapt to a changing, acoustic environment, humans use ‘perceptual weights’ (Arai
and Greenberg, 1998) to switch from less to more reliable auditory channels to maintain recog-
nition performance. Similarly, different weighting strategies are also employed in multi-band
and multi-stream ASR.

In the derivation of different combination strategies, discussed in the previous chapter,
weighting factors may either appear naturally as an essential part of that model or else be
introduced as heuristic weighting factors. For example, in the case for the FC Sum and AFC Suwm,
each expert is assigned a certain reliability which is represented mathematically by P(b;|q).
In other approaches, such as the standard or FC product rule heuristic weighting factors are
introduced as exponents to the stream probabilities, giving each stream more or less weight.

95
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Streams which work on different sets of input features will generally not carry the same
weight of evidence for clean speech, and even more so for noise. Reliability of each stream,
even for clean speech (i.e. matched training and testing conditions), depends on the phonemes
being hypothesized. In case of noise (mismatched condition), the reliability has to be adapted
depending on the kind and position of the noise. The reliability factors or evidence weights
thus constitute an important part in any recombination scheme where they can be employed.
Depending on their derivation and the assumptions which are made in the respective recombi-
nation model, the weights can depend on

e the stream index b;
e the local acoustic observation x
e the speech units (such as the phonemes in our case) g

e any combination of the above.

Weights need to be tuned for each multiple recognizer system. If we know that the recog-
nizers will only be used in matched conditions, the weights can be trained on the training data
and kept fix during recognition. They do not need to depend on the acoustic observation, and
are thus usually chosen to depend on the stream and possibly on the phoneme.

In the case when it is not known what application conditions will be encountered, it is
advisable to develop weighting functions which can adapt to the changing conditions.

In the following, we illustrate some of the already proposed and most promising weighting
strategies which can be found in the literature. We then come, in Sections 7.3 and 7.4, to the
motivation and illustration of the weighting functions which were developed in the framework
of this thesis.

7.2 Weighting functions proposed in the literature

7.2.1 Fixed weights used in multi-band and multi-stream ASR

Bourlard and Dupont (1996); Hermansky et al. (1996) propose weights derived from phoneme
or word recognition rates, which were obtained from the performance of the individual sub-
band recognizers on a cross validation set. These weights (normalized to sum to one) can be
interpreted as representing the relative information content for each speech unit present in each
of the subbands. This approach is also motivated from the acoustic-phonetic point of view
considering that the acoustic correlates for some phonemes are rather situated in the higher
frequency bands (such as fricatives), whereas the distinguishing features for other phonemes are
rather situated in the lower frequencies (such as front-vowels). It was thus hypothesized that a
certain subband recognizer could better account for some phonemes than for others, i.e. those
phonemes whose discriminatory features lie mostly in the frequency region that recognizer was
trained on. Weights derived from subband frame level recognition rates are also employed in
this thesis in the framework of FC processing, and will be described in Section 7.3.3.
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When the dependency of the recognizer weight on speech units is ignored, an average weight
(over all speech units) can be calculated for each subband. For performance evaluation, the
weights are usually compared to the equal weights approach, which can often give surprisingly
good results (Bourlard and Dupont, 1996; Hermansky et al., 1996; Cerisara et al., 1998).

Weight training in “recombining MLP” Non-linear recombination by MLP (cf. Section
5.4.1) of the posterior or likelihood outputs from the subband recognizers can also be interpreted
as employing a particular weighting function. Such a “recombining MLP” is especially promis-
ing under matched conditions (Bourlard and Dupont, 1996; Hermansky et al., 1996; Cerisara
et al., 1998). The “recombining MLP” is usually trained according to the Least Mean Squared
Error (LMSE), the Relative Entropy (Dupont, 2000), or Minimum Classification Error (MCE)
criterion using a gradient descent algorithm. The LMSE criterion is described in Section 7.3.2.
For the MCE criterion (Katagiri et al., 1991; Juang and Katagiri, 1992), a differentiable cost
function needs to be introduced, as the number of errors is itself not differentiable. Such a cost
function is for example a simple softmax or sigmoid activation function. To quantify the classi-
fication error it is combined with a misclassification measure, such as the difference between the
probability of the best class and the mean probability of the other classes, or the wrong class
which had highest probability (Cerisara et al., 1999b). The cost function is then minimized
during training, generally using a gradient descent algorithm which in this framework is refered
to as Generalized Probability Descent (GPD) to iteratively estimate the parameter values.

MCE training of weights in linear combination Supervised, discriminative training
using the MCE algorithm was also employed to estimate the weights of a (weighted) sum of
subband (logarithmic) likelihoods (Beyerlein, 1998; Cerisara et al., 1999b). In (Cerisara et al.,
1999b), evaluation of the MCE-based weights in recombination by sum rule did not result in any
significant performance difference as compared to a “recombing MLP” trained with the same
criterion. In high-noise conditions the “recombining MLP”, as well as a simple average of the

fullband and all subband recognizers, were more robust.

Moreover, the MCE criterion was applied in a global training scheme where the subband
HMM-GMMs and the recombination module were trained jointly. Here, the MCE criterion had
to be used as the outputs from the recombining sum do not constitute real likelihoods!. As
we saw above, the MCE algorithm works on the difference between the ‘scores’ and thus does
not depend on any statistical interpretation of the ‘scores’. We see below other weighting
algorithms which employ entropy and mutual information which are defined as probability
distributions (Cover and Thomas, 1991) and can, thus, only be used with probability measures.
Global training of the subband HMM-GMMs and the linear recombination module resulted in
improved performance only in clean speech or in the case when global training was carried out

on a similar noise condition as encountered during testing.

IThe weighted sum of likelihoods does not result in a likelihood as its integral does not amount to one. For
this reason, the output of the weighted sum of likelihoods is refered to as ‘scores’ in (Cerisara et al., 1999b).
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7.2.2 Adaptive weights used in multi-band and multi-stream ASR

In the last section, we saw several methods how the weights in the different combination strate-
gies can be optimized. However, these methods are mainly applicable when there is no mismatch
between training and testing conditions. If this is not the case, the weights should be optimized

in an adaptive manner.

SNR-based weights The principle idea on which these weighting strategies are based is the
fact that the higher the mismatch between training and testing condition is, the worse becomes
the recognition rate. In the case when the acoustic models are trained in clean speech, it can
therefore be assumed that the higher the noise level is, the more the respective model should be
penalized. Signal to noise ratio (SNR) measures in each frequency subband can then be used as
the basis for adaptive weighting strategies (Bourlard et al., 1996c; Okawa et al., 1998; Dupont,
2000). Such an approach is described in more detail in Section 7.4.1.

Mutual Information Criterion In a likelihood-based multi-band system, Okawa et al.
(1999) employ the Mutual Information (MI) between all HMM states and phoneme categories
(2 and the observation X7 for a certain length of frames 7" to estimate the recombining weights.
Recombination is carried out by geometric mean so that the weights occur as probability ex-
ponents. To treat the entropy as a relative value between each subband, posterior probabilities
should be used which are approximated by P(qx|z:) ~ % with ¢ an HMM state
and x; the observation at one time frame ¢.

The conditional entropy of all HMM states (), given the acoustic observations X for a

certain length of frames T is defined as:

T K
QIX7) ==> > plar, x¢) log P(qk|x:) (7.1)
t=1 k=1

The self entropy of the HMM states () is

K
== P(q)log Pa) (7.2)
k=1

With (7.1) and (7.2) the MI can then be calculated according to

(@, X1) = H(Q) - H(Q|XT) (7.3)

The MI allows to measure the amount of information contained in () with respect to the
observation X7. Expression (7.3) is evaluated for each subband to estimate its respective weight.
All weights are then normalized to sum up to the number of subbands. The optimal length
of frames was evaluated experimentally by using between one frame and the entire sentence.
Performance improvement using the MI-based weights could be achieved as compared to equal

weighting in both clean and noise-corrupted speech.
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7.3 Fixed weights investigated in this thesis

In this section, we present the weighting strategies developed in this thesis which employ fixed
weights. The weights are estimated on the training data before being applied in the recognition
task. The weights are independent of the test data, but depend either on the phoneme or on

the (combination) expert, or both.

7.3.1 Equal combination weights

Combination by equal weights for classification experts has often been used in the statistics
community to compare the performance of the combined system to that of the individual
experts, and in many cases already improves the resultant model accuracy (Clemen, 1989).
The use of equal combination weights is a straightforward approach to the combination of
multiple recognizers. Its main advantage is that no data for estimation of the weights is needed
and no extra time for the calculation of the weights has to be expended. This approach bases
on the assumption that all component recognizers are equally good, which will not always be
fulfilled. Especially in the case of subband processing, where experts are trained on different
sub-frequency regions, one would expect each expert to perform differently for different speech
units (due to their position in the spectrum) and noise conditions (as in the case of high- versus

low-frequency noise).

On the contrary though, we will see in the evaluation of the different weighting methods in
Chapters 8 and 10 that equal weights often lead to some of the best results among all weighting
strategies. One possible explanation (mentioned by Bourlard and Dupont (1997)) is the fact
that if one or more subbands are noisy, they will obviously yield noisy local likelihoods or
posteriors for all classes. Entropy increases so that in the worst case, all local probabilities are
the same. As a consequence, it can be expected that during the recognition process, where all
these local estimates are integrated over time, the contribution of the noisy bands will appear as
a constant in the global probability, for any phone sequence hypothesis, and will thus naturally
cancel out when picking the hypothesis with the highest probability.

7.3.2 Least mean squared error (LMSE) criterion

The Least Mean Squared Error (LMSE) criterion as usually used for MLP training can also
be employed to discriminantly estimate the weights in a (linear or log-linear) combination of

multi-band or multi-stream recognizers.

Offline weights estimation using the LMSE criterion with an FC posterior-based system is
as follows. For each phoneme g, P(gx|z) is estimated as a linear combination of all of the
posteriors P(gj|z;) (j =1,...,K) from all of the experts i (i =1,...,8)

B K
P(qi|z) ~ Z Zwi,j,kP(Qj|$i) + wo (7.4)
i=1 j=1

Let d,; be the target or desired probability for each phoneme ¢;, and time frame ¢,
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Wi = (Wo,1,k, W1,1,k, W2,1,k» - - - > WB K ) 5 Y = (1, P(qi]z1,0), P(qi]zay), . - ., Plax|zs,)),
Y:(y17y27 .- 7yT)7 Dk:(dk,ladk,27 . 7dK,T)T

For each g, the sum of squared errors between (7.4) and the desired output is

T
By = (P(a|ze) — die)” (7.5)
t=1
We therefore require
wr = argmin Eg(w) (7.6)

T B

K
argm@inz ZZU}M kP (gjlxi) + wor — dg t) (7.7)

t=1 i=1 j=1

Expression (7.6) can be solved by setting BaE’“ = 0 for all w; ;5. This gives rise to the “normal

equations”
YY w, =YD, (7.8)
having solution
wr, = (YYT)"lYD, (7.9)

If YYT is nonsingular then (7.8) can be solved for a unique vector wy, but a more robust

general solution is given by way of the pseudo-inverse?

wg = Y+Dk (710)

These weights are the same as would be obtained by training on a one layer neural network of
linear units under the LMSE criterion.

Initial tests used a simplified form of (7.4) where inputs to the output for P(qg|z) were
limited to posteriors P(qx|x;) for i = 1,...,B, but for g only, as follows

B
P(grlz) =Y win Plakla:) + wo (7.11)

i=1

This simplified form of LMSE weighting was considered to be of interest because it more
closely resembles the FC Sum rule (6.3) than (7.4). Unfortunately, due to time restrictions and
the need to get on with testing the more powerful adaptive weighting techniques, the full LMSE

weights given in (7.10) were not tested.

The LMSE-weights are evaluated in Chapter 8 in the framework of multi-band processing
for posterior-based systems, for which the desired probabilities and the combination posterior

probabilities are directly available.

7.3.3 Relative frequency weights

As introduced in Section 7.2.1, the weights can also be derived from the recognition rate of each
subband expert. In the framework of FC processing, we evaluate these “relative frequency” (RF)

2If the pseudo-inverse is defined by Y+ = limEHO(YYT -l—eI)*lY, then it can be shown that the limit always
exists, and that this limiting value minimizes Ej (Bishop, 1995).
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Figure 7.1: Comparison between LMSE- (left) and RF-weights (right). The multi-band system
used to train the weights consists of four frequency bands and thus 16 streams altogether. The
combinations are denoted by the subband-numbers which are included in the respective stream,
such as “123” denoting the stream including subband 1, 2 and 3.

measures on the frame recognition rate of each subband and subband-combination expert.
Employing the segmented training data which has also been used to train the experts, we
calculate the ratio between the number of times an expert performs best for a given phoneme
and the number of times this phoneme occurs in the database. For each stream i (i = 1,... ,B)
and phoneme k (k =1,...,K) weight P(qx|b;) is thus approximated as

Nk
wix = P(qr|b;) ~ nl

(7.12)

where n; j is the number of frames of training data for which expert i has the largest posterior
probability, over all experts, for phoneme k (and therefore has the smallest Kullback-Leibler
distance from the target probability distribution), and ny is the number of times the phoneme
k occurs in the training data. Relative frequency weights thus range between zero and one
0<w;p <1, Vi, k.

In Figure 7.1, a comparison between LMSE-weights and RF-weights can be seen. As was
discussed in Section 7.3.2, the linear LMSE-weights are not restricted to be positive or sum to
one, while the RF-weights are all positive and sum to one. Both weighting approaches give, on
average, higher weights to the larger stream combinations (employing three or all subbands, in
our case). Moreover, it can be observed that some phonemes are apparently better modeled by
the single-stream experts whereas others are better modeled by the two-stream experts. This
confirms the assumption that each combination models a different sub-set of information and
is equally important in the combination process. Both weighting strategies will be evaluated in
the experiments to multi-band FC processing which are presented in Section 8.4.

7.3.4 Maximum-likelihood weights

Another criterion to optimize the weights could also be to estimate on some training or adap-
tation data the weight values that maximize the likelihood of the data given the model, that is
(with w the weights to be optimized, and © the fixed model parameters)

w* = argmaxp(X|w,O) (7.13)
w

T
= argmax H p(zri|w, ©) (7.14)
t=1
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with w={w;}, wir = P(bslqr), i=1,...,B, k=1,... ,K), and X ={zy,... ,2¢,... ,27},
where x; are assumed independent and identically distributed. As we saw in Section 3.3.2 we
can decompose any likelihood such as p(zt|w, ©) according to

p($t|w,®) = p(wtabiaqkhﬂ:@) (715)

M=
M=

1 k=1

-
Il

P(bi, qr|©)p(w:|bi, qr., ©) (7.16)

I
M=
M=

-
Il
-
=~
Il
-

P(qk|©) P (bilgk, ©)p(¢[bi, ar, ©) (7.17)

I
M=
M=

1

.
Il

=~
Il
-

Expression (7.16) corresponds to decomposition (3.16) of the data likelihood into a weighted sum
of e.g. Gaussians, where in our case P(b;, qr|©) now is the weight for expert ¢ and phoneme g;.
We can therefore apply the same EM weight update rules that were used in Section 3.3.2 for
GMM mixture weights estimation, for estimating P(b;, i), from which the expert combination
weights w; = P(bi|gr) needed in FC SuM rule 2 (6.8) can be obtained as

P(bi, qr)
P(qr)

Following the mixture weight update formula (3.24), we can obtain an updated estimate for
the weights P(b;, ¢x|©) in (7.16) as

w; = P(bilqr) = (7.18)

T
P(bl7qk|® = TZ z7Qk|$t: (719)

where

p(wt|bi:Qk: é)

= ) P(bi, qi|© 7.20
o(2:]0) (bi, qx]©) (7.20)

P(b;, qi|z:,0) =

follows from Bayes’ rule, as in (3.25).

The only problem here is that p(x¢|b;, gr) in (7.20) cannot be evaluated directly because b;

tells us that part of z; is missing. To overcome this problem we use the approximation (6.10)

to give
A T; s (:)
p(,t]©)
where
A~ K ~
p(z:t|0©) = Zp(wi,thk, ©)P(qr) (7.22)
k=1

The weights w; , = P(b;|g) can now be estimated from the training data using (7.18), (7.19),
and (7.21) as well as the prior probability of each class P(qy), and initial weight estimates. The
weights can be initialized either all equal (which was done in the experiments described in the
next chapter), random, or as fixed weight values using methods from the previous sections (RF
or LMSE weights). For experimental evaluation of these weights see Section 8.4.2.
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Remark The likelihood-based FC Sum rule 1 (6.6) does not permit ML estimation of the
combination weights P(b;|z) because it is non-linear in the likelihood components p(z;|g, ©)
and does not lead to a closed form for EM estimation equations. If required, the weights P (b;|x)
needed in (6.6) could be estimated by summing P(b;, qx) in (7.19) over all gs.

7.3.5 Quasi-optimal weights

In order to obtain some idea of the best performance a system of multiple recognizers can
achieve with an optimal weighting strategy, we can artificially define the weights in such a
way as to always choose the recognizer which has the highest output probability for the class
which is known to be correct. This corresponds to a one/zero weighting scheme where the best
recognizer receives all the weight and all others are excluded from the recombination process
by giving them zero weight. Such a weighting strategy is of course not applicable to unknown
data, but can be employed for evaluation when the correct class label for each time frame is
known.

The weight for expert i for time frame ¢ and phoneme k is calculated as

1 : if P(qlzse) = maxB , P(qlx; ) for I the correct class
wi,k(t) _ (a z,t) i=1 (a1] z,t) (7.23)
0 : otherwise

These quasi-optimal weights allow us to obtain a target baseline performance against which

we can compare the performance of new weighting strategies in Section 8.4.

7.4 Adaptive weights developed in this thesis

In the preceding section, we saw several weighting schemes where the weights are fixed in
advance and no adaptation during recognition is carried out. Fixed weights can be chosen
heuristically or trained on the training set of the database used to train the recognizers. As the
source of mismatch between training and test conditions cannot always be anticipated, fixed
weights may not be appropriate. In mismatched conditions, weights are needed which can adapt
to and account for the change in application environment by gradually penalizing recognizers

dependent on their specific reduction in performance.

In this section, we therefore propose adaptive weighting strategies. The first scheme works on
the input signal of each stream, that is the acoustic speech data, and assumes that unreliability
is due to noise corruption. The second weighting scheme works on the probability output of
each recognizer and estimates weights through observation of the development of the recognizer

outputs.

7.4.1 SNR-weighting

As we saw in Chapter 4 some of the most severe mismatch conditions arise when the speech
recognizer, which was trained on clean speech, is to be applied in a noisy environment. In the

case of unknown (additive) noise, some recognizers will degrade more than others depending
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on the frequency location of the noise and on the noise level at each location. Recognition of
the combined multiple stream system will improve when each recognizer is weighted depending
on the SNR level encountered in the data the recognizer is working on.

For each time frame, an estimate for the reliability of a stream j (j = 1,...,B) which is
corrupted by additive noise can be based on the signal to noise ratio (SNR) estimated in that

stream, which we denote by S/l.\Iﬁj. To estimate S/NT{j for a stream j we can use the estimated
noise spectrum |N;(f)|? |2

and the observed spectral value |Y;(f)|* of stream j and compute

S8 Y5(H)I?
RTAT T e

The noise estimate can for example be obtained during the first 100 ms of the input utterance
under the assumption that no speech is yet present. Similarly, the noise estimate could also
be gained (and updated) in speech pauses which is more appropriate for non-stationary noise
cases, but this demands a speech/silence detector. Other estimation algorithms which do not
explicitly depend on silence portions are for example described in (Hirsch, 1993; Martin, 1993;
Dupont, 2000). They are based on the assumption that the noise is more stationary than
speech, so that the noise can be considered stationary in speech segments of several frames in
length.

In deciding which streams are clean we define two SNR. thresholds: a lower threshold SNRyin
below which a stream most certainly leads to unreliable performance of a recognizer which has
this frequency stream at its input, and an upper threshold SNR,ax above which a frequency
stream most certainly leads to reliable performance of a recognizer which has this frequency
stream at its input. The reliability of a stream j can then be estimated by

P(j reliable) = mm(maX(SNI;jl\}SRNRmT)Syl\SIER.maX) — SNRmin (7.25)

As in (Morris et al., 1999), the lower threshold was fixed to SNRuin = 0 dB, below which
P(j reliable) = 0, and the upper threshold to SNR,,ax = 30 dB, above which P(j reliable) = 1.

In the framework of FC processing, we need weights not only for each subband but also
for each combination of subbands. It is usually reasonable to assume that the reliability of a
certain combination of subbands can be estimated from the reliability of each of its component
subbands, and that subband reliabilities are independent. We thus derive the weight for each
combination ¢; (i = 1,...,B) of streams j (j = 1,...,B) from the probability that all its
constituent streams are reliable (j € ¢;) and all streams not in the combination (j ¢ ¢;) are
unreliable:

b; & (j reliable Vj € ¢;) A (j —reliable Vj ¢ ¢;) (7.26)

with event b; as defined in Section 5.6. Assuming that the noise in each stream is independent,
P(b;|z) can then be approximated by

w; = P(bi|z) = [] P(j reliable) J] P(j" — reliable) (7.27)
JEci j'¢e;
The experiments employing these SNR-based weights in our multi-band FC HMM/MLP hybrid

system are presented in Section 8.4.3.
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7.4.2 Adaptive Maximum-Likelihood weights

In Section 7.3.4, we have seen that it is possible to estimate the combination weight values
to maximize the likelihood of some training data. Consequently, as for any likelihood-based
training system, it is possible to develop an adaptive version where the weights are adapted, in

an online and unsupervised way, during recognition.

In our case, we would like a weights estimate which is able to adapt to rapidly changing noise
conditions. However, the shorter the interval of time N used for updating the local weights
estimate, the less reliable it will be. By combining the local with the previous estimate, these
inaccuracies can, to some extent, be smoothed out. A local estimate can be obtained using the
offline ML-based weights from (7.18). Let wfj’k (t) denote this local weight estimate for expert
i (i=1,...,B), and phoneme ¢; (k=1,...,K), which was estimated using N data frames
leading up to the current time frame ¢. Let w; x(t—1) denote the previous weight estimate from

time frame t—1. We can combine these in a weighted sum
wi k(1) = awip(t—1) + (1 — o) w)y(t) (7.28)

where a isin [0, 1] and w; (0) is initialized from the fixed ML weights (7.18) or as equal weights.
These weights are evaluated in our multi-band HMM-GMM system in Section 8.4.4.

7.5 Summary

Performance of a multi-band or multi-stream system can be further enhanced when the stream
probability estimates are weighted in the recombination process according to their respective
reliability. This weight reflects the confidence we can have in a probability estimate at the
output of an expert. Weights can either be trained offline or estimated during recognition.

In this chapter, we first developed a group of fixed weighting strategies. The first set of
weights was estimated by minimizing, over the training data, the mean squared error between
the posterior estimates of all streams and the respective phoneme, and the desired output
for that phoneme (at a given frame). The second set of weights represent relative frequency
measures, where the number of frames of training data are counted for which an expert has
the largest posterior probability, over all experts, for a given phoneme. Next, we derived for
likelihood-based systems ML-based weights by applying the EM algorithm for the estimation
of the combination weights. Finally, for evaluation purposes, “quasi-optimal” weights were
defined which always choose the recognizer which has the highest output probability for the

correct class.

The first set of adaptive weights investigated in this chapter apply to multi-band systems
and were based on SNR estimates. In each subband, the SNR is measured and compared to
upper and lower thresholds. From these reliability estimates for each subband, the reliability
of each subband combination was calculated. The second set of online weights constitute an
adaptive version of the ML-based weights, where the weights are continuously updated during
recognition on several frames of the test data. These weights are also applicable to multi-stream

processing.
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The different weighting strategies will be evaluated experimentally in the next chapter in the

framework of the new combination strategies which were developed in the preceding chapter.



CHAPTER 8

Experimental evaluation of

multi-band processing

In this chapter, the experiments with multi-band processing are presented. First, the multi-
band systems together with the baseline fullband recognizers are described. The database
used for training and testing of the recognizers as well as the artificially added noise cases are
illustrated next.

We are seeking multi-band systems (and multi-stream systems in general) which perform
competitively with a state-of-the-art fullband recognizer in clean speech, but which provide
higher noise robustness to a large variety of noises. Thus, in the next section, the newly
proposed combination strategies are compared against each other, and also against the baseline

fullband recognizer, and some previous multi-band combination strategies.

After this, we compare the performance of the new weighting schemes which were discussed
in the previous chapter. Experiments are carried out on the clean condition and various noise
conditions.

8.1 Description of multi-band systems

As further described later, all our experiments were done with different, state-of-the-art recog-
nizers, HMM/MLP hybrid systems and HMM-GMMs, each using the acoustic features yielding
the best performance.

The multi-band systems employed in this thesis consist of four subbands, the exact fre-
quency definitions of which are given in Table 8.1. There are several reasons for choosing
four subbands. First, the use of four subbands is motivated by the idea of including roughly
one formant in each frequency subband. Second, the choice is historically founded as most
of the subband work carried out at our institute and partner institutes successfully employed
four subbands (Bourlard and Dupont, 1997; Hagen et al., 1998; Mirghafori and Morgan, 1998b;

107
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Christensen et al., 2000). Moreover, comparison to subband systems with less or more sub-
bands had for example been studied in (Bourlard et al., 1996b; Bourlard and Dupont, 1996)
and indicated four subbands to be a good choice. Thus, to be consistent in the development
of our work, we continue on the same track. Finally, the same four subbands can be used to

realize the FC approach which, hence, incorporates the training of 15 classifiers’.

As compared to earlier work carried out at our institute, only the exact position of the four
subbands is changed. In earlier work, the subbands were often overlapping. As in some com-
bination strategies employed in this thesis, such as the product of errors rule (cf. Section 6.4),
independent frequency subbands are assumed, the definition of the subbands was changed to
include each critical band in only one frequency subband. However, due to the filter character-
istics of the critical bands, the resulting subbands still interleave to a small extent.

Choice of Features Two different sets of acoustic features were used for the HMM/MLP
hybrid multi-band systems: PLP and J-RASTA-PLP features, which were introduced in Sec-
tions 4.2.1 and 4.2.4. Both are based on LPC analysis, the respective order (Lpc ORDER) of
which is given for each frequency subband in Table 8.1 (and Table E.1 in Appendix E for all
possible combinations of subbands). The prediction coefficients are converted to cepstral coeffi-
cients for decorrelation. The number of cepstral coefficients (cc) is also indicated in the tables.
The values of both parameters were chosen according to the general rule given in (Rabiner and
Juang, 1993, p. 116), and in proportion to the size of each subband or subband combination.
For the FC approach, the parameters for feature estimation for the subband combinations were
directly derived from the parameters of the subband feature vectors included in the respective

combination. An example is given in Table 8.1 for band combination 134.

The PLP-cepstral coefficients (after J-RASTA filtering in case of J-RASTA-PLP features) are
the input to our classifiers, together with first and second order derivatives (including energy),

if not stated otherwise. The features were extracted from windows of 25 ms length, with a shift
of 12.5 ms.

For the HMM-GMM multi-band system, we used MFCC features (as described in Sec-
tion 4.2.1) which we found to work best in this setup. The features are extracted on the same
frequency subbands as given in Table 8.1. We employed ten filters extracting six coefficients
in each band.

Subband experts An expert is associated with each subband, and, to be explicit, in the
case of FC processing, with each combination of subbands. Each expert estimates a vector
of parameters, posterior probabilities in the case of MLP experts, and likelihoods in the case
of GMM experts. The estimates from all subband experts (and possibly subband-combination
experts) are recombined, and then used in an HMM-based recognizer to decode the speech
input. Evaluation of the different recombination strategies discussed in Chapter 6 is the task

of the experiments described in the next sections.

115 = 2% — 1 as for the stream consisting of prior information only no MLP needs to be trained.
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BAND CRITICAL DEFINITION LPC NUMBER OF

NUMBER BANDS IN Hz ORDER | CC ‘ HU ‘ MLP PARAM.

1 2-5 115.3-628.5 Hz 3
2 6-9 965.3-1369.9 Hz
3 10-12 1262-2292.4 Hz
4 13-15 |2121.7-3768.8 Hz
2-5 115.3-628.5 Hz,

13 10-15 | 1262-3768.8 Hy | | |11[1620] 568620

5 | 1000 189 000
5 | 1000 189 000
3 | 666 89 910
3 | 666 89 910

N[ DN | W

FULLBAND 2-15 115.3-3768.8 Hz 11 12 (1750 661 500

Table 8.1: Definition of the frequency subbands as employed in our multi-band systems,
together with the parameters used in feature extraction. The number of parameters are the
same for PLP and J-RASTA-PLP features. The full information including all combinations of
subbands is given in Table E.1 in Appendix E. vpc: LPC analysis order; cc: number of
cepstral coefficients; Hu: number of hidden units; MLP pARAM.: number of MLP parameters.

HMM /MLP hybrids Each MLP expert is provided with nine consecutive frames of input,
centered around the current frame. Training procedure by error back-propagation (Hush and
Horne, 1993) is the same for all MLP experts, as well as the following architecture: an input
layer comprising the nine respective feature vectors, one hidden layer of a fixed number of
hidden units (cf. Tables 8.1 and E.1), and an output layer, the size of which corresponds to
the number of (one-state) phonemes in the database, which is 27. The size of the hidden layer
of each MLP is chosen proportional to the size of its feature vector, varying between 660 and
1750 hidden units.

One HMM state is associated with each MLP output with the HMM states corresponding
to the phoneme classes. We used context-independent phoneme models consisting of one to
three repetitions of a phoneme state for duration modeling. For this, the number of states
is determined from the average length of the phoneme as found in the training data. The
phoneme models have fixed transition probabilities of 0.5 for each transition. Word models
are constructed by concatenation of the constituent phoneme models according to the (single-

pronunciation) dictionary.

The recombined posterior probabilities theoretically need to be divided by the class prior
probabilities to obtain (scaled) likelihoods for Viterbi decoding. As it has been found during
experimental evaluation by our institute and others, this division does not always lead to
improved performance, depending on the respective features, database and other conditions.
For this reason we evaluated in preliminary experiments for which system the division by priors
was necessary. This is the case for the J-RASTA-PLP-based recognizers. In the case of PLP

features, no division by priors is carried out in any of the experiments.

HMM-GMM systems In the HMM-GMM systems we used Gaussian mixtures as continuous
observation densities (Juang et al., 1986). There are 78 Gaussian Mixture Models (GMMs), each
modeling a 3-state triphone using 64 Gaussian mixtures and diagonal covariance matrices. Each



110 Experimental evaluation of multi-band processing

multi-band HMM-GMM comprises the same number of feature coefficients and GMM parameters
in order to render their likelihood estimates more comparable. The triphone models in the
HMM-GMM systems are necessary to render them competitive to HMM/MLP hybrids.

Viterbi Decoder Standard Viterbi decoding is used for both HMM/MLP hybrid and HMM-
GMM systems. Most of the manually adjustable decoder parameters were kept at, default values
except the word entrance penalty which is, for each set of experiments and each recognizer,
adapted on the clean test data to yield the lowest word error rate (WER), and kept constant
for all tests on noise.

8.2 Description of the experimental setup

The experiments in this thesis utilize a telephone speech database to which different noise cases
were artificially added, in order to study the damaging effects caused by corruption by additive
noise. This setup is well suited when experimenting with new techniques developed for robust
automatic speech recognition which can be better evaluated when the noise occurrences and

characteristics are known.

8.2.1 NUMBERS95 database

The NumBers95 corpus (Cole et al., 1995) consists of naturally spoken connected digits, pro-
nounced by American English speakers. Utterances were recorded over the telephone and
hand-labeled with phonetic transcriptions by trained phoneticians.

The database is divided into two independent subsets: the training set (including a cross-
validation set) and the test set. The training set consists of 3590 utterances comprising approx-
imately three hours of speech and is used to train the MLP and GMM classifiers. This partition
corresponds to the one also chosen by other institutes (Mirghafori and Morgan, 1998a; Dupont,
2000). Phonetic segmentation was provided by one of our project partners, the TCTS Lab at
the Polytechnical University of Mons, Belgium?. It is based on the CMU dictionary 4.0 con-
sisting of 46 phonemes (a subset of the TIMIT phonemes), 27 of which are used in our sets. An
exact description of the creation of the segmentation can be found in (Dupont, 2000, p. 158).
Roughly 10% of the training data is set aside for cross-validation during MLP training to prevent
the parameter-heavier MLPs from over-fitting. In the training of the GMM classifiers, where
hardly any over-fitting can occur due to smaller number of parameters, the cross-validation
set is included in the training set. Our test set consists of 200 utterances taken from the
larger development test set of 1206 utterances (Glotin, 2000). The large number of subband
and subband-combination recognizers and the need to test on several different noise conditions
led to the decision to choose a smaller test set. The vocabulary of our training and test sets

4

comprises 30 connected digit words, such as “zero”, “eight”, “fifteen”.

Finally, it needs to be mentioned that our NUMBERS95 utterances are 1600 samples longer
than the utterances of the OGI® release. This is because 100 ms of silence were artificially added

2Many thanks to Stéphane Dupont for providing the segmentation.
30regon Graduate Institute (OGI) School of Science and Engineering (http://cslu.cse.ogi.edu).
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at the beginning and end of each utterance in order to avoid problems with the contextual input
of the MLPs and with the time-constant of the RASTA filter (cf. (Hermansky and Morgan, 1994,
p. 579)).

8.2.2 Noisy test data

To create the noise-corrupted test data, a range of noise conditions was added to the NUMBERS95
test set at different SNR levels. These noise cases comprise real-environmental wide-band noise
conditions, such as car and factory noise, as well as artificial, stationary and non-stationary,
narrow-band noise, which are described in more detail below.

Adding the noise artificially to the test data allows us to use the same speech data through-
out the recognition experiments and judge the effects of each noise on the recognition task
without having to consider differences that would stem from different speech corpora or dif-
ferent recordings. Scaled samples of the recorded or artificially created noises N(f) are thus
added sentence-by-sentence to the test data S(f):

Y(HIP = I1S(H+NAI (8.1)
ISP+ IN(HIP + SHN*(f) + S(F)"N(f) (8.2)

with S(f)* and N*(f) the complex conjugates of the Fourier transform. Assuming that the
speech signal and the noise signal are independent and uncorrelated, the last two terms in (8.2)
can be supposed to be zero. The relative scaling between speech and noise is specified to a
desired SNR. (globally for each sentence, silences excluded), adapting the gain factor g so that
the desired SNR is obtained according to

>, S%(f)

SNR =10- logm m
f

(8.3)

Artificial band-limited noise Artificial stationary narrow-band noise is created from Gaus-
sian white noise which is passed through a set of band-pass filters, which are produced from two
first order Butterworth filter sections (one high-pass and one low-pass). The noise bandwidth
of 300 Hz is kept constant for each frequency subband?. The noise is then added at SNR levels
of 0 and 12 dB to the middle frequencies of each of the four bands®. The narrow-band noise
case for subband two can be seen in the upper panel of Figure 8.1. The clean spectrum of the
same sentence is given in the lower panel. For a more detailed description see (Glotin, 2000;
Hagen and Glotin, 2000).

Non-stationary narrow-band noise (also refered to as artificial siren noise) is created using
segments of 100 ms taken from the four stationary band-limited noise cases. These segments
were concatenated according to the following order of filters: 1, 2, 3, 4, 4, 3, 2, 1. The resulting

noise is shown in the middle panel of Figure 8.1.

4However, this constant noise bandwidth means that leakage is greater between low frequency subbands than

between high frequency subbands.
5Many thanks to Hervé Glotin for providing these noise cases.
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Figure 8.1: Illustration of a clean speech spectrum (lower panel) and of the same spectrum
corrupted by stationary band-limited noise (upper panel) and non-stationary band-limited

noise (middle panel). The digits spoken in this utterance are “one one seven”.

TiTLE DESCRIPTION

clean  Uncorrupted speech

car Added car noise from Daimler Chrysler

wide band

factory Added factory noise from the Noisex92 database (noise 21)

band 1 Added artificial band-limited noise in subband 1: 221.9-521.9 Hz

band 2 Added artificial band-limited noise in subband 2: 817.6-1117.6 Hz
band 3 Added artificial band-limited noise in subband 3: 1627.2-1927.2 Hz

band 4 Added artificial band-limited noise in subband 4: 2795.3-3095.3 Hz

siren  Concatenation of noise cases ‘band 1’, ‘band 2’, ‘band 3’, and ‘band 4’

band lim- ited noise

Table 8.2: Description of clean and noise conditions for our test set originating from the
NumBERS95 test database. Each noise is added at two different SNR levels: 12 and 0 dB. For
further descriptions see text.
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Real-environmental wide-band noise To evaluate our systems on more realistic, wide-
band noise cases, two instances of real-environmental noise were added to the clean test set
at the same SNR values as described for the band-limited noise in the last paragraph (i.e.
SNR of 12 and 0 dB). The first noise case is factory noise (noise 21) taken from the Noisex92
database (Varga et al., 1992). The second noise case is an in-house recorded car noise provided

by our project partner Daimler Chrysler®.

The different noise types are summarized in Table 8.2.

8.2.3 Evaluation by measure of word error rate

To evaluate the performance of a speech recognizer, the orthographic transcription, that is
the words, which are obtained at the output of the recognizer are compared to the known
transcriptions of the test database. With this, we receive the rate of wrongly inserted I, deleted
D or substituted S words, and can evaluate the word error rate (WER) of the recognizer:

I+D+S_
N

with N the number of words in the respective test set. In our test set of 200 utterances the

WER = 100 (8.4)

number of words is N = 800.

Significance Test To decide whether the word error rate estimate WER; for test ¢ is sig-
nificantly greater than the best WER obtained (WERpess), we apply a test from (Mokbel,

1992). In this test, it is assumed that the total number of words N is large, that the true

WER
100

fixed probability of error during N Bernoulli trials. In this case, the expected variance in
the estimated WER; is €7 = WERim%WERi, so that we can be 97.5% confident that true
WER; > WER; — 1.96¢;. As €2 decreases as WER — 0, € for the best (smallest) WER will be
smallest. Therefore, for each WER; we obtain €7 and decide that it is not significantly worse
than WERpest if WER; — 1.96¢; < WERpest -

can be modeled as a

WER is approximately equal to the estimated WER;, and that

8.3 Experimental evaluation of combination strategies

In this section, multi-band probability combination which was illustrated in Figures 5.4 and

5.5 is evaluated.

In the framework of HMM/ANN hybrid systems, the newly proposed combination strategies,
including all FC strategies, the product of errors rule (STD PoE and FC PoE), and the FC-
ECPC scheme are compared to some of the most widely used recombination approaches which
are usually found in the literature. These are the standard sum rule (STD Suwm), the product
rule (STD Propuct), and the independence assumption rule (STD Inpep AsmpT)”. We use the
term “standard” (STD) to refer to all subband systems which employ the four single spectral
subbands only and no combinations of subbands.

6Many thanks to Udo Haiber from Daimler Chrysler for supplying us with this noise, and to Christopher
Kermorvant who added it to our test data.
"Their mathematical equations are, amongst others, summarized in the tables in Appendix D.
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Each combination strategy presented in this section merely employs equal weights, which
correspond to the fraction of one divided by the number of subband experts, in order to evaluate
the performance of all systems under as similar conditions as possible. The different weighting
strategies as described in Sections 7.3 and 7.4 are then evaluated for the best of the new
systems in subsequent sections. As our goal is to establish an automatic speech recognition
system which provides high performance in clean speech and degrades as little as possible in
the case of unseen noise, each system is first tested on clean speech (“matched condition”). The
next set of experiments is carried out on the noise conditions for which multi-band processing is
known to be advantageous: band-limited noise restricted to one spectral subband. For this, we
use the artificially created stationary and non-stationary band-limited noise cases as described
above. We then turn to the more realistic noise conditions: wide-band car and factory noise.

8.3.1 Baseline systems

The baseline systems for all our experiments in this chapter constitute the fullband HMM/-
MLP hybrid recognizers which were trained on the clean and entire frequency domain. For the
NumBERS95 database, this means the frequencies ranging from 115.3 Hz to 3768.8 Hz (due to
the definition of the critical band filters). Lower and higher frequencies are disregarded as they
are not present in telephone speech and thus only contain channel noise. The same features
are employed as in the respective multi-band systems which are to be evaluated: PLP and J-
RASTA-PLP features. Each (static) feature vector is appended with the first (delta) and second
(delta-delta) order difference features. In the case of FC processing, when all combinations of
subbands are used, the fullband recognizer is automatically part of the FC multi-band system.

8.3.2 FC and AFC experiments on clean speech and on speech with
narrow-band noise

PLP |J-RASTA-PLP
FULLBAND 7.1 7.8
STD Sum 14.8 17.9
STD INDEP AsmpT | 13.0 14.4
STD ProDUCT 12.9 11.2
STD PoE 17.1 21.8
FC Sum 7.4% 9.0*
AFC Sum 10.8 11.9

Table 8.3: WERSs of the baseline fullband recognizers, the standard multi-band combination
strategies, and FC Sum and AFC Sum in clean speech, employing PLP and J-RASTA-PLP

*

features. * indicates that there is no significant difference to the best result in this column.

To recall, the corresponding equation for each posterior-based combination strategy is as
follows: STD Suwm is defined in (5.8), STD InpeP Asmpr is defined in (5.12), STD Probuct
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is defined in (5.11), STD PoE in Table D.1 in Appendix D, and FC Suwm is defined in (6.3).
For AFC Suwm, the approximation of each combination probability is calculated according to
(6.28) and normalization in (6.29). The approximated combination probabilities are then used
together with the single-stream probabilities in (6.3).

Clean speech

The PLP features were chosen for their good performance in clean speech. The J-RASTA-
PLP features, on the other hand, were selected due to their known robustness to additive and
convolutive noise. The RASTA filtering, though, which would not be necessary under matched
testing conditions leads to a slight degradation in clean speech as compared to the PLP features.
This was also found in (Hermansky and Morgan, 1994, p. 580). As can be seen in Table 8.3,
almost every system employing PLP features outperforms its counterpart using J-RASTA-PLP

features when tested under matched conditions (with the exception of the STD Probucr).

Looking at the results for each feature set respectively, the performance loss in clean speech
due to standard subband processing as compared to fullband processing is apparent. The
standard combination strategies which only employ the four spectral bands miss correlation
information between subbands which renders them inferior in clean speech. In FC subband
processing, correlation information within each combination of subbands is explicitly modeled
and provides competitive performance in clean speech. The difference between FC Sum and
FUuLLBAND results is insignificant. AFC Sum , which approximates the posterior probabilities of
the subband combinations, ranges between the two extremes of standard subband processing
and FC.

PLP features in band-limited noise

The experiments on stationary band-limited noise in each of the frequency bands are presented
next. Results for systems employing PLP features can be seen in Table 8.4. The last column
indicates the mean value as taken over all 8 noise conditions in the table which eases performance
comparison over the large number of conditions. As can be seen in the table the fullband
baseline system has highest word error rate as compared to each of the multi-band systems
in stationary band-limited noise. The standard combination strategies, STD Sum, STD INDEP
Asmpt and STD Probuct, are more robust to this kind of noise, with the STD Sum dominating.
The STD PoE rule achieves results not significantly different from the STD Sum. In standard
multi-band processing, the experts of the uncorrupted bands work under matched conditions
and recombination results in higher performance than the fullband expert, even though one
of the subband experts is unreliable and has high entropy. Better performance can still be

achieved with some full combination rules, with AFC Sum outperforming FC Sum.

Very similar behavior can be observed on non-stationary band-limited noise (siren). The
results for PLP features are presented in Table 8.5. Again, with corrupted feature components
all over, the fullband recognizer degrades severely. The standard subband combination strate-
gies achieve lower word error rates also in this non-stationary noise case when the band-limited

noise alternates from one spectral subband to the next. Among the standard techniques, the
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Stationary Band-Limited Noise
Band 1 Band 2 Band 3 Band 4

0dB|12dB|0dB|12dB |0 dB| 12 dB |0 dB |12 dB | Mean
FULLBAND 575 | 29.2 | 74.6 | 34.1 | 65.4 | 31.2 | 67.2 | 32.5 || 49.0
STD Sum 331 269 | 51.4| 289 | 296 | 239 | 22.8| 195 || 295

STD INDEP AsMmPT | 42.9 | 27.8 | 69.0 | 34.5 | 47.2 | 32.0 | 29.8 | 25.2 38.6
STD ProODUCT 43.1 | 27.6 | 66.2 | 34.2 |47.6 | 31.1 | 29.6 | 25.1 38.1

STD PoE 339 | 26.8 | 52.8 | 282 | 404 | 22,5 | 25.2| 205 || 31.3
FC Sum 36.6 | 20.2 |46.1 | 26.2 | 288 | 17.2 | 21.0 | 16.8 || 26.6
AFC Sum 312 206 | 274 | 17.1 | 229 | 17.0 | 179 | 15.8 || 21.2

Table 8.4: WERs of baseline fullband recognizer, standard subband combination strategies,
FC and AFC in stationary, band-limited noise, employing PLP features.

STD PoE rule and STD Sum behave by far the most robust. The FC Sum does not lead to a
further decrease in word error rate as compared to the STD Sum, but AFC Sum again achieves

additional gain in robustness.

Siren

0 dB | 12 dB || Mean

FULLBAND 66.9 | 36.1 51.5

STD Sum 308 | 236 | 27.2 Table 8.5: WERs of baseline fullband

STD Inpep Asuprr | 449 | 288 || 36.9 recognizer, standard subband combination

strategies, FC and AFC in non-stationary

STD Propuct 440 ] 281 || 36.1 band-limited noise, employing PLP fea-
STD PoE 30.9 | 21.8 || 26.4 tures.

FC Sum 349 | 19.9 || 274

AFC 249 | 164 || 20.7

Discussion In a multi-band recognizer when the noise is limited to only one frequency sub-
band, the recognizers of all other subbands are (almost) unaffected. One would expect that
only the subband recognizer of the noise corrupted frequency band will endure increased entropy
which, in the worst case, results in equal posterior probabilities for all classes. In the recom-
bination procedure, this corresponds to an addition (STD Sum) or multiplication (STD INDEP
AsmpT, STD Propuct, STD PoE) by a (almost) constant value for each class and, thus, does
not affect the recognition task. In AFC, the corrupted bands will tend to have smaller proba-
bility estimates, and will therefore down-weight the combinations in which they are included,

rendering the clean combinations dominant in the final recombining sum.

In the case of FC processing, the situation is two-fold. On the one hand, although there is

noise only in one frequency subband, there will be several (in our case six) combination experts
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affected. On the other hand, there are still more combination experts which are free from noise,
and, moreover, one of which models exactly the clean frequency domain. If we again assume
the worst case, the corrupted experts should output equal probabilities, thus, the decision is
dominated by the clean experts.

J-RASTA features in band-limited noise

As seen above in the case of PLP features, subband systems are significantly more robust
than fullband systems in the case of stationary, as well as non-stationary, narrow-band noise.
However, as we will see below, this advantage is lost in case of wide-band noise. On the other
hand, (J-)RASTA-PLP is known to be particularly robust to slowly varying wide-band noise.
We thus test our multi-band systems on J-RASTA-PLP parameters, where J-RASTA-PLP will
remove the wide-band noise, followed by subband processing to address narrow-band noise.
We start by testing the J-RASTA-PLP features in (stationary and non-stationary) band-limited

noise.
Stationary Band-Limited Noise
Band 1 Band 2 Band 3 Band 4
0dB |12 dB |0 dB|12dB|0 dB[12 dB |0 dB |12 aB || M
FULLBAND 30.6 | 11.4 | 48.0 | 16.0 | 35.2 | 184 |24.5| 19.2 25.4
STD SuMm 35.0 | 24.1 | 38.8 | 25.5 |29.2| 254 |24.5| 23.6 28.3

STD InpeP Asmpt | 34.6 | 20.6 | 41.1 | 21.8 | 33.1 | 23.1 | 25.5| 23.0 27.9
STD PrODUCT 266 | 13.1 | 359 | 169 | 206 | 14.2 | 164 | 16.2 || 20.0*

STD PoE 35.6 | 26.5 |41.2| 28.0 | 294 | 26.0 | 24.1| 23.1 29.2
FC Sum 19.8 1 9.9 |30.2| 169 | 20.1| 14.0 | 159 | 15.0 17.7
AFC Sum 266 | 135 |33.6 | 176 | 229 | 169 | 180 | 17.1 20.8

Table 8.6: WERs of baseline fullband recognizer, standard subband combination strategies,
FC and AFC in stationary band-limited noise, employing J-RASTA-PLP features. * indicates

that there is no significant difference to the best result in this column.

The results on stationary narrow-band noise (see Table 8.6) show the increased noise ro-
bustness due to J-RASTA filtering for all systems (as compared to the results on PLP features in
Table 8.4). Word error rate of the FuLLBAND system is almost halved. As is well known, bet-
ter systems are harder to improve and we have to observe that standard multi-band processing
employing J-RASTA-PLP features results in higher noise robustness only for one combination
scheme, the STD Propuct. The STD Sum and STD INDEP ASMPT cannot improve over the
FuLLBAND system for this kind of noise (though their results are not significantly worse as com-
pared to the FuLLBanp). On the other hand, both full combination strategies (FC Sum and
AFC Sum) achieve significantly higher noise robustness than the FuLLBAND system.

In fast changing non-stationary band-limited noise, all systems using J-RASTA-PLP fea-

tures (cf. Table 8.7) degrade more than in stationary band-limited noise, showing that the
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Siren

0 dB |12 dB || Mean

Table 8.7: WERs of baseline fullband FULLBAND 1046] 48.1 || 76.4
recognizer, standard subband combination STD Sum 402 | 27.0 33.6

strategies, FC and AFC in non-stationary STD Inoper Asver | 53.8 | 31.0 || 42.4

band-limited noise, employing J-RASTA-

PLP features. * indicates that there is no STD Propuer 484 1 22.1 353
significant difference to the best result in STD PoE 39.1 | 26.5 || 32.8
this column. FC Sum 40.0 | 19.9 || 30.0

AFC Sum 41.1 | 22.8 || 32.0*

J-RASTA-PLP features are unable to handle these fast changes. However, some of the addi-
tional degradation in this kind of noise as compared to the stationary noise case is due to the
fact that by adding the noise to one subband after the other, more frames are actually corrupted
than in the stationary noise case (although the same filters have been used), as described in
(Hagen and Glotin, 2000).

In non-stationary band-limited noise all multi-band systems using J-RASTA-PLP features
degrade significantly less than the J-RASTA-PLP-based FULLBAND, as some of the experts remain
clean and reliable. Again, the FC Sum rule outperforms the standard multi-band combination
rules, and the AFC Suwm rule is not significantly worse than FC Suwm.

As compared to the PLP features which are less disturbed by the changing noise condition,
almost all systems result in higher word error rate using J-RASTA-PLP features in non-stationary
band-limited noise. The only exception is the STD Propuct, though the difference is not
significant.

Preliminary conclusions
From the above results we can so far conclude that:

e for clean speech, we need the FULLBAND recognizer or FC Sum (no significant difference
between feature sets),

e for stationary band-limited noise, we need a multi-band system (FC Sum, STD Probuct
or AFC Sum) employing J-RASTA-PLP features,

e for non-stationary band-limited noise, we need a multi-band system using PLP features
(best would be AFC Sum, then STD PoE, STD Sum and FC Sum).

8.3.3 FC and AFC experiments on speech with real-environmental
noise

As we have already experienced in the last paragraphs, the respective noise conditions play a

significant role in the evaluation of each system. Let us hence turn to more realistic noise cases
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such as the car and factory noises described above. Both noises stem from real recordings and
were artificially added to the clean test data.

Car Factory

0aB[12a8 0 aB[12 aB] M
FULLBAND 29.1| 9.8 341 125 214
STD Sum 61.2 | 26.6 | 60.5 | 25.4 | 434
STD INpEP AsmPT | 56.6 | 21.0 | 57.8 | 22.2 394
STD PRrRODUCT 425 | 13.8 | 45.0 | 15.1 29.1
STD PoE 62.4 | 28.0 | 585 | 28.1 | 44.3
FC Sum 29.5| 10.8 | 35.1 | 12,5 || 22.0*
AFC Sum 48.0 | 174 |46.5 | 174 | 32.3

Table 8.8: WERSs of baseline fullband recognizer, standard subband combination strategies, FC

*

and AFC in wide-band (car and factory) noise, employing J-RASTA-PLP features. * indicates

that there is no significant difference to the best result in this column.

In these experiments, the results stemming from J-RASTA-PLP and PLP features show
similar behavior, we thus only discuss the results from one feature set and choose the J-RASTA-
PLP features having overall lower error rate on wide-band noise. The results for the PLP

features can be found in Appendix G.

On wide-band noise (cf. Table 8.8), the FurLBanp and FC Sum perform best with an
insignificant difference between the two. They are followed by the STD Probpuct and AFC Sum
with no significant difference between these two. The STD Sum, STD INDEP AsmPT and STD
PoE combinations deteriorate significantly more on wide-band noise. It can be seen that the
good performance of standard multi-band processing on frequency-selective noise is no longer
warranted under these noise conditions. It is more difficult for a standard multi-band system
to reach robust performance when several of the subband recognizers are affected by noise and
each of them only works on one subband. In FC processing, on the other hand, all possible
combinations of subbands are considered, which makes it more likely to also capture the most
uncorrupted and reliable part of the data by one of the experts.

Preliminary conclusions

To conclude the first set of experiments, we can state that the FC Sum (employing J-RASTA-PLP
features) is the only multi-band approach which has so far been able to provide highest noise
robustness in all noise conditions tested, and, at the same time, being insignificantly different

from the best system in clean.

Moreover, in full combination processing we have the possibility to further increase perfor-
mance by the use of (non-equal) weights, which is not possible for the fullband recognizer. We
will see in Section 8.4 below how the performance of the FC system can be further enhanced

by the use of appropriate weighting strategies.
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8.3.4 Experiments with FC Probucr, FC Inpep Asmpr and FC PoE combina-
tion strategies

We now turn to the next set of combination strategies which also employ all possible combi-
nations of subbands but recombine them in different ways: the FC Probuct of (6.23), the FC
InpEP AsmpPT and FC PoE as defined in Table D.2 of Appendix D. From now on only the results
from J-RASTA-PLP-based systems will be discussed as the J-RASTA-PLP features provide in
general higher noise robustness than the PLP features (except for non-stationary band-limited
noise). The corresponding results using PLP features are summarized in Appendix G. The
results in clean speech and the different noise conditions are presented in Table 8.9. For sta-
tionary band-limited noise, only the mean of the word error rates over all eight band-limited
noise cases are given. For non-stationary band-limited noise the mean is calculated over the
two SNR values.

Band-Limited Noise Wide-Band Noise
Clean || Stationary | Non-Stat. Car Factory
Mean | Mean ||0aB[12aB[odB[12a] V™"
FC InDEP AsmpT | 8.0* 18.6° 39.3 27.4 | 10.0 | 32.4 | 10.1 20.0°
FC Probuct 7.9* 19.1° 41.8 2541 9.1 |31.9| 108 19.3
FC PoE 15.9 19.4° 31.8* 40.5 | 11.5 | 42.0 | 124 26.6

Table 8.9: WERs of FC Inpep AsmpT, FC Propuct and FC PoE in clean and noise (band-
limited and wide-band noise), employing J-RASTA-PLP features. * indicates that there is no
significant difference as compared to FurLBanD in clean (7.8%), ¢ as compared to FC Sum in
stationary noise (17.7%), * as compared to FC Sum in siren noise (30.0%), and ° as compared
to best result in this column.

Recognition performance of FC Inpep AsmpT and FC Propuct on clean speech does not
differ significantly from the results achieved by the FuLLBAND recognizer and the FC Sum (7.8%
and 9.0% respectively, cf. Table 8.3). The FC PoE resulted in an almost double WER as it was
also roughly the case for the STD PoE rule in clean speech (as compared to STD ProbucT).

In stationary band-limited noise, there is, for all three systems, no significant difference to
the best result, which was achieved by the FC Sum (17.7%, cf. Table 8.6).

In non-stationary band-limited noise, the FC InpEP AsmpT and FC Propuct deteriorate
more than most of the multi-band systems (cf. Table 8.7) though staying more robust than
the FuLLBAND recognizer (which has a WER of 76.4% on this kind of noise). The FC PoE rule
outperforms both FC INpEP AsmPT and FC Propuct achieving results almost as good as the
best system (FC Sum with 30.0%).

In wide-band noise the FC PoE approach outperforms all standard multi-band combination
strategies and AFC Suwm, but it is not competitive to FC Sum or the FULLBAND recognizer. The
FC InpeEP AsmpT and FC PropucT approaches gain the highest robustness in this kind of noise,
but are not significantly better than the FuLLBanp and FC Sum (21.4% and 22.0% respectively,
cf. Table 8.8).
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As can be seen in Appendix G, the results employing PLP features are similar, with the
FC PoE rule being competitive even in clean speech. FC INDEP AsMPT and FC PRODUCT using
PLP features deteriorate more on stationary band-limited noise than it was the case when using
J-RASTA-PLP features.

8.3.5 Experiments with FC-ECPC

In Section 6.5, we described how a recently introduced model for quantifying the influence
of contextual information on human recognition performance (Bronkhorst et al., 1993) could
be interpreted in multi-band based ASR. In Bronkhorst et al. (1993)’s model, the recognition
probability of a word is derived from the probabilities of correctly or incorrectly recognizing each
of its phonemes, multiplied by a correcting term to account for the mis-recognized phonemes. It
is then summed over all possible combinations of correctly and incorrectly recognized phonemes.
In multi-band processing, we derive the recognition probability of the whole frequency band in
the same way from all possible combinations of correctly and incorrectly recognized subbands.
We refered to this approach as Error Correction in Posteriors Combination (ECPC), as the
error probabilities of the mis-recognized subbands are accounted for through the application of
appropriate weights. Due to its similarity to FC, the ECPC approach was combined with our
FC approach resulting in the FC-ECPC formula (6.34).

Stationary Band-Limited Noise

Band 1 Band 2 Band 3 Band 4
0dB|12aB|odaB|12dB|0dB[12 B0 dB[12 4B Mean
FULLBAND 31.4 | 14.0 | 446 | 16.6 | 35.0 | 189 | 23.9| 17.4 || 25.2
FC Sum 25.6 | 12.5 | 232 | 13.6 | 21.8 | 151 | 15.8 | 14.8 || 17.8%
FC-ECPC 24.1 | 11.9 | 226 | 13.9 | 215 | 145 | 14.8 | 13.6 || 17.1
FC-ECPC want | 32.0 | 13.6 | 39.1| 15.0 | 37.4 | 191 [ 22.4 | 185 | 24.6

Table 8.10: WERs of FC processing without (FC Sum) and with error correction (FC-ECPC),
employing J-RASTA-PLP features. ‘waut’ refers to the proposed weights from Section 6.5.

* indicates that there is no significant difference to the best result in this column.

In this section, the experiments employing FC-ECPC subband combination are presented
(also cf. (Hagen and Bourlard, 2001)). The results for FC (without ECPC), which are given here
for comparison to FC-ECPC, differ slightly from the FC ones presented in the last section (FC
Sum) as we do not further convert the posterior probabilities to scaled likelihoods. In FC-ECPC,
we work strictly with posterior probabilities. The differences in WER are insignificant for almost
all conditions, with the exception of FC Sum in wide-band noise which deteriorates significantly
more (from 22.0% down to 25.8%) when no division by priors is applied. For comparison, the
FuLLBAND results are also given without division by priors.

FC combined with the ECPC approach is refered to as FC-ECPC. This approach is first

investigated with equal weights, to make direct comparison to FC (FC Sum) more apparent.
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Band-Limited Noise Wide-Band Noise
Clean Non-Stationary Car Factory
0 dB[12 dB | Mean |[0 aB[12 aB |0 aB]12.aB | V"
FULLBAND 8.0 89.4 | 36.9 | 63.2 || 32.8| 10.6 | 346 | 114 22.4*
FC Sum 86" | 39.5| 19.4 | 29.5*|[ 39.9 | 10.6 | 40.9 | 11.8 || 25.8
FC-ECPC 84* || 37.9 | 181 | 28.0{] 39.0 | 10.8 | 41.1| 119 25.7
FC-ECPC wauT | 8.6" || 46.0 | 33.8 | 39.9 || 31.2 | 11.1 | 33.8 | 12.0 22.0

Table 8.11: WERs of FC processing without (FC Sum) and with error correction (FC-ECPC),
employing J-RASTA-PLP features. ‘waut’ refers to the proposed weights from Section 6.5.

*

indicates that there is no significant difference to the best result in this column.

Additionally, we evaluate FC-ECPC using the weights as derived in Section 6.5 based on the
human model proposed by (Bronkhorst et al., 1993).

Results in clean speech are presented in the first column of Table 8.11. No significant per-
formance difference between FC Sum, FC-ECPC (with and without weighting) can be observed.

In band-limited noise, both stationary (cf. Table 8.10) and non-stationary (cf. Table 8.11),
results again stay almost the same with and without ECPC using equal weights, but deteriorate
when the proposed weights are used. On the contrary, when applying FC-ECPC in wide-band car
and factory noise, the proposed weights obtain a significant improvement in WER as compared
to both FC Sum and FC-ECPC with equal weights. The weights which were employed in these
tests are simply the prior probabilities of each phoneme class. If other weights could be found
to more accurately reflect the error correction procedure of the FC-ECPC approach, the good
results on wide-band noise could probably further be improved.

8.4 Experimental evaluation of weighting schemes

In this section, the different weighting strategies are evaluated in the multi-band system which
so far achieved the best results, which is the FC Sum. Performance is compared to the baseline
fullband recognizer.

8.4.1 Fixed weights in HMM/MLP hybrid systems

The fixed weights which are developed in this thesis are (i) the relative frequency (RF) estimates
from (7.12), and (ii) the weights derived from LMSE estimation which are defined in (7.11). Both
sets of weights are estimated on the clean training data, employing the same experts as used
during recognition. Results in clean speech and the different noise conditions are presented
in Table 8.12. The features which are used here are the J-RASTA-PLP features. Only mean
values are given for the band-limited noise cases. Results for the PLP features can be found in
Appendix G.

In clean speech, slight improvement in WER is achieved by both weighting schemes as
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compared to the FULLBAND recognizer and FC Sum using equal weights which, though, is not
statistically significant. In stationary band-limited noise, the FC Sum rule using equal weights
has been seen to outperform all other combination strategies. The same is true for FC Sum with
RF and LMSE weighting but without further gain in robustness. The more difficult task of recog-
nition in non-stationary band-limited noise reveals the performance advantage due to improved
weights: although the FC Sum using equal weights had already proved highest robustness to
this kind of noise, both the RF and the LMSE weights obtain further, significant improvement
in robustness as compared to the use of equal weights. When testing on real-environmental
wide-band noise, only small improvement, due to RF and LMSE weights is achieved; the differ-
ence though is not significant as compared to the results obtained by the FurLLBanp, FC Sum
using equal weights, and FC Propuct which had lowest WER. on this kind of noise (19.3% in
Table 8.9).

Band-Limited Noise Wide-Band Noise
Clean || Stationary | Non-Stat. Car Factory
Mean | Mean ||0aB[12aB|ods]12zan] V"
FULLBAND 7.8* 254 76.4 29.1| 9.8 |34.1| 12,5 || 21.4*
FC Sum EquaL | 9.0* 17.7 30.0 29.5| 10.8 | 35.1 | 12.5 || 22.0*
FC Sum RF 7.5* 18.3* 22.6 269 9.9 |314| 11.0 || 198
FC Sum LMSE | 74 19.7* 25.0* 27.0 | 104 | 329 | 11.1 || 20.4*

Table 8.12: WERs of the FC Sum rule employing different weighting strategies and the FurLr-

*

BAND recognizer, on J-RASTA-PLP features. * indicates that there is no significant difference

to the best result in this column.

To conclude we can state that the use of RF and LMSE weights in the FC Sum employing
J-RASTA-PLP features, consistently led to improved recognition performance on clean speech,
siren and wide-band noise, though only the results obtained in non-stationary band-limited
(siren) noise using RF weights were significantly better.

In the case of PLP features, RF weights employed in the FC Sum did neither significantly in-
nor decrease performance as compared to using equal weights in all conditions, whereas LMSE
weighting worsened performance in band-limited noise.

A comparison between the RF weights as illustrated in Figure 8.2 and the LMSE weights
as illustrated in Figure 8.3 show that the RF weights better match the best streams for each
phoneme in clean speech than the LMSE weights do. In the figures, the best three streams (in
clean data) for each phoneme are indicated in the upper panel; in the middle panel, the three
highest weight values are given for each phoneme and stream as calculated by RF or LMSE
estimation, respectively. Finally, in the lowest panel, these two matrices are compared, and the
difference is shown by white (too high weight values) and black (too low weight values) squares.
The difference between the matrices is smaller for the RF weights than for the LMSE weights.
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Figure 8.2: Evaluation of RF weights calculated on clean speech. The matrix of the best three
streams for each phoneme is given in the upper panel, of the RF weights for the best three
streams is given in the middle panel, and of the difference between the upper two is illustrated
in the last panel. In the lowest panel, the white squares indicate too high weight values whereas

black squares indicate too low weight values for the respective stream and phoneme.
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Figure 8.3: Evaluation of LMSE weights calculated on clean speech. The matrix of the best
three streams for each phoneme is given in the upper panel, of the LMSE weights for the best
three streams is given in the middle panel, and of the difference between the upper two is
illustrated in the last panel. In the lowest panel, the white squares indicate too high weight
values whereas black squares indicate too low weight values for the respective stream and
phoneme.



126 Experimental evaluation of multi-band processing

8.4.2 Fixed weights in HMM-GMM systems

In this section, the multi-band systems employing GMMs to estimate the HMM emission prob-
abilities are tested using the (fixed) maximum likelihood based (ML) weights (7.18) (together
with (7.19) and (7.21)) which were introduced in Section 7.3.4. For the calculation of these
weights, the parameters of all stream HMM-GMMs were fixed and only the combination weights
were estimated using the EM algorithm. To recall, the corresponding recombination strategy
using the (likelihood-based) FC Sum rule 2 is given in (6.9) together with (6.10), and for the
STD Sum rule 2 it is presented in Table D.1 of Appendix D.

GMM classifiers were trained for each frequency subband and combination of subbands as
well as the fullband, on MFCC features. The ML weights are employed in both standard multi-
band processing and FC processing. The results are compared to the same setup using equal
weights and quasi-optimal weights as well as to the fullband recognizer. The quasi-optimal

weights Opt in this case are zero for the noisy subband and equal for the clean bands.

For estimation of the offline ML weights, the test data was split into two sub-sets, the first

one of which was used to calculate the weights, the second to carry out the tests.

In multi-band systems using either the single subbands only or the FC approach, we would
expect the ML weights to show a clear advantage over equal weights when one of the bands is
totally corrupted by noise. For this reason, experiments and a visual evaluation of the weights

are first carried out on the stationary band-limited noise cases.

Visual analysis of the weights

Figure 8.4: Illustration of offline adapted, fixed ML weights of (7.18) for clean speech.

The ML weights for the standard multi-band system are illustrated in Figure 8.4 for clean
data, and in Figures 8.5 and 8.6 for the four stationary band-limited noise cases. The weights
for the FC system are only given for stationary band-limited noise in subband 3 (see Fig-
ure 8.7). For clean speech the weights depend on both the subband and the respective phoneme
and thus change from phoneme to phoneme. Investigating these weights in more detail to see
whether for example fricatives received more weight in the higher subbands did not lead to any

acoustic-phonetically consistent conclusions.

For noise-corrupted speech however, it can be seen how the noisy band gets consistently
down-weighted as compared to the clean subbands, in the case of a standard multi-band sys-
tem (Figures 8.5 and 8.6). In the FC system not only the respective subband but also all
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combinations which contain this subband are corrupted by noise. It can be seen in Figure 8.7,
how also in this case the noisy combinations are well detected and down-weighted. However, we
expected the larger subband combinations to obtain higher weight values than the single-stream
experts. Unfortunately, rather the contrary was the case. In order to give equal weights to all
clean combinations we introduced a threshold function which sets weights below the threshold
to 0 and to 1 otherwise. Results are discussed below.

Figure 8.5: Illustration of fixed ML weights for noise in subband 1 (left) and subband 2
(right).

Figure 8.6: Illustration of fixed ML weights for noise in subband 3 (left) and subband 4 (right).

Band—-Limited Noise in Band 3

0.7

0.5

Band 1234

d t kdcltclkcl s z f th v n | r w hh iy ih eh ey ay ah ao owuw er h#

Phonemes

Figure 8.7: Illustration of offline adapted, fixed ML weights for the FC system for band-limited
noise in subband 3. Noise corrupted combinations are illustrated in pink.
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Experimental evaluation of the weights

Stationary Band-Limited Noise
Band 1| Band 2| Band 3| Band 4 | Mean

Clean

FULLBAND 13.5 85.7 63.4 51.6 442 61.2

STD SuMm EquaL | 24.3 44.0 27.3 35.4 31.9 34.7
STD SuMm ML 26.0 38.3 27.3 30.2 28.7 31.1
STD SuMm OpT - 35.1 26.5 26.8 27.8 29.1

FC Sum EQuAL 14.7 47.7 44.2 36.4 36.6 41.2
FC Sum ML 18.4 27.8 29.5 25.6 25.8 27.2
FC Sum OpT - 23.6 27.0 25.1 19.4 23.8

Table 8.13: WERSs of the baseline fullband HMM-GMM as compared to standard multi-band
and FC multi-band processing using HMM-GMMs on MFCC features. The multi-band systems
are tested with equal weights, ML weights and quasi-optimal OpT weights. Results are given
for stationary band-limited noise at SNR=0 dB.

The results for the FuLLBanD, the standard multi-band system as well as the FC multi-band
system are given in Table 8.13. In clean speech the FULLBAND system results in lowest WER®
though the difference to the FC Sum (EQuaL weights) is not significant. The standard multi-
band system is not competitive in clean condition. Employing the ML weights in clean speech
did not result in any performance gain neither for the standard multi-band system nor for the
FC approach.

While ML weights in Figures 8.5 to 8.6 for one-band experts clearly identify the noisy
subband, in Figure 8.7 weights for the largest clean combination are disappointingly small.
This problem is reflected in Table 8.13 where results using ML weights with FC Sum are only
slightly better than with the STD Sum, while results using equal weights with FC Sum are worse
than for the STD Sum (the only test in which STD Suwm significantly outperforms FC Sum).
At the time these tests were made, the FC ML weights estimation procedure (7.21) was not
fully stabilized and each combination z; was given the same number of coefficients in order to
avoid the scale of p(z;|qx) in (7.21) depending on the dimension of z;. Correct normalization
(dividing by p(z;)) was introduced only after GMMs had already been trained on these z;.
Therefore, for the results reported here, larger combinations have a smaller than usual number
of coefficients, although with hindsight we can see that this was not necessary. However, the
use of the ML weights in the FC approach still achieved a significant improvement in WER, for
the band-limited noise cases as compared to the use of EQuaL weights. Further improvement

can be expected in the case when larger combinations are given a higher number of coefficients.

The experiments employing quasi-optimal weights indicate how far the respective multi-band
system can be improved if the noisy subband is simply ignored. They also show that, under these

conditions, the lowest WER can be achieved by the FC approach. In two of the four band-limited

8 As these experiments were carried out in the final stage of this Ph.D. no optimization of the HMM-GMM
systems could be carried out as had been done for the HMM/MLP hybrid systems.
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noise cases the FC approach employing ML weights is actually only insignificantly different from
the “quasi-optimal” results when using OpT weights. The standard multi-band system achieved
insignificantly different results employing the ML weights as compared to “quasi-optimal” results
in three of the four noise cases.

Thus, in the case of full combination processing the use of (offline) ML weights (together with
a hard-threshold to upweight larger clean combinations) significantly improved performance on
stationary-band limited noise, outperforming both the fullband and the standard multi-band
system employing the same kind of weights.

Band-Limited Noise Wide-Band Noise
Siren Car Factory
0B [12 aB | Mean |[0 aB] 12 4B [0 aB |12 aB | "
FULLBAND 79.6 | 43,5 | 61.6 || 76.2 | 34.2 | 87.2 | 34.2 || 58.0

STD SuMm EquaL | 38.6" | 23.6" | 31.1* || 88.0 | 68.3 | 87.2 | 68.6 || 78.0
STD Sum ML 359 | 21.1 | 285 || 88.0| 64.1 | 86.2 | 67.3 || 76.4

Table 8.14: WERSs of the baseline fullband HMM-GMM as compared to standard multi-band
processing using HMM-GMMs on MFCC features. The multi-band system is tested with EQuaL
and ML weights. * indicates that there is no significant difference to the best result in this

column.

For the remaining noise conditions (cf. Table 8.14), experiments were only run using the
FurLBanD and the standard multi-band system in order to evaluate the ML weights in these
noise cases. As we will also observe in the multi-stream experiments in Section 10.2, (our)
MFCC features result in poor performance in real-environmental wide-band noise. The standard
multi-band system, moreover, degrades more than the FUuLLBAND recognizer in this kind of noise
(which was also the case in this kind of noise for the (PLP and J-RASTA-PLP-based) standard
multi-band HMM/MLP hybrid systems). Significant performance improvement in car noise
could be achieved using the ML weights as compared to EQuaL weights, however only for the
higher SNR-level. In factory noise, the improvement using ML weights is not significant.

In non-stationary band-limited noise, on the other hand, the MFCC features are relative
robust (more than both PLP and J-RASTA-PLP as will be seen in Table 10.3). Moreover,
standard multi-band processing significantly enhances performance. This could even be im-
proved when the ML weights were employed, although the difference to the results employing

EqQuaL weights is not significant.

8.4.3 Adaptive SNR-based weights in HMM/MLP hybrid systems

For better noise adaptation of the HMM/MLP hybrid systems, we developed online-adaptive
SNR-based weights as defined in (7.27). Estimation of the weights is described in Section
7.4.1. Results are presented for PLP features in Table 8.15 (as well as more detailed results
in Appendix G) and for J-RASTA-PLP features in Table 8.16.
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The procedure, used to estimate SNR, first measures the noise spectrum as the average
spectral power over the first 100 ms of each test utterance. It is thus best applicable to noise
which is (almost) stationary within each utterance. Looking at the results of the PLP feature
experiments presented in Table 8.15, we see that the highest gain in WER is effectively obtained
on stationary band-limited noise. In the case of wide-band noise, the performance improvement
is no longer significant. The same is true for the artificially created non-stationary noise case,
where the noise is varying from one subband to the other for each utterance (see discussion
below).

Band-Limited Noise Wide-Band Noise
Clean || Stationary | Non-Stat. Car Factory
Mean | Mean | 0dB[12aB|oaB[12ap] M
FC Sum EquaL| 7.4 26.6 274 55.0 | 182 | 57.0| 18.5 37.2x%
FC Sum SNR 7.4 23.6 26.9x 52.0 | 18.0 | 54.4 | 16.6 || 35.3

Table 8.15: WERs of the FC Sum rule employing different weighting strategies and the FuLL-

*

BAND recognizer, on PLP features. * indicates that there is no significant difference to the best

result in this column (given for the Mean values only).

When SNR-based weighting is employed in our system based on the J-RASTA-PLP features,
almost no improvement in robustness can be gained (see Table 8.16). For the wide-band and
the stationary band-limited noise cases as well as in clean condition the difference in WER is
not significant. The SNR-based weights are not capable of further improving the FC system
employing the rather robust J-RASTA-PLP features in these noise cases.

The only (very surprising) exception constitutes the non-stationary band-limited noise case
where significant performance improvement was achieved. Investigating the reasons for this, we
found that the artificially created non-stationary noise was added to each utterance in such a
way that the noise always occurred in the first subband at the beginning of each utterance. The
variations in frequency thus occur in each utterance in the same way, and probably more often
in the lower bands due to the rather short length of the utterances. As we pointed out above,
the SNR-detection algorithm estimates the noise on the first 100 ms of each utterance. For this
reason, in case of our artificial siren noise, it must have been the lowest subband which was
consistently down-weighted. Comparing the performance of the individual experts in noise, we
noticed that in the case of J-RASTA-PLP features, the subband recognizer working on subband
{1} degrades significantly more in noise than the subband expert working on subbands {2, 3,4}
(relative to their respective performance in clean). For PLP features, on the contrary, the two
subband experts degrade to a similar extent. For this reason, the J-RASTA-PLP-based system
could be improved with these weights, where the lower subband was consistently down-weighted,

when employed in this kind of non-stationary band-limited noise.

The adaptive weight estimation used in this section might have been oversimplified and
could be improved. As with the fixed weighting of the last section, we could estimate separate

weights for each phoneme. Moreover, to further improve the results in non-stationary noise, we
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Band-Limited Noise Wide-Band Noise
Clean || Stationary | Non-Stat. Car Factory
Mean | Mean |0dB[12dB|odB[12aB] V"
FC Sum EqQuaL | 9.0x 17.7% 30.0 29.5| 10.8 | 35.1 | 12,5 || 22.0%
FC Sum SNR 8.5 17.2 23.2 28.2 | 104 | 356 | 12.8 || 21.8

Table 8.16: WERs of the FC Sum rule employing different weighting strategies and the FuLL-

*

BAND recognizer, on J-RASTA-PLP features. * indicates that there is no significant difference

to the best result in this column.

would need an SNR estimation procedure which does not assume that the noise is stationary
(Martin, 1993; Hirsch and Ehrlich, 1995; Dupont and Ris, 1999).

8.4.4 Adaptive weights in HMM-GMM systems

Band-Limited Noise
Band 1 \ Band 2 \ Band 3 \ Band 4

EquaL (e« =0)| 44.0 27.3 354 31.9
a=0.1 38.1 27.3 31.4 28.7
a=0.2 38.6 27.8 324 30.0
a=0.23 37.8 29.0 33.2 30.7
a=05 39.6 30.0 34.6 31.2

a=1 41.3 30.2 32.9 32.7

Table 8.17: WERs for the multi-band HMM-GMM system (employing MFCC features) of four
subbands using equal and online ML-weights on band-limited noise at 0 dB SNR. Recombination
by STD Suwm.

We now turn to the experiments employing adaptive ML-weights in the framework of HMM-
GMM systems. The online estimated weights (as defined in (7.28)) were updated every N =100
frames (1250 ms). The weights were initialized to have equal values. Results are presented in
Table 8.17. The a-value indicates how fast the new weights are updated from the weights of
the previous iteration, as was described in Section 7.4.2. It can be seen that for smaller a-values
the weighting results in similar performance improvement as obtained with the offline estimation
where much more data for the weight estimation was available. The performance improvement
of the adaptive ML weights as compared to equal weighting is significant for band-limited noise
in band 1, 3 and 4.
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8.5 Summary

To sum up the experiments presented in this chapter we can conclude that (employing J-RASTA-
PLP features®), best results were achieved

e on clean: by the FuLLBanD and the full combination strategies FC Sum, FC PropucTt, FC
InpeP AsmpT, FC Sum with all weighting strategies tested (RF, LMSE, SNR) as well as all
FC-ECPC. (Standard approaches not competitive).

e on stationary band-limited noise: by FC Sum with no significant difference to FC Prop-
vcT, FC INDEP AsmpPT, FC PoE, FC Sum with the different weighting schemes, and FC-
ECPC.

e on non-stationary band-limited noise: by FC Sum employing RF, LMSE or SNR weights.

e on wide-band noise: by FC Propuct with no significant difference to (in decreasing
order): FC Sum with RF and LMSE weights, FC Inpep Asmpr, FC Sum with SNR and
EqQuaL weights, and FULLBAND.

Hence, none of the standard multi-band approaches ranks among the best systems for any
condition. The new FC strategies are competitive in clean and all noise cases as compared to the
fullband recognizer. Moreover, the FC strategies are significantly and consistently better than
the FULLBAND in case of band-limited noise, both stationary and non-stationary. In wide-band
noise, the FC approaches and the FurLLBanp do not perform significantly different. Thus, for
J-RASTA-PLP features we can conclude that the use of FC Sum (with either of the here tested
three weighting schemes) guarantees best performance in any condition.

In the likelihood-based systems, we tested the offline and online ML weights. In clean
speech, no performance improvement could be achieved with the ML weights. In band-limited
noise, both the standard and the FC multi-band systems significantly improved in performance,
with the latter outperforming the standard multi-band system (with the exception of noise in
band 2). The results of ML-weighting in this noise were usually close to the best-achievable
results illustrated by the quasi-optimal weights. In high-SNR car noise the ML weights led
to a significant performance improvement (only tested with the standard multi-band system),
whereas in siren and factory noise the improvements where insignificant (as compared to equal
weights). Also the adaptive ML weights led to significant performance improvement on band-
limited stationary noise. In future work, adaptive ML weighting needs to be tested on non-
stationary and wide-band noise.

We see in the next chapter how the FC approach originally developed for multi-band process-
ing, can be applied also in multi-stream processing to optimally combine feature and probability
combination. This way, possible correlation between the fullband feature streams is exploited
and, the same time, the different feature streams are modeled independently in case one of
them is severely corrupted by noise.

9For same evaluation on PLP features see Appendix G.



CHAPTER 9

Multi-stream speech recognition

In this chapter, we generalize what we have seen previously to multiple data streams towards
improving the robustness of speech recognition systems.

In multi-band processing the different, streams are constituted by different frequency sub-
bands and possibly combinations of these. In multi-stream processing, as applied in this thesis,
different fullband feature streams (and their combinations) are processed instead. The combi-
nation strategies and most of the weighting strategies presented in earlier chapters are, without
any changes, also applicable to multi-stream processing.

In this chapter, we present the general multi-stream paradigm for ASR. Different moti-
vations for multi-stream processing are discussed, including psychoacoustic and engineering
motivations, and state-of-the-art research employing multi-stream processing is presented. Due
to the fact that all streams stem from the same source, possible correlation information should
be considered. This is realized by the FC approach which had been introduced in Section 5.6.

We investigated in the framework of FC multi-stream processing, the use of same- and
multi-time scale feature streams.

9.1 Introduction

As in multi-band processing several input streams are processed in parallel. This time, the
difference between streams consists in different representations of the same source, instead of
(usually the same) representations extracted from different spectral regions as it is the case in
multi-band processing. Multi-stream recognition is, amongst others, based on the observation
that different representations of the speech signal often lead to different kinds of recognition
errors or the same errors occurring at different points. The different streams are thus expected
to complement each other at the recombination stage and to lead to a more powerful and robust
performance of the combined multi-stream system.

As we will see below, multi-stream processing is also motivated from psychoacoustic research
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where it was found that at several stages of human auditory processing, multiple representations
of the speech signal and appropriate time-scales are employed to render the final representation
as robust as possible. Integration of both short- and long-term information as well as multiple
representations of the input data can also be easily realized in a multi-stream automatic speech
recognizer to render the ASR system more robust. Moreover, engineering motivations such as
error reduction through reduced variance in a multiple classifier system, and better exploitation
of training data through several, possibly smaller models sustain the multi-stream approach.

An extreme example of a multi-stream system is the ROVER system (Fiscus, 1997), where
final hypotheses of complete speech recognition systems are combined. The ROVER system was
able to show 30% relative error rate reduction over the best system in a NIST Broadcast News
evaluation (Fiscus, 1997).

9.1.1 The multi-stream paradigm

Diversity of the streams in a multi-stream system can be obtained in various ways, such as by

e different sensory modalities, such as audio and visual data streams (Tomlinson et al.,
1996; Dupont and Luettin, 1998; Rogozan and Deléglise, 1998);

e different feature processing techniques, of which multi-band processing is a special case.
This also includes difference in pre- and post-processing, feature extraction, time win-
dow size and shift, derivative window size and shift, and many more (Wu et al., 1998a;
Kirchhoff, 1998; Hagen et al., 2000);

e different classifiers or same classifiers using different training schemes or environments,
and/or model configurations (Tumer and Ghosh, 1996; Shire, 2000);

e any combination of the above.

As one of the motivations of our work on multi-stream processing stems from the limitations
we encountered in our multi-band work, we are mainly interested in extending the principles of
the latter to the new approach of multi-stream processing. For this reason, our work on multi-
stream processing concentrates on the same processing schemes as were employed in multi-band
processing. In this thesis, multi-stream processing adheres to the second of the above categories:
diversity of the multiple streams through diversity in the feature streams.

Just as in multi-band processing we can distinguish also in multi-stream processing between

feature combination and probability combination.

Feature Combination In feature combination, the feature vectors are combined before
acoustic modeling. This is what is usually done in most of the state-of-the-art ASR systems,
where for example the first and second order time derivative features are concatenated to the
instantaneous features (with possibly following LDA). Also in audio-visual speech recognition,
the audio and visual feature streams are often combined in one stream which is refered to as
“early integration” (Chen and Rao, 1998; Lucey et al., 2001).
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Probability Combination In probability combination, the different streams are processed
by specific acoustic models, the outputs of which are then recombined. In audio-visual speech
recognition, this is refered to as “late integration”.

After processing the different streams for feature extraction and probability estimation, the
same probability combination strategies can be applied as in multi-band processing, as can be
seen in Figure 9.1.
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Figure 9.1: Illustration of probability combination in multi-stream ASR on two streams using dif-
ferent feature sets.

Special case of feature combination in the “tandem approach” A similar approach
to multi-stream processing is also pursued using the recently introduced “tandem approach”
(Hermansky et al., 2000; Ellis et al., 2001). In the “tandem approach”, the outputs of a neural
network classifier (usually an MLP) are used as the input features for GMMs. The output of
the GMMs provide the likelihoods for the different speech units needed in the HMM decoder.

Such a tandem system thus effectively has two levels of acoustic models.

In order to render the posterior probabilities at the output of the MLP suitable for modeling
by GMMs, the final non-linearity in the MLP is omitted (for the softmax non-linearity this is
similar to taking the logarithms of the MLP outputs (Hermansky et al., 2000)). Then, a KL
transform is applied to further decorrelate the outputs. These net outputs are interpreted as
features and passed on to the GMMs.

To apply feature combination in this framework, several acoustic model ANNs are trained
on different acoustic features. The net outputs, i.e. the logarithmic posterior probabilities, are
then simply averaged before they are used as input features to the GMMs.

Thus, in tandem-based stream combination, the recombination of the streams is carried out
on the posterior probabilities which though are interpreted as “features” for the GMM. This

approach could thus be seen as either feature or probability combination.

Discussion on feature versus probability combination As feature combination of two
or more streams usually leads to a rather large feature vector, which thus also demands larger
models and more training data, pure probability combination might be preferred if training data
is sparse. Moreover, the expected increase in robustness might be achieved more easily, if the
different feature representations can each be fully exploited by one specific recognizer instead
of forcing one recognizer to work on all representations. This can be illustrated as follows.
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Let us assume that in the training data, several conditions occur for which one feature
stream provides reliable information, whereas another feature stream does not provide any
useful information. In the case of feature combination, such specific conditions are learned by
the recognizer which works on the combined stream and which, thus, will have difficulties to
generalize in the case where one stream offers well-known data but the other stream is in a
harmful way different from the data represented in the training data.

By contrast, in probability combination, the respective stream-recognizers learn the specific
good data of that stream and are not disturbed by unrecognized data in the other feature
streams. They do not need to be trained on every conjunction of possible good and harmful
data but will be able to generalize — up to a certain extent — to previously unseen conjunctions
of feature sets as at least the probabilities from one stream-recognizer will be reliable and
hopefully dominate in the posterior combination scheme.

On the other hand, for a given phoneme, different feature representations could be highly
correlated. In order to benefit from this additional information which is not accessible in regular
(single-stream) fullband processing, it would be better to model the combined representation
by one classifier.

The above hypotheses are difficult to verify and specific tests would need to be carried out
for each new feature set. As it cannot be known without extensive testing which combination
approach, whether feature or probability combination or some combination of both, is best
suited for a given task, we propose to follow the full combination scheme also in multi-stream

processing, in which both approaches are sensibly combined.

9.1.2 FC multi-stream processing
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Figure 9.2: Illustration of “full combination” in multi-stream ASR on two streams using different

feature sets.

In the multi-band FC approach, as described in Section 5.6, we suppose that at each instant
one combination of subbands x; (with i = 1,... , B=2% combinations for B spectral subbands)
carries the clean data and is best suited for identifying the current phoneme (Morris et al., 1999).
As it is not known which combination of subbands comprises clean data features we integrate
over all possible combinations of subbands. Likewise in multi-stream processing it is not known
which stream or combination of data streams comprises clean data. In order to integrate over all
possible combinations of streams, there are two steps involved in full combination multi-stream

processing, as illustrated in Figure 9.2.
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e First, the feature vectors from all streams have to be concatenated into all possible com-
binations of feature vectors.

e Second, each stream combination is processed independently by different experts.

In this thesis, the phoneme probability estimates from all experts are then combined by one
of the probability combination strategies described in Section 5.4.1 and Chapter 6, before being

passed on to the decoder. They are thus not further discussed in this framework.

9.2 Motivations

In this section, we discuss several psychoacoustic studies which have instigated, among others,
the use of various different streams in ASR as this is what seems to be done also in certain
aspects of human speech recognition. Moreover, from the engineering point of view several

aspects are proposed which sustain the usefulness of parallel processing.

9.2.1 Psychoacoustic motivations to multi-stream processing

Listening experiments with human subjects reveal some of the “tricks” used by humans to
render the human auditory system as powerful as it is. Some of these aspects are not too
difficult to realize also in an automatic speech recognizer and might be able to provide some of
the higher performance and noise robustness available to humans.

Multiple time scales and frequency regions In listening experiments on continuous
speech from the TIMIT database, (Arai and Greenberg, 1998) found that in conditions with
high SNR or non-reverberant speech, the low-frequency channels (< 1.5 kHz) seem to carry
most of the speech information focusing on relatively short-term properties of the signal. For
long-term information, such as syllable segmentation, on the other hand, high-frequency chan-
nels (> 3 kHz) appear to be of most importance. With a change in the acoustic environment,
the ‘perceptual weights’ associated with a certain frequency region thus seem to adapt dynam-
ically to upweight more reliable regions. The authors concluded by saying that the robustness
of spoken language may lie in its broad and diverse capacity for encoding linguistic information
across a wide span of time scales and frequency regions.

These findings suggest that in order to render ASR systems more powerful in noise, we
should maybe look at the speech information from several different time scales. As short-term
information is already included in almost every speech recognizer (cf. discussion on short-term

analysis in Section 3.1), it is the longer time scales which might be missing in current systems.

Further experimental proof which sustains the idea of missing long-term information in

conventional short-term processing of the speech signal is provided by the following study.

Missing longer time scale information In an evaluation of peripheral auditory models for

mimicking human performance in the context of speech recognition, Ghitza (1994) compared
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speech recognition performance using their auditory model (referred to as “ensemble interval
histogram”) to human performance. Ghitza argues that models which are capable of mimicking
human performance can provide a basis for realizing effective automatic speech processing.
His system first simulates auditory nerve firing patterns which are then processed according
to heuristically observed principles of the actual auditory nerve response'. Performance was
improved when cepstral speech representation was substituted by the auditory model but was
still lagging behind human performance. It was claimed that missing integration over durations
of 50-100 ms were responsible for the shortcoming. The “tiling” experiment thus investigated
human usage of such perceptually related integration rules, by interchanging time/frequency
tiles from one word with the same tile of the other word in a word pair. It was found that
humans utilize different time-frequency tiles to discriminate different phonemes, and that there
is a direct mapping between phonemic/articulatory features and a particular tile. Ghitza (1994)
further showed that humans seem to use not only different frequency bands but also different

time scales to capture short-term and long-term information simultaneously.

Multi-band ASR investigating the use of different feature processing strategies in each sub-
band to account for the specific phonemes which were mostly represented in that subband did
not lead to conclusive results (Christensen et al., 2000). On the other hand, as we will see in
the experiments, applying several different feature extractors in parallel to the whole frequency
domain, some of which might be better suited for certain phonemes whereas others might ac-
count better for a different set of phonemes, achieved performance increase. A possible way of
enhancing the integration over longer time spans in ASR where features usually are only ex-
tracted from short-term time windows is the use of “variable window size” features or difference
features in separate streams, which will be discussed in Section 9.4.2.

Redundant and multiple-scale representations The speech signal is known to be highly
redundant and so seems to be the human auditory system (Greenberg, 1997), as a large set of
auditory experiments proposes. Such experiments include, as we already saw in Section 2.3,
high- and low-pass filtering of the speech signal, filtering modulation energies (Arai and Green-
berg, 1998) and desynchronizing speech energy channels (see above paragraph). In (Yang et al.,
1992), the primary auditory cortex is described to contain a collection of (sequentially) repeated
representations of the acoustic spectro-temporal information at various scales. To come from
one representation to the next, various transformations are carried out, the first of which is
described as an affine wavelet transform. This transform performs a multi-scale decomposition
exhibiting progressively broader bandwidths at higher frequencies. Thus, not one, but a range
of window durations are used to analyze the speech signal. More rapidly varying signals are
analyzed with shorter windows. This redundancy in acoustic representation within the auditory
system is one important way to guarantee high robustness if some part of the representation is
corrupted by noise.

Importance of syllable-length information The importance of longer time-scale infor-
mation is emphasized by (Greenberg, 1999). In this study, Greenberg (1999) systematically an-
alyzed the phonetic properties (i.e. pronunciation variations) of spontaneous American English
speech. He found that a large number of phonetic segments were either missing or changed in

las exact knowledge of the latter is not available at present.
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nature, i.e. transformed into other phonetic segments. These deletions and substitutions seem
arbitrary but become systematic when placed within the framework of the syllable. Syllable
onsets, for example, are usually well preserved which coincides with the characteristic of the
human auditory system to be especially sensitive and responsive to the beginning of sound, be

it speech, music or noise.

As ASR approaches nowadays usually model individual words as a sequence of phonetic
elements, each of which receives equal importance, deletions and substitutions of these elements
are devastating. If we could provide automatic speech recognizers with higher-level information
than solely phoneme-based information, (formerly unseen) pronunciation variations could be
better accounted for.

9.2.2 Engineering motivations to multi-stream processing

The paradigm of using an ensemble of trained classifiers instead of simply using only one
classifier has been widely proposed in the literature (Hansen and Salamon, 1990; Jacobs et al.,
1991; Jordan and Jacobs, 1994; Bishop, 1995). The idea behind using multiple classifiers is
that, in the absence of the “true” model, the apparent best classifier can be improved upon by
employing several classifiers to solve the classification task independently and then construct a
final decision by making use of the individual scores (Hashem, 1997). This is motivated by the
fact that different classifiers exhibit distinct recognition characteristics and, thus, also commit

different types of errors.

Error reduction through reduced variance In Bishop (1995), it was shown that for a
(weighted) average combination of classifiers the expected square error can theoretically be
reduced by a factor equal to the number of experts in the committee, under the assumption of
the errors having zero mean and being uncorrelated. In practice, errors are highly correlated
and error reduction is thus much smaller. The gain which is still encountered can be ascribed
to the reduction in variance due to the averaging over many solutions. Combining the outputs
from several classifiers therefore usually results in higher performance than any one of the
classifiers by itself (Bishop, 1995).

Better exploitation of finite training data and hardware As we are usually confronted
with the problem of finite training data and time, but, on the other hand, have access to
multiple machines, multiple (smaller) classifiers can easily be trained in parallel and then used
in combination (Janin et al., 1999). Moreover, hardware limits often already preclude the
increase in size of a single recognizer (such as an MLP with a larger hidden layer). Instead, an
even higher benefit can usually be reached by training several smaller models. Hereby, better
results are not necessarily achieved by the combination of classifiers with better individual
performance. Often, classifiers were found to complement each other well, although one of the
classifiers had poor performance by itself (Rogova, 1994; Sharma et al., 2000).
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Decomposition of acoustic models In the hierarchical mixture of experts approach (Jor-
dan and Jacobs, 1994) and the ACID/HNN? architecture (Fritsch, 1998), the acoustic modeling
task is decomposed into smaller, modular tasks in a data-driven manner. Separately trained
neural network classifiers estimate class posterior probabilities on different sub-sets of the acous-

tic input, employing uniform feature extractors for each acoustic unit.

Another approach is modular decomposition based on fixed class units, such as phonemes.
So-called phonemic neural networks were used in (Waibel et al., 1989; Auda and Kamel, 1998).
It is, among other things, argued that the usually used stopping criterion evaluated on all
classes (in a monolithic ANN) does not guarantee the best stopping point for any particular

class. Training one network for each class circumvents this problem.

One of the disadvantages of the modular decomposition approaches lies in the fact that
the modeling of (phoneme) boundaries is repeated in each modular network. Moreover, the
combined system contains, in total, a high number of parameters, though it is argued that
these parameters are not extra degrees of freedom but rather represent a repetition of the same
modeling.

Complementary classifiers for ASR In the specific case of automatic speech recognition,
the performance of the ensemble is found to improve if, for example, speaker-specific effects
(such as gender, age, dialect or speaking style (Mirghafori et al., 1994)), environmental effects
(such as background noise, microphone, etc.) or speaker variability can be accounted for by
complementary parallel processing. This is achieved through diversity obtained from training
of different classifiers on each of the different conditions (Tumer and Ghosh, 1996), such as
one system trained on male speakers and one trained on female speakers. Similarly, different
classifiers can be trained for a variety of noise characteristics in order to being able to account

for as many noise environments as possible (Shire, 2000).

Such effect-specific training is unfortunately often not applicable as the range of variability
is too high. Especially in the case of noisy speech, the exact noise characteristics can never be
foreseen. Appropriate training for each kind and level of noise, in the multi-stream framework
is therefore not possible. Other ways apart from effect-specific training for diversity need to be

found.

Further possibilities for achieving diversity Due to the large amount of training algo-
rithms which are now available, distinctiveness among classifiers, working on the same output
space, could already be achieved by simply employing different training algorithms. Alterna-
tively, different types of training data (i.e. subsets of the training data), classifier architectures
and/or features could be used for the training of each component classifier, which will be dis-
cussed in the following.

As training data can be expensive and time-consuming to create, it can generally be con-
sidered as a sparse resource. Good generalizability to unseen data, however, demands sufficient
training data. For this reason, the alternative of splitting up the training data into several
smaller sub-sets should be discarded in this framework.

2This described an Agglomerative Clustering algorithm based on Information Divergence (ACID), which
automatically designs Hierarchies of Neural Networks ACID/HNN.
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The right choice of classifier architecture is usually hard to foresee and often undergoes
several trial-and-error approaches. When suitable architectures are finally found, such as the
right number of hidden layers and hidden units in the case of ANN classifiers, it is often ob-
served that different kinds of features lead to more independent results leading to higher error

complementarity than different kinds of architectures (Rogova, 1994).

With the wide variety of feature extractors available for automatic speech recognition, the
most promising approach, thus, seems to be to base the diversity of ensemble classifiers on
the diversity of the input streams. Acoustic features are often known to work especially well
under certain environmental conditions, whereas others show their advantage under completely
different conditions (which might be known or not). Alternate feature processing strategies,
which contain overlapping information, also contain abundant information about speech cues

which is not available when only employing one of the preprocessing strategies.

The use of several different feature streams not only comprises employing different, kinds of
features but also different processing strategies for the same kind of features. More precisely,
acoustic features can (i) be extracted over different time scales, thus providing more local or
more contextual information, as well as (ii) undergo various pre- or post-processing strategies

such as compression or derivation.

The diversity of available feature streams and their complementarity in different application
domains can be well exploited through the use of multiple recognizers, each of which is trained
on a different feature stream. The ensemble of all recognizers then more easily generalizes to
a wider range of applications. This approach is followed in this thesis and will be discussed in
more detail below.

9.3 State of the art

In parallel to the application and extension of our multi-band work to the area of multi-stream
research, other research labs moved in the same direction. In this section, we therefore illustrate

multi-stream research as carried out at other institutes.

Phonemic Neural Networks with diverse features Separately trained phonemic neural
networks were used in (Antoniou and Reynolds, 1999) to estimate each phone’s posterior prob-
ability, matching network resources and training to the needs of each phone respectively. In
(Antoniou and Reynolds, 2000), this approach was extended to also incorporate diverse feature
streams in the acoustic model for each phone. Three acoustic front-ends (MFCC-, PLP- and
LPC3-features) were employed per phone, training a “primary” MLP classifier on each of them.
The three “primary” MLPs were then recombined by a “posterior net” (recombining MLP) to
estimate the phone posterior probability. To see whether the improvement in WER actually
stemmed from the combination of front-ends, rather than the pure combination of classifiers,
an ensemble of networks was set up using four nets trained with the same features but different

weight initializations. This ensemble resulted in a lower improvement of the WER.

These experiments showed that the combination of different acoustic front-ends leads to

3LPC denotes Linear Predictive Coding.
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higher performance improvement than several networks trained on the same features but with
different weight initializations.

Combination of non-linearly transformed feature streams In (Sharma et al., 2000), a
set of four different feature streams was investigated: PLP, RASTA-PLP-like features with LDA,
modulation-filtered spectrogram (MSG) features (Greenberg and Kingsbury, 1997) and Tempo-
RAIl Patterns (TRAP) features (Hermansky and Sharma, 1999). Only the spectral-based PLP
features were extracted on short-term information of 10 ms whereas the other ‘temporal-based’
feature sets were calculated on 1 ms of input speech so that each set was expected to result in
complementary errors. Non-linear transformation of each feature set was carried out through
the application of an MLP of which the softmax non-linearity had been removed so that the
distribution of the features came closer to a Gaussian distribution. The outputs were then
diagonalized through a KL transform for the following modeling by an HMM using diagonal
covariance matrices. Their systems were thus similar to HMM/MLP hybrids. The non-linearly
transformed features led to considerably improved robustness on the matched Aurora (ver-
sion 1.0) (Hirsch and Pearce, 2000) task (training and testing in noise). Several combinations
of the four feature sets were tested, where combination was carried out through averaging of
the non-linearly transformed features (i.e. net outputs) prior to orthogonalization. Significant
average reduction in WER as compared to the Aurora baseline (using MFCCs) fullband system
could be achieved with each of the combinations.

From the above set of experiments, it can be seen that combining different (non-linearly
transformed) feature sets, especially as complementary feature sets as those based on spectral

and temporal processing, yields significant improvement in performance.

Averaging logarithmic probabilities from different streams In the framework of HMM /-
MLP hybrid systems, Janin et al. (1999) investigated the performance of different sized MLP
experts and their combinations, trained on PLP and MSG features. With the goal of equalizing
the learning ‘capacity’ of the nets with differently sized inputs through the adaptation of the
size of the hidden layer (instead of the number of parameters), several sets of nets with dif-
ferent sizes of hidden layer were trained on each feature stream. Performance comparison on
the Broapcast News corpus (Cook et al., 1999) between nets of smaller and larger numbers
of hidden units showed that bigger hidden layers gave consistently better performance. More-
over, combinations of the fullband streams through averaging of their logarithmic probabilities
resulted in lower WERs when MLPs trained on different feature streams were combined than
combining MLPs trained on the same feature stream but with different random starting points.

The main conclusions from this work are:

e Contrary to other reports, bigger neural networks gave consistently better performance,

e once again, MLPs trained on different feature streams proved more powerful when their
outputs were recombined than MLPs trained with different starting points.

Feature and probability combination In the framework of HMM/MLP hybrid systems,

Ellis (2000) carried out performance comparisons among feature and/or probability combina-
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tions on four sets of features: PLP static and delta features, MSG features covering modulation
frequencies of 0-8 Hz and of 8-16 Hz, respectively. Probability combination was realized by
averaging of the logarithmic posteriors at the outputs of the MLPs. In order to decide which
feature streams were better suited for feature combination and which for posterior combination,
a simplified version of the MI (cf. Section 3.2) was used to calculate the statistical dependence
between the feature streams. It was argued that the higher the dependence between feature
streams (and, thus, higher conditional MI) the better feature combination would be suited. Un-
fortunately, this hypothesis was only weakly supported by the experiments carried out under
the matched multi-conditional task of the Aurora database. No consistent relation between
higher (lower) MI and performance improvement due to feature (probability) combination could
be shown. For probability combination it seemed the most appropriate to combine the “most
different” features but the overall best systems were achieved by a mixed combination of both

feature and probability combination.

This work of research shows that the decision between feature and probability combination
is not easy to make. This often results in several trial-and-error approaches which finally lead
to a good system for the specific testing conditions without any guarantee that under different

conditions the same mixed combination would also achieve best performance.

Training acoustic front-ends under different acoustic environments Also in (Shire,
2000), multi-stream recognition performance was investigated employing multiple front-end
acoustic modeling stages whose acoustic probability estimates were merged on the frame level
for further processing. Each of the front-end stages was trained to enhance phone classification
in a specific acoustic environment. The front-end systems were then combined in a multi-
stream setting. Tests on homogeneous feature streams (RASTA-PLP with different LDA filters)
showed that (i) training in noise degrades performance in clean (already for a single-stream
system); (ii) when combining the posteriors from two MLP estimators, one of which is trained
in clean conditions, the other in noise, the combined system degrades on matched conditions

but improves on mismatched conditions.

Employing dual feature streams (PLP and MSG) trained on the same environment, the
combined streams (posterior combination) resulted in significant improvement in most of the
cases for both matched and mismatched conditions. Using the same streams (PLP and MSG,
respectively) trained on different acoustic environments gave improvement only for mismatched
data. No further improvement could be achieved when both MLPs were trained on both acoustic

environments (4-stream combination).

Two weighting strategies based on frame-level confidence measures were set up, based on
(i) maximum posterior values and (ii) information theoretic measures. These frame-entropy

measures, however, did generally not prove reliably useful when compared to equal weights.
The following conclusions can be drawn from this work of research:
e Multi-style training in different acoustic environments does not provide a solution if good
performance under all conditions is sought;

e Using two different feature streams, training in the same environment more often achieved

performance gains when the stream probabilities were combined than when the streams
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were trained in different environments.

e It is difficult to improve the performance of equal weights with new weighting strategies

also in multi-stream processing.

Combining recognizers based on syllable and phone time scales Wu et al. (1998a)
investigated the usefulness of syllable time scale information in ASR by developing a speech
recognition system which focuses on information encoded over syllabic durations and comparing
its performance to a standard (short-term) recognizer which focuses on information at the
phonetic segment scale. Moreover, a third recognizer was included in the comparison which
combined the syllable-based and phone-based recognizers into a single system. The phone-
based recognizer employed log-RASTA-PLP features. The syllable-based recognizer employed
MSG features which are described to blur envelope fluctuations at the phonetic segment scale
(due to narrower filters) while emphasizing changes at the syllabic scale. Combination of the two
classifiers was carried out on the utterance level using N-best lists. While the baseline phone-
based recognizer performed better than the syllable-based recognizer in both clean speech and
reverberation noise, the combined system demonstrated significantly higher performance than
the baseline system on both test conditions.

In a further study, Wu et al. (1998b) investigated combination of phone- and syllable-
based systems at three distinct levels: the frame, the syllable and the entire utterance level.
Frame-level recombination was carried out by multiplication of phone probabilities, syllable-
level combination by HMM-recombination (cf. Section 5.1) and utterance-level combination
by merging and re-scoring N-best lists. Although each recognizer performed well by itself,
combining the syllable-based systems with the (phone-based) baseline resulted in significant
lower WERs in both clean speech and reverberation noise. Of the three recombination methods,
syllable-based combination displayed the largest improvement, closely followed by frame-level

combination which has lower implementation cost.

These results show that knowledge derived from both syllable- and phone-length time scales
employed jointly in an automatic speech recognizer can yield performance superior to that
obtained using information derived from either time scale alone (although the syllable-based
recognizer performed worse than the (phone-based) baseline on its own). Moreover, it could
be seen that frame-level combination resulted in almost as high performance as syllable-based

combination with the advantage of significantly lower computational cost.

Combining recognizers based on acoustic and articulatory features In addition to
an acoustic signal representation heuristically defined articulatory features describing manner
and place of articulation were used as a supplementary source of information in (Kirchhoff,
1998). The use of articulatory features is motivated by the assumptions that (i) coarticulation
can be modeled more easily in the production based domain than in the acoustic domain, and
(ii) articulatory parameters are more robust to cross-speaker variation and signal distortions.
The acoustic (log-RASTA-PLP and MSG) and articulatory feature based HMM/MLP hybrid
recognizers were tested on the NumBERS95 corpus under different environmental conditions by
themselves and in combination. MLP classifier combination was carried out on the posterior
probabilities using the STD Sum and STD INpEP AsmPT. Whereas the acoustic systems per-
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formed slightly better in the case of clean speech and noise at high SNR, the articulatory systems
showed a distinct advantage in the presence of noise at low SNR. Combination of both systems
improved the WER.

In (Kirchhoff et al., 2000), these experiments were extended to a large-vocabulary con-
versational speech recognition task, this time using HMM-GMM systems on MFCC features.
Recombination was carried out at the state, the word and the feature level, of which state-
level combination yielded the best results, with the STD INDEP AsmPT rule outperforming the
Minimum, Maxivum and STD Sum rule (cf. Chapter 6 for description of these combination

strategies).

In (Kirchhoff and Bilmes, 2000) several new combination rules were proposed these being
continuous and differentiable extensions of well-known combination strategies such as STD Sum,
STD Probuct, Minimum and Maximum rule, which can, thus, also be used as objective functions
in a joint classifier training scheme. None of the joint training results outperformed the product
rule combination of individually trained classifiers. Only in the case of joint embedded training
and product rule combination, significant improvement in WER could be achieved.

The main conclusions which can be drawn from these works are:

e Probability combination of streams using different acoustic and articulatory based features

also improves performance.

e Probability combination out-performed feature combination also on this task, and state-

level combination out-performed word-level combination.

Heterogeneous features in multi-band and multi-stream processing In (Christensen
et al., 2000), diverse feature information (from PLP, J-RASTA-PLP and MFCC features) was
employed in both multi-band and multi-stream HMM/MLP hybrid systems to investigate the
question as to whether diversity of the feature streams could achieve improved performance
and/or noise robustness. In the multi-band framework, this was obtained by using different
feature extraction techniques for each subband. A significant decrease in WER could be achieved
by the final best set-up as compared to the multi-band systems using the same kind of feature
in each subband.

In the multi-stream framework, feature concatenation as well as probability combination
(using STD Sum and STD Propuct) were performed. Most, but not all, combinations resulted
in higher performance on clean data as compared to the single-stream recognizers, showing that
the correct choice of features and combination strategy is essential for performance improvement
in clean speech. As the multi-stream systems have a higher number of parameters, different
numbers of hidden units were tested for the single-stream recognizers to investigate whether
it was the increase in parameters which led to improved performance. None of the monolithic
recognizers could achieve as good WER performance as obtained by some multi-stream systems.
This shows that it is not the size of the recognizer, but the right combination of feature or

probability streams which allows for better performance.

Similar results were obtained by Meinedo and Neto (2000) who investigated multi-stream
processing employing such diverse features as PLP (or log-RASTA-PLP) and MSG features. The



146 Multi-stream speech recognition

multi-stream systems were found to improve over the single-stream recognizers in most of the
cases, where special care was taken to develop (single- and multi-stream) systems of similar
number of parameters. Investigating the possible additional gain when a smaller multi-stream
constituent model was substituted by one of the larger baseline systems, only a small reduction

in error rate was observed.

From these pieces of work we can see that

e performance improvement in clean speech is possible in multi-stream (and multi-band)
processing by increasing the heterogeneity of the input features, though finding the right
feature or probability combination is difficult;

e larger MLP classifiers using only one feature stream cannot achieve as low WERs as

combination of smaller MLPs employing diverse feature streams.

Auditory and visual stream combination For several years now (Tomlinson et al., 1996;
Dupont and Luettin, 1998; Rogozan and Deléglise, 1998; Teissier et al., 1999; Glotin, 2000;
Heckmann et al., 2001), audio and visual streams are being combined in order to render the
automatic speech recognizer more robust. Several studies have shown that the use of informa-
tion on lip movement, in addition to the acoustic information, can significantly improve the
recognition performance in the case of noisy speech. The audio and visual stream have the
advantage that, although they stem from a common source (i.e. from one speaker) they still
exhibit largely autonomous and complementary information. For instance, discrimination be-
tween the two phonemes /t/ and /p/ is accomplished more easily with visual information than
with acoustic information (Dupont, 1997).

Heckmann et al. (2001) investigate audio and visual feature streams in the framework of the
FC approach. The audio feature stream consists of (log) RASTA-PLP features, and the visual
feature stream of 6 lip parameters, such as outer lip width, inner lip width, outer lip height,
etc. Although the visual stream has only a limited, though noise-robust, performance capacity,
the combined system degrades much slower and more gracefully than each of the streams by
itself.

9.4 FC multi-stream employing diverse acoustic feature

streams

In this section, the FC multi-stream work investigated in this thesis is presented. In this
framework, we employ three different sets of features. The first set of features consists of diverse
acoustic features extracted on a single time scale from different feature extraction techniques,
the other two sets employ multiple time scale features, which stem from the same extraction
technique (such as PLP or J-RASTA-PLP) but imply either different parameterization (such as
window size) or different post-processing schemes (such as time differentiation).

Let X={z1,...,z¢,...,z7}, Y={y1,.-. ,yt,...,yr},and Z={z1,... ,z,...,z7r} denote
the acoustic vector sequence of three parallel streams, with z;, y; and z; higher-dimensional

acoustic vectors at time frame ¢ (t =1,...,7). In a state-of-the-art recognizer, these three
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streams are usually concatenated and jointly processed, such as in the case of the instantaneous,
first and second order time derivative features, resulting in one feature vector (x¢, y¢, 2z¢) for each
time frame. In the framework of our FC multi-stream system, however, each stream is processed
by itself as well as concatenated with every other feature stream. This way, the usually necessary
search for the best feature and/or probability combination (cf. discussion in Section 9.1) is
avoided, as all combinations are considered. Unreliable combinations will have little effect
in the combination process as they tend to have high entropy. FC multi-stream processing
employing three feature streams is illustrated in Figure 9.3. The probability estimates from
the different experts are then recombined according to the FC formulae described in Sections 6.1
to 6.5.

Experts
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Figure 9.3: Illustration of recognizers combination according to the “full combination”
approach, using three different feature streams (x;), (y;) and (z;) as well as all possible
combinations of feature streams ((x¢, ye), (¢, 2¢), (Yt 2¢), (Te, yt, 2¢)) in the framework of an
HMM/MLP hybrid system.

In multi-stream processing in this thesis, we exclusively work with HMM/MLP hybrid sys-
tems. It is therefore made use of the posterior-based FC recombination strategies. Denoting

the set of acoustic vectors as S, we can write the FC formulae without any changes, using s;

with =1, ..., B to denote a certain stream at time ¢, as follows. The FC Sum (6.3) is
B
P(gls) = > Plaklsi)P(bils)
i=1

the FC Geom MEaN (6.24)

B ws
Hizl P (qr|si)

Plads) = 010 =0

and the FC Inpep Asmpt (5.12) when applied to FC processing

B
Plqls) = © HPwi (qrsi)

i=1

with © a normalization constant, such that Ele P(qx|s) = 1.
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9.4.1 Single time scale feature streams

For the set of single time scale features, we chose acoustic features which are well-known for
their good performance and, thus, widely used in speech processing. Firstly, these are the
PLP features which are particularly powerful in clean speech which could be seen in the base-
line fullband experiments carried out in Section 8.3.2 (Table 8.3). Secondly, we selected the
J-RASTA-PLP features for their high-noise robustness, although they often imply slight degra-
dation in clean speech. The J-RASTA-PLP features are filtered PLP features as was described
in Section 4.2.4. The filtering suppresses low modulation frequencies which usually stem from
channel characteristics or other non-speech artifacts. Thirdly, we chose MFCC features which
are also widely used and known for their high noise robustness (cf. Section 4.2.1).

The experiments for multi-stream processing employing these feature streams in the frame-
work of the FC approach are reported in Section 10.2, and compared to results using standard

combination schemes.

9.4.2 Multiple time scale feature streams

Due to the inertia of the human speech production apparatus, the speech signal can be assumed
to be short-time stationary in segments of 10 to 30 ms, allowing for feature extraction at these
intervals. This short-term processing of the speech signal, however, also leads to loss of time
contextual information. Local context effects such as variations within an utterance due to
coarticulation and other suprasegmental factors such as stress and emphasis can sometimes
be accounted for through the use of context dependent phonetic models (such as biphones
or triphones). This, on the other hand, increases the size of the MLPs or number of GMMs
in the models considerably which causes problems due to sparsity of training time and data.
Moreover, the difference in word-internal or cross-word context dependency often needs to be

modeled explicitly.

For these reasons, the possibility of employing context information by including larger time-
scale information at the pre-processing stage is an attractive alternative allowing us to circum-
vent these problems. In some recognizers, such as MLP experts, a long input window can be
employed. Another alternative is the use of first and second order derivative features which
reflect the development of the acoustic features over time and thus give insight into longer
temporal information of the speech signal.

As we have seen above, psychoacoustic studies show that the human auditory system inte-
grates information from several, and also much larger, time spans than the temporal duration
of the usually used time window in ASR. The maximal time span is often reported as approxi-
mating the length of a syllable which is around 100 to 250 ms long (Wu et al., 1998a).

We thus investigate the use of multiple time scale features also in ASR and more specifi-
cally in the framework of multi-stream processing. By modeling these characteristics found in
human auditory processing, we hope to approach the high noise robustness that the human au-
ditory system offers. Multiple time scale features seem especially promising in the multi-stream
framework as they extract different information in each time scale which can be exploited by
the different streams. The shorter time scales are often found to provide good performance in
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clean speech whereas the longer time scales usually show higher robustness to noise (McCourt
et al., 1998; Wu et al., 1998b; Hagen and Bourlard, 2000; Sharma et al., 2000; Weber, 2000).

We investigate two different sets of multiple time scale features. The first set consists of
features which are extracted over variable sized windows of three and five times the original
window size. For the second set, we take as separate input streams the commonly used difference
features, that is the first and second order time derivatives of the instantaneous features, as
introduced in Section 4.2.4.

In the following, we show for both methods how the FC approach or an approximation of it
can be used to combine features from different time scales.

Variable window size features

In this approach, acoustic features are calculated using windows covering different time spans
of the speech signal. These features are then combined to form a single feature vector which is
processed in the usual way by a single speech recognizer. We refer to the combined features as
the “variable window size” features.
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Figure 9.4: Illustration of multiple time scale features extracted from a regular-sized
(X ={z1,...,2¢,...,x7}), triple- (Y = {y1,... ,¥¢, ... ,yr}) and quintuple-sized (Z =
{z1,...,2t,... ,27}) data window. They are then concatenated to yield the multiple time

scale feature vector.

In our case, the first time scale features are extracted from regular short-term segments
of 25 ms windows, shifted every 12.5 ms, and are denoted X = {z1,...,2,...,z7p}. The
second set of features is extracted on segments which span three times the original window
size, covering 75 ms of speech (Y = {y1,...,¥¢ ... ,yr}). The third set of features (Z =
{z1,...,2t,... ,2zr}) span 125 ms by using five times the original window size. Window shift
of 12.5 ms is equal for all sets. This procedure is illustrated in Figure 9.4. Since these multi-
scale features are clearly correlated, and not very likely to function well by themselves, they are
respectively concatenated to the instantaneous feature vector (z;), resulting in feature vectors
(ze,yt), (wg,2¢) and (24, ye, z¢), which are used as independent feature streams in multi-stream
processing. For each feature combination, one MLP expert is trained which is expected to model

the correlation across input features.
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Figure 9.5: Illustration of recognizers combination according to the “full combination”
approach, using raw (X={xy,... ,z,...,z7r}), delta (Y ={y1,... ,ut,... ,yr}) and delta-
delta (Z={z1,...,2t,... ,27}) features as individual input streams as well as all possible
combinations of feature streams in the framework of a HMM/MLP hybrid system.

Difference features

Other independent features which are often used to complement instantaneous features in state-
of-the-art automatic speech recognizers are the temporal first and second order derivative fea-
tures, which cover larger time scale information than the instantaneous features. They are thus

often found to be more robust to noise.

Huang et al. (1993), for example, used first-order difference features extracted from both
40 ms and 80 ms derivative windows. They found that augmenting their LPC cepstral feature
vectors only consisting of static and delta features (including energy) by delta features calculated
on a longer derivative window (80 ms) as well as adding delta-delta features (including energy)
reduced errors by over 15% as compared to the baseline system. In (Furui, 1986b), it was
observed that delta (cepstral) features were able to reduce distortions from convolutive noise.
The delta features are usually appended to the static feature components, which, unfortunately,
makes the concatenated feature vector again less robust to noise. We therefore propose to use

them as separate streams in the multi-stream framework.

In this thesis, the first order difference features (also refered to as delta features) are calcu-
lated from over five instantaneous features y; = Axy = [—2x4_9 — 241 + X441 + 221 42], and the
second order difference features (also refered to as delta-delta features) over seven instantaneous
features (z: = AAxp = 2243 + T4—9 — 2041 — 2@ — 2@4q1 + Tpy2 + 22443]). They thus cover
mid-term and long-term speech information of roughly syllable length as compared to the static
features which usually only account for short-term speech portions. As these difference features
are more or less independent of the instantaneous features they can more appropriately be
treated as separate, higher time scale feature streams than the previously introduced “variable

window size” features.

For FC processing, these three feature streams are first concatenated to give all possible
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combinations of feature streams. In our case, this amounts to a total of seven streams. For
each of these seven streams a separate recognizer is then trained. The probabilities at the output
of the experts are combined according to the FC recombination strategies. This procedure is
illustrated in Figure 9.5.

The experiments which were carried out for multi-stream processing employing the feature
streams presented in this chapter are discussed in Chapter 10.

9.5 Summary

The general approach to multi-stream processing is to process several information streams,
stemming from the same source, in parallel up to a certain point where their representations are

recombined. This often leads to higher noise robustness than processing by a single recognizer.

Previous research on multi-stream processing showed that diversity in the type of features
in each stream usually leads to higher performance of the combined system than diversity in

acoustic data (such as different noise environments) or in the acoustic models.

When different streams are employed, it needs to be decided whether they are best recom-
bined at the feature or at the probability level. The common solution to this problem is to
search by “trial-and-error” which feature streams are best modeled jointly (“early integration”)
and which ones by separate acoustic models (“late integration”) to provide higher noise ro-
bustness. In order to circumvent this problem we propose the FC approach for multi-stream
processing, which integrates over all possible combinations of streams, and thus considers both

early and late integration.

In the framework of FC multi-stream processing, we described the use of same and multiple
time scale features. An improved way to combine the instantaneous and time difference feature
streams was proposed by integrating over all possible stream combinations, which results in
improved noise robustness as compared to the usually used simple concatenation of these feature

streams, as will be seen in the next chapter.
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CHAPTER 10

Experimental evaluation of

multi-stream processing

In this chapter, the results of our multi-stream experiments are presented. Our main goal
in multi-stream processing is to find robust speech recognition techniques which can improve
recognition performance also on real-environmental noise cases which has not been the case
when using multi-band processing. For this reason, most of the experiments are carried out on
the wide-band noise cases.

In this chapter, we report the experimental results achieved by using our new FC multi-
stream approaches by (i) making use of different feature extraction techniques in each stream,
(ii) complementing the usual instantaneous features with features extracted from different sized

analysis windows and (iii) better use of temporal derivatives.

10.1 Baseline systems

In this section, we introduce the HMM/MLP hybrid fullband recognizers used in our multi-
stream systems.

HMM/MLP hybrids Two of the three multi-stream HMM/MLP hybrid systems used in
the first set of experiments are the baseline fullband hybrids as employed in the experiments
on (posterior-based) multi-band processing (namely the PLP and J-RASTA-PLP-based fullband
recognizers). The third fullband hybrid recognizer employs the same MLP setup as described
for the other two fullband recognizers in Section 8.1 with the only difference that it is trained
on MFCC features. The MFCC features comprise 12 coefficients extracted over 26 filters, and
the energy. Just as for the other two feature sets, the first and second order time derivatives
of the 13 coefficients are appended to the static feature stream. For the MLPs trained on the
concatenated feature vectors (such as PLP-MFCC), the size of the hidden layer was chosen
proportionally to the number of features in the vector (see Table J.1 of Appendix J).
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Similarly, in the set of experiments using multiple time scale features the size of the hidden
layer of the MLPs was chosen proportionally to the size of the input feature vector. The exact
numbers of hidden units and MLP parameters are given in Tables J.2 and J.3 of Appendix J.
The multiple time scale features are described in more detail in subsequent sections.

Training of all fullband classifiers was carried out on the same database (NuMBERS95) and
the same set of (clean) utterances as described in Section 8.2, but with (i) different feature
extractors (such as for PLP and MFCC features) or (ii) different pre-processing strategies (such
as for PLP and J-RASTA-PLP features).

Posteriors or scaled likelihoods Whether to divide the net outputs by the prior probabil-
ities or not has, this time, to be decided for all fullband streams in common. As the PLP and
MFCC features result in better performance without division, the J-RASTA-PLP features, on
the other hand, with division we decide for the least loss in performance, that is when outputs
of the J-RASTA-PLP recognizers are also not divided by the priors. The results of the J-RASTA-
PLP fullband recognizer in this section can thus not be directly compared to the J-RASTA-PLP
fullband results in Section 8.3 where results are presented on scaled likelihoods (but to the ones
used in the ECPC experiments in Section 8.3.5). The PLP fullband recognizer corresponds to

the one used in all PLP-based multi-band experiments (see also Appendix G).

Full combination processing As for FC multi-band processing, each stream combination
is processed independently by a different expert. The phoneme probability outputs from all
experts are then combined via the FC formulae, before being passed on to the decoder. For
three feature streams as employed in our multi-stream experiments, we thus have eight stream
experts’.

System evaluation We have to bare in mind that in a standard (fullband) recognizer which
only uses one feature stream, this feature stream is chosen once and then fixed. As it can
never be foreseen which features work best in which recognizer and under which conditions,
this choice is often rather arbitrary (as deciding between MFCC and J-RASTA-PLP features, for
example). For the evaluation of our multi-stream results we now have access to the performance
of three standard fullband recognizers which (i) shows the different performance of the features
in different noise cases, and (ii) makes the rating of the multi-stream system harder as we are
suddenly confronted with three (if not even eight) “baseline” systems. It thus needs to be
decided to which “baseline” system the multi-stream system is to be compared. Taking the
average over all noise cases (including clean speech) which we examined, we found the J-RASTA-
PLP features to be the most robust and thus, decided on the J-RASTA-PLP fullband recognizer

for our baseline system for the experiments on single-scale feature streams.

For the experiments employing multi-scale feature streams, it is the fullband recognizer
which works on the usually used time scale and thus was also the baseline fullband recognizer
in the multi-band experiments which constitutes the baseline.

Lof which the stream “expert” representing prior information only was excluded.
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10.2 Single time scale features

In the first set of multi-stream experiments we use diverse features estimated on the same
temporal scale, which corresponds to the time scale used in the multi-band experiments (window
length of 25 ms, shifted every 12.5 ms, as described in Section 8.1). Three different kinds of
acoustic features are employed: PLP, J-RASTA-PLP and MFCC features.

In this FC multi-stream system, we have three recognizers, which work only on one feature
stream each, and the recognizers trained on each possible combination of feature streams which
amounts to another set of four recognizers. Results are presented for each of the seven recog-
nizers (the combination which includes no features being excluded) by itself, and for the FC
multi-stream system using the FC Sum (with equal and relative frequency (RF) weights from
(7.12)) and FC Propuct combination strategies (cf. Equations (6.3) for FC Sum, and (6.23)
for FC Propucr).

The FC multi-stream systems are compared to standard multi-stream approaches where
combination is carried out by STD Sum or STD Propuct (according to (5.8) and (5.11)).

10.2.1 Experiments in clean speech

Recognition performance in clean speech is competitive for almost all streams tested separately
and all combination systems, with no significant differences as compared to the FC Sum which
has lowest WER, as can be seen in Table 10.1. Only the fullband recognizer using MFCC
features is significantly worse than the FC Sum. No improvement could be achieved using FC

Sum with RF weighting or FC Probuct. For comparison, in Tables H.1 to H.3 in Appendix H

Clean

J-RASTA-PLP 8.0
PLP 71 Table 10.1: WERs for multi-stream processing
MFCC 8.6 in clean speech, using PLP, J-RASTA-PLP and

MFCC features. FC processing is compared to
PLP-J-RASTA-PLP 8.0 . .

standard multi-stream processing where only the
PLP-MFCC 6.9 three single-feature-based probability streams are
MFCC-J-RASTA-PLP 7.1 recombined as well as to the J-RASTA-PLP base-
PLP-J-RASTA-PLP-MFCC | 6.9 line. Results for each of the seven constituent

recognizers which are used in FC processing are
STD Sum 6.9 . . .

also given (Lines 1 to 7). RF refers to relative fre-
STD Propuct 7.0 quency weighting. Only MFCC results (8.6%) are
FC Sum EQUAL 6.7 significantly different from the best value (6.7%).
FC Sum RF 6.9
FC ProbpucCT 7.5

posterior combination by STD Sum and STD PropucT is presented for each of the possible two
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and three stream combinations. These results show that in the case of matched (clean) speech
(Table H.1), feature and probability combination yield no significantly different results. The
use of several additional feature or probability streams can, in this case, not improve significantly
over the already good results of the J-RASTA-PLP feature based recognizer.

10.2.2 Experiments on speech with narrow-band noise

The next set of experiments is carried out on artificial (stationary) narrow-band noise. The
results in Table 10.2 show no significant improvement of the FC multi-stream system over
the baseline system (which is the J-RASTA-PLP feature based recognizer in the first line),
comparing the mean values in the last column. Standard multi-stream processing using the STD
SuM results in the same average performance, whereas the STD PropucT significantly degrades
performance. Employing RF weights in the FC Sum could not lead to any improvement on this
kind of noise, just as it was the case in multi-band processing (cf. Table 8.12). (No tests using
FC Probpuct are carried out as no improvement is to be expected on this kind of noise (due
to results presented in Table 8.9)). In the case of artificial non-stationary band-limited noise

Stationary Band-Limited Noise
Band 1 Band 2 Band 3 Band 4

0dB|12dB|odB|12dB|0dB|12dB|0dB|12 4B Mean
J-RASTA-PLP 314 | 14.0 | 44.6 | 166 | 35.0 | 189 | 23.9 | 17.4 || 25.24
PLP 57.5 | 29.2 | 74.6 | 34.1 | 65.4 | 31.2 | 67.2 | 32.5 || 49.0
MFCC 57.5 | 28.7 | 50.6 | 29.5 | 43.8 | 23.4 | 20.1| 15.4 || 34.8
PLP-J-RASTA-PLP 48.6 | 24.0 | 585 | 25.5 | 56.6 | 27.4 | 43.8 | 26.1 || 38.8
PLP-MFCC 65.2 | 34.8 | 59.9 | 29.0 | 42.8 | 23.2 | 50.9 | 22.5 || 41.0
MFCC-J-RASTA-PLP 52.0 | 27.2 | 36.9 | 186 | 28.4| 16.0 | 184 | 12.9 || 26.3«

PLP-J-RASTA-PLP-MFCC | 53.4 | 274 | 46.2 | 21.2 | 41.1 | 19.6 | 22.6 | 16.9 31.1

STD SuMm 35.2 | 16.1 | 416 | 164 | 34.3 | 17.7 | 23.1 | 16.2 25.1
STD PrODUCT 41.8 | 184 | 496 | 23.5 | 34.2| 175 | 247 | 15.8 28.2
FC SuMm EqQuAL 39.5| 19.2 | 41.3 | 19.5 [ 289 | 17.1 | 20.3 | 14.6 25.1
FC Sum RF 410 19.2 | 420 | 189 | 313 | 174 | 21.0| 14.6 || 25.7%

Table 10.2: WERSs for multi-stream processing in stationary band-limited noise, using PLP, J-
RASTA-PLP and MFCC features. FC processing (using FC Sum) is compared to standard multi-
stream processing where only the three single-feature-based probability streams are recombined
as well as to the J-RASTA-PLP baseline. Results for each of the seven constituent recognizers
which are used in FC processing are also given (Lines 1 to 7). RF refers to relative frequency

*

weighting. * indicates that there is no significant difference to the best result in this column.

(cf. Table 10.3), on the other hand, the FC multi-stream system significantly outperforms the
baseline recognizer due to the severe degradation of the J-RASTA-PLP features in this kind of

noise as had also been found in multi-band processing (cf. Table 8.7). Unfortunately, contrary
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to multi-band processing, where the use of RF weights significantly improved performance on
non-stationary band-limited noise (cf. Table 8.12), no robustness gain could be achieved
with these weights in FC multi-stream processing in this noise. The standard multi-stream
approaches (STD Sum and STD Propbuct) still outperform the baseline system but are not

competitive as compared to FC processing.

Siren

0 dB |12 dB || Mean

J-RASTA-PLP 89.4 | 36.9 63.2
PLP 66.9 | 36.1 51.5
MFCC 574 | 345 || 46.0x
PLP-J-RASTA-PLP 68.2 | 32.9 50.6
PLP-MFCC 61.6 | 29.9 || 45.8%
MFCC-J-RASTA-PLP 74.6 | 30.2 52.4

PLP-J-RASTA-PLP-MFCC | 67.0 | 28.9 48.0

STD Sum 67.9 | 30.4 || 49.2
STD PropucT 66.9 | 30.3 || 48.6
FC SuMm EqQuAL 60.3 | 25.9 43.1
FC Sum RF 60.8 | 26.5 || 43.7x

Table 10.3: WERs for multi-stream processing in non-stationary band-limited noise, using
PLP, J-RASTA-PLP and MFCC features. FC processing (using FC Sum with Equar and RF
weights) is compared to standard multi-stream processing where only the three single-feature-
based probability streams are recombined as well as to the J-RASTA-PLP baseline. Results for
each of the seven constituent recognizers which are used in FC processing are also given (Lines
1to 7). * indicates that there is no significant difference to the best result in this column.

10.2.3 Experiments on speech with real-environmental noise

The main goal is to test the multi-stream system on the real-environmental noises where the
multi-band FC systems could not achieve any significant performance improvement. We thus
turn to the wide-band test environments of car and factory noise which correspond to the noise
cases described for the multi-band systems in Section 8.2. Results are presented in Table 10.4.

The baseline recognizer employing the robust J-RASTA-PLP features outperforms the stan-
dard multi-stream systems as well as the FC approaches. RF weighting used in FC Sum did not
achieve a significant improvement. As FC Propuct obtained lower WER than the FC Sum in
multi-band processing in wide-band noise, we employ FC PropucT also to multi-stream pro-
cessing in this kind of noise. Significant performance improvement as compared to FC Sum is
achieved but not resulting in competitive performance as compared to the baseline system.
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Car Factory

0dB |12 dB |0 dB |12 dB] Mean
J-RASTA-PLP 32.8 | 10.6 |34.6 | 114 || 224
PLP 50.5 | 13.8 | 52.6 | 14.6 | 32.9
MFCC 63.4 | 226 | 68.8 | 21.2 || 44.0
PLP-J-RASTA-PLP 50.1 | 13.6 | 48.0 | 144 | 31.5
PLP-MFCC 50.9 | 14.0 | 54.1 | 145 || 33.4
MFCC-J-RASTA-PLP 48.4 | 14.1 | 474 146 || 31.1

PLP-J-RASTA-PLP-MFCC | 48.1 | 13.4 | 49.8 | 13.5 31.2

STD SuM 424 | 11.4 |42.0| 12.3 || 27.0
STD ProbucT 40.6 | 12.1 | 40.8 | 11.9 || 264
FC SuMm 475 12.6 | 46.9 | 14.0 || 30.3
FC SuMm RF 46.9 | 12.7 | 47.0 | 13.0 || 29.9
FC ProbpucCT 413 11.7 | 394 | 13.8 || 26.6

Table 10.4: WERs for multi-stream processing using PLP, J-RASTA-PLP and MFCC features.
FC processing (using FC Sum with Equar and RF weights, and FC Propuct) is compared
to standard multi-stream processing where only the three fullband probability streams are
recombined as well as to the J-RASTA-PLP baseline. Results for each of the seven constituent

recognizers which are used in FC processing are also given (Lines 1 to 7).
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10.2.4 Preliminary conclusions

To sum up, significant performance improvement as compared to the J-RASTA-PLP baseline
system is achieved by FC processing only on non-stationary band-limited noise. In this case,
also the standard multi-band approaches deteriorate significantly more than FC Sum. For all
other noise conditions and clean speech, no significant improvement is obtained using FC multi-
stream processing as compared to the J-RASTA-PLP fullband recognizer. In real-environmental
wide-band noise, FC PropucT is needed to improve FC processing on this kind of noise.

In a parallel study by Christensen et al. (2000) multi-stream experiments using PLP, MFCC
and J-RASTA-PLP features on noise-corrupted data (from the NumBers95 database with added
factory, car and lynx noise from the Noisex92 database) also gave no significant performance
improvement. Probability combination was carried out by STD Sum and STD PropucT. Inves-
tigation of the respective frame errors, however, showed that there was a significant performance
difference in the ability of the streams to classify the different phonemes. It therefore has to
be concluded that performance improvement in noisy speech is not guaranteed through the use
of any heterogeneous feature sets, even when the features show different abilities in classifying

the different phonemes on the frame level.

More diverse information streams are needed to improve over a single, good classifier such
as in our case the J-RASTA-PLP feature based classifier. In the following, we therefore test
the full potential of the FC multi-stream system using streams covering more diverse speech

information, using acoustic data from different time scales.

10.3 Multiple time scale features

In the next set of multi-stream experiments we change from diverse features which were ex-
tracted from the same time scale to the same kind of features (i.e. either PLP or J-RASTA-PLP
features) which, however, are extracted from multiple time scales. Two kinds of features are
investigated: (i) “variable window size” features where the window for feature extraction is
increased for each new feature stream, and (ii) static and difference features employed in inde-

pendent streams and processed according to the FC approach.

In the multi-stream experiments presented in the previous section as well as in our multi-
band experiments described in Section 8.4, equal weighting generally gave among the best
results when using HMM/MLP hybrid systems. For this reason, we use equal weighting also in

the following multi-stream experiments.

10.3.1 Variable window size features

Three different time scales are used in the estimation of the “variable window size” PLP fea-
tures: 25 ms, 75 ms and 125 ms, respectively (all shifted every 12.5 ms), as was illustrated in
Figure 9.4. The first time-scale PLP features correspond to the PLP features also employed
in the multi-stream system in the previous section, as well as in the PLP-feature based baseline
system in multi-band processing (see Section 8.1 for description). The larger time scale features
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use the same number of coefficients as described in Table 8.1 for the short-time features, which
was found to work best. In Tables 10.5 and 10.6, the multi-scale features are respectively
denoted as (1), (3) and (5), referring to the respective multiple of the original window size.

Since these multi-scale features are clearly correlated, and not very likely to function well by
themselves, they are respectively concatenated to the instantaneous feature vector (1), resulting
in feature vectors (1-3), (1-5) and (1-3-5). For each feature combination, one MLP expert was
trained on 9 frames of contextual input. The number of MLP parameters are given in Table J.2
of Appendix J.

Stationary Band-Limited Noise
Band 1 Band 2 Band 3 Band 4
0dB|12aBlodB|12aB|0daB[12dB 0 dB|12 4B Mean
1 57.5 | 20.2 | 74.6 | 34.1 | 65.4 | 31.2 | 67.2| 325 | 49.0
1-3 68.2 | 37.4 | 66.0 | 30.8 | 58.1| 20.9 | 73.4 | 35.6 || 49.9
1-5 63.0 | 37.8 | 71.5| 334 | 60.9 | 332 |83.9 | 44.4 || 535
1-3-5 65.5 | 37.5 | 79.4 | 35.6 | 59.8 | 335 | 84.2 | 42.4 || 54.7
STD Sum 63.6 | 34.9 | 75.1| 33.6 | 57.1 | 30.0 | 715 | 33.4 || 49.9x
STD Propucr | 65.9 | 35.7 | 73.6 | 33.7 | 56.7 | 29.3 | 74.6 | 35.2 || 50.6%

Table 10.5: WERs for the “variable window size” system tested in stationary band-limited
noise. Features extracted on 25 ms are refered to as (1), on 75 ms as (3) and on 125 ms as (5).
Longer time scale features (3) and (5) are concatenated to the short-term features (1). Multi-
stream combination is carried out by STD Sum and STD ProbpucT. * indicates that there is no

significant improvement in WER, as compared to the best value in that column.

Results for the “variable window size” system using PLP features can be seen in Tables 10.5
and 10.6. The baseline system — referred to as (1) — corresponds to the PLP fullband HMM /MLP
hybrid system as also used in multi-band processing on PLP features (and in the multi-stream
experiments of the preceding section). The multiple-time scale system consists of 4 MLPs, each
of which was trained on one of the different time scales (1), (1-3), (1-5), and (1-3-5). The
posterior probabilities at the output of the MLPs are then combined via sum and product.

The results in clean speech are presented in the last column of Table 10.6. It can be
observed that in the longer time scale based recognizers the information germane to phonetic
identity is most probably smeared across time and thus results in less accurate recognition. No
improvement was obtained by posterior combination of the multi-scale streams.

In stationary band-limited noise (cf. Table 10.5), no performance improvement as compared
to the baseline system could be achieved when using the recombined multi-stream system
incorporating all three time scales (for both the STD Sum and STD Propuct). Degradation,
though, is not significant either.

The results on non-stationary band-limited noise and wide-band noise are shown in Ta-

ble 10.6. Some, though no consistent and no significant improvement using the multiple time
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scale systems as compared to the baseline fullband system is obtained. As already observed
previously, the product combination degrades more than the sum combination in non-stationary
band-limited noise but performs better than the latter in the case of wide-band noise.

Band-Limited Noise Wide-Band Noise

Siren Car ‘ Factory Mean || Clean

0 dB|12 dB | Mean OdB‘IQdB‘OdB‘IQdB

1 66.9 | 36.1 | 51.5°|| 50.5 | 13.8 | 52.6 | 14.6 | 32.9*|| 7.1
1-3 68.8 | 345 | 51.7°| 49.1 | 16.1 | 55.6 | 15.6 | 34.1 7.9°
1-5 68.1 | 33.9 | 51.0°|| 50.8 | 16.1 | 53.6 | 17.0 | 34.4 8.6°
1-3-5 776 | 378 | 57.7 || 489 | 159 | 54.8| 169 | 34.1 94
STD Sum 65.8 | 345 | 50.2 || 475 | 14.6 | 49.8 | 15.5 | 31.9*|| 7.8°
STD Probucrt | 69.7 | 34.8 | 52.3°| 45.5 | 14.2 | 49.3 | 14.7 | 30.9 8.1°

Table 10.6: WERs for the “variable window size” systems tested in non-stationary band-
limited (siren) noise and wide-band car and factory noise, as well as clean speech. Features
extracted on 25 ms are refered to as (1), on 75 ms as (3) and on 125 ms as (5). Longer time scale
features (3) and (5) are concatenated to the short-term features (1). Multi-stream combination
is carried out by STD Sum and STD ProbucT. *, ¢ and o indicate that there is no significant

improvement in WER as compared to the best value in that column.

As no significant performance improvement was achieved, no tests on J-RASTA-PLP features
were pursued.

10.3.2 Static and difference features

The first and second order time difference features, were implicitly used in (almost) all the
previous systems as described in Section 8.3.1. The delta features are calculated over five
instantaneous features according to Az = [-2x4—9 — 41 + T+1 + 22442] and the delta-delta
features over seven instantaneous features according to AA z; = [2x4_3 + 4o — 2@41 — 204 —
2x41 + Teqo + 2@ y3] (which corresponds to a simple subtraction of the preceding delta-value
from the following delta-value, i.e. AAz; = [-Axz;_1+Axi11]). They cover respectively 75 ms
and 100 ms of speech data. As these difference features are more or less independent of the
instantaneous features they can more appropriately be treated as separate, higher time scale
feature streams. In the following, we use these features (in PLP and J-RASTA-PLP processing)
as multiple time scale feature streams, which are recombined according to the FC approach. For
each of the seven streams an MLP recognizer was trained, the number of parameters of which
are given in Table J.3 of Appendix J. The posterior probabilities at the output of the MLPs
are combined via FC Sum (6.3), FC INnpEP AsmpT (as defined in Table D.2 of Appendix D)
and FC Probuct (6.23), using equal weights.

Experiments were carried out for both PLP and J-RASTA-PLP features.



162 Experimental evaluation of multi-stream processing

PLP features

The results of the PLP baseline system (here referred to as Raw-p-pp?), which is the same as
in the preceding sections, are shown in line 7 of Tables 10.7 to 10.9. Lines 1 to 6 give the

recognition performance of each of the other six constituent streams for comparison.

In clean speech (see Table 10.9), none of the three combination schemes performs sig-
nificantly different from the baseline recognizer. When looking at the performance of the
constituent streams, we see that all combinations including the static (raw) features perform
equally well as the baseline. Only the single streams and the combination of perTA and pELTA-
pELTA features deteriorate when used by themselves. Similar results were found in (Macho et al.,
1999, p. 113) on isolated digit recognition where the “acceleration filter” (i.e. the DELTA-DELTA
features) also hurt performance in clean speech. The authors argue that degradation in clean
speech of the pELTA-DELTA features could be due to the complete cancellation of the zeroth
modulation frequency. Thus, static features are needed to achieve good performance in clean
speech.

In stationary band-limited noise, FC Sum and FC PropucT perform significantly better than
all other streams, including the baseline system, as can be seen in Table 10.7. The FC INDEP
AswmpT results in a weak (though significant) improvement over the baseline. It is interesting
to note that, in these noise conditions, the pDELTA and DELTA-DELTA streams as well as their

combination outperform any other constituent stream.

In non-stationary band-limited noise (see Table 10.8), on the contrary, these three streams
deteriorate the most, whereas all streams which include the static features are more noise
robust. This performance pattern shows the similarity of the difference features to the RASTA-
filtered features which, as could be seen in Tables 10.2 and 10.3 (line 1), led to the same
performance pattern on these two narrow-band noise cases. In non-stationary band-limited
noise, no significant performance difference is observed between the raAw-b-pD baseline and the
FC Suwm, though the FC Propuct and FC INDEP AsmPT deteriorate significantly, with the latter
being unable to decode in case of very low SNR.

The experiments on real-environmental wide-band noise (cf. Table 10.9) led to very dif-
ferent results than observed for the other noise cases. Here, it is FC INDEP AsMPT which
outperforms all other streams, including the baseline system and the other two FC strategies.
Neither FC Sum nor FC PropucT can improve over the Raw-n-pD baseline system.

These results show an important improvement from the first set of multiple time scale
features. Using the static and difference features in FC, good improvement was achieved in the
two band-limited noise cases (with FC Sum) and the wide-band noise cases (using FC INDEP
AsmpT) as compared to the baseline system. The use of the difference features is especially
appealing as these features, firstly, are more independent than the “variable window size”

features and, secondly, only need to be extracted once which speeds up calculation time.

As compared to the results of the multi-band systems of Section 8.3.1 (Table 8.4), no
improvement was achieved on band-limited noise. Both the multi-band FC Sum and the multi-

2This refers to the concatenated features used at the input to the stream MLP : “RAW” denotes the static
features, “D” the delta features, and “DD” the delta-delta features.
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Stationary Band-Limited Noise

Band 1 Band 2 Band 3 Band 4 Mean
0dB|12dB|{0dB|12dB|0dB|12dB|0dB|12dB

RAW 63.9 | 42.0 | 71.1| 369 | 65.1| 38.0 | 81.8 | 43.6 || 55.3
DELTA (D) 54.6 | 33.5 | 67.9 | 345 | 56.5| 339 | 48.0| 382 | 459
DDELTA (DD) 62.0 | 371 | 654 | 29.9 | 559 | 36.5 | 44.8 | 35.6 || 45.9
RAW-DELTA 724 | 386 | 69.8| 349 | 56.0 | 285 | 72.8 | 32.5 || 50.7
RAW-DD 60.0 | 32.6 | 66.1 | 33.0 | 62.5| 32.1 | 782 | 349 | 499
D-DD 62.1 | 37.8 | 66.4 | 31.8 | 56.4 | 36.5 | 45.0 | 35.1 | 46.4
RAW-D-DD 5751 29.2 | 74.6 | 341 | 654 | 31.2 | 67.2 | 32.5 || 49.0
FC Sum 49.1| 26.8 | 57.8 | 26.1 | 41.8 | 24.1 | 39.1 | 23.5 || 36.0
FC INnpEP AsmpT | 78.5 | 41.5 | 54.0 | 23.6 | 43.8 | 25.6 | 58.9 | 30.8 || 44.6
FC ProbucT 53.1 ] 29.8 |59.9 | 278 | 464 | 264 | 459 | 234 || 39.1*

Table 10.7: WERs on stationary band-limited noise for each of the static and difference (PLP)
feature streams (pure or concatenated “-”), as well as the FC multi-stream systems (combination

*

by FC Sum, FC InpeEP AsmpT and FC Propuct), using equal weights. * indicates that there is

no significant difference to the best result in that column.

Siren

0 dB \ 12 dB H Mean

RAW 654 | 374 || 51.4*

DELTA 101.5| 57.2 || 79.3 Table 10.8: WERs on non-stationary

DDELIA 955 | 509 || 732 band-limited noise for each of the static
and difference (PLP) feature streams (pure

RAW-DELTA 679 | 34.6 °1.3 or concatenated “”), as well as the FC

RAW-DD 68.8 | 34.2 || 51.5" multi-stream systems (combination by FC

D-DD 91.5 | 49.6 70.6 Sum, FC InpeEP AsmpT and FC Probucr),

AW-DDD 669 | 361 1| 515 using tequ.al Welg}?ts. indicates that there
is no significant difference to the best result

FC Sum 67.8 | 32.0 || 49.9 in that column.

FC InpEP AsmpT | 112.8| 53.6 || 83.2

FC ProbuCT 76.0 | 36.4 || 56.2
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Wide-Band Noise
Clean Car Factory

0aB[1248] 0 4812 an ] M
RAW 9.6 | 55.0| 18.0 || 67.6 | 184 | 39.8
DELTA 10.4 || 81.4 | 25.8 || 83.4 | 24.6 || 53.8
DDELTA 124 |1 89.0 | 31.1 || 91.1 | 32.6 || 61.9
RAW-D 7.9% || 49.1 | 134 || 52.0 | 15.9 || 32.6
RAW-DD 7.0% || 54.0 | 14.5 || 58.6 | 14.2 || 35.3
D-DD 124 || 89.6 | 32.8 || 92.1 | 34.0 || 62.1
RAW-D-DD 7.1% || 50.5 | 13.8 || 52.6 | 14.6 || 32.9
FC Sum 7.2% || 68.8 | 15.5 || 68.5 | 16.2 || 42.3
FC INnpEP AsmpT | 6.9 || 34.8 | 11.8 || 49.9 | 12.2 || 27.2
FC ProDUCT 7.0* || 61.8 | 13.8 || 59.2 | 16.2 || 37.8

Table 10.9: WERs on clean speech and wide-band noise for each of the static and difference
(PLP) feature streams (pure or concatenated “-”), as well as the FC multi-stream systems
(combination by FC Sum, FC Inpep Asmpt and FC PropucT), using equal weights. * indicates

that there is no significant difference to the best result in that column.

band AFC Sum obtained lower WERS on stationary (26.6% WER and 21.2% WER, respectively)
and non-stationary (27.4% and 20.7% WERs, respectively) narrow-band noise. In wide-band
noise, though, the multiple time scale FC INnpDEP AsmpT achieved significantly higher accuracy
than any of the multi-band systems (cf. Appendix G, Table G.3).

J-RASTA Features

With the good results of this multiple time scale FC system using PLP features we now turn to
using J-RASTA-PLP features. As we have already observed in the experiments of the preceding
systems, J-RASTA-PLP-based systems are harder to improve as their overall performance is
already higher.

In this section, we only report the results from the FC strategies, and compare their perfor-
mance to the J-RASTA-PLP fullband baseline system. All systems using J-RASTA-PLP features
employ scaled likelihoods in these experiments. Results for the different noise cases and clean
speech can be seen in Tables 10.10 and 10.11. The results of the constituent streams, which

are discussed in the next paragraph, can be found in Appendix I.

In clean speech, only the perra and peLTA-DELTA feature streams (used by themselves) led
to significantly degradation for the J-RASTA-PLP features, whereas in the case of PLP features,
also the raw-stream by itself was not competitive (see Appendix I). In stationary band-limited
noise, we can again observe that the raw features by themselves degrade most. For the J-RASTA-

PLP features, this degradation, though, is less than for PLP features. In case of non-stationary
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narrow-band noise (cf. Table 1.3), the first derivative features give worst performance for both
feature sets, whereas the second-order derivatives degrade significantly less. Combinations with
this feature stream even led to the most robust streams in the case of J-RASTA-PLP processing,
whereas for PLP features it was the combinations with the raw features which stayed the most
powerful in this kind of noise. In wide-band noise, on the other hand, it is the DELTA-DELTA
feature stream which cannot handle this noise corruption. In this kind of noise, the raw features
are needed in both feature sets to enhance performance of the constituent streams. This shows
that each of the three feature streams (Raw, DELTA and DELTA-DELTA) is powerful on a different
kind of noise condition. We try to better exploit this characteristic by applying FC processing

instead of the usually used simple concatenation of the three feature sets.

Turning to the FC strategies, we see that in clean speech (see Table 10.11) the baseline
system and the FC systems give competitive performance also for J-RASTA-PLP features.

Using static and difference J-RASTA-PLP features in multiple time scale FC, only slightly
decrease WER over the baseline system in stationary band-limited noise, but not significantly.
In non-stationary band-limited noise, on the contrary, performance was considerably improved
by all multiple time scale FC systems and especially in the case of FC Suwm.

Stationary Band-Limited Noise
Band 1 Band 2 Band 3 Band 4 Mean
0dB|12dB|0dB|12dB |0 dB|12 dB OdB‘IZdB‘

FULLBAND 306 | 11.4 | 48.0| 16.0 | 35.2 | 184 | 24.5| 19.2 | 25.4x

FC Sum 289 | 125 | 404 | 15.0 | 27.8 | 155 | 244 | 19.1 23.0%
FC INpEP AsmpT | 284 | 11.9 | 415 | 14.8 | 29.1 | 15.8 | 23.0 | 17.6 22.8
FC ProbpuCT 287 | 12.6 | 429 | 155 | 289 | 15.7 | 23.5 | 18.0 || 23.2%

Table 10.10: WERs of the FC systems using raw, pDELTA and DELTA-DELTA (J-RASTA-PLP)
features as different time scale streams and equal weighting, as well as the fullband baseline
employing the three features after concatenation. Tests carried out in stationary band-limited
noise. * indicates that there is no significant difference in WER as compared to best value in
that column.

In wide-band noise, recognition performance of the baseline and the FC systems, are com-
parable with no significant improvement using multiple time scale FC. (In the case of the PLP
features, it was the FC INDEP AsmPT which significantly outperformed all other streams in this
kind of noise).

Discussion To sum up, in clean speech, FC processing did not result in any significantly differ-
ent performance as compared to the FurLBanD, for both PLP and J-RASTA-PLP. In stationary
band-limited noise FC Sum and FC PropucT were significantly better than the FurL.BaND when
using PLP features, but no difference in performance was observed for the J-RASTA-PLP fea-
tures. In non-stationary band-limited noise, the J-RASTA-PLP based FC Sum, FC Probucr,

and FC InpeEP AsmpT gave significantly improved performance, whereas for PLP features the
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Band-Limited Wide-Band Noise
Clean Siren Car Factory

Mean

0 dB ‘ 12 dB ‘ Mean ||0dB|12dB |0 dB |12 dB
FULLBAND 7.8% || 104.6| 48.1 | 76.4 || 29.1 | 9.8 |34.1| 12.5 21.40
FC Sum 89% || 83.8 | 34.4 | 59.1 || 278 | 9.6 |31.3| 11.7 20.10
FC INDEP AsmpPT | 7.5 100.0| 39.9 | 70.0 || 28.1 | 8.8 |30.8| 10.1 19.5
FC Probpuct 8.1x | 100.0| 39.9 | 70.0 || 29.7| 9.7 |31.9| 11.1 20.6¢

Table 10.11: WERs of the FC systems using raw, peurA and perLtA-pDELTA (J-RASTA-PLP)
features as different time scale streams and equal weighting, as well as the fullband baseline
employing the three features after concatenation. Tests carried out in clean speech, stationary
band-limited and wide-band noise. * and ¢ indicate that there is no significant difference in
WER as compared to best value in that column.

improvement with FC Sum was not significant. In real-environmental wide-band noise, the
FC INDEP AsmPT using PLP features significantly improved over the PLP fullband, though for
J-RASTA-PLP features the improvement was not significant.

As it could be seen, the relative improvement is in general less when employing J-RASTA-
PLP features. This can be due to the fact that (J-)RASTA processing is very similar to the
calculation of the difference features and that less gain is achieved when both are used jointly.
Temporal derivatives are equal to an FIR filter which attenuates slow-changing frequency com-
ponents (i.e. lower modulation frequencies). RASTA processing uses an IIR filter (i.e. band-pass)
which is usually a bit broader than the pass-band used in the estimation of the difference fea-
tures (Hermansky and Morgan, 1994, p. 586). The frequency response of a RASTA filter is
supposed to let the most relevant portions of the speech signal pass®, whereas the peLTa feature
filter has a slightly more selective frequency response emphasizing a smaller range of changes
in the frequencies and attenuating the rest. This only small difference between both filtering
schemes might be responsible for the smaller gain we achieved with the multiple time scale FC
systems using J-RASTA-PLP features as compared to PLP features.

Comparison to multi-band systems As compared to the J-RASTA-PLP FC multi-band
system, performance of the J-RASTA-PLP-based multiple time scale FC systems cannot compete
on stationary band-limited noise (WER of 22.8% as compared to 17.7% in Table 8.6), neither
on non-stationary band-limited noise (59.1% average WER . as compared to 30.0% in Table 8.7).
In real-environmental wide-band noise, the multiple time scale FC systems degrade less than
the FC multi-band systems though the difference is not significant (19.5% as compared to
22.0% in Table 8.8). Moreover, all three FC systems gave no significant improvement over the
J-RASTA-PLP fullband system in this kind of noise.

3Hermansky and Morgan (1994) refer to experiments conducted by Green (1976) where it was found that
human hearing is more sensitive to modulation frequencies around 4 Hz than to lower or higher modulation
frequencies.
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10.4 Summary

The use of multiple, diverse feature streams consisting of PLP, J-RASTA-PLP and MFCC fea-
tures, in the framework of FC multi-stream processing achieved significant performance improve-
ment in clean speech over the FC multi-band system employing J-RASTA-PLP features only.
As compared to the J-RASTA-PLP baseline system, though, the difference was not significant.
For the different noise cases, the FC multi-stream system employing single-scale features could
only significantly reduce WER. in the case of non-stationary band-limited noise (as compared to
the baseline), but performance was not competitive with that obtained with the J-RASTA-PLP

FC multi-band system on this kind of noise.

In multiple time scale multi-stream processing, we first investigated combined features ex-
tracted from windows covering different time spans. Using these “variable window size” features
did not result in any significant performance improvement, neither degradation, in any condi-

tions of our experiments.

Our best success in using multi-stream processing was achieved by the use of static and
difference features as different time scales. In the case of PLP features, FC Sum and FC ProDUCT
significantly enhanced recognition in stationary band-limited noise, and the FC INpDEP AsmpT
in wide-band noise, as compared to the RAw-D-DD baseline recognizer. The same experiments
carried out using J-RASTA-PLP features gave smaller improvements due to the already noise-
robust J-RASTA-PLP features. However, in non-stationary band-limited noise, the FC Sum
significantly reduced the WER as compared to the J-RASTA-PLP baseline system.

Comparing these results to the ones obtained using multi-band processing, we can see a
tendency of the multi-band systems to be more competitive in band-limited noise, whereas the
multi-stream systems are more competitive in clean speech. In wide-band noise, results are less

conclusive.

e In stationary band-limited noise, it was the multi-band FC-ECPC system (17.1%) which
achieved lowest WER, tightly followed by FC Sum (17.7% with EquaL and 18.3% with RF
weights) and FC Inpep Asmpt (18.6%) in J-RASTA-PLP multi-band processing.

e In non-stationary band-limited noise, the best system was constituted by the multi-band
recognizer employing PLP features and the AFC Sum combination strategy (20.7%). The
next best result on this kind of noise is achieved by J-RASTA-PLP-based multi-band FC
Sum using RF weights (22.6%).

e Turning to the wide-band noise cases, lowest WER was also obtained by a (J-RASTA-
PLP) multi-band system (FC Propuct (19.3%)), and the next best system constituted
a multi-stream system (with J-RASTA-PLP static and difference features) using the FC
InpeP Asmpt (19.5%).

e In clean speech, it is the multi-stream systems employing diverse (single-scale) features
(PLP together with J-RASTA-PLP, and J-RASTA-PLP together with MFCC, see Ap-
pendix I) which outperformed (6.3%) all other single or multiple stream systems, though
the difference was not significant to the next most competitive set of recognizers. The
next-best systems are still all multi-stream recognizers, first the (single-scale) FC Sum
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(6.7%) followed by the recognizers (6.9%) employing (i) FC INpEP AsMPT on static and
difference PLP features, (ii) STD Sum in single-scale features, and (iii) simple feature
concatenation of these features (PLP-MFCC and PLP-J-RASTA-PLP-MFCC).
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Conclusion

11.1 General summary

In this thesis, the two paradigms of multi-band and multi-stream processing for robust ASR were
investigated. The main goal was to advance the development of multiple stream systems which
are trained in clean speech and achieve high performance in both matched and mismatched
conditions.

Background information on human speech processing was presented, in order to use this
understanding to illustrate several automatic processing schemes, introduced later, which are
inspired by some aspects of human speech processing. We presented early psychoacoustic find-
ings by Fletcher who experimented on human hearing of CVC syllables. His experiments on
high—and low-pass filtered speech suggested the existence of auditory frequency bands which
seemed to be processed rather independently. More extensive research several years later by
Steeneken and Houtgast, who also employed band-pass filtered speech, disproved this assump-
tion. It was shown that correlation between neighboring frequency bands exist and that there
was high information redundancy in the speech signal which is exploited by human listeners.

After describing these human processing schemes which are highly robust to noise, automatic
processing schemes to enhance noise robustness where presented. Many of these, including
certain feature extraction techniques and the approaches of MD, multi-band and multi-stream

processing, comprise characteristics of HSP.

A multi-band system offers increased noise robustness especially to band-limited noise due
to the separate processing of each frequency subband. On the other hand, it had previously
been observed in multi-band processing that an additional fullband recognizer was needed with
clean speech and wide-band noise to render performance of the multi-band system competitive.

Thus, in order to account for the correlation between neighboring frequency bands and
exploit the redundancy in the speech signal to render multi-band processing more powerful also
to other than band-limited noises, the “full combination” (FC) approach was introduced. In this
approach, all possible combinations of frequency subbands are considered, usually by training

169
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one expert, for each combination. The implementation of the FC approaches for both the sum
and product rules were derived for posterior- and likelihood-based systems. In this framework,
an interesting relation of the likelihood-based FC approach to missing data processing was found.
Employing the marginalization approach from MD, it would be possible in the (likelihood-based)
FC approach to integrate over all possible combinations of feature coefficients without having
to train a separate expert for each stream (coefficient). In MD, on the other hand, only one
configuration of (reliable and unreliable) feature coefficients is chosen at a time. In order to
reduce training effort also for posterior-based systems, an approximation to the FC approach
was proposed, where the single-stream experts are used to approximate all combination-experts
before recombination is carried out.

Although early multi-band approaches relied on Fletcher’s assumption of subband indepen-
dence, none of these approaches actually came anywhere near to achieving the performance
described by his “product of errors” rule which states that the overall recognition is correct,
if any subband is correct. As error probabilities are known to be directly related to poste-
rior probabilities, the descriptive “product of errors” rule was implemented as a prescriptive
method for expert combination. Surprisingly, this showed competitive performance in noise but
degradation in clean speech.

Another posterior-based combination strategy was investigated which was also based on
a model of HSP quantifying the influence of contextual information on human recognition
performance as presented by Bronkhorst, Bosman and Smoorenburg. We investigated how the
application of this approach, which we refered to as “error correction in posteriors combination”
(ECPC), could be combined with our FC approach. Although only a preliminary approximation
to error correction through prior information was used, improved noise robustness on low SNR,
wide-band noise could be achieved.

In multiple stream systems noise robustness can furthermore be enhanced through the use
of reliability weights. Several fixed and adaptive weighting strategies were investigated. The
stationary weights comprised relative frequency (RF) measures and weights calculated from
the least mean squared error (LMSE) criterion, which both resulted in only small performance
improvements. For HMM-GMM systems, (fixed and adaptive) ML weights were derived through
the application of the EM algorithm. Here, significant improvement in WER was achieved for
both standard and FC multi-band processing. The second set of adaptive weights was based on
SNR estimates in each frequency subband.

Although the FC multi-band approaches, in most of the cases, significantly enhanced recog-
nition performance as compared to the standard multi-band approaches much less improvement
was achieved as compared to the fullband recognizer. We thus investigated the paradigm of
multi-stream processing, based on different fullband feature streams. The same stream combi-
nation strategies as introduced for multi-band processing are also applicable here. The same is
true for the weighting strategies (with the exception of the specific realization of the SNR-based
weights). Single time scale and multiple time scale features were investigated. The multi-scale
features, using static, delta and delta-deltas as separate feature streams, achieved highest im-
provement in noise robustness as compared to the baseline recognizer. It depended on the
respective noise condition whether this was the case for the FC Sum, FC PropucT, or FC INDEP

AswmpT rule.
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Statistics drawn from our tests could be summarized as follows:

e The product rules (both FC and standard) outperformed the sum rules in 69% of the
clean cases, in 76% of the band-limited noise conditions, and 92% of the wide-band noise

conditions.

e Probability combination (of PLP, J-RASTA-PLP and MFCC features) outperformed fea-
ture combination in 81% of all possible combinations (cf. Appendix H).

e Comparing FC processing to the respective standard combination strategy, it was found
that for 83% of the cases it was FC processing which performed better.

e When looking at the performance achieved by PLP versus J-RASTA-PLP features, we
can observe that PLP features usually gain lower WER in clean and non-stationary band-
limited noise where as J-RASTA-PLP features performed better in stationary band-limited

noise and wide-band noise.

11.2 Original contributions

Investigating multi-band processing We investigated the limitations of multi-band pro-
cessing both regarding its original motivation from psychoacoustics and its effective realization
in automatic speech recognizers. The first showed us that more recent psychoacoustic results
reveal that humans do not seem to process uncorrelated and distinct frequency subbands but
make use of dispersed information across the spectrum. Looking at the multi-band approaches
as they were employed previously (one expert per subband) we saw that the formerly applied
assumption that the events' were exhaustive was not valid, and that important correlation

information was disregarded.

Based on the results from both investigations we were able to define a conforming set of
mutually exclusive and exhaustive events establishing the “full combination” approach. In this
approach, correlation information is preserved as much as possible (in the case of noise corrupted
data) by integrating experts trained on all possible positions of clean data. The results showed
that the FC processing schemes consistently ranged among the best approaches tested in both
matched and mismatched conditions.

Development of new combination schemes In the framework of this thesis, we developed
several new probability combination strategies. Where appropriate, these were developed for
both posterior- and likelihood-based systems. These comprised, firstly, implementation of the
already mentioned FC approach as well as an approximation scheme with which every standard
subband system can be extended to an approximated FC setup. For the likelihood-based ap-
proach, a combination scheme was developed using the marginalization approach (drawn from
MD) which allows to integrate over all possible combinations of reliable data using the full-
band pdf only. This offers a significant advantage over MD processing where the reliable data
needs to be detected, and, moreover, only one MD mask is used for each time frame, instead of
integrating over all possibilities.

Levent that “subband ¢ must contain the best selection of data”.
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For posterior-based combination, two more strategies were investigated, the application of

e the “product of errors” (PoE) rule as proposed by Fletcher

e Bronkhorst et al.’s model, which includes the error probability of the mis-recognized

constituent streams (within each combination) in the respective combination-probability.

The STD PoE and FC PoE are competitive in noise as compared to the standard and FC
approaches, respectively, but cannot compete in clean speech. FC-ECPC is competitive for all
conditions tested, resulting in significant performance improvement in low SNR wide-band noise

when weights were employed.

Investigation of fixed and adaptive weighting strategies In order to further enhance

our multiple stream systems, we investigated several fixed and adaptive weighting strategies.

The weighting strategies developed for posterior-based systems only led to small improve-
ments. It therefore has to be stated that in this case, equal weighting offers one of the best

and, most of all, computationally fastest weighting schemes.

In the case of likelihood-based processing, the conclusions are very different. Significant
performance improvement was achieved using the ML weights (trained offline) in standard and
FC processing, with the latter significantly outperforming the former. Results were close to
those obtained by the “quasi-optimal” weights. Only preliminary experiments could be carried
out employing online ML weights adaptation, though performance improvement as compared
to equal weights could already be demonstrated.

Investigating multi-stream processing In multi-stream processing, it is usually unpre-
dictable whether the streams are correlated and should thus be processed jointly or whether
separate processing up to the probability level is preferable. Employing the FC approach, we
can account for both at the same time.

This could be confirmed in multi-stream processing using diverse (single-scale) features,
where FC processing achieved among the best results (averaged over all noise conditions) as

compared to either pure feature or pure probability combination.

Looking for more diverse and more complementary feature streams, we investigated multi-
ple time scale features. When the static, delta and delta-delta features were used as separate
information streams within the FC approach, significant performance improvement could be
achieved for PLP features. (Tests on J-RASTA-PLP features showed less significant improve-
ments). This shows that complementary information can be obtained from different time scales,
and that, especially in the case of the static and difference (PLP) features, it can be better ex-
ploited through FC multi-stream processing than through pure concatenation of these feature

streams as usually done in ASR.

Experimental evaluation From the experiments conducted in this thesis, we can draw the

following main conclusions:
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e The multi-band FC approach is competitive in clean speech (which is not the case for
standard multi-band processing) and consistently ranges among the best systems for all
noise cases. Depending on the noise case, it was observed that the FC Sum rule generally

obtains better results in band-limited noise, and the FC PropucT in wide-band noise.

e For performance improvement in clean speech, multi-stream processing should be applied,
though none of our systems tested gained a significant improvement over the best (i.e. J-
RASTA-PLP) baseline.

e For multi-stream processing in noise, the results are less conclusive, but again it was
observed that the FC Sum rule obtains better results in band-limited noise, whereas in

wide-band noise it is the FC INDEP AsmpT rule.

11.3 Future work

While significant progress has been made, there are many issues in multi-band and multi-stream
modeling which require further research. This is the case for some of the weighting strategies.
The SNR-based weights offer a potential to further improve noise robustness in non-stationary
noise if the reliability and speed of SNR estimation can be increased. Thus, it can be hoped
to improve these weights through an improved SNR estimator, such as proposed in (Dupont,
2000).

Moreover, ML weight adaptation needs to be tested in non-stationary band-limited noise
as well as real environmental noise conditions, where the fixed ML weights have already led
to improved performance. The optimal step size for the adaptation of the weights is hereby a

crucial factor, which needs to be investigated.

Although the experiments in this thesis were carried out on a wide range of additive noise
conditions as well as clean speech, it is now important to test whether the best set of multi-band
and multi-stream systems developed in this thesis can also be applied to a large vocabulary
continuous speech recognition task.

Finally, some new ideas which developed during the course of this thesis seem interesting

for further development. They are described in the following.

Joint multi-stream and multi-band approach The two approaches of multi-band and
multi-stream processing are usually considered as alternative paradigms to robust ASR. How-
ever, when looking at their respective advantages and disadvantages it becomes apparent that
they should rather be seen as complementary. Multi-band processing is powerful in speech
corrupted by band-limited noise. Moreover, through the use of narrow frequency bands, train-
ing in white Gaussian noise becomes possible in such a way that it will also account for other
noise cases, as in narrow frequency bands each noise condition resembles white noise (Ceris-
ara, 1999a; Dupont, 2000). In multi-stream processing, on the other hand, it was shown that
training of one of the multiple classifiers in noise usually leads to decreased performance of the
combined system and that better performance is rather obtained when using different feature

representations (Shire, 2001). Multi-stream processing appears to possess advantages in clean
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speech as well as speech corrupted by some wide-band noise. Thus, to account for each system’s

short-coming, it seems promising to use both approaches jointly.

Combination of a multi-band and a multi-stream system has not yet been proposed and has
the potential to achieve both good performance in clean speech and noise robust behavior in
all noise conditions, that is band-limited and wide-band noise.

Researching for a hybrid combination strategy Moreover, in both approaches, multi-
band and multi-stream, the question arises as to which level (“feature combination” or “proba-
bility combination”) stream combination should take place, and in what way. The first question
has, to some extent, been accounted for through the “full combination” (FC) approach which
combines both approaches. In probability combination, however, the best probability combina-
tion strategy seems to depend on the test application (train/test mismatch). It has been found
in this thesis, that the FC Propuct rule, which is a severe rule when errors are present, as a
single classifier can inhibit a particular class by outputting a probability which is close to zero,
often obtains best results in matched conditions and in speech corrupted with wide-band noise.

The FC Sum rule, on the other hand, is more error tolerant, as inaccurate probabilities from
one classifier have a smaller effect on the final result. It achieves best performance in speech

corrupted with band-limited noise.

For this reason, we propose that a combined strategy which is capable of either switching
from one combination rule to the other or combining both in a hybrid rule should be able
to handle all unseen testing conditions, clean speech and speech corrupted by diverse noise
conditions. Such a combined rule needs to be researched.

The decision as when to switch from one rule to the other could for example be based on
signal to noise ratio estimates in several frequency bands which detect the location and level of

the noise.



APPENDIX A

Background to probability theory

In this chapter, we recall some basic knowledge from probability theory based on (Bronstein
and Semendjajdew, 1989; Saporta, 1990; Papoulis, 1991).

Random events and probabilities A random experiment is a process, which has several
possible outcomes, so that it cannot be known in advance which outcome will occur. Moreover,
such an experiment can, in theory, be repeated as often as desired. In this context, the set of
possible experimental outcomes, which preclude one another, is defined as the set of elementary
mutually exclusive events. The total set of elementary events is the certain event E and can
be represented as the sum of its n mutually exclusive (random) events A; (j = 1..n), ie.
E=AUAU...UA, with A;NAy =0 fori #14.

The union A; U A> U...U A, (k < n) is a new event and occurs if at least one of the
events Ay, Ay, ..., Ay occurs (sum of events). The conjunction A; N AsN...NA; (k < n) also
constitutes an event and occurs if all events Ay, Ao, ..., A occur simultaneously. It is called
the product of events.

Following Kolmogorow’s axioms of probability theory (Saporta, 1990, p. 9), a real number
P(A) with 0< P(A) <1 is assigned to each random event A which is called the probability of
A. The probability of the certain event F is P(E) = 1.

Given a set of mutually exclusive events Ay, A, ..., A, the axiom of addition describes the

relation

P(A1UA2U...UAk):P(A1)+P(A2)+...+P(Ak) (A].)
For the probability of a union of events, it holds the following rule:

n n n
P(UMA;) = Y P(A)=) P(ANA)+ Y P(ANA;NAL) -
i=1 i<j i<j<k
L (=D)"P(AINAN .. NAY) (A.2)
This is sometimes referred to as Sylvester’s rule (Barth et al., 1986, p. 106).

175



176 Background to probability theory

Conditional probability and law of total probability The probability of a random event
A usually changes, if it is known that a different random event B has already occurred. The
probability of A under the condition that event B (with P(B) # 0) has already occurred is
denoted as P(A|B), the conditional probability of A under the condition B. The conditional
probability is usually defined as

P(ANB)

PAIB) = =55

with P(B) #0 (A.3)
Solving this for P(A N B) we obtain the multiplication rule of probabilities:

P(ANB) = P(A|B)P(B) (A4)

For any (random) event B it, moreover, holds B = (BN A;)U (BN As)U...U(BNA,), if
P(UTA;) =1, i.e. A; are exhaustive, and, according to the axiom of addition, follows P(B) =

>, P(Bn4;), if A; are mutually exclusive. Using the multiplication rule of probabilities
(A.4) we get the law of total probability: P(B) =Y., P(B|A4;)P(4;).

Mutual independence Two events are mutually independent if the occurrence of any one of
them does not influence the occurrence of the other, i.e. if P(A|B) = P(A). The multiplication
rule of (A.4) then writes as

P(AN B) = P(A)P(B) (A.5)

stating that the probability of the conjunction of two independent random events is equal to
the product of their probabilities.

Random variable

A random variable is a process of assigning a number X to every outcome [of an
experiment]. (Papoulis, 1991, p. 66)

The value of the random variable will vary from trial to trial as the experiment is repeated.
There are two types of random variable - discrete and continuous. A discrete random variable
only assumes a set of values, and these values describe its probability distribution'. A con-
tinuous random variable, on the other hand, is one which takes a continuous range of possible
values. In the application in this thesis, the random variables which model the feature vector

components are continuous.
(The following derivations are based on (Papoulis, 1991, p. 66fF)). The cumulative distribu-
tion function (cdf) of a (continuous) random variable x is the function

F(z) = P{x <z} (A.6)

defined for every z from —oo to co. A cdf has, among many others, the following properties
lim F(z) =1and lim F(z)=0.
T—r—00

Tr—>00

IThe probability distribution is also sometimes called probability function or the probability mass function.
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The derivative

(A7)

of F(z) is called the probability density function (pdf) of the (continuous) random variable x.
Integrating (A.7) from oo to 0, and using F(—o0) = 0, we obtain

F(x) :[ f(t)dt (A.8)
Since F'(c0) = 1, the above yields
/00 flx)de =1 (A.9)

which is an important property of any pdf.

In the following, we use upper-case letters for probabilities and lower-case letters for pdfs.
For continuous variables, the conditional probabilities introduced above, become conditional
pdfs.






APPENDIX B

Implementation of the

approximation to FC

The calculation of the approximated combination posteriors P(g|z;) of (6.28) for the B combi-
nations of bands can be implemented efficiently by a recursive procedure which utilizes multi-
plications of bands which are included in several combinations instead of recalculating the same
multiplications for similar combinations each time. In the case of a high number of bands, this
procedure reduces considerably the number of calculations which have to be carried out. Instead
of Bx2B~1_2B 11 multiplications per frame and per phoneme, only 2% — B—1 multiplications
are necessary, which is a reduction of about % when B — inf.

The procedure can be illustrated with the help of a binary tree in which the terms of the
multiplication are the branches and each node in the tree constitutes a call to the recursive
function. This function accumulates the preceding multiplications and then branches out for
the next recursions. The value which is obtained in each leaf of the binary tree corresponds
to the multiplications of the values on the branches along the path which was run through up
to the respective leaf and constitutes P(gx|z;)!. For the case of B =3, this is illustrated in
Figure B.1, where p; = P(qx|z;) Vi € B for simplicity. Although the gain in this example of
3 bands is not significant (4 multiplications instead of 5), in the case of 8 bands there will be
only 247 multiplications to carry out instead of 769, and in 65519 instead of 458753 the case of
16 bands.

Tllustration of an efficient algorithm for the AFC system to calculate all possible combinations
of subbands from the probabilities b; = P(qi|z;) Vi € B of the one-band experts only. The value
in each leave, calculated by multiplying all values on the branches from the root to the respective

leave, corresponds — after division by the priors and normalization — to the posterior probability

n the leaves, each combination probability is then divided by the respective power of priors, according to
(6.28). Moreover, when a combination probability has been calculated for all phonemes, its values are added to
obtain the normalization factor for this combination. The normalized probabilities P(gg|c;) are then used in
(6.3).
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P1P2p3

000 —  priors
o< _.

0 0 1 / pg pg

O —
010 Ofe I
011 P3 P2 X3

1 —

00 n ®< . 1
101 ®/ P3 P1XP3
110 DR T xp
111 D3 T piXpaxXps

Figure B.1: Illustration to implementation of AFC

P(qi|zc,;) of an approximated combination. One can see that the number of multiplications
needed in the binary tree (which are indicated by the symbol X ) is smaller (4) than the
number of multiplications needed when each combination is estimated explicitly as shown in
the column on the right (5). This difference increases proportionally to the number of bands
considered.



APPENDIX C

A model for context effects in

human speech recognition

In human perception, the availability of context enhances recognition and renders it more
robust to noise. Even if not all phonemes in a word (or words in a sentence etc.) are correctly
perceived, humans can fill in missing parts with the help of cues from the surrounding speech
parts. This was proven in studies on human speech perception where recognition of words in
sentences under noise was shown to outperform recognition of words in isolation or, even more

drastically, of nonsense syllables under noise.

Such a model for quantifying the influence of contextual information on human recogni-
tion performance was recently proposed and is presented here. Its concept was shown to be
applicable to ASR in Section 6.5.

Investigations on human speech perception are carried out to estimate the recognition prob-
ability of a certain stimulus by the human perceiver. In (Boothroyd, 1978), the recognition
scores of elements (e.g. phonemes) and of wholes (e.g. words) were calculated and reported to

follow the relationship!
Ph =D,

with pp, (pe) being the recognition probability of a whole (element) and ¢ the number of in-
dependent elements in a whole, 1 < ¢ < n (n total number of elements in a whole). This
relation resembles Fletcher’s premise of syllable “articulation” as the product of phone artic-
ulation (2.3), which is discussed in Section 2.3. Fletcher’s approach though did not regard
contextual information as it was only established for nonsense syllables. Boothroyd (1978)
included contextual information in the model by assuming statistical independence of sensory
information s and contextual information w, and stating the error probability of an element as

(1 —pe) =(1—ps)(1—py) where ps (pw) describes the probability of correctly identifying the
element only using sensory (contextual) information.

A more recent model for quantifying the influence of contextual information on human

IThis assumes equal recognition probability of all elements in the whole.
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recognition performance was proposed by Bronkhorst et al. (1993). Although the authors state
that it is a model describing recognition performance rather than a model for the recognition
process itself, we see in Chapter 6 how this model can actually be used as a basis for recom-
bining the scores from different recognizers (trained on different frequency subbands which are
interpreted as the “elements”) using contextual information as a method of error correction to
obtain improved recognition of the whole stimulus (i.e. the whole frequency domain).

The model is based on a description of human perception as a two-stage process: A listener
first tries to identify the stimulus by using sensory information only. Then, in the second part,
he/she corrects the mis-classified? parts of the (incompletely perceived) stimulus by the use of

contextual information:

1. Measure of sensory information

The probability of occurrence of a (possibly incorrectly perceived) stimulus S; is calcu-
lated from the recognition probabilities of the n elements in the (possibly incomplete)
stimulus, which are denoted by p;, ¢ = 1..n. For correct recognition of an element and,
thus, the calculation of p;, only the information in the element itself is used. With this,
the probability of correctly and independently identifying all elements of a stimulus is
given by pips...p, whereas the probability of identifying e.g. all elements but the last is
pip2...(1—pp). An example can be seen in Figure C.1.

word-stimulus h

n | r |

phonemel ...phoneme3... ... phoneme5

time

Figure C.1: Example of a word-stimulus consisting of 5 phonemes, 3 of which were correctly
identified.

2. Measure of contextual information

It is assumed that a listener has the chance w; of correctly guessing, i.e. correcting, one of
i mis-classified elements in a stimulus and that corrected elements are indistinguishable
from correctly perceived elements. Thus, if a listener correctly perceives n—i elements,
he/she has the chance of w;w;_1...wy of correcting the whole stimulus. The parameter w;
therefore provides a measure of the influence of context in the recognition process.

An estimate of the average recognition probability of the whole stimulus h can then be
established by multiplying the probability of occurrence S; of a “percept” with i errors by the
chance of correcting this percept, and adding over all possible percepts:

p(h) = S() + w151 + ’LU1’U}252 + ...+ wlwnSn (C].)

2“mis-classified element” here means “element that was incorrectly recognized when using only sensory in-

formation”.
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with

So = Dpip2--Pn,
S1

(1 —p1)p2pn+ oo +p1-Pr-1(1 — pp)

Spo = (1=p1)(1—=p2)..(1=py) (C.2)

Each S; consists of (’Z‘) summands which represent all possible permutations of ¢ mis-classified
elements in the set of n elements.

There are different possibilities for estimating the context parameters w;. For example, in
word recognition, for each number i of missed phonemes, the alternative words are counted in
the lexicon. These numbers together with the total number of words in the dictionary can then
be used to calculate each w;.

Testing this model with different kinds of estimates of w;, Bronkhorst et al. (1993) showed
that recognition scores of consonant-vowel-consonant (CVC) words in auditory or orthographic

presentation could be well predicted with this two-stage model.






APPENDIX D

Summarizing tables of

combination strategies

In this chapter, the different combination strategies are summarized in tabular formate for both
the posterior-based and the likelihood-based approaches. Table D.1 summarizes the standard
combination strategies, Tables D.2 to D.3 give the full combination strategies introduced in this
thesis for the posterior-based and likelihood-based case, respectively.

Note that the likelihood-based approach always results from the posterior-based approach
from applying Bayes’ rule, and vice versa.
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COMBINATION
STRATEGY POSTERIOR-BASED LIKELTHOOD-BASED
B
STD Sum P(qelz) = 3 P(qi|zi)P(bi|z) rule 1 el — z PE0e) P (b )
i=1
STD Sum _ rule 2 P(90|Qk Z P(wz|Qk)P(b |ax)
B
STD ARITHM MEAN Plqilz) = 3 Plge|z:) P(b;) plelr) — z peilan) p(p,)
i=1
H Plax|@i) B
STD PRODUCT Pqr|r) = © Fe=rpy - p(zlgr) = T1 p(xilqr)
i=1
H PYi(qr|x:) B
STD Grom MEAN P(ge|r) = Ok sz p(zlq) = Hlpw’ (@ilqr)
=
3 palo) 1 _ B 1 pleila)
j— k P\Ti|qk
STD PoE P(qk|x) =1- il;ll(l — P(Qk|$z)) (@) Plqn) _zl;ll( Plae) ~ plzi) )
B
STD INDEP ASMPT P(qrlz) = O 11 PY (qr|x:) same as STD GEoM MEAN
i=1
MINIMUM P(qi|z) = © min2, P(qy|z;) (p(‘zq)’”) = OminZ p(pm("—gjiq)’“)
MAXIMUM P(qr|z) = © max? | P(qx|z:) p(pw(lf)") = Omax? | p(pw("—mlf)’“)
MEDIAN P(qr|z) = ©med? | P(qi|z;) % Omed?. lpf(’—m‘q)’“)
MINIMUM P(qi|z) = P(qr|x;) ”—(I)””(LZ)’“) = —p(p’“’(gf)k)
B K B K
ENTROPY i =argmin — > P(gx|zi)log Pgelzi) | i = argmin— 3, P(gx|z;)log P(gk|i)
= k=1 = k=1
VOTE P(qr|z) = Tl Ak pelg)P(ar) _ X7, A
qk|1T) = B p(2) B
A= L :if P(gelai) = TE{(P(’]M@) Ap=dL if 2@ilaw)Plor) ‘;(’“z)j(q’“) = g}afpi(mi’”(gf;(q“)
0 : otherwise 0 : otherwise
RECOMBINING
P(gk|z) = f(O, Paw|xi), Vi, k') P(gk|z) = f(O,p(xilar), Vi, k')
MLP

Table D.1: Summary of “standard” combination strategies, the first four of which were used

in this thesis for comparison to the “full combination” strategies. ©® and ©j are normalization

constants, such that Zle

P(qi|z) = 1, where factor O, depends on k and © does not depend

on k. In the literature where the “standard” combination strategies can be found, the normal-

ization constant is often ignored. This might be due to the fact that the normalization constant

is sometimes (e.g. in the case of the STD Grom MEean rule) hard to calculate.
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COMBINATION
STRATEGY POSTERIOR-BASED
B
FC Sum P(qk|z) = 3 P(qkl|z:)P(bi|r)
i=1
B !
FC-ECPC P(qr|z) = O > Plqr|z:)(1 — P(qk|z})) wlzi!
i=0

FC ProbucT

B
_Hlp(melwi)

P(gi|r) = @W

FC GEOM MEAN

B .
'H1 P¥i(qr|zi)

P(qr|z) = O m

FC INDEP ASMPT

B
P(gr|z) = O ,1:[1 P (qr|z:)

Plasle) = i: Plaslee) P(bile)

AFC Sum . lé—['P(lIklw(l))
with P(qg|z;) = @W
B
FC POE P(grlz) =1 - T[T (1 = P(qklz:))
i=1

Table D.2: Summary of new combination strategies for posterior-based systems with B = 2P

stream-combinations for a system of B single-streams. © and O}, are normalization constants,

such that Eszl P(qi|z) = 1, where factor O depends on k and © does not depend on k.
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COMBINATION
STRATEGY LIKELTHOOD-BASED

FC SuMm rule 1

) P(b;|)

FC Suwm rule 2

p(z P(bilqr)

FC SuM (MARG)

Same as FC Sum with:

p(wilgr) = Ep(mﬂ%) [ p(z@ylm;, qr)
lEs;
FC Sum Same as FC Sum with:
) eay=e
(BNDED MARG) | p(ilgr) = ZP(mJqu) [TeEmwlmy,a) [l == [ pEelem,a)dq
hées; Ies; ® z(1)=0

B
FC Probuct p(z|qr) = [] p(zilqr)
i=1
B
FC GEOM MEAN p(zlgr) = Or [I p* (zilar)
i=1

FC INDEP ASMPT

same as FC GEoM MEAN

FC PoE

B
plelge) 1 B—1 1
p(I)k _P(Qk)_P (ax) H(P(‘Ik)_

i=1

P(wilqk))

p(z;)

Table D.3: Summary of new combination strategies for likelihood-based systems with B = 2P

stream-combinations for a system of B single-streams. © and 0, are normalization constants,

such that fgﬁ p(z|qr) dz = 1, where factor Oy depends on k and © does not depend on k.



APPENDIX E

Definition of full combination
subbands

In this table, the parameters are given for both feature extraction and MLP training for each
of the subband stream of our multi-band systems.
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190 Definition of full combination subbands

BAND DEFINITION NUMBER OF
NUMBER || CRITICAL BANDS IN Hz LPC oo ‘ - ‘ MLP PARAM

1 2-5 115.3-628.5 Hz 3 1000 189 000

2 6-9 565.3-1369.9 Hz | 3 | 5 | 1000 189 000

3 10-12 1262-2292.4 Hz | 2 666 89 910

4 13-15 2121.7-3768.8 Hz | 2 666 89 910

12 2-9 115.3-1369.9 Hz | 6 |10 | 1485 481 140
2-5, 115.3-628.5 Hz,

13 10-12 1262-2292.4 Hz 5| 81215 328 050
2-5, 115.3-628.5 Hz,

14 13-15 2121.7-3768.8 Hz o | 81215 328 050

23 6-12 565.3-2292.4Hz | 5 | 8 | 1215 328 050
6-9, 565.3-1369.9 Hz,

24 13-15 2121.7-3768.8 Hz 5| 81215 328 050

34 10-15 1262-3768.8 Hz | 4 | 6 | 945 204 120

123 2-12 115.3-2292.4 Hz | 8 |12 |1700 642 600
2-9, 115.3-1369.9 Hz,

124 13-15 2121.7-3768.8 Hz 8 | 121700 642 600
2-5 115.3-628.5 Hz,

134 10-15 1262-3768.8 Hz 7 11111620 568 620

234 6-15 565.3-3768.8 Hz | 7 | 111620 568 620

FULLBAND 2-15 115.3-3768.8 Hz | 11 | 12| 1750 661 500

Table E.1: Definition of the frequency subbands and combination of subbands as employed
in our multi-band systems, together with the parameters used in feature extraction and MLP
training. The number of parameters are the same for PLP and J-RASTA-PLP features. LPC:
LPC analysis order; cc: number of cepstral coefficients; nu: number of hidden units; MLP

PARAM.: number of MLP parameters.



APPENDIX F

Performance of full combination
HMM /MLP hybrids

SINGLE-SUBBAND ‘ WER ‘

1 35.6
2 284
3 34.8
4 01.1

Table F.1: WERs of the single-subband MLPs on J-RASTA-PLP features tested on the clean
Numbers95 test data.
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192 Performance of full combination HMM/MLP hybrids

SUBBAND-COMBINATION ‘ WER ‘

12 15.6
Al2 24.9
13 16.0
Al3 22.5
14 15.9
Al4 25.9
23 15.6
A23 28.0
24 15.4
A24 22.0
34 22.1
A34 344
123 10.2
A123 30.5
124 10.4
Al124 28.6
134 11.2
Al34 28.5
234 11.0
A234 35.8
1234 8.0
A1234 45.2

Table F.2: WERs of the subband-combination MLPs on J-RASTA-PLP features tested on the
clean Numbers95 test data. The combinations marked with an ’A’ denote the approximated

combinations as used in the AFC approach.



APPENDIX G

Comparison of recombination

strategies on PLP-features

In this chapter, the experimental results for the fullband and multi-subband systems employing
HMM/MLP hybrid systems working on PLP features are summarized.

Stationary Band-Limited Noise

Band 1 Band 2 Band 3 Band 4
0dB[12dB[0dB[12dB[0dB]12 dB |0 dB]12 dB] Mean
FULLBAND | 575 292 [74.6 ] 341 | 654 312 | 67.2] 325 || 49.0 |
STD Sum 331 269 [51.4] 289 [206] 23.9 [228] 195 || 295

STD ProbucT 429 | 27.8 1 69.0 | 34.5 | 47.2 | 32.0 | 29.8 | 25.2 38.6
STD INpeP Asmpt | 43.1 | 27.6 | 66.2 | 34.2 | 47.6 | 31.1 | 29.6 | 25.1 38.1
STD PoE 339 | 26.8 | 52.8 | 282 | 40.4| 22,5 | 25.2 | 20.5 31.3

AFC Sum [31.2] 206 [27.4] 171 [229] 170 | 17.9] 158 || 21.2 |
FC Sum EquaL | 36.6 | 202 | 46.1] 26.2 | 288 17.2 | 21.0] 168 || 26.6
FC PoE 3904 | 22.0 [ 46.8 | 23.9 [ 31.8] 186 |24.2] 184 || 28.1
FC GroMm MEaN | 45.2 | 234 [ 64.5 ] 31.1 | 54.1] 244 [ 469 28.0 || 39.7
FC INpEP AsmpT | 46.5 | 22.8 | 71.1| 33.4 | 60.1| 235 | 45.0 | 27.0 || 41.2

FC Sum RF 49.5 | 25.6 | 46.1 | 224 | 239 16.1 | 159 | 128 26.5
FC Sum LMSE 50.6 | 27.5 | 59.6 | 284 | 52.8 | 26.4 | 20.2 | 16.9 35.3
FC Sum SNR 36.6 | 20.2 | 414 | 23.8 | 23.2| 155 | 15.5| 124 || 23.6*

Table G.1: WERs of baseline fullband recognizer, standard subband combination strategies,

*

and FC strategies in stationary band-limited noise, employing PLP features. * indicates that

there is no significant difference to the best result in this column.
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194 Comparison of recombination strategies on PLP-features

Siren
0 dB[12 dB || Mean
FULLBAND ‘66.9‘ 36.1 H 51.5 ‘
STD Sum 30.8 | 23.6 || 27.2

STD GeoMm MEAN | 44.9 | 28.8 36.9
STD INDEP AsmpT | 44.0 | 28.1 36.1

STD PoE 30.9 | 21.8 || 26.4
AFC Sum [24.9] 164 || 20.7 |
FC Sum EQuUAL 349 199 27.4
FC PoE 375 | 204 || 29.0

FC GEoM MEAN 53.1 | 26.9 40.0
FC INDEP ASMPT 57.6 | 26.5 42.1

FC Sum RF 36.4 | 20.1 28.3
FC Sum LMSE 489 | 26.0 || 37.5
FC Sum SNR 33.4 | 204 || 26.9

Table G.2: WERs of baseline fullband recognizer, standard subband combination strategies,
and FC strategies in non-stationary band-limited noise, employing PLP features.

Wide-Band Noise

Car Factory Clean
0dB[12dB |0 dB[12 dB] Mean
50.5 | 13.8 [ 526 146 || 329 || 7.1 |
STD Sum 7241 345 | 70.0 | 32.1 52.3 14.8
STD GeEom MEAN | 62.8 | 31.6 | 60.4 | 27.8 45.7 || 13.0
STD InpEP AsmpT | 63.1 | 30.5 | 60.8 | 27.9 45.6 12.9

FULLBAND

STD PoE 73.0 | 321 | 684 308 | 511 | 171
AFC Sum |67.2] 251 [70.2] 27.8 || 47.6 [ 108 |
FC SuMm EQUAL 55.0 | 18.2 | 57.0 | 18.5 37.2 7.4*
FC POE 53.0 | 17.8 | 62.2] 185 || 37.9 || 84

FC GEOM MEAN 55.6 | 17.9 | 54.1| 17.2 36.2%|| 7.8*
FC Inpep AsmpT | 54.1 | 17.6 | 52.8 | 17.0 35.4*| 7.2*

FC Sum RF 53.1| 17.1 | 53.2 | 16.9 || 35.1*|| 7.1*
FC Sum LMSE 53.9| 16.6 | 54.1 | 16.8 || 354" || 7.5"
FC Sum SNR 52.0 | 18.0 | 544 | 16.6 || 35.3*|| 74"

Table G.3: WERs of baseline fullband recognizer, standard subband combination strategies,

and FC strategies in wide-band (car and factory) noise and clean speech, employing PLP fea-

*

tures. * indicates that there is no significant difference to the best result in this column.
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For the PLP features employed in HMM/MLP hybrid systems in different conditions the best
results were found for

e clean: by the FuLLBanD and all FC strategies.
e stationary band-limited noise: by AFC Sum and FC Sum using SNR weights.
e non-stationary band-limited noise: by AFC Sum.

e wide-band noise: by the FuLLBanp, FC Sum with all non-equal weighting schemes (RF,
SNR, and LMSE weights), FC INDEP AsmpT, FC GEOM MEAN.

Thus, also for these features, the FC Sum employing SNR weights is an overall good solution
for clean speech and most of the noise cases with the exception of non-stationary band-limited

noise.






APPENDIX H

Standard posterior combination
of multi-stream HMM /MLP
hybrids

Here, the results are presented for the combination of the single-stream (fullband) experts as

used in multi-stream processing of Chapter 10.

Clean
PLP + J-RASTA-PLP 6.8
PLP * J-RASTA-PLP 6.3
PLP + MFCC 7.2
PLP * MFCC 6.8
J-RASTA-PLP + MFCC 7.0
J-RASTA-PLP * MFCC 6.3
PLP + J-RASTA-PLP + MFCC| 6.9
PLP * J-RASTA-PLP * MFCC 7.0

Table H.1: Posterior combination of the different feature fullband streams, combination by
STD Sum (+) and STD Propuct (*). There is no significant difference between any of the
WERS.
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198 Standard posterior combination of multi-stream HMM/MLP hybrids

Stationary Band-Limited Noise
Band 1 Band 2 Band 3 Band 4

0 dB[12 dB|0dB[12dB|0dB[12dB |0 dB[12 dB] Mean
PLP + J-RASTA-PLP 323] 146 [41.1] 17.1 [31.1] 17.1 [ 306 16.1 [ 25.0
PLP * J-RASTA-PLP 378 | 16.3 | 53.7 ] 22.2 [38.1] 185 | 254 168 | 286
PLP + MFCC 53.8 | 30.0 | 58.2 | 30.0 |52.0] 24.3 [ 399 185 | 383
PLP * MFCC 56.1| 31.6 | 62.2 | 28.6 | 50.6 | 23.5 | 31.5| 19.1 | 37.9
J-RASTA-PLP + MFCC 318 ] 15.1 | 31.8 | 153 [23.4| 147 [ 168 122 || 202
J-RASTA-PLP * MFCC 33.3] 17.0 [ 352 ] 19.1 | 256 13.3 | 16.7| 142 | 218
PLP + J-RASTA-PLP + MFCC | 35.2 | 16.1 | 41.6 | 16.4 |34.3] 17.7 [ 23.1| 16.2 | 25.1
PLP * J-RASTA-PLP * MFCC | 41.8 | 184 | 49.6 | 235 | 34.2 | 175 | 24.7| 15.8 | 28.2

Table H.2: Posterior combination of the different feature fullband streams, combination by
STD Sum (+) and STD Propuct (*).

Band-Limited Noise Wide-Band Noise
Siren Car Factory
Mean
0 dB[12 dB|Mean|[0 dB[12 dB [0 dB |12 dB|
PLP + J-RASTA-PLP 67.6 | 23.4 | 45.5 || 42.9| 10.9 | 42.7 | 12.0 27.1
PLP * J-RASTA-PLP 72,3 30.1 | 51.2 || 37.0| 104 |37.3 | 11.3 24.0
PLP 4+ MFCC 58.9 | 314 | 452 || 55.8 | 16.7 | 62.7 | 17.2 38.1
PLP * MFCC 59.7 | 43.3 | 51.5 || 53.4| 15.2 | 58.2 | 15.8 || 35.7
J-RASTA-PLP + MFCC 66.7 | 29.0 | 47.9 || 40.5| 11.4 | 394 | 12.0 25.8
J-RASTA-PLP * MFCC 62.4 | 26.3 | 444 || 44.7 | 11.0 | 424 | 12.7 27.7
PLP + J-RASTA-PLP + MFCC | 67.9 | 30.4 | 49.2 || 424 | 114 | 42.0| 12.3 27.0
PLP * J-RASTA-PLP * MFCC | 66.9 | 30.3 | 48.6 || 40.6 | 12.1 | 40.8 | 11.9 26.4

Table H.3: Posterior combination of the different feature fullband streams, combination by
STD Sum (+) and STD Propuct (*).



APPENDIX I

Feature combination with
J-RASTA-PLP static and

difference features

The experiments employing static and first and second order difference features as separate
streams in an HMM/MLP hybrid system are presented in Section 10.3. Here, the J-RASTA-
PLP-based feature streams and each of their feature concatenations were tested separately

(without posterior combination) in clean as well as noise corrupted speech.

clean
RAW 9.5"
DELTA 10.8
DDELTA 12.8

RAW-DELTA 9.1*

RAW-DDELTA | 8.5*

D-DD 9.5*

RAW-D-DD 7.8

Table I.1: WERs of the seven single streams of the multiple time scale FC multi-stream system
employing J-RASTA-PLP static (raw) and first (peELta) and second (ppeLta) order and difference

*

features in clean speech. * indicates that there is no significant difference to the best result in

this column.
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200 Feature combination with J-RASTA-PLP static and difference features

Stationary Band-Limited Noise

Band 1 Band 2 Band 3 Band 4
0dB[12dB|0dB[12dB|0dB[12dB |0 dB]12 dB] Mean
RAW 39.5 | 19.8 | 53.2 | 22.6 | 52.6 | 25.9 | 35.4 | 285 || 34.7
DELTA 36.1| 164 | 51.8 | 206 |33.4| 199 | 32.1| 255 || 29.5
DDELTA 395 | 208 |47.4| 192 | 382 215 | 322 255 || 30.5

RAW-DELTA | 35.0 | 15.0 | 53.4 | 20.2 | 40.1 | 21.0 | 29.9 | 22.8 29.7
RAW-DDELTA | 29.6 | 14.0 | 48.1 | 18.0 | 34.8 | 188 | 25.1 | 19.6 || 26.0*
D-DD 315 | 154 | 449 | 159 | 271 | 175 | 274 | 22.1 25.2
RAW-D-DD 306 | 114 | 48.0 | 16.0 | 35.2 | 184 | 245 | 19.2 | 254"

Table I.2: WERs of the seven single streams of the multiple time scale FC multi-stream system
employing J-RASTA-PLP static (raw) and first (pELTA) and second (pperta) order difference
features in (stationary) band-limited noise. * indicates that there is no significant difference to

the best result in this column.

Band-Limited Noise Wide-Band Noise
Siren Car Factory
Mean
0dB|12dB| Mean ||0dB|12dB|0dB |12 dB
RAW 118.0| 59.5 | 88.8 || 35.2 | 13.5 | 40.8 | 16.8 26.6
DELTA 123.2| 66.9 | 95.1 || 34.5 | 12.8 | 36.0 | 14.8 24.5
DDELTA 95.5 | 51.5 | 73.5%| 459 | 15.1 | 451 | 17.2 30.8

RAW-DELTA |142.1| 51.5 | 96.8 || 36.9 | 12.5 | 30.1 | 11.8 || 22.8*
RAW-DDELTA | 95.6 | 43.6 | 69.6 || 37.9 | 13.0 | 344 | 11.5 || 24.2*
D-DD 95.8 | 47.2 | 715 || 37.5| 11.8 | 35.4| 11.2 || 24.0*
RAW-D-DD 104.6| 48.1 | 76.4 || 29.1 | 9.8 | 34.1| 125 214

Table I.3: WERs of the seven single streams of the multiple time scale FC multi-stream system
employing J-RASTA-PLP static (raw) and first (peura) and second (ppeura) order difference
features in non-stationary band-limited noise and wide-band car and factory noise. * indicates
that there is no significant difference to the best result in this column.



APPENDIX J

Definition of multi-stream

fullband recognizers

In these tables, the parameters are given for the MLPs as used in the multi-stream systems.
There are 27 output units for each MLP.

FEATURES NUMBER OF

INPUTS ‘ HU ‘ MLP PARAM.

PLP 351 | 1750 661 500
J-RASTA-PLP 351 | 1750 661 500
MFCC 351 | 1750 661 500
PLP-J-RASTA-PLP 702 | 1850| 1 348 650
PLP-MFCC 702 | 1850| 1 348 650
J-RASTA-PLP-MFCC 702 | 1850| 1 348 650
PLP-MFCC-J-RASTA-PLP || 1053 |2200| 2 376 000

Table J.1: Definition of the multi-stream MLPs as used in the experiments on heterogeneous
features. iNpuTS: number of input units; Hu: number of hidden units; MLP pArRAM.: number of
MLP parameters.
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202 Definition of multi-stream fullband recognizers

FEATURES NUMBER OF

INPUTS ‘ HU ‘ MLP PARAM.

1 351 | 1750 661 500
1-3 702 | 1400| 1 020 600
1-5 702 | 1400| 1 020 600

1-3-5 1053 | 2100| 2 268 000

Table J.2: Definition of the multi-stream MLPs as used in the experiments on “variable window
size” features as multiple time scale features. mWpuTs: number of input units; HU: number of

hidden units; MLP parAM.: number of MLP parameters.

FEATURES NUMBER OF
INPUTS ‘ HU ‘ MLP PARAM.

RAW 117 | 1000 144 000
DELTA 117 | 1000 144 000
DDELTA 117 | 1000 144 000

RAW-DELTA 234 | 1375 358 875
RAW-DDELTA || 234 | 1375 358 875
D-DD 234 | 1375 358 875
RAW-D-DD 351 | 1750 661 500

Table J.3: Definition of the multi-stream MLPs as used in the experiments on static, delta and
delta-delta (PLP and J-RASTA-PLP) features as multiple time scale features. ivpuTs: number
of input units; HU: number of hidden units; MLP PARAM.: number of MLP parameters.



Acronyms

dB

pdf
tiffing
r.p.m.
ACID
AFC
Cve
FC
FC-ECPC
AT
ASR
ANN
DPCM
EBP
ECPC
EM

FC

FF
FFT
FIR
GPD
GMM
HMM
HSP
HSR
HMM/MLP hybrid
HMM-GMM
I(D)FT
IIR

KL
LDA
LMSE

decibel: a logarithmic unit of sound intensity
probability density function

time- and frequency filtering (approach)

rotations per minute

Agglomerative Clustering algorithm based on Information Divergence
Approximation to FC

Consonant, Vowel Consonant

Full Combination

Full Combination with Error Correction in Posteriors Combination
Articulation Index

Automatic Speech Recognition

Artificial Neural Network

Differential Pulse Code Modulation

Error Back-Propagation (algorithm)

Error Correction in Posteriors Combination
Expectation Maximization

Full Combination

Frequency Filtering (features)

Fast Fourier Transform

Finite Impulse Response (filter)

Generalized Probability Descent (algorithm)

Gaussian Mixture Model

Hidden Markov Model

Human Speech Processing

Human Speech Recognition

Hidden Markov Model/Multi-Layer Perceptron hybrid
Hidden Markov Model employing Gaussian Mixture Models
Inverse (Discrete) Fourier Transform

Infinite Impulse Response (filter)

Karhunen-Loeve (transform) = PCA

Linear Discriminant Analysis

Least Mean Squared Error (criterion)
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204 Definition of multi-stream fullband recognizers

LP Linear Prediction

LPC Linear Predictive Coding

MAP Maximum A Posteriori (criterion)
MCE Minimum Classification Error (criterion)
MD Missing Data (approach)

MFCC Mel-Frequency Cepstral Coefficient
MI Mutual Information (criterion)

ML Maximum Likelihood

MLP Multi-Layer Perceptron

MRE Minimum Relative Error (criterion)
MSE Mean Squared Error (criterion)
MSG Modulation Spectrogram (features)
NLDA Non-Linear Discriminant Analysis
OGI Oregon Graduate Institute

PCA Principal Component Analysis = KL
PLP Perceptual Linear Prediction

PMC Parallel Model Combination
RASTA RelAtive SpecTrAl (filtering)

STI Speech Transmission Index

SNR Signal to Noise Ratio

SPL Sound Pressure Level

TRAPs TempoRAIl Patterns (features)

WER Word Error Rate



Notation

F(z) z-transform of a signal

log(x) log, (), unless otherwise stated

H(x) entropy of random variable x

I(z,y) mutual information between random variables = and y

T; the ith component of x

D(P||P>) Kullback-Leibler divergence between probability
distribution P; and P»

Ty (d-dimensional) acoustic vector z at time ¢

d dimension of acoustic vector

t time index

n iteration index

X=Az1,...,24,...,z7} acoustic vector sequence of length T

Xt =Ami,..., 2} a subsequence of X from vector z; to vector x;

qr HMM state k

W a class

K number of classes, HMM states, or MLP outputs

Q={wi,...,wk} set of K possible classes

qa HMM state q;, observed at time ¢

Q={q",....q¢,....q"} an HMM state sequence of length T'

W, W; Hidden Markov Model built up by concatenating elementary
speech unit HMMs and which is a set of L states {q1,... ,q ... ,qL}

i;l’l MLP weights between unit ¢ (in layer [—1) and unit j (in layer [)

2c+1 width of the contextual acoustic information at the input of an MLP

{w;; (1), ..,wij(n),..,wi; (N)} sequence of weight vectors (connecting unit i to unit j) of length N

E error function minimized for MLP training

p(z|q) a likelihood

P(q|x) a posterior probability

P(q) a prior probability of class (or HMM state) ¢

p(X|W) likelihood of X given Markov Model W

D(X|W) Viterbi approximation of the likelihood of X given the Markov
Model W

P(W|X) posterior probability of a Markov Model W given the acoustic
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206 Definition of multi-stream fullband recognizers
vector sequence X

P(W|X) Viterbi approximation of the posterior probability of a Markov
Model W given the acoustic vector sequence X

(:), (C] old and new parameter estimates

bk mean vector associated with wy or ¢ in case of Gaussian
distribution

o standard deviation associated with wy or g in case of Gaussian
distribution

P(my) P((z is from) mixture component )

Az delta feature vector A x at time ¢

AAxy delta-delta feature vector AA z at time ¢

noise signal

speech signal

impulse response

speech signal with additive noise

signal with additive and convolutive noise

coefficient i of x at time ¢

number of (frequency) subbands

number of all possible combinations of subbands

set of all possible combinations of B subbands

event that data in combination i is clean speech data, and data
not in combination 7 is completely uninformative and can

therefore be regarded as missing.



Index

“standard” approach to multi-band process-
ing, 69

acronyms, 203
additive noise, 42, 110
AFC, 87
all-pole model, 8
AND function, 91
approximated full combination, 115
approximation
Viterbi, 32
arithmetic mean
full combination, 82
standard, 69
articulation band, 11
articulation index (AI), 11
Artificial Neural Networks, 27
autoregressive model, 8

backward recursion, 35
Bark, 46
Bark scale, 8, 9, 61
Baum-Welch

training, 35, 67
Bayes’ rule, 23

Cocktail Party Effect, 44
combination
feature, 64, 77, 134
probability, 64, 77, 134, 135
convolution, 43
convolutive noise, 42
critical band, 8

cumulative distribution function, 176

dictionary, 21, 109, 110

difference features, 138, 159, 161, 162
Discrete Cosine Transform (DCT), 53

entropy, 10, 21, 92
relative, 22

equal loudness contour, 9

Error Back-Propagation (EBP), 29, 109

Error Correction in Posteriors Combination
(ECPC), 90, 121

event, 175

Expectation Maximization algorithm, 35

expert, 63

feature combination, 58
features
difference, 138, 159, 161, 162
variable window size, 138, 149, 159
finite impulse response (FIR) filter, 8
forward recursion, 33
Forward-Backward, 35
Frequency Filtering (FF), 52
full combination
approximated, 87, 115
arithmetic mean, 82
geometric mean, 86
product, 86
sum, 82, 83
rule 1 for likelihoods, 83
rule 2 for likelihoods, 83
using (bounded) marginalization, 85
using marginalization, 85
full combination (FC), 76

Gaussian Mixture Model (GMM), 24, 126
geometric mean

full combination, 86
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Index

standard, 70
gradient descent algorithm, 28

grammar, 21

Hidden Markov Models, 21

HMM recombination algorithm, 64

HMM-GMM recognizer, 2, 36, 38, 66, 108,
128

HMM/ANN hybrid, 2, 37, 38, 66, 109, 113

HMM/MLP hybrid, 5, 38, 109, 113, 153

independence assumption rule, 70
index
articulation, 11
speech transmission, 13
transmission, 13
information
long-term, 138
short-term, 138

Karhunen-Loeve, 52, 135
Kullback-Leibler, 22, 101

Least Mean Squared Error (LMSE) crite-
rion, 97, 99

likelihoods, 24

linear discriminant analysis (LDA), 52, 71,
134, 142

majority vote, 73
MAP criterion, 23
marginalization

FC formula using, 85
marginalization (bounded)

FC formula using, 85
Markov assumption, 32, 34
maximum assumption, 56
Maximum Likelihood, 25

criterion, 23
Maximum Likelihood (ML), 23
maximum rule, 91
median rule, 91
Mel, 46
Mel scale, 9, 61
mel-frequency cepstral coefficients (MFCCs),

46

Minimum Classification Error (MCE) crite-
rion, 97
minimum classification error (MCE) crite-
rion, 72
minimum rule, 91
missing data (MD), 56
approach, 56, 76, 78, 84
mask, 56
MLP
recombining, 71-73, 97
modulation-filtered spectrogram (MSG), 142
Multi-Layer Perceptron (MLP), 27
mutual information (MI), 22, 98
criterion, 66, 143
mutually independent, 176

noise
additive, 42, 110
background (ambient), 42
convolutive, 42
non-stationary, 44, 111
stationary, 43, 111
Noisex92 database, 113
non-linear discriminant analysis (NLDA), 52,
71
non-stationary noise, 111
notation, 205
Numbers95 database, 72, 110

occluded speech, 56
OR function, 91
orthogonalization, 64, 84, 142

perceptual linear prediction (PLP), 46
power law of hearing, 9
principal component analysis (PCA), 77
probability, 175

conditional, 176
probability combination, 58
probability density function, 177
product

full combination, 86

standard, 70

product of errors rule, 12, 88

recombining MLP, 71-73, 97

relative entropy, 22



Index

209

criterion, 97
Relative Spectral (RASTA) filtering, 46
reliability, 4, 65, 66, 86, 104
rule

majority vote, 73

maximum, 91

median, 91

minimum, 91

product, 70

product of errors, 12, 88

sum, 69

vote, 91

sound pressure level (SPL), 9
spectral subtraction, 48
speech transmission index (STI), 13
stationary noise, 43, 111
stream, 76
subjective pitch, 9
sum
full combination, 82
standard, 69

Tandem approach, 52

Temporal Patterns (TRAP), 142

time and frequency filtering (tiffing), 53
time scales, 138

training, 21, 108, 110

transmission index, 13

union, 175
model, 92

variable window size features, 138, 149, 159

Viterbi
algorithm, 21
approximation, 34
decoding, 37, 66
decoding, three-dimensional, 54
forward recursion, 34
training, 36, 67
Viterbi decoding, 110
Vote rule, 91

word error rate (WER), 113
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