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Abstract

In this paper, we present a new approach towards high performance speech/music
discrimination on realistic tasks related to the automatic transcription of broad-
cast news. In the approach presented here, an artificial neural network (ANN)
trained on clean speech only (as used in a standard large vocabulary speech recog-
nition system) is used as a channel model at the output of which the entropy
and “dynamism” will be measured every 10 ms. These features are then inte-
grated over time through an ergodic 2-state (speech and and non-speech) hidden
Markov model (HMM) with minimum duration constraints on each HMM state.
For instance, in the case of entropy, it is indeed clear (and observed in prac-
tice) that, on average, the entropy at the output of the ANN will be larger for
non-speech segments than speech segments presented at their input. In our case,
the ANN acoustic model was a multilayer perceptron (MLP, as often used in
hybrid HUM/ANN systems) generating at its output estimators of the phonetic
posterior probabilities based on the acoustic vectors at its input. It is from these
outputs, thus from “real” probabilities, that the entropy and “dynamism” are
estimated. The 2-state speech/non-speech HMM will take these two dimensional
features (entropy and “dynamism”) whose distributions will be modeled through
multi-Gaussian densities or a secondary MLP. The parameters of this HMM are
trained in a supervised manner using Viterbi algorithm.

Although the proposed method can easily be adapted to other speech/non-
speech discrimination applications, the present paper only focuses on speech/music
segmentation. Different experiments, including different speech and music styles,
as well as different temporal distributions of the speech and music signals (real
data distribution, mostly speech, or mostly music), illustrate the robustness of
the approach, always resulting in a correct segmentation performance higher than
90%. Finally, we will show how a confidence measure can be used to further im-
prove the segmentation results, and also discuss how this may be used to extend
the technique to the case of speech/music miztures.



Résumé

Dans cet article, nous présentons une nowvelle approche particuliérement perfor-
mante de discrimination parole/musique dans le cadre d’applications réelles de
transcription de nouvelles diffusées. Dans cette approche, un réseau de neurones
artificiels (ANN) entrainé exclusivement sur de la parole claire (provenant d’un
systéme standard de reconnaissance de la parole grand vocabulaire) est utilisé
comme modéle de canal a la sortie duquel nous mesurons toutes les 10 ms
Uentropie et le “dynamisme”. Ces caractéristiques sont alors intégrées dans le
temps a laide d’un modéles de Markov caché (HMM) ergodique a deuz états
(parole et non-parole) incluant également des contraintes de durée minimum
sur chaque état. Par exemple, dans le cas de ’entropie, il est effectivement clair
(et observé en pratique) que l’entropie a la sortie du ANN sera en moyenne
plus élevée pour des segments non-parole que des segments de parole présentés a
son entrée. Dans notre cas, le modéle acoustique ANN est un perceptron multi-
couche (MLP, comme souvent utilisé dans les systémes hybrides HMM/ANN)
générant o sa sortie des estimateurs de probabilités a posteriori de phonemes
étant donné les vecteurs acoustiques d’entrée. C’est & partir de ces sorties, et
donc de “vraies” probabilités que l’entropie et le “dynamisme” sont estimés.
Le modéle HMM parole/musique 6 deuz élats prends ensuite ces deux car-
actéristiques (entropie et “dynamisme”) dont les distributions sont modélisées
par des densités multi-gaussiennes ou par un second MLP. Les paramétres de
ce modele HMM sont entrainés par un Viterbi supervisé.

Bien que [’approche proposée ici puisse étre facilement adaptée a d’autres
applications de discrimination parole/non-parole, nous nous focalisons ici sur
le probléme de segmentation parole/musique. Différentes expériences, incluant
différents styles de parole et musique, ainsi que différentes distributions tem-
porelles des signauz de parole et musique (distributions réelles, surtout parole,
ou surtout musique), illustrent la robustesse de l’approche qui résulte toujours
en des performances de segmentation correcte supérieure a 90%. Finalement,
nous montrons comment ['utilisation d’un niveau de confiance peut améliorer
les résultats de segmentation, et comment ceci peut étre utilisé pour traiter les
cas de mélanges de parole et musique.



1 Introduction

The problem of distinguishing speech signals from other audio signals (e.g., mu-
sic) has become increasingly important as automatic speech recognition (ASR)
systems are applied to more real-world multimedia domains, such as the auto-
matic transcription of broadcast news, in which speech is typically interspersed
with segments of music and other background noise. Standard speech recogniz-
ers attempting to perform recognition on all input frames will naturally produce
high error rates with such a mixed input signal. Therefore, a pre-processing stage
that segments the signal into periods of speech and non-speech is invaluable in
improving recognition accuracy. This also has the benefit of reducing overall
computational load, as the full speech recognition system is only enabled for
speech segments.

Another application of speech/music discrimination is low bit-rate audio
coding. Traditionally, separate codec designs are used to digitally encode speech
and music signals. An effective speech/music discrimination decision will enable
these to be merged in a universal coding scheme capable of reproducing well
both speech and music.

More generally, audio segmentation (which could be performed by using a
more appropriate feature set and generalizing the speech/music discrimination
approach presented in the present paper) could allow the use of ASR acoustic
models trained on particular acoustic conditions, such as wide bandwidth (high
quality microphone input) versus telephone narrow bandwidth, male speaker
versus female speaker, etc., thus improving overall performance of the resulting
system. Finally, this segmentation could also be designed to provide additional
interesting information, such as the division into speaker turns and the speaker
identities (allowing, e.g., for an automatic indexing and retrieval of all occur-
rences of a same speaker), as well as ‘syntactical information’ (such as end of
sentences, punctuation marks, etc).

One of the issues in the design of a signal classifier is the selection of an
appropriate feature set that captures the temporal and spectral structure of the
signals. Many such features for speech /music discrimination have been suggested
in the literature, including zero-crossing information, energy, pitch, cepstral co-
efficients, line spectral frequencies (LSF), 4 Hz modulation energy, amplitude,
and perceptual features like timbre and rhythm [1, 2, 3, 4, 5]. In this work,
we use posterior probability based features introduced in [6], namely entropy
and dynamism. As we will show, these features indeed exhibit nice discriminant
properties yielding to high performance speech/music segmentation.

Another issue in the system design is the selection of a classification algo-
rithm. Different classifiers like the Bayesian Information Criterion (BIC) [7],
Gaussian likelihood ratio (GLR) [2, 6, 1, 5], quadratic Gaussian classifier
(QGC) [4], nearest neighborhood classifier [1, 4] and hidden Markov model
(HMM) [8] have been used for this purpose.

Nowadays, an algorithm based on the BIC [7] is perhaps the most commonly
used technique for audio segmentation. It assumes that the sequence of acoustic
feature vectors is a Gaussian process, and measures the likelihood that two con-



secutive acoustic frames were generated by two processes rather than a single
process. The BIC technique is useful for general audio change detection, as it
does not require any a priori information about the particular acoustic classes
present. However, in the case that the number and type of acoustic classes is
known, it should be advantageous to explicitly incorporate this information into
the design of the segmentation system. In real applications, the BIC technique
also poses a number of practical problems, such as high computational complex-
ity and the need to tune a threshold parameter (\) to optimise performance.

In this work, we use the entropy and dynamism features estimated at the
output of the multi-layer perceptron (MLP, referred to as primary MLP) used
in a regular hybrid HMM/MLP large vocabulary continuous speech recognition
system. Depending on the data presented at the input of the primary MLP,
these features will exhibit different properties and can be used in a secondary
2-state (speech/non-speech) HMM system, where the state probability densities
are estimated by either Gaussian mixture models (GMM) or a secondary MLP.
This approach has two advantages, i.e.:

1. Using features that have been shown to have discriminant properties for
speech and music classes, and

2. Being a threshold-free, global decision making strategy.

In the same framework, we also investigate the use of a confidence measure
to improve the performance and application of the discrimination system. This
measure can be used to improve the discrimination accuracy by removing short,
low confidence segments. In addition, such a confidence measure could be used
in the framework of speech/music mixtures, where it is desirable to determine
the ‘amount’ of speech or music present in the audio signal, rather than simply
providing hard segmentation boundaries.

2 Posterior Probability Based Features

According to information theory, a channel designed for a particular type of
signal will exhibit characteristic behaviour at its output when that signal is
passed through the channel. Conversely, the presence of a different type of sig-
nal will result in uncharacteristic behavior at the channel output. In the case
where the channel is an MLP trained to emit posterior probabilities for speech
recognition [9], it should therefore be possible to distinguish between speech and
non-speech signals by examining the behaviour of these probabilities. Following
Williams and Ellis [6], we base our speech/music decision on statistics of the out-
put of an acoustic model intended originally for discriminating the phonemes of
speech. Specifically, we use their entropy and dynamism features as defined be-
low. While in this work we focus on application to speech/music discrimination,
we note that these features should essentially distinguish between ‘recognisable
speech’ and other signals.



2.1 Entropy

Entropy is a measure of the uncertainty or disorder in a given distribution [10]. In
the case of a primary MLP trained to emit posterior probabilities for K output
classes (usually associated with speech phones or HMM states ¢, k = 1,..., K),
the instantaneous entropy h, at a specific time frame n is defined as:

K

hn ==Y Plgk|lzn) log, P(qkla,) (1)
k=1

where z, represents the acoustic vector at time n, ¢ the k-th primary MLP
output class, and P(qi|z,) the posterior probability of class (phone) g given
Z, at the input.

The posterior probabilities at a given time represent a true PDF, and the en-
tropy of that PDF (the expected value of the log probability) is a measure of the
goodness-of-fit of the current observation to the acoustic model (channel). Gen-
erally, in the case of speech, the value of the posterior probability for a particular
phoneme (the ‘recognized’ phoneme) is much higher than other phonemes. This
means that the value of the entropy will be close to zero, indicating that little
information will be gained by knowing its actual value, or, equivalently, that
there is little uncertainty over the unknown segments. In the case when a music
signal is passed through the primary MLP, the values of probabilities will be
more uniformly distributed, resulting in a higher value for entropy.

Equation (1) gives the instantaneous value of the entropy at frame n. As
we will see in the subsequent discussion, and to perform a first smoothing, it
is advantageous to average this instantaneous entropy over a window of several
frames, resulting in the averaged entropy at time n:

1 n+N/2
Hy =< Sy (2)

t=n—N/2

where n is the index of the current acoustic frame and N is the size of the
averaging window.

2.2 Dynamism

Dynamism is a measure of the rate of change of a quantity. In this case, and
using the same notation as above, the instantaneous dynamism at time n is

defined as:
K

dn =" [P(arl2n) = Plaglnsy)) (3)
k=1
This feature captures the dynamic behaviour of the probability values. As
speech involves more transitions through the speech-specific primary feature
space, the phoneme posteriors will exhibit more abrupt changes than other
acoustic signals such as music, resulting in higher dynamism.



Similar to the case of entropy, it can be beneficial to average the instan-
taneous values of dynamism over a certain number of frames, resulting in the
average dynamism at time n:

n+N/2

1
D, =~ > dy (4)
t=n—N/2

where IV is the size of the averaging window.

3 Speech/Music Segmentation System

The complete block diagram of the proposed speech/music segmentation system
is shown in Figure 1. We describe the individual blocks in following subsections.
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Figure 1: Block diagram of the proposed system where PDF estimator is a GMM
or a secondary MLP

3.1 Multilayer Perceptron (MLP)

The primary MLP in the proposed system is the same as the one used in a
hybrid HMM/MLP ASR system, where its role is to estimate the posterior
probabilities of the speech phonetic classes given the acoustic feature vectors.
We can consider such an MLP to be a channel trained to process speech. If the
input to this channel is indeed a speech signal, we can expect certain behaviour
at the channel output. In contrast, if the input is non-speech, the channel output
will not display this characteristic behaviour. In this way, careful examination of
the channel output should enable us to infer whether the input signal is speech
or not.

In practice, the primary MLP estimates the posterior probabilities of the
output classes (in our case, phones) given feature vectors corresponding to a
temporal contextual window of a certain duration (typically 9 acoustic frames
of 16-ms), i.e., P(qx|x,) where gt is the phonetic class (with k = 1,..., K, where
K is the total number of output classes) and x,, is the feature vector at time n.
Careful observation of these probabilities shows a marked distinction between
segments consisting of clean speech and other segments, such as music or very
noisy speech. If it is decided that these posterior probabilities correspond to
speech segments, they can then be converted to likelihoods and passed to a
Viterbi decoder for word recognition, as in a standard hybrid ASR system.

10
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3.2 Feature Computation

The output of the primary MLP is a set of K posterior probabilities, i.e.,
P(qi|zy). For every acoustic frame (16 ms in our case), we calculate the av-
erage entropy H, and average dynamism D,, according to (2) and (4). These
values are combined to form a two-dimensional vector, y,, = (H,, D,)T, which
is then used as the HMM observation vector.

3.3 Probability Density Function Estimator

For every acoustic frame x, of the input signal, the feature vector y, is thus
constructed and sent to the PDF estimator. The role of this block is to estimate
the emission probabilities of the HMM states given the observation vector y,,. We
investigate two estimators for this purpose: namely, the GMM and a secondary
MLP.

3.3.1 Gaussian Mixture Model (GMM)

The parameters of GMMs for the two classes can be trained by using standard
(supervised or unsupervised) expectation maximization (EM) algorithm. At the
time of segmentaion, these GMMs estimate the likelihood of each class given
feature vector y,, i.e. p(y,|C). In this case, y,, is a two-dimensional vector com-
posed of the average entropy H, and average dynamism D,, as defined earlier.

The individual PDF's of entropy and dynamism are shown in Figures 2 and 3,
respectively. The figures show distributions for both the instantaneous (local) as
well as the averaged values of entropy and dynamism. The need for averaging the
instantaneous values of these features is evident from these figures. This can be
further understood by considering the within-phone regions of speech segments.
These are regions of very low transitions, yielding low dynamism (like music).
It is only at the phoneme boundaries that the dynamism would become high.
Similarly, the entropy is low during the phoneme, then temporarily peaks during
transitions. Thus, averaging over several phoneme durations is very important.

3.3.2 Multilayer Perceptron (MLP)

The GMM can be substituted by another MLP (referred to as the secondary
MLP) for estimating the emission probabilities of the HMM states. The sec-
ondary MLP is trained with the observation vector y, defined earlier at its
input, along with several context frames. At the time of segmentation, y,, is
presented along with the context frames at the input of the secondary MLP,
and the output is obtained as the set of posterior probabilities P(C|y,) for
the two classes (speech and music). Using Bayes rule, these posterior probabil-
ities can be turned into scaled likelihoods that can be used as HMM emission
probabilities:

P(Y.|C) _ P(Clyn) (5)
P(yn)  P(0)
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Figure 2: Distribution of local and average entropy for speech and music. As
expected, the average entropy is usually higher for music than for speech.
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Figure 3: Distribution of local and average dynamism for speech and music. As
expected, the speech average dynamism is usually higher than the average music
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Figure 4: HMM topology for the proposed system

where P(C) is the prior probability of the class C, as estimated on the
training data, and P(y,) is independent of the class and simply appears as a
constant scaling factor. In our case, the training data was characterized by equal
speech and music priors, so it was not necessary to divide by P(C).

3.4 HMM Classifier

The HMM topology for the proposed system is shown in Figure 4. In the case
of speech/music discrimination, this HMM is a 2-state fully connected model,
where a minimum duration is imposed for each state. This is achieved by simply
concatenating internal states associated with the same PDF.

In some preliminary experiments, we observed that the values of the tran-
sition and initial probabilities of the HMM do not greatly affect the results,
provided the within-class transitions are favoured (self loop probability for the
last state of each class > 0.5). So, these values were set manually to favour re-
maining in the current state. Similarly, initial probabilities are set manually to
make speech and music segments equally likely in the beginning. The emission
probabilities for the HMM states are estimated by either a GMM or secondary
MLP expert.

The parameters of secondary MLP are trained via the error back propagation
(EBP) algorithm. Equal amounts of labeled clean speech and music data are
used for training the secondary MLP. The feature vectors y, = (H,, D)) from
the training data are presented at the input layer of the secondary MLP along
with several context frames. The parameters of the GMM are trained (using the
same data) in a supervised manner using standard EM algorithm. In subsequent
work [11], we have shown that this training can be done in an unsupervised
way eliminating the need for labeled training data.

At the time of segmentation, given the observation sequence y,, the local
likelihood of each class is calculated using the GMM or secondary MLP at
every frame n. The Viterbi algorithm is then used to find the best possible state
sequence which could have emitted this observation sequence. The criterion used
for the best state sequence is the mazimum likelihood (ML) criterion.

In this case, the backtracking part of the Viterbi algorithm is performed after
reaching the end of the audio sequence. This gives the sound (speech/music)
sequence resulting in maximum likelihood. However, for large audio databases,
it may be necessary to break the data into chunks of manageable size and then
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perform Viterbi decoding. These chunks may also be made to overlap to measure
the confidence of segments at the boundaries.

There are several advantages of using this classification strategy. First, it
eliminates the need for a hard threshold value. In schemes like the BIC and
GLR, for practical applications, a threshold value is calculated on the basis of
experiments and is used for making a decision at the time of segmentation.
Sometimes, this threshold value can be imprecise and misleading. The HMM
approach allows for a more principled parameter selection based on a training
data set. Second, with the HMM it is possible to easily impose a constraint on
the minimum segment duration. If any sound (speech or music) lasts less than
a minimum duration, we consider that it does not carry any useful information.
We impose this constraint by having several states belonging to the same class
in cascade as shown in Figure 4. Also, unlike the BIC and GLR schemes which
tend to make independent decision every frame, global decisions over this mini-
mum duration are made in the case of the proposed system. Another important
advantage of the system is the low computational complexity of the HMM classi-
fier compared with other decision making strategies. The Viterbi HMM scheme
has a complexity of approximately order KN (where K is the state space size
and N is the number of input frames), while the BIC system is an order N2
algorithm.

4 Evaluation Experiments

4.1 Implementation

For the posterior probability calculation, we use a (9x13)-2000-42 MLP ! with a
softmax output layer trained via back-propagation to a minimum-cross-entropy
criterion. The input features are the first 13 cepstra of a 12¢"-order PLP filter
to the spectrum of the 16 KHz sampled data, using a 32 ms window and a 16
ms frame shift. No delta, double delta, or explicit energy terms are used. Nine
successive feature frames are presented to the neural network at a time.

For the purpose of feature calculation, the number of phonemes K is 42 and
the size of averaging window N is 40.

Approximately 2.5 hours of audio data was used for training the GMM
and secondary MLP experts. The GMMs for both speech and music have 5
Gaussian distributions and were trained using the EM algorithm as described
earlier. These Gaussians have diagonal covariance matrices, meaning that the
two features are not correlated in a two-dimensional feature space. The sec-
ondary MLP is a (9x2)-5-2 structure with a softmax output layer trained via
the back-propagation algorithm.

The number of states used to impose the minimum duration constraint in
the HMM was fixed to 180, thus assuming in our case that any speech or mu-
sic segment is never shorter than 2.88 seconds (16ms x 180). The self loop
probabilities were set, to 0.9 for the last state of each class.

! This MLP was trained by our colleagues at TCST Berkeley
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To assess the effectiveness of the entropy and dynamism features, a baseline
system using 24 dimensional Mel Frequency Cepstral Coefficients (MFCC) (no
delta or acceleration terms were used) in a GMM/HMM framework (using the
same topology in Figure 4), was also included in the evaluation for comparison
purposes.

4.2 Evaluation

We evaluated the system using 4 labeled data sets, each 10 minutes long. Each
data set was constructed by concatenating speech and music segments taken
from real broadcast audio data. The purpose of having 4 different test sets was
to assess the performance of the system on different degrees of mixing of these
sounds, that is, to observe the effect of duration of these sounds. Moreover,
segments having wide variety of speech and music were chosen. For example,
they contain speech from a variety of both male and female speakers, as well as
different types of music, such as jazz, pop, and country.

Results were obtained in terms of the percentage frame level accuracy. We
calculate three different statistics in each case : the percentage of true speech
frames identified as speech, the percentage of true music frames identified as
music, and the overall percentage of speech and music frames identified correctly.

4.3 Results
4.3.1 Test Set 1

This is a 10 minute audio stream having alternate speech and music segments
of equal (15 seconds) duration. The classification results are shown in Table 1.

Table 1 to be placed here

In this case, both entropy and dynamism features are capable of identifying
the speech segments with a high degree of accuracy, as is required in ASR appli-
cations. However, with dynamism the frame level accuracy for music segments is
low. We found that some of these segments had rap music, with less instrumen-
tal music in the background. Still, entropy performs well in discriminating these
segments from speech. It is also clear that the performance of these two features
is better than that of the 24-dimensional MFCC features. The performance of
the GMM and MLP experts are comparable in this case.

4.3.2 Test Set 2

The second test set represents a more realistic task as it consists of varying
lengths (including very short and long durations) of alternate speech and music
segments. These classification results are shown in Table 2.

16



Table 2 to be placed here

The performance of different features and experts for this data set follows
the same trend as in Test Set 1. This indicates the robustness of the proposed
system to the sound durations. To test the significance of the minimum duration
constraint, some segments shorter that the minimum duration were included in
this test set, with the expectation that they should be filtered out. Examination
of the output transcripts shows that these undesired short segments are correctly
ignored in the case of the entropy and dynamism features. In contrast, due to
the slower and less abrupt variations in the features, these segments appear
in the MFCC system output, borrowing frames from neighbouring segments to
respect the minimum duration.

4.3.3 Test Set 3

The third test set consists of a 10 minute audio stream comprising mainly of
speech data. In this case, 15 second segments of speech data are interleaved
with short segments of music. This represents a more likely scenario for the case
when the speech/music discrimination is being used as a pre-processing step
to speech recognition, as the audio signal will be predominantly speech. These
classification results are shown in Table 3.

Table 3 to be placed here

The advantage of combining the two features becomes evident from the re-
sults of this test set, clearly improving the total performance and the perfor-
mance over music segments.

4.3.4 Test Set 4

The final test set contains a 10 minute audio stream consisting mostly of music
data. In this case, 15 second music segments are interleaved with short segments
of speech. The classification results are shown in Table 4.

Table 4 to be placed here

We note that the speech segments are detected with a high degree of accu-
racy, despite having been interleaved with large segments of music. This ensures
no loss of information when speech/music discrimination is carried out as a
pre-processing stage for speech recognition.

4.4 Discussion

The observations from these four data sets can be summarized as follows:
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5

The 2-dimensional entropy and dynamism feature vector shows better
performance (overall 95.2%) in discriminating between speech and music
classes compared to standard 24-dimensional MFCC features (92.9%).

Overall, entropy is a better discriminatory feature than dynamism, espe-
cially during music segments. Both features individually are capable of
detecting the speech frames with a high degree of accuracy. The combina-
tion of the two features, in some cases, significantly improves the results,
showing that the two features have complementary information. This can
be attributed to the fact that entropy captures the frame-level behaviour,
whereas dynamism captures the temporal behaviour, of the posterior prob-
abilities.

Dynamism fails to detect music frames correctly, especially if the music is
composed of more vocal sounds than instrumental music, as in the case
of rap music. However, entropy still performs adequately in this situation.
This shows that the output of the primary MLP is still music-like in nature
(high entropy, probabilities uniformly distributed) within a frame, but
changes rapidly between frames, giving higher values of dynamism.

In general, the relative behaviour of entropy and dynamism does not
change in the GMM and MLP frameworks. The performance of the two
experts (GMM/MLP) is also comparable in almost all cases.

In the framework of speech recognition, an important advantage of au-
dio segmentation is the saving in computation time for non-speech seg-
ments. When the proposed system is used in conjunction with a hybrid
HMM/MLP speech recognition system, computation is reduced, as mu-
sic segments are not passed to the Viterbi decoder, which is the most
computationally intensive element of the hybrid recogniser.

In [11], it is shown that the parameters of the GMM for the two classes
(speech and music in this case) can be trained in an unsupervised manner.
This eliminates the need for labeled training data. Also, it makes the online
adaptation of the system easier. This way, the system can easily be adapted
to more general speech/non-speech classification problem.

Confidence Measure

In many situations it is desirable to not only have the segmentation information,
but also a measure of the confidence that we have in the segmentation decision.
In this section, we first discuss mean posterior confidence measure (MPCM) [12]
and then briefly discuss its use for two different purposes. As the secondary MLP
expert outputs real posterior probabilities, it offers a more convenient framework
for the development of such a confidence measure. For this reason, the following
discussion focuses on the system employing the secondary MLP.

18



5.1 Definition of Confidence Measure

In the context of the secondary MLP system, we obtain the posterior probabili-
ties for the speech P(S|y,) and music P(M|y,) (= 1— P(S|y,)) classes for each
input frame. For a segment of multiple frames (N; < n < N»), we can define a
measure of the confidence of the speech and music classes from the arithmetic
mean of these frame probabilities. We adopt the arithmetic mean in this case so
that the segmental confidence measure is not unduly biased by the probability
estimates of a single frame (it is evident that use of the geometric mean would

result in an average confidence of 0 if only one of the frames gave a probability
of 0). Thus, the MPCM is defined as:

N>
1
Rc(Ny,Ny) = ——— P(C 6
C( 1, 2) N2 _Nl Z ( |yn) ( )
n:N1
where C represents either the speech or music class. This confidence measure
is convenient as it is has a range of 0 < R¢c < 1 and obeys the constraint that
Rs+ Ry =1.

5.2 Improving Speech/Music Discrimination Accuracy

In the experiments reported in Section 4.3, the segmentation resulting from the
2-state HMM has alternate speech and music segments with minimum dura-
tions of 2.88 seconds. However, it was observed that, sometimes, a short speech
(music) segment may be recognised between two large music (speech) segments.
While in some cases these segments may be valid, they could also be attributed
to several factors, such as long pauses during speech, rap music, etc. In such
cases, we require a strategy to excise these unwanted, incorrect segments.

To this end, we investigated the use of a simple heuristic algorithm in which
low confidence segments are merged with the neighbouring segments if

1. the confidence of a segment falls below a threshold, and

2. the confidences of the neighbouring segments are above this threshold
value.

We set a confidence threshold at 0.65 and use the above algorithm on the re-
sults (secondary MLP system only, using both entropy and dynamism features)
of Section 4.3. The results are shown in Table 5.

Table 5 to be placed here

These results demonstrate two important points. First, we can achieve a
reduction in error rate by removing low confidence segments. In this case we see
the overall error rate decrease from 5.2% to 4.3%, corresponding to a relative
error rate reduction of approximately 17%. Second, from the fact that the error
rate does not increase noticeably in any case, we can also conclude that, for these
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test sets, all of the correct speech and music segments are being recognised
with a high confidence greater than 0.65. This is as we would hope, as the
segments used in these test sets are all ‘pure’ speech or music segments, and
thus the discrimination system should have high confidence in making correct
segmentation decisions.

5.3 Speech/Music Mixtures

In the present paper, we have concentrated on the problem of segmenting an
audio file consisting of pure speech or music portions. A related problem, and a
natural extension of the technique, is determining the ‘amount’ of speech present
in a signal containing a mixture of both speech and music at the same time. In
the previous sub-section, we have seen that such pure speech or music segments
are recognised with high confidence (above 0.65 for this test data). In the case
of speech and music mixtures, it would also be of interest to use the confidence
measure as an indication of the relative levels of speech and music present at a
given time.

Such a measure would have applications, for example, in the context of a
multi-modal fusion application in which the speech/music discrimination in-
formation, and indeed the speech recognition output, are simply input cues
(or features) for higher-level processing decisions combining cues from differ-
ent modalities. Such a technique for classifying speech/music mixtures has
been applied in the framework of the European ASSAVID project, which
is concerned with automatic indexing of sports videos, and a demonstration
of initial results of the scheme on a sample audio segment is available at
http://www.idiap.ch/”jitendra/speech-music. The demonstration consists
of an MPEG file which plots the value of the speech confidence measure calcu-
lated over segments as the audio signal is played. While this remains the topic
of ongoing research, these initial results give a (subjective) indication of the
potential of the confidence measure for speech/music mixtures.

6 Conclusion

In this paper, we have presented a new approach for speech/music discrimina-
tion. Entropy and dynamism features based on posterior probabilities of speech
phonetic classes (as obtained at the ouptut of an ANN, as used in HMM/ANN
large vocabulary continuous speech recognition system) used to form a two-
dimensional observation vector sequence which is used in a HMM classification
framework. We compare the use of both GMM and secondary MLP experts
to estimate the probability density functions of the HMM states. The relative
performances of entropy/dynamism and GMM/MLP are demonstrated and dis-
cussed in the context of an experimental evaluation.

The system was tested with different speech and music styles, as well as
different distributions of speech and music signals. The results of these tests
illustrate the robustness of the approach, with the system achieving consistent
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frame accuracies from 93% to 96% across a variety of realistic test scenarios.
From these results, we conclude that entropy and dynamism together make a
powerful feature set for speech/music discrimination. In more general terms, by
using features based on the phonetic posterior probabilities, the system allows
us to locate speech segments within the audio signal that can be well recognised
by the speech recognition system.

While the overall performance of the GMM and MLP systems is compara-
ble, the MLP system outputs a set of real probabilities, which may make this
system preferable if further confidence statistics are to be calculated. Such a
confidence measure was proposed and investigated for the purpose of removing
short low-confidence segments, further improving the frame accuracy over the
baseline system. The potential use of such a confidence measure in the context
of speech/music mixtures was also briefly discussed.

In summary, the proposed speech/music discrimination system provides a
powerful, robust technique for reliable segmentation of audio streams.
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Ezxpert Feature Speech | Music | Total
GMM Entropy 98.7 92.7 95.6
GMM | Dynamism 98.9 64.9 81.8
GMM Both 98.8 93.9 96.2
MLP Entropy 98.8 93.7 96.2
MLP | Dynamism 95.0 74.8 84.8
MLP Both 97.4 93.7 95.5
GMM MFCC 94.3 91.6 92.8

Table 1: Classification results for Test Set 1
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Ezxpert Feature Speech | Music | Total
GMM Entropy 97.5 914 94.2
GMM | Dynamism 99.6 79.4 89.0
GMM Both 98.1 91.6 94.5
MLP Entropy 97.4 924 94.6
MLP | Dynamism 93.0 84.8 88.6
MLP Both 98.6 94.6 96.3

GMM MFCC 93.9 92.2 92.9

Table 2: Classification results for Test Set 2
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Ezxpert Feature Speech | Music | Total
GMM Entropy 96.9 82.8 91.5
GMM | Dynamism 91.7 82.8 88.3
GMM Both 97.0 93.6 95.6
MLP Entropy 94.8 87.2 91.8
MLP | Dynamism 83.5 91.0 86.2
MLP Both 91.6 96.4 93.2

GMM MFCC 95.3 87.8 92.4

Table 3: Classification results for Test Set 3
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Ezxpert Feature Speech | Music | Total
GMM Entropy 93.3 91.1 91.8
GMM | Dynamism 98.3 70.8 81.0
GMM Both 97.2 92.7 94.3
MLP Entropy 93.3 91.0 91.7
MLP | Dynamism 90.7 83.7 86.2
MLP Both 93.2 95.1 94.3
GMM MFCC 95.9 92.2 93.5

Table 4: Classification results for Test Set 4
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Total
Before | After
1 95.5 96.1
2 96.3 96.1
3 93.3 95.6
4 94.3 94.9
Avg 94.8 95.7

Table 5: Comparison of results before and after using confidence measures
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