REPORT

TEXT DETECTION AND
RECOGNITION IN IMAGES AND

VIDEOS
Datong Chen, Jean-Marc Odobez and H. Bourlard
IDIAP, Switzerland

chen, odobez, bourlard@idiap.ch
IDIAP-RR 02-61

IDIAP RESEARCH

DEec. 2002

Institut Dalle Molle
d'Intelligence Artificielle
Perceptive e CP 592 o
Martigny e Valais e Suisse

téléphone +41-—27—7217711
télécopieur +41—27—721 7712
adr.él. secreta-
riat @diap. ch

internet
http://ww.idiap.ch




Rapport de recherche de I'IDIAP 02-61

TEXT DETECTION AND RECOGNITION IN IMAGES AND VIDEOS

Datong Chen, Jean-Marc Odobez and H. Bourlard
IDIAP, Switzerland
chen, odobez, bourlard@idiap.ch

DEc. 2002



Abstract - Text embedded inimages and videos represents a rich source of information for content-based indexing and
retrieval applications. In this paper, we present a new method for localizing and recognizing text in complex images and
videos. Text localization is performed in a two step approach that combines the speed of a focusing step with the strength
of a machine learning based text verification step. The experiments conducted show that the support vector machine is
more appropriate for the verification task than the more commonly used neural networks. To perform text recognition on
the localized regions, we propose a new multi-hypotheses method. Assuming different models of the text image, several
segmentation hypotheses are produced. They are processed by an optical character recognition (OCR) system, and the
result is selected from the generated strings according to a confidence value computed using language modeling and OCR
statistics. Experiments show that this approach leads to much better results than the conventional method that tries to
improve the individual segmentation algorithm. The whole system has been tested on several hours of videos and showed
good performance when integrated in a sports video annotation system and a video indexing system within the framework
of two European projects.

Keywords: content-based indexing, text localization, text segmentation, text recognition, support vector machines, Mar-
kov random field, OCR, multiple hypotheses,.
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FiG. 1 — Algorithm proposed for text detection and recognition.

1 Introduction

Content-based multimedia database indexing and retrieval tasks require automatic extraction of descriptive features
that are relevant to the subject materials (images, video, etc.). The typical low level features that are extracted in images
or video include measures of color [25], texture [16], or shape [17]. Although these features can easily be extracted,
they do not give a clear idea of the image content. Extracting more descriptive features and higher level entities, for
example text [4] or human faces [24], has attracted more and more research interest recently. Text embedded in images
and video, especially captions, provide brief and important content information, such as the name of players or speakers,
the title, location and date of an event etc. These text can be considered as a powerful feature (keyword) resource as are
the information provided by speech recognizers for example. Besides, text-based search has been successfully applied in
many applications while the robustness and computation cost of the feature matching algorithms based on other high level
features are not efficient enough to be applied to large databases.

Text detection and recognition in images and videos, which aims at integrating advanced optical character recognition
(OCR) and text-based searching technologies, is now recognized as a key component in the development of advanced
image and video annotation and retrieval systems. Unfortunately text characters contained in images and videos can be
any grayscale value (not always white), low resolution, variable size and embedded in complex backgrounds. Experiments
show that applying conventional OCR technology directly leads to poor recognition rates. Therefore, efficient detection
and segmentation of text characters from the background is necessary to fill the gap between image and video documents
and the input of a standard OCR system. Previously proposed methods can be classified into bottom-up [14] [23] [29]
and top-down methods [28] [13] [9] [29]. Bottom-up methods segment images into regions and then group "character”
regions into words. The recognition performance therefore relies on the segmentation algorithm and the complexity of the
images. Top-down algorithms first detect text regions in images and then segment each of them into text and background.
They are able to process more complex images than bottom-up approaches but difficulties are still encountered at both the
detection and segmentation/recognition stages.

The method we propose belongs to the top-down category, and consists of two main tasks as illustrated by Figure 1:
a text detection task and a text recognition task applied to the detected text regions. Following the cascade filtering
idea, which consists of the sequential processing of data with more and more selective filters, the text detection task is
decomposed into two subtasks. These are a text localization step, whose goal is to quickly extract potential text blocks in
images with a very low missing rate and a reasonable false alarm rate, and a text verification step based on a powerful
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machine learning tool. Such an approach allows us to obtain high performances with a lower computational cost in
comparixson to other methods.

To address the recognition task, we propose a multi-hypotheses approach. More precisely, the textimage is segmented
two or three times, assuming a different number of classes in the image each time. The different classes, all considered as
text candidates, are processed by a commercial optical character recognition (OCR) engine and the final result is selected
from the generated text string hypotheses using a confidence level evaluation based on language modeling. Additionally,
we propose a segmentation method based on Markov Random Field to extract more accurate text characters. This me-
thodology allowed us to handle background grayscale multimodality and unknown text grayscale values, problems that
are often not taken into account in the existing literature. When applied to a database of several hours of sports video, it
reduces by more than 50% the word recognition error rate with respect to a standard Otsu binarization step followed by
the OCR.

The rest of the paper is organized as follows. Section 2 presents a more detailed review on text detection and seg-
mentation/recognition. Section 3 describes the detection step, whereas Section 4 is devoted to the text recognition task.
Section 5 describes our databases, which come from two European projects, together with the performance measures and
the experimental results of our approach. Section 6 provides some discussion and concluding remarks.

2 Related work

In this section, we separately review the existing methods towards text detection and text recognition, as these two
problems are often addressed separately in the literature.

2.1 Text detection

Text can be detected by exploiting the discriminate properties of text characters such as the vertical edge density, the
texture or the edge orientation variance. One early approach for localizing text in covers of Journals or CDs [29] assumed
that text characters were contained in regions of high horizontal variance satisfying certain spatial properties that could be
exploited in a connected component analysis process. Smith et al. [22] localized text by first detecting vertical edges with
a predefined template, then grouping vertical edges into text regions using a smoothing process. These two methods are
fast but also produce many false alarms because many background regions may also have strong horizontal contrast. The
method of Wu et al. [28] for text localization is based on texture segmentation. Texture features are computed at each pixel
from the derivatives of the image at different scales. Using a K-means algorithm, pixels are classified into three classes
in the feature space. The class with highest energy in this space indicates text while the two others indicate non-text and
uncertainty. However, the segmentation quality is very sensitive to background noise and image content and the feature
extraction is computationally expensive. More recently, Garcia et al. [9] proposed a new feature referred to as variance of
edge orientation. This relies on the fact that text strings contain edges in many orientations. Variation of edge orientations
was computed in local area from image gradient and combined with edge features for locating text blocks. The method,
however, may exhibit some problems for characters with strong parallel edges characteristics such as “i” or “I”.

Besides the properties of individual characters, Sobettka et al. [23] suggested that baseline detection could be used for
text string localization. More precisely, text strings are characterized by specific top and bottom baselines, which can be
detected in order to assess the presence of a text string in an image block.

The above manually designed heuristic features usually perform fast detection but are not very robust when the back-
ground texture is very complex. As an alternative, a few systems considered machine learning tools to perform the text
detection [13, 15]. These systems extracted wavelet [13] or derivative features [15] from fixed-size blocks of pixels and
classified the feature vectors into text or non-text using artificial neural networks. However, since the neural network based
classification was applied to all the possible positions of the whole image, the detection system was not efficient in terms
of computation cost and produced unsatisfactory false alarm and rejection rates.

2.2 Text recognition review

Since commercial OCR engines achieve high recognition performance when processing black and white images at
high resolution, almost all the methods in the literature that addressed the issue of text recognition in complex images
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and videos employed an OCR system. However, these OCR software can not be applied directly on regions previously
extracted by a text localization procedure. Experience shows that OCR performance in this context is quite unstable, as
already mentioned by others [14], and significantly depends on the segmentation quality, in the sense that errors made in
the segmentation are directly forwarded to the OCR.

Some bottom-up based techniques addressed the segmentation problem for text recognition. For instance, Lienhart
[14] and Bunke [23] clustered text pixels from images using standard image segmentation or color clustering algorithm.
Although these methods can somehow avoid explicit text localization, they are very sensitive to character size, noise
and background patterns. On the other hand, most top-down text segmentation methods are performed after text string
localization. These methods assume that the grayscale distribution is bimodal and that characters a priori correspond to
either the white part or the black part, but without providing a way of choosing the right one on-line. Great efforts are
thus devoted to performing better binarization, combining global and local thresholding [1], M-estimation [11], or simple
smoothing [28]. However, these methods are unable to filter out background regions with similar grayscale values to the
characters. If the character grayscale value is known, text enhancement methods can help the binarization process [20].
However, without proper estimation of the character scale, the designed filters can not enhance character strokes with
different thickness [5]. In videos, multi-frame enhancement [13] can also reduce the influence of background regions but
only when text and background have different movements.

These methods mostly considered text segmentation as the main way to improve the text recognition results. In sec-
tion 4, we will propose a multiple hypotheses framework to achieve the same goal.

3 Text detection

There are two problems in obtaining an efficient and robust text detection system using machine learning tools. One
is how to avoid performing computational intensive classification on the whole image, the other is how to reduce the
variances of character size and grayscale in the feature space before training. In this paper, we address these problems
by proposing a localization/verification scheme. In this scheme, text blocks are quickly extracted in images with a low
rejection rate. This localization process allows us to further extract individual text lines and normalize the size of the text.
We then perform precise verification in a set of feature spaces that are invariant to grayscale changes.

3.1 Text localization

The first part of the text localization procedure consists of detecting text blocks characterized by short horizontal and
vertical edges connected to each other. The second part aims at extracting individual text lines from these blocks.

3.1.1 Candidatetext region extraction

Let S denote the set of sites (pixels) in an input image. The task of extracting text-like regions, without recognizing
individual characters, can be addressed by estimating at each(site S) in an imagel the probabilityP (T'|s,I) that
this site belongs to a text block and then grouping the pixels with high probabilities into regions. To this end, vertical and
horizontal edge maps, andC, are first computed from the directional second derivative zeros produced by a Canny filter
[2]. Then, according to the type of edge, different dilation operators are used so that vertical edges extend in horizontal
direction while horizontal edges extend in vertical direction :

D,(s) = Cy(s) @ Rect, and Dy(s) = Ch(s) ® Recty, 1)

The dilation operator&ect, and Rect;, are defined to have the rectangle shapes 1x5 and 6x3. Figure 2 (b,c) displays
the vertical and horizontal edges resulting of this process for the video frame showed in Figure 2 (a). The vertical and
horizontal edge dilation results are shown in Figure 2 (d,e). Due to the connections between character strokes, vertical
edges contained in text-like regions should be connected with some horizontal edges, and vice versa, we consider only
the regions that are covered by both the vertical and horizontal edge dilation results as candidate text regions. Thus, the
probability P(T'|s,I) can be estimated as:

P(T|s,I) = Dy(s)Dn(s) ()

Figure 2(f) illustrates the result of this step.
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d) f)

FIG. 2 —Candidate text region extraction. (a) original image (b) vertical edges detected in image (@) (c) horizontal edges
detected in image (a) (d) dilation result of vertical edges using 5x1 vertical operator (e) dilation result of horizontal edges
using 3x6 horizontal operator (f) candidate text regions.

The above text detection procedure is fast and invariant to text intensity changes. Also, ideally, the threshold of the
edge detection step can be set in such a way so that no true text regions will be rejected. The false alarms resulting of this
procedure are often slant stripes, corners, and groups of small patterns, for example human faces. Their number can be
greatly reduced using the techniques introduced in the next sections.

3.1.2 Text linelocalization in candidate text region

In order to normalize text sizes, we need to extract individual text lines from paragraphs in candidate text regions. This
task can be performed by detecting the top and bottom baselines of horizontally aligned text strings. Baseline detection
also has two additional purposes. Firstly, it will eliminate false alarms, such as slant stripes, which do not contain any well
defined baselines. Secondly, it will refine the location of text strings in candidate regions that contain text connected with
some background objects.

AK 08 PT BARES |

ma E——"
BRI 17215 OMI

FiGc. 3 —Text line localization (a) candidate text region with located baselines (top and bottom boundaries) (b) the
rectangle boundaries of candidate text lines.
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Baseline detection starts by computing the Y-axis projechiy), whereh(y) denotes the number of text pixels in
line y, and the fill-factor?’ defined as the density of text pixels inside the bounding box of the candidate text region. If the
fill-factor is too low, we iteratively split the region using horizontal lines until the fill-factor of all the regions is above a
given threshold F', in our casél'F' = 70%. The splitting lines are located using the three following algorithms, applied
sequentially :

1. Varying length splitting: This algorithm aims at splitting region containing text strings of different lengths or text
strings connected with background objects whose length is usually shorter than that of text strings. We find the
Y-coordinatey, which has the maximum absolute derivativehd). If this maximum is above a given threshold
t, andh(yo) is below50% of the length of the longest line in the region, we split the region atyine

2. Equal length splitting: When a region consists of two text lines of similar lengths, it may be split using Otsu’s
thresholding method [18]. Consideringy) as a one dimension histogram, Otsu’s method finds the threshold (line
numbery, ) that minimizes the intra-class variance of the two text lines. Thé{yi§) is less thars0% the longest
line in this region, we split the region at ling.

3. Baseline refinement. If a region cannot be split by the above two algorithms, we assume that it may contain only
one text line, and we refine the top and bottom boundaries (baselines) of the region to yield more precise location.
To this end, we search for the greatest region (in height) whose fill-factor is above the given thiieBhold

Figure 3(a) illustrates the result of applying this text line localization step on Figure 2(f). Typical characteristics of text
strings are then employed to select the resulting regions and the final candidate text line should satisfy the following
constraints : it contains between 75 and 9000 pixels; the horizontal-vertical aspect ratio is more than 1.2; the height of the
region is between 8 and 35. Figure 3(b) shows the rectangle boundaries of the candidate text lines. In general, the size
of the text can vary greatly (more than 35 pixels high). Large characters can be detected by using the same algorithm on
scaled image pyramid [28].

3.2 Text verification

As in many other works, the text localization procedure described in the previous subsection is rather empirical and
may therefore produce false alarms (i.e. non text regions). To remove these false alarms, we used verifiers trained on both
positive (text) and negative (false-alarms) examples resulting from the localization step. There are two kinds of machine
learning methods based on either empirical risk minimization or structural risk minimization. The empirical risk minimi-
zation based methods, e.g. multi-layer perceptrons (MLP), minimizes the error over the data set. On the contrary, structural
risk minimization methods, e.g. support vector machines SVMs [27], aim at minimizing a bound on the generalization
error of a model in a high dimensional space. The training examples that lie far from the decision hyperplanes will not
change the support vectors, which may indicate a potentially better generalization on unseen backgrounds. In this section,
both MLP and SVM are tested for text verification task.

3.2.1 Featureextraction

After the text localization step, each candidate text line is normalized using bilinear interpolation into an/image
having a 16 pixels height. A feature imagjgis then computed fror. The fixed size input feature vectorsto the MLP
or SVM are directly extracted fromh; on 16x16 sliding windows. Since the grayscale values of text and background are
unknown, we tested four different kinds of features invariant to grayscale changes.

Grayscale spatial derivativesfeatures:
To measure the contribution of contrast in the text verification process, the spatial derivatives of the image brightness
function in both theX andY directions are computed at each siteesulting in feature vectors of 512 dimensions.

Distance map features:
Since the contrast of text character is background dependent, the brightness spatial derivatives may not be a stable feature
for text verification. Thus, we considered as a second feature image the distande Mhawhich only relies on the
position of strong edges in the image. It is defined by [26] :
Vse S, DM(s) = mi%d(s,si) 3

EHS
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whereE C S is a set of edge points, ads a distance function, in our case the Euclidean distance. Though the distance
map is independent of the grayscale value of characters, the edgestditrelies on the threshold employed in edge
detection.

Constant gradient variance features:

To avoid the need for setting any threshold, we propose a new feature, called constant gradient variance (CGV), to
normalize the contrast at a given point using the local contrast variance computed in a neighborhood of this point. More
formally, let g(s) denote the gradient magnitude at siteand letL. M (s) (resp.LV (s)) denote the local mean (reps. the

local variance) of the gradient defined by :

IMs) = — S g(s)  and  LV(s) = — 3 (g(s:) — LM(5))? )
|gs| $i€Gs |gs| $i€Gs

whereg, is a 9x9 neighborhood arousdThen, the CGV value at siteis defined as:

COV(s) = (9(s) = M) || 7y ©

whereGV denotes the global gradient variance computed over the whole image drguming thay(s) ~ N (LM (s),LV (s)),
i.e.g(s) follows a normal law withL M (s) mean and V' (s) variance, it is easy to show that:

E[CGV(s) =0  and E[(CGV(S))Z] -GV (6)

where E denotes the expectation operator. Statistically, each local region in the CGV image thus has the same contrast
variance. Note, however, that a site with a high CGV value still corresponds to an edge with a high local brightness
contrast. In general, this method also enhances the noise in regions with a uniform grayscale value. However such regions
will be very rare since the localization step only provides candidate text images that contain many edges.

DCT coefficients:
The last feature vector we tested is composed of discrete cosine transform (DCT) coefficients computed over 16x16 blocks
using a fast DCT algorithm presented by Feig [8]. This frequency domain features are commonly used in texture analysis.

3.2.2 Multi-Layer Perceptrons(MLP)

MLP is a widely used neural network, usually consisting of multiple layers of neurons: one input layer, hidden layers
and one output layer. Each neuron in the hidden or output layers computes a weighted sum of its inputs (each output of
the neurons in the previous layer) and then passes this sum through a non-linear transfer function to produce its output. In
the binary classification case, the output layer usually consists of one neuron whose output encodes the class membership.
In theory, MLPs can approximate any continuous function and the goal in practice consists of estimating the parameters
of the best approximation from a set of training samples. This is usually done by optimizing a given criterion using a
gradient descent algorithm.

3.2.3 Support vector machine (SVM)

SVM is a technique motivated by statistical learning theory which have shown their ability to generalize well in
high-dimensional spaces [21, 6], such as those spanned by the texture patterns of characters. The key idea of SVM is to
implicitly project the input space into a higher dimensional space (called feature space) where the two classes are more
linearly separable. This projection, denoteds implicit since the learning and decision process only involve an inner dot
product in the feature space, which can be directly computed using a Kerdefined on the input space. An extensive
discussion of SVMs can be found in [27]. In short, givarabeled training example$z 1,y1) , - - -, (Tm,ym), Where
y; = £1 indicates the positive and negative classes, and assuming there exists a hyperplane defingt:by- b = 0
in the feature space separating the two classes, it can be shown taait be expressed as a linear combination of the
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training samples, i.av = 3, Ajy;é(x;) with A; > 0. The classification of an unknown examplés thus based on the
sign of the SVM function:

G(2) =Y Nyid(z).0(z) +b = Y Ny;K(zj,2) +b, (7)
j=1 j=1

whereK (z;,2) = ¢(x;).¢(2) is called the kernel function. The training of a SVM consists of estimating th@ndb) to
find the hyperplane that maximizes the margin, which is defined as the sum of the shortest distance from the hyperplane
to the closest positive and negative examples.

3.24 Training

The database consists of samples extracted from the text and non-text examples resulting from the localization step. It
was divided into a training set and a test set of equal size. Training and testing were performed using either an MLP or a
SVM classifier.

The MLP network consists of one input layer, one hidden layer and one output layer with one neuron. We used the
sigmoid as transfer function, and the network was trained using the backpropagation algorithm and the standard tricks
regarding input normalization, initialization, learning rate decay. The number of hidden neurons, which is related to the
capacity of the MLP, is chosen by performing a M-fold cross validation on the training set similar to the one presented
hereafter for SVM.

The SVM classifier is trained using standard quadratic programing technique. As the kernel, we choose the Radial
basis function (RBF) defined by :
—lz—=;l?
K(z,xj) =€ 22 (8)
where the kernel bandwidth is determined by M-fold cross validation. This M-fold cross-validation procedure can be
outlined in the following way :

1. Partition the training data set into M parts of equal size called the "folds". Then, assign each fold a possible value
of o.

2. Fori = 1 to M, train the SVM using théth o as parameter and all the folds except itteas the training set.
Evaluate the error rate of the resulting SVM on ittefold.

3. Keep the value of corresponding to the lowest error rate as the optimal parameter and train the SVM using all the
training data to obtain a good support vector set.

3.25 Text-lineverification

In the text verification step, the feature vectors discussed in Subsection 3.2.1 and provided to the classifier are extracted
from the normalized candidate text line d61x 16 sliding windows with a slide step of 4 pixels. Thus, for each candidate
text liner, we obtained a set of feature vectdfs = (27, ...,z]). The confidence of the whole candidate text linis
defined as:

a2
i

>0 (9)

1 _
Conf(r) = G(z]) x e
) =3 GCD > o
whered; is the distance from the geometric center ofétiesliding window to the geometric center of the text Imer ¢
is a scale factor depending on the text line length,@(€]") denotes the output of the MLP or the magnitude of the SVM
(cf Eq. (7)), which indicates the confidence that the veetbbelongs to a text line. Finally, the candidate text linis
classified as a real text region if C¢nf > 0 .

4 Text recognition

In this section, we first describe the overall text recognition scheme. We then describe more thoroughly the different
elements of the algorithm.
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FIG. 5 —Text recognition scheme

4.1 Overall description

Most of the previous methods that addressed text recognition in complex images or video worked on improving the
binarization method before applying an OCR module. However, an optimal binarization might be difficult to achieve when
the background is complex and the grayscale distribution exhibits several modes. Moreover, the grayscale value of text
may not be known in advance. These problems are illustrated by the image of Fig. 2a) and examples of detected text lines
in Fig. 4.

Fig. 5 and 6 outline the multi-hypotheses approach we propose to handle these problems. A segmentation algorithm
that classify the pixels int& classes is applied on the textimage. Then, for each class label, a binary text image hypothesis
is generated by assuming that this label corresponds to text and all other labels corresponds to background. This binary
image is then passed through a connected component analysis and grayscale consistency constraint module and forwarded
to the OCR system, producing a string hypothesis (see Fig. 6). Rather than trying to estimate the right number of classes
K, using a minimum description length criterion for instance, we use a more conservative approach, byA&rgimg
2 to 3 (reps. 4), generating in this way five (resp. nine) string hypotheses from which the text result is selected.

4.2 Segmentation methods

Let o denote the observation fietd= {0,,s € S}, whereo, corresponds to the gray-level value at site (pixelve
assume that the image intensity distribution is composdd ofasses, also referred to as layers. Each class is expected
to represent regions of the image having similar gray levels, one of them being text. The segmentation is thus stated as
a statistical labeling problem, where the goal is to find the label &ietd {e;,1 < e, < K,s € S} that best accounts
for the observations, according to a given criterion. To perform the segmentation, we tested 3 algorithms. In the first two
cases, the probability that a gray valuearises at a given sitewithin a particular layei is modeled by a gaussian, i.e.

p;(0s) =N (1i,04).

421 Thebasic EM algorithm

Here, individual processes are combined into a probabilistic mixture model according to :

p Os|es — k es — k TP Os (10)
Z Z ¢
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Given animage, the goal is thus to find the set of paraméters=(u ;,0:,7m;)i=1...xk Maximizing the likelihood of the data
seto defined as E(o) = Inp(o) = >, 5Inp(os). Using the standard “expectation-maximization” (EM) algorithm [7],
the expected log-likelihood of the complete data (i.e., observations and labels) can be iterativly maximized with respect
to the unknown data (the labels). After maximization, the labels can be assigned to the most probable layer according to
the following rule:

Vs es = argnax p;(0s) (11)

4.2.2 TheGibbsan EM (GBEM) algorithm

While the EM algorithm is able to capture most of the gray level distribution properties, it does not model the spatial
correlation between assignment of pixels to layers, resulting in noisy label images. To overcome this, we introduce some
prior by modeling the label field as a Markov Random Field (MRF). Then, instead of using the simple rule (11) to estimate
e, we perform a MAP optimization, i.e., we maximize tagosteriori distribution of the labels given the observations.

Due to the equivalence between MRF and Gibbs distribution [10], we have:

1 vy

whereZ (V) is a normalizing constant that can not be computed in practice due to the high dimension of the configuration
space. Thus, the MAP optimization is equivalent to the minimization of an energy fuiittion) given by :

Ule,0) = UY (e) + US (e,0) (12)
with U (e,0) =Y (=Inp,, (05)) (13)
seS

expressing the adequacy between observations and labels, as in the EM algorithm. For the defifitipmvefonly
considered second-order neighbors and’seto :

UV (€)=Y Virle)+ Y, Vi(ese)+ Y Vib(eser) (14)

seS <8,t>€EChy <5,t>€Cqiag

whereCy, (resp.Cqiqy) denotes the set of two elements cliques (i.e. two neighbor pixels) in the horizontal/vertical (resp.
diagonal) direction. Th& are the (local) interaction potentials which express the prior on the label field. One may wish
to learn these parameters off-line, from examples. However, the use of the learned parameters in the optimization process
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would require to know the correspondence between learned labels/layers and curreht\bmiever, the scale of the
characters plays an important role in the optimum value of these parameters.

The second algorithm we propose consists of estimating all the parar@etepsl’) using an EM procedure [3]. Recall
that the expectation step involves the computation of :

E [In p?o|o,@”] = Zln (p?‘e(e,o)pe (e)) p?‘z (e,0) (15)

which is then maximized ové. Two problems arise here. Firstly, this expectation Z [gan not be computed explicitly
nor directly. Instead, this law will be sampled using Monte Carlo methods, and the expectation will be approximated along
the obtained Markov chain. We used a Gibbs-sampler for the simulation.
Secondly, the joint log-likelihood probability%) is not completely known, because of the presence of the uncomputable
normalizing constanf (V) in the expression of(g). To avoid this difficulty, we use the pseudo-likelihhod function [3]
as a new criterion, that is, in (15), we replade)pby its pseudo-likelihood gle) defined from the local conditional
probabilities :

ps” (€)= [T plesleq.) (16)

seES

whereeg, represents the label in neighborhoodotJsing this new criterion, the maximization of the expectation (15)
can be performed, providing new estimate$of,o;) andV". The complexity of the GBEM algorithm is approximately 4
times greater than the complexity of the EM algorithm.

4.2.3 TheKmeansalgorithm

In this method, the goal is to find thi€ means of the disjoint subsefs (the layers) which minimizes the intra-class

variance [18], that is :
K
IV = Z Z ||Os - ljfi||2 = Z ”Os — He,
i=1 seS; seS

2

The minimization can be achieved using standard algorithms, which iteratively assign each data to the class of the nearest
center and then recompute the means.

4.3 Postprocessing: connected component analysis(CCA) and grayscal e consistency constraint
(GCC)

To help the OCR system, a simple connected component analysis is used to eliminate non character regions in each
hypothesis based on their geometric properties. We only keep connected component that satisfies the following constraints:
size is bigger than 120 pixels; width/height ratio is between 4.5 and 0.1; the width of the connected componentis less than
2.1 the height of the whole text region.

Since we only consider 2 to 4 layers, regions from the background with a gray value slightly different from that of
characters may still belong to the text layer/class. We thus developed another module to enforce a more stringent gray
consistency among the connected components. The procedure is the following and is applied to each layer (see Fig. 6).
After the CCA step, we estimate with a robust estimator [19] the gray level meaand standard deviatiant* of the set
S, of sites belonging to the remaining regions. More precisely, a least-median squares estimator is employed to identify
the graylevel value that fit the majority of pixels graylevel values and eliminate the pixel with outlier graylevel values, and
m™* andst* are estimated on the remaining valid pixels using standard formula [19]. Finally, a connected component is
eliminated from the layer if more than 50% of its pixels have a gray level value different than the majority of pixels, that
is, verify:

los —m*|
st*
An illustration of the result of this step is displayed in Fig. 4.3.

>k (17)

1. Remind that text may be black, white or gray.
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FiG. 7 —Applying grayscale consistency : a) original image b) text layer (3 layers, GBEM algorithm) ¢) same as b), after
the connected component analysis d) same as ), after the gray level consistency step.

4.4 OCR and result selection

The selection of the result from the set of strings generated by the segmentation processes (see Fig. 5) is based on
a confidence value evaluation relying on language modeling and OCR statistics. From a qualitative point of view, when
given text-like background or inaccurate segmentation, the OCR system produces mainly garbage characters like ., !,
& etc and simple characters like i,l, and r. LBt= (T;);=1.., denote a string wherk- denotes the length of the string
and each charactét; is an element of the character §et = (0,...,9,a,...,2,4,...,Z,G}), in which G}, corresponds
to any other garbage character. FurthermoreHlgt(resp.H,,) denote the hypothesis that the strifigor the characters
T; are generated from an accurate (resp. a noisy) segmentation. The confidence value is estimated using a variant of the
log-likelihood ratio:

Cu() =tog (BT ) + b xb = log (MTIHL)) ~log (TIHL)) + b %
when assuming an equal prior on the two hypotheses éhd bias that is discussed below. We estimated the noise free
language model(p H,) by applying the CMU-Cambridge Statistical Language Modeling (SLM) toolkit on Gutenberg
collectiong. A bigram model was selected. Cutoff and backoff techniques [12] were employed to address the problems
associated with sparse training data for special characters (e.g. numbers and garbage characters). The noisy language
model @.|H,,) was obtained by applying the same toolkit on a database of strings collected from the OCR system output
when providing the OCR input with either badly segmented texts or text-like false alarms coming from the text detection
process. Only a unigram model was used because the size of the background dataset was insufficient to obtain a good
bigram model. The biasis necessary to account for the string length. It was observed that without this bias, the likelihood
ratio would quite often select strings with only a few quite reliable letters instead of the true string. By incorporating
this bias in the confidence value, the selection module was encouraged to compare string results whose length was in
accordance with the underlying text image width. Settirg 0.7, the confidence value is defined as:

I

IT
Cy(T) =logp(Ti|Ha) + > log p(T;|Ti—1,Hy) — > log p(Ti|Hy,) + 0.7 x I
=2 i=1

5 Experimentsand Results

In this section, we report results on text localization, text verification, and text recognition.

2. www.gutenberg.net
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iX-based RR FPR | CPU costs
Derivative Texture| 9.46% | 3.48% 1.27
Vertical Edge 13.58% | 16.17% 0.52
Proposed 5.49% | 0.81% 0.54

TAaB. 1 —Performances and running costs of different text detection techniques. RR denotes the rejection rate and FPR
denotes the false pixel alarmrate.

5.1 Text localization results

The text localization step is evaluated on a half an hour video containing a Belgian news pfagraemch provided
by Canal+ in the context of the CIMWO'SEuropean project. The performance of the text localization step is measured
in terms of rejection rate (RR), false pixel alarm rate (FPR) and CPU cost. The rejection rate is defined as:

RP
= — 1
RR = 7= (18)
whereR P denotes the total number of text pixels rejected by the algorithmTdnh defined as the total number of text

pixels in the ground truth. The false pixel alarm rate is defined as::

PF
FPR=— 19
BT (19)
whereP F' denotes the number of false alarm pixels &iddenotes the total number of pixels in the images. The compu-

tation cost is measured in seconds on a Sun UltraSPARC-II with 333 MHz CPU without counting the I/0 consumption.

In table 5.1, we compare the performance of the proposed algorithm with the derivative texture algorithm [28] and
the vertical edge based algorithm [22] implemented by ourselves according to the referenced papers. It can be observed
that the proposed feature yields the lowest rejection rate. The computation cost of the proposed method is lower than the
derivative texture algorithm and similar to the vertical edge based method. This latter result can be explained by the fact
that although the use of the horizontal edges increases the computation load, it also saves time by producing less false
alarm regions, thus reducing the cost of the connected component analysis and baseline detection steps.

For additional evaluation, we counted the text strings that were correctly located. A ground-truth text region is conside-
red to be correctly located if it has an 80% overlap with one of the detected string regions. With the proposed method, we
extracted 9369 text lines and 7537 false alarms in the CIMWOS database. There were no rejected regions. The precision

of this localization step on this databasejig;?%== = 55.4%.

5.2 Text verification results

The text verification algorithms was designed and trained on a database consisting of still images and half an hour
video recorded from TV. The videos contain excerpts from advertisements, sports, interviews, news and movies. The still
images include covers of Journals, maps and flyers. The video frames have a size of 720x576 and are compressed in
MPEG, while the still image have a size of 352x288 and are compressed in JPEG. Only the grayscale information is used
in the experiments.

The feature extraction, training and testing procedures described in Subsection 3.2 were applied on this database. More
precisely, 2,400 candidate text regions containing both true text lines and false alarms were randomly selected from the
output of the text localization step applied on this database. From these regions the feature extraction step produced 76,470
vectors for each of the four kinds of features. It was ensured that the test set and the training set contained vectors extracted
from the same windows (i.e. same image and location) in all the experiments, where one experiment is characterized by a
couple (classifier,feature).

Table 5.2 lists the error rate measured on the test set for each feature and for each classifier. First of all, we can see
that these results are very good and better than those reported when running the classifier on the whole image whithout

3. From the Radio-Télévision Belge d’expression Francaise (RTBF).
4. Combined Image and Word Spotting
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Training Tools| DIS DERI | CGV | DCT
MLP 5.28% | 4.88% | 4.40% | 4.72%
SVM 2.56% | 3.99% | 1.07% | 2.0%

TAB. 2 —Error rates of the SYM and MLP classifiers for the text verification task. DIS denotes the distance map feature.
DERI denotesthe grayscale spatial derivative feature. CGV denotes the constant gradient variance feature. DCT denotes
the DCT coefficients.

FIG. 8 — Detected text regionsin images or video frames.

applying size normalization (13%-30% [15]). Additionally, the proposed scheme runs approximately five times faster.
Secondly, whatever the considered feature, the SVM classifier gives better results than the MLP classifier, showing its
ability to better generalize. Finally, we can see that the proposed constant gradient variance feature provides the best
result. This can be explained by its better invariance to text/background contrast.

The SVM classifier together with the CGV feature was employed to verify the extracted text regions of the CIMWOS
database, based on the confidence value given by Eq. 9. This verification scheme removed 7255 regions of the 7537
false alarms while only rejecting 23 true text lines, giving a 0.24% rejection rate and a 97% precision rate. Fig. 8 shows
examples of detected text on some images in our databases.

5.3 Text recognition results

The multiple hypotheses recognition scheme was tested on a sports database of the Barcelona 1992 Olympic games
provided by the BBC in the context of the ASSAVICEuropean project. From about five hours of video, we extracted
around one hour of video containing text. The text localization and verification algorithms were applied. As the text
regions located in consecutive video frames usually contain similar text and background, the video data results where
sub-sampled in time, leading to a database of 1208 images containing 9579 characters and 2084 words. Text characters
are embedded in complex background with JPEG compression noise, and the grayscale value of characters is not always
the highest as the examples shown in Fig. 8.

To assess the performance of the different algorithms, we use character recognition rate (CRR) and character precision
rate (CPR) that are computed on a ground truth basis as:

N,
CRR = Wr and CPR ==

2=

5. Automatic Segmentation and Semantic Annotation of Sports Videos.
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K | Algorithm | Ext. | CRR CPR | WRR
EM 7715| 74.9% | 93.1% | 61.0%
2 GBEM 9300 | 92.8% | 95.6% | 83.5%
Kmeans | 9260 | 92.5% | 95.7% | 82.8%

EM 9239 | 89.9% | 93.2% | 80.9%
3 GBEM 9302 | 89.9% | 92.6% | 80.7%
Kmeans | 9394 | 91.3% | 93.1% | 82.2%

EM 9094 | 87.4% | 92.1% | 77.7%
4 GBEM 9123 | 88.3% | 92.8% | 79.9%
Kmeans | 9156 | 88.0% | 92.1% | 79.7%

TAB. 3 — Recognition results without grayscale consistency constraint (GCC): number of extracted characters (Ext.),
character recognition rate (CRR), precision (CPR) and word recognition rate (WRR).

K | Algorithm | Ext. | CRR CPR | WRR
EM 7914 | 77.9% | 94.2% | 66.2%
2 GBEM 9307 | 94.0% | 96.8% | 87.1%
Kmeans | 9291 | 93.8% | 96.7% | 86.8%

EM 9245 | 90.3% | 93.6% | 81.7%
3 GBEM 9268 | 89.5% | 92.5% | 81.1%
Kmeans | 9395| 91.2% | 93.0% | 83.4%

EM 9136 | 88.0% | 92.3% | 78.9%
4 GBEM 9123 | 87.7% | 92.1% | 79.1%
Kmeans | 9195| 88.9% | 92.6% | 80.4%

TAB. 4 —Recognition results with GCC : number of extracted characters (Ext.), character recognition rate (CRR), cha-
racter precision rate (CPR) and word recognition rate (WRR).

N is the true total number of charactef$, is the number of correctly recognized characters Ands the total number

of extracted characters. These numbers are computed using an edit distance (counting the amount of character substitu-
tions, insertions and deletions) between the ground truth and the recognized string. Additionally, we compute the word
recognition rate (WRR) to get an idea of the coherency of character recognition within one solution. For each text image,
we count the words from the ground truth of that image that appear in the string result. Thus, WRR is defined as the
percentage of words from the ground truth that are recognized in the string results.

We first report results where the string result is selected from the hypotheses generated by applying the segmentation
algorithm one time with a fixe& value, and when applying only the connected component analysis as a postprocessing
step. This will serve as a baseline for the rest of the experiments. Table 3 lists the results obtained with the three described
segmentation methods. It can be seen that the usual bi-modality (K=2) hypothesis yields the best character and word
recognition rate with the GBEM and Kmeans algorithms. However, in the case of K=3, the Kmeans algorithm also gives
quite similar results. Indeed, some text images are composed of the grayscale characters, contrast contours around cha-
racters, and background (see figure 4). In this case, the grayscale values are better modeled with 3 or more clusters. Under
the bimodality assumption (K=2), the GBEM algorithm yields better results than the typical Otsu’s binarization method
(Kmeans with K=2) in terms of both CRR and WRR. This is probably due to the regularization power of the GBEM
algorithm, which learns the spatial properties of the text and background layers. It helps in avoiding over segmentation,
as can be seen from the example of Fig. 9. However, the improvement is not very important and is deceptive. It can be
explained by the fact that the MRF approach mainly improves the character shape, a kind of noise the OCR has been
trained on and to which it is probably not very sensitive.

The grayscale consistency constraint (GCC) technique described in Section 4 was added to the baseline system. The
corresponding results are listed in table 4. Wik€r= 2, they show an increase in absolute value of about 4% of both the
CRR and WRR together with an increase of 1.2% of the CPR. This is due to the ability of the GCC to remove burst-like
noise (i.e. significant background regions with a slightly different graylevel value than characters) which greatly impair
the recognition of the OCR. For higher valuesFof the increase is less important. Indeed, in these cases, the grayscale
consistency constraint is inherently better respected.
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K | Algorithm | Ext. | CRR CPR | WRR
EM 9480 | 93.3% | 94.3% | 86.7%
2,3 GBEM 9606 | 96.6% | 96.3% | 93.1%
without Kmeans | 9565 | 96.6% | 96.8% | 92.8%
GCC EM 9417 | 93.2% | 94.8% | 86.8%
2,34 GBEM 9604 | 96.6% | 96.2% | 93.0%
Kmeans | 9547 | 96.6% | 97.0% | 92.9%
EM 9449 | 94.0% | 95.3% | 88.1%
2,3 GBEM 9579 | 96.5% | 96.5% | 92.8%
with Kmeans | 9587 | 97.1% | 97.0% | 93.7%
GCC EM 9411 | 93.9% | 95.6% | 88.1%
2,3,4| GBEM 9557 | 96.6% | 96.8% | 93.0%
Kmeans | 9560 | 97.0% | 97.2% | 93.8%

TAB. 5 —Recognitionresultsfrom 5, 9 hypotheses, with or without GCC : number of extracted characters (Ext.), character
recognition rate (CRR), character precision rate (CPR) and word recognition rate (WRR).

EM.2: “WOMENS3 RIFLE FINALISTS”
GBEM.2: “WOMENS A RIFLE FINALISTS”

Kmeans.2: “WOMEN'S AIR RIFLE FINALISTS”

Kmeans.3: “,.".,0r. IErI S AIR FIIF E Firlg IS”

FIG. 9 — Seggmentation output of the three studied algorithms and associated recognition results using 2 or 3
layers/classes.

Table 5 lists the results obtained by generating 5 or 9 hypotheses (using K=2 to 4) in the multi-hypotheses framework.
Without employing the GCC postprocessing, the method achieves a 96.6% CRR and a 93.1% WRR, which constitutes
a reduction of more than 50% for both rates with respect to the best baseline result (GBEM with K=2). These results
demonstrates firstly the complementary of the solutions provided when assuming diffexefies, and secondly the
ability of our selection algorithm to choose the right solution. Interestingly, the results obtained with 9 hypotheses are
not better than the results obtained using only 5 hypotheses. It probably means that the segmentation with K=4 doesn’t
generate additional interesting results with respect to the K=2 and K=3 cases.

When integrating the GCC algorithm in the multiple hypotheses framework, we can notice that the GCC postprocessing
improves the result when using the Kmeans or EM segmentation algorithms and remain similar for the GBEM algorithm.
This smaller improvement, when compared to the improvement obtained when adding the GCC to the baseline, can be
explained by the fact that the multiple hypotheses framework has less need for burst-noise elimination, since it can select
between alternative modelization of the graylevel distribution.
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6 Discussion and conclusions

This paper presents a general scheme for extracting and recognizing embedded text of any grayscale value in images
and videos. The method is split into two main parts : the detection of text lines, followed by the recognition of text in these
lines.

Applying machine learning methods for text detection encounters difficulties due to character size and grayscale
variations and heavy computation cost. To overcome these problem, we proposed a two step localization/verification
scheme. The first step aims at quickly locating candidate text lines, enabling the normalization of characters into a unique
size. In the verification step, a trained SVM or MLP is applied on background independent features to remove the false
alarms. Experiments showed that the proposed scheme improved the detection result at a lower cost in comparison with
the same machine learning tools applied without size normalization, and that SVM was more appropriate than MLP to
address the text texture verification problem.

The text recognition method we propose embeds the traditional character segmentation step followed by an OCR al-

gorithm within a multiple hypotheses framework. A new grayscale consistency constraint (GCC) algorithm was proposed
to improve segmentation results. The experiments that were conducted on around 1 hour of sports video demonstrated
the validity of our approach. More specifically, when compared to a baseline system consisting of the standard Otsu bi-
narization algorithm, the GCC postprocessing step was able to reduce the character and word error rates of more than
20%, showing its ability to remove burst-like noise that greatly disturbs the OCR software. Morevover, added to the mul-
tiple hypotheses framework, the whole system yielded around 97% character recognition rate and more than 93% word
recognition rate on our database, which constitutes a reduction of more than 50% w.r.t the baseline system. This clearly
shows that (i) several text images may be better modeled with 3 or 4 classes rather than using the usual 2 class assumption
(i) multiple segmentation maps provide complementary solutions and (iii) the proposed selection algorithm based on
language modeling and OCR statistics is often able to pick up the right solution.
We proposed to use a Maximum A Posteriori criterion with a MRF modeling to perform the segmentation. Used as a
traditional binarization algorithm, it performed better than Otsu’s method. However, embedded in the multi-hypotheses
system with GCC, it yielded similar results to the Kmeans. Thus, the latter has been preferred in real application since it
runs faster.

The performance of the proposed methodology are good enough to be used in video annotation and indexing sys-
tem. In the context of the ASSAVID European project, it was integrated with other components (shot detector, speech
recognizer, sports and event recognizers,...) in a user interface designed to produce and access sports video annotation. A
simple complementary module combining the results from consecutive frames containing the same text was added. User
experiments with librarians at the BBC showed that the text detection and recognition technology produced robust and
useful results, i.e. did not produce many false alarms and the recognized text was accurate. The same proposed scheme is
currently used in the CIMWOS project to index French news programs.

Acknowledgment

This work has been performed partially with in the frameworks of the "Automatic Segmentation and Semantic An-
notation of Sports Videos (ASSAVID)" project and the "Combined Image and Word Spotting (CIMWOS)" project both
granted by the European IST Programme.

The authors would also like to thank Samy Bengio and Ronan Collobert for their help on this work.



IDIAF—RR UzZ-01

Références
[1] H. Kamada amd K. Fujimoto. High-speed, high-accuracy binrization method for recognizing text in images of low
spatial resolutions. Imt. Conf. on Document Analysis and Recognition, pages 139-142, Sept. 1999.
[2] J. F. Canny. A computational approach to edge detectieteE Trans. on Pattern Analysis and Machine Intelligence,
8(1):679-698, 1986.
[3] B. Chalmond. Image restoration using an estimated Markov m&tgial Processing, 15(2):115-129, Sept. 1988.

[4] D. Chen, H. Bourlard, and J-Ph. Thiran. Text identification in complex background using svimt. @onf. on
Computer Vision and Pattern Recognition, pages 621-626, Dec. 2001.

[5] D. Chen, K. Shearer, and H. Bourlard. Text enhancement with asymmetric filter for video O@Rclof the 11th
Int. Conf. on Image Analysis and Processing, pages 192-198, Sept. 2001.

[6] R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of svms for very large scale probidsuwsal Computa-
tion, 14(5), 2002.

[7] A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood from incomplete data via the em algoritRoyal
Satistical Society, B-39:1-38, 1977.

[8] E. Feig and S. Winograd. Fast algorithms for the discrete cosine transfoEBE Trans. Signal Processing,
40(28):2174-2193, Sept. 1992.

[9] C. Garcia and X. Apostolidis. Text detection and segmentation in complex color images. @onf. on Acoustics,
Foeech and Signal Processing, pages 2326—2329, 2000.
[10] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration ofl E&&ges.
Trans. Pattern Analysis and Machine Intelligence, 6(6):721-741, Nov. 1984.

[11] O. Hori. A video text extraction method for character recogntiorintnConf. on Document Analysis and Recogni-
tion, pages 25-28, Sept. 1999.

[12] S.M. Katz. Estimation of probabilities from sparse data for the language model component of a speech recognizer.
|EEE Trans. on Acoustics, Speech and Signal Processing, 35:400-401, 1987.

[13] H. Li and D. Doermann. Text enhancement in digital video using multiple frame integratidCNhMultimedia,
pages 385—-395, 1999.

[14] R. Lienhart. Automatic text recognition in digital videos. Pnoc. SPIE, Image and Video Processing 1V, pages
2666-2675, Jan. 1996.

[15] R. Lienhart and A. Wernicke. Localizing and segmenting text in images and vidEB& Trans. on Circuits and
Systems for Video Technology, 12(4):256—268, 2002.

[16] B.S. Manjunath and W.Y. Ma. Texture features for browsing and retrieval of image HZE& Trans. on Pattern
Analysis and Machine Intelligence, 18(8):837-842, Aug. 1996.

[17] F. Mokhtarian, S. Abbasi, and J. Kittler. Robust and efficient shape indexing through carvature scale $pétsh In
Machine Vision Conference, pages 9-12, 1996.

[18] N. Otsu. A threshold selection method from gray-level histogrdEBE Trans. on Systems, Man and Cybernetics,
1(9):62-66, 1979.

[19] P.J. Rousseeuw. Least median of squares regregsimnican Satistical Association, 79(388):871-880, Dec. 1984.

[20] T. Sato, T. Kanade, E. K. Hughes, and M. A. Smith. Video OCR for digital news archiva&ERWbrkshop on
Content Based Access of Image and Video Databases, pages 52—-60, Jan. 1998. Bombay.

[21] B. Scholkopf, K. Sung, C. Burges anf F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik. Comparing support vector
machines with gaussian kernels to radial basis functions classifite& Trans. Sgnal Processing, 45(11):2758—
2765, 1997.

[22] M. A. Smith and T. Kanade. Video skimming for quick browsing based on audio and image characterization.
Technical Report CMU-CS-95-186, Carnegie Mellon University, July 1995.

[23] K. Sobottka, H. Bunke, and H. Kronenberg. Identification of text on colored book and journal covems.Ganf.
on Document Analysis and Recognition, pages 57-63, 1999.

[24] Rohini K. Srihari, Zhongfei Zhang, and Aibing Rao. Intelligent indexing and semantic retrieval of multimodal
documentsinformation Retrieval, 2(2/3):245-275, 2000.

[25] M. Swain and H. Ballard. Color indexingnt. Journal of Computer Vision, 7:11-32, 1991.



IDIAF—RR UzZ-01

[26] J. Toriwaki and S. Yokoi. Distance transformations and skeletons of digitized pictures with applicéabtesn
Recognition, pages 187-264, 1981.

[27] V. Vapnik. Satistical Learning Theory. John Wiley & Sons, 1998.

[28] V. Wu, R. Manmatha, and E. M. Riseman. Finding text in image®rot. ACM Int. Conf. Digital Libraries, pages
23-26, 1997.

[29] Y. Zhong, K. Karu, and A. K. Jain. Locating text in complex color imagestern Recognition, 10(28):1523-1536,
1995.



