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1. Introduction 
 
In today's rapid evolution of networked information society, people are becoming even more and more 
electronically connected. As a result, the ability to achieve a highly accurate automatic personal 
identification and authentication is becoming a more challenging task. There are an increasing number 
of situations, which need proper authentication of a person in our society, including secure access 
control or transaction, e-commerce, telecommunication and government. For instance: "Is this the 
person who he or she claims to be?" Or should these individuals be given access to a system?  
 
Traditionally, a person can be verified or authenticated based on whether he/she is in possession of a 
certain token such as ID card, passport, driving license etc., or it could be based on his/her possession 
of a certain specific knowledge, which the person is expected to know such as password or PIN. But 
the major drawback of this approach is that the password may be lost or stolen and in such a situation, 
it is difficult for the system to differentiate between the client and the impostor. Therefore, often 
knowledge or token based authentication does not provide sufficient security in many critical 
applications involving access control and financial transaction.  
 
On the other hand, biometric person recognition systems can be reliable and secure methods for 
identification or authentication. In the authentication set up, the system should accept or reject the 
identity claimed by the user. In the identification task, there is no identity claimed by the user, the 
system should decide who the user is. Basically, identity verification is a binary decision problem: 
accept or reject the claimed identity, while identification is a classification problem. 
 
A biometric system is a system which makes a personal identification or authentication based on 
specific physiological or behavioral characteristics possessed by the user, such as face, voice, 
fingerprint, signature, iris, retina scan, DNA [1]. It can be based on either a single biometric 
characteristic or multiple biometric characteristics. The system based on single biometric characteristic 
is called as unimodal biometric system and the system based on multiple biometric characteristics is 
known as multimodal biometric system. All these biometric modalities have their own advantages and 
disadvantages in terms of accuracy, user acceptability and applicability, and are often complementary. 
 
A unimodal biometric system is usually more cost-efficient than a multimodal biometric system, but its 
limited performance can limit its use in a given domain.  A multimodal biometric system can 
overcome, to a certain extent, these limitations. Multimodal biometrics is a fusion process which 
utilizes decisions from multiple unimodal biometric systems to enhance fault tolerance capacity, to 
reduce uncertainty and noise and to overcome incompleteness of individual modalities. Therefore, a 
multimodal fusion approach can increase the system reliability [2-4]. 
 
A multimodal biometric system for identity verification based on fusion is more robust to fraudulent 
technologies, because it is more difficult to forge multiple biometric characteristics than a single 
biometric characteristic. Recently Bengio et al. [5] showed that confidence measures over the fusion 
scores enhanced the system performance. A reliable and practical measure of prediction confidence is 
essential for the implementation.  
  
The main scope of this project is to identify the best method of confidence estimator whose 
performance could be reliable in comparison to multimodal fusion alone. To do that, three alternative 
approaches to prediction confidence estimation are presented and compared. Among the three methods, 
the first one is the Gaussian hypothesis, the second one is the non parametric and the third one is the 
proposed distance method, which will be discuss later on in section 4.3 The three techniques are tested 
and compared on two different types of fusion (face and speech) methods namely multi layer 
perceptrons (MLP) and support vector machine (SVM) and the basic modalities were speech and face.  
  
2. Biometric Verification 
 
2.1 Multimodal Verifications 
 
Biometric authentication is the problem of verifying an identity claim using a person's behavioral and 
physiological traits. A biometric verification system based solely on one biometrics is often not able to 
meet the desired performance requirements. Verification based on multiple biometrics like speech and 
face represents an emerging trend.  



 











 



 
The current state-of-the-art multimodal biometric person verification systems are based on statistical 
generative models. Given signals from speech observation X and given face images Y, the probability 
that Si is being a client can be expressed as P(Si|X,Y). Similarly, the probability that Si is being an 
impostor can be expressed as P( i|X,Y). By using Bayes theorem, these probabilities can as written as 
follows: 
 
     (2.1) 
 
and 
 
     (2.2) 
 
Therefore, the decision rule can be derived as: 
 
if P(Si|X,Y) > P( i|X,Y) then Si is being client.  (2.3) 
 
Using equation (2.1) and (2.2), inequality (2.3) can then be rewritten as: 
 
         (2.4) 
 
where the ratio of the prior probabilities is usually replaced by a threshold di since it does not depend 
on X,Y. Taking the logarithm of (2.4) leads to the log likelihood ratio: 
 
   (2.5) 
 
When p(X,Y| i) is assumed to be the same for all clients, which is often the case. To implement this 
system, a model of p(X,Y|Si) has been created for every potential client Si, and then the threshold ?i 
need to be estimated for each client Si. This threshold is often same for every client, and thus is 
denoted by noted ?.  
 
Biometric verification of a person is typically a binary class problem: either he is genuine (in this case, 
he is known as client) or not genuine (in that case, he is known as impostor). 
 
While dealing with a binary decision problem, it is trivial to understand that the system can commit 
two types of errors: These are known as; 



(i) False Acceptances (FA):- When an actual impostor is accepted as being a client. 
 
(ii) False Rejections (FR):- When an actual client is rejected as being an impostor. 



 
The performance of the verification system is computed in terms of two different errors, false 
acceptance rate (FAR) and false rejection rate (FRR), as follows: 
 



accessesimpostor   of no.
FAs ofnumber 



=FAR   



 (2.6)  
 



accessesclient ofno.
FRs ofnumber 



=FRR   



 (2.7) 
 



A unique measure can be obtained by combining the two error ratios into the so called decision cost 
function (DCF) [6] as follows: 
 



FAR)P(impostorCost(FA)  FRR P(client)Cost(FR)  DCF ∗∗+∗∗=  
 (2.8) 



 



 











 



Here, Cost (FR) is the cost of a false rejection, Cost(FR) is the cost of a false acceptance, whereas 
P(Client) is the prior probability of a client and P(impostor) is the prior probability of an impostor. 
 
The half total error rate (HTER) is a particular case of DCF when the costs are equal to 1 and 
probabilities are equal to 0.5 each and can be defined as: 
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FRRFAR HTER +
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 (2.9) 
 



Most verification systems output a score for each access. Selecting a threshold over which scores are 
considered genuine clients instead of impostors can greatly modify the relative performance of FAR 
and FRR. A typical threshold chosen is the one that reaches the Equal Error Rate (EER) where 
FAR=FRR on a separate validation set. Here, EER and HTER are similar but the concepts are 
different. The main difference between these two are: EER is to select a threshold but cannot be used to 
measure the performance of a system, whereas HTER can be used to measure the performance of a 
system. 
 
The use of ROC (Receiver Operating Characteristic) curve, which is the representation of FAR as a 
function of FRR, is also a method to evaluate the performance of the system [7]. However, the DET 
(Detection Error Trade-off) curve is a convenient, non-linear transformation of the ROC curves, which 
has become the standard method for comparing performances [8]. The non-linearity is in fact a normal 
deviation, coming from the hypothesis that the scores of client accesses and impostor accesses follow a 
Gaussian distribution. If this hypothesis is true, the DET curve should be a line. 
 
2.2 Estimation of p(X,Y|S) 
 
The following diagram shows how experimentally p(X,Y|S) can be estimated.  
 
 



p(X,Y|S)  
 



 
Fusion 



 
 
 
 
 
 
 
 
 
 
 p(X|S) p(Y|S) 
 
 
 
Probability p(X|S) can be evaluated from the speaker verification system. There are many classical 
ways to verify the identity of a speaker based on his voice. Out of all approaches text dependent and 
text independent approaches are more commonly used [9-14]. 
 
Similarly, probability p(Y|S) can be evaluated from the face verification system. There are many 
approaches exist for the face verification [15,16]. In this work, the face verification system is based on 
two methods, Multi-Layer Perceptrons (MLP) and Support Vector Machine (SVM) (will be discuss in 
next section). 
 
Face and speech data are now treated as inputs to the fusion method which ultimately approximates 
p(X,Y|S). The multimodal fusion approach is the topic of discussion in next section. 
 
2.3 Decision Taking 



 











 



 
The decision to accept or reject a client access is based on the score obtained by the confidence 
estimation (discuss in Section 4) which could be either above (accept) or below (reject) a given 
threshold, chosen on a separate validation set to optimize a criterion such as EER. 
 
3. Fusion of Modalities 
 
As mentioned earlier (section 2) the fusion algorithms is useful to merge the results of many modalities 
in order to get relatively better performance than any of the combined methods alone. 
 
Machine learning algorithms can be used for fusion purposes. It is assumed that there is access to a 
training dataset of l pairs (xi; wi) where xi is a vector containing the scores or decisions of the basic 
modalities, such as speaker and face verification modules, whereas, wi is the class of the corresponding 
accesses (in this case, client are coded as 1 and impostor are coded as -1). 
 
The fusion process could be carried out by the following methods; 
· Multi-Layer Perceptrons (MLP)  
· Support Vector Machine (SVM) 
 
3.1 Multi-Layer Perceptrons (MLP) 
 
A multi-layer perceptron (MLP) [13] is a particular architecture of artificial neural networks, composed 
of layers of non-linear but differentiable parametric functions. The output y of a 1-hidden-layer MLP 
could be computed as: 
 
     (3.1) ) .  +  tanh(.  +  = Vxawby
 
where the output y is a function of the input vector x and the parameters (b; w; a; V). The input vector 
x = {p(X|S), p(Y|S)} and b and a are called bias parameters for the output and hidden units (neurons), 
w and V are hidden-to-output and input-to-hidden weight connections. In this notation, the non-linear 
function tanh() returns a vector which size is equal to the number of hidden units of the MLP, which 
controls its capacity and should thus be chosen carefully, by cross-validation for instance. 
 
3.2 Support Vector Machines 
 
Support Vector Machines (SVMs) are learning machines introduced by V. Vapnik et al. [16]. The 
algorithms are based on the following ideas: 
 
i). Mapping of input points to a high dimensional feature space, where a separating hyperplane can be 
found. 
ii). Maximization the distance from the hyperplane to closest patterns, a quantity called as margin. 
 
Let us assume that there is access to a training dataset of l pairs (xi; yi) where xi is a vector containing 
the pattern, while yi is the class of the corresponding pattern often coded as 1 and -1. Then the resulting 
function could be written as: 
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where x is the input vector of a example to test,  is the decision of the model (accept if  is 
positive, reject otherwise), x



ŷ ŷ
i is the input vector of the ith training example, l is the number of training 



examples, the αi and b are the parameters of the model, and K(x, xi) is a kernel function that can have 
different forms, such as: 
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which leads to a Polynomial SVM with parameter d, or 
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which leads to a Radial Basis Function (RBF) SVM with parameter σ. Either d or σ must be selected 
using methods such as cross-validation. 
 
In order to train such SVMs, one needs to solve the following quadratic optimization problem: find the 
parameter vector α = {α1, α2,…….αl)  that maximize the objective function 
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subject to the constraints: 
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It is important to note that the training complexity of SVMs is quadratic on the number l of examples, 
which makes the use of SVMs for large datasets difficult. Note however that in the resulting solution 
(3.4), most αi are equal to 0, and the examples with non-zero αi are called support vectors. 
 
 
3.3 Methodology 
 
For MLP, the following hyper-parameters were chosen a priori and fixed during training: 
·  learning rate = 0.01. 
·  learning rate decay = 0.001. 
·  number of training iterations = 150. 
·  Cost(FR) = 1. 
 
The following hyper-parameters were chosen using the cross-validation method described in this 
section: 
·  Cost(FA) varied in the set (0.5, 1, 5). 
·  number of hidden units of the MLP, in the set chosen between 1 to 30. 
 
For SVM, the following hyper-parameters were chosen a priori and fixed during training: 
 
·  number of training iterations = 150. 
·  Cost(FR) = 1. 
 
The following hyper-parameters were chosen using the cross-validation method described in this 
section: 
·  Cost(FA) varied in the set (0.5, 1, 5). 
·  number of s values of the SVM, in the set chosen between 1 to 30. 
 
 
The selection procedure was done twice, one for g1 and the second one for g2. For g1, let us consider 
g2 as the training set and g1 as the test set (and conversely for g2). The procedure is then as follows: 
 
1. For each set of values of the hyper-parameters of the fusion model, 
 
(a) we perform a K-fold cross-validation in order to obtain unbiased scores for each train examples (in 
our case, K = 5, hence we train a model with the first 4/5 of the dataset, and save the scores of the last 
1/5 , then we do the same for each of the 4 other partitions (4/5, 1/5), in order to finally obtain scores 
for the whole dataset that were obtained by a model that was not trained on the corresponding 
examples); 
(b) after a random shuffling of the data, perform a K-fold cross-validation (K = 5) on the obtained 
scores in order to compute for each partition the HTER corresponding to the threshold that optimized 
the EER on the other partitions; 
 (c) the performance of the hyper-parameter set corresponds to the average of these HTER, which are 
unbiased. 



 











 



2. Select the set of values of the hyper-parameters that has the best average HTER performance. 
3. Using the unbiased scores corresponding to the best model, select the threshold that optimizes EER 
on the whole training set. 
4. Train the best model over the whole training set. 
5. Apply the best model (found is step 4) on the test set and use the best threshold (found in step 3) to 
take the decisions. 
 
  
4. Confidence Estimation 
 
In biometric verification systems, fusion approach i.e. combination of unimodal verification could 
certainly enhance the performance of the system. But the system's reliability and usability could be 
increased again if the scores from each unimodal systems are supported by an associated confidence 
measure. One can think of the fusion algorithms as a way to somewhat weight the scores of different 
unimodal verification systems, eventually in a nonlinear way, in order to give a better estimation of the 
overall scores. If one had access not only to the scores but also to a confidence measure on these scores 
this measure could probably help in the fusion process.  
 
In the literature there exist several approaches to predict confidence estimation [5]. In the present study 
mainly three alternative approaches are presented. These three methods will be compared to see if they 
are indeed providing useful information that enhances the overall performance of the fusion algorithms. 
These are as follows: 
 
4.1 Gaussian Hypothesis 
 
Gaussian hypothesis [13] is one of the easiest methods to evaluate the confidence over a fusion score. 
Using this hypothesis, the confidence for a given score could be estimated by computing the distance 
between the probability of the client score to the probability of the impostor score. Let us assume that, 
all the scores s from genuine clients have been generated by the same Gaussian distribution N(s; mc, 
sc) and all the scores s from impostors have been generated by another Gaussian distribution N(s; mi, 
si). Then the confidence mgauss could be: 
 



 |),(s; - ),(s;|  (s)m ccgauss ii σµσµ=  
 
The parameters {mc, sc, mi, si} could be estimated from the training set of scores with associated tag 
(client or impostor). 
 
But, one needs to verify whether the client scores and impostor scores could have indeed been 
generated by two separate Gaussians. The distribution of scores coming from the modalities (speech 
and face) do not appear to be always Gaussian. Still it can be interesting to see how a model based on 
this false hypothesis perform. After all, even though the distribution is not Gaussian it cat still be often 
close to it.  
 
4.2 Non Parametric Estimation 
 
The second method that can be used to measure the confidence is a non-parametric method [5]. The 
algorithm used is as follows: 
 
1. Creation of the K distinct subspaces of scores by using training set of scores and their associated tags 
(client or impostor). 
· because the score space is unidimensional. 
· partition process is uniform over the score space or over the score distribution because each 
partition has the same size and also contains the same number of training scores). 
2. Evaluation of the statistics of interest (SSi) for each subspace i.e. mnp by dividing the number of 
errors made in the subspace (false acceptances and false rejections) by the total number of access in the 
subspace: 
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3. The confidence of a given score s with unknown tag (client or impostor) for test set could be 
computed by mnp on the subspaces SSi corresponding to the test score. 
 
The selection of K is based on the following phenomenon; 
 
 When K is small, each partition contains a large number of scores and the statistics in each 
partition is therefore well estimated. However, during the test process, the granularity of the confidence 
levels will be small because there will never be more than K different values of the statistics. 
 When K is large, the granularity is bigger, but the estimation of the statistics in each partition 
is less reliable. 
 
4.3 Distance Method 
 
Distance method to estimate confidence over fusion scores has been tested at IDIAP for the first time. 
It is very similar to the Gaussian hypothesis.  
 
Let Sj be the score of an access and Si be the ith score of the client (i = 1, …….,n). 
 
Then the distance d of an access score Sj can be computed as: 
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where, i=j implies a genuine access and  
i¹j implies an impostor access. 
Si is taken from all the client accesses. 
 
Suppose there is an access Sj claiming to be client j, then the confidence can be computed as the 
distance between the score Sj and the average of all the scores corresponding to the access of Sj. In 
other words, with the distance method, we evaluate the absolute distance of an access Sj from the mean 
scores of all clients. If Sj is a client access score, the distance d is expected to be large, On the other 
hand, if Sj is an impostor access score then d is expected to be very small. 
 
 
 
5 Experimental Data 
 
5.1 Database 
 
In the present study, all the evaluations have been performed on the BANCA (Biometric Access 
Control for Networked and e-Commerce Applications) database [17]. It is a multimodal database 
consisting of face images and speech recording carried out under several scenarios (controlled, 
degraded and adverse) for 52 subjects (26 males and 26 females) in 5 different languages (English, 
French, German, Italian and Spanish) i.e. for 260 subjects. Each language - and gender - specific 
population was itself subdivided into 2 groups of 13 subjects (denoted g1 and g2). Each subject 
participated to 12 recording sessions, each of these sessions containing 2 records: 1 true client access 
(T) and 1 informed impostor attack (I). The 12 sessions were separated into 3 different scenarios: 
 



• controlled (c), 
• degraded (d), 
• adverse (a). 
 



Two cameras were used, a cheap one and an expensive one. The cheap camera was used in the 
degraded scenario, while the expensive camera was used for controlled and adverse scenarios. Two 



 











 



microphones, a cheap one and an expensive one, were used simultaneously in each of the three 
scenarios. During the recordings, the camera was placed on the top of the screen and the two 
microphones were placed in front of the monitor and below the subject chin. 
 
Finally, any data outside the BANCA database will be referred to as external data. 
 
5.2 Protocols 
 
In the BANCA protocol, it is considered that the true client records for the first session of each 
condition is reserved as training material, i.e. record T from sessions 1, 5 and 9. In all the experiments, 
the client model training (or template learning) is done on at most these 3 records. 
 
Therefore 7 distinct training-test configurations are taken into account, depending on the actual 
conditions corresponding to the training and to the testing conditions. 
 



•  Matched controlled (Mc): 
o  client training from 1 controlled session 
o  client and impostor testing from the other controlled sessions (within the same 



group) 
•  Matched degraded (Md): 



o  client training from 1 degraded session 
o  client and impostor testing from the other degraded sessions (within the same group) 



•  Matched adverse (Ma): 
o  client training from 1 adverse session 
o  client and impostor testing from the other adverse sessions (within the same group) 



•  Unmatched degraded (Ud): 
o  client training from 1 controlled session 
o  client and impostor testing from degraded sessions (within the same group) 



•  Unmatched adverse (Ua): 
o  client training from 1 controlled session 
o  client and impostor testing from adverse sessions (within the same group) 



•  Pooled test (P): 
o  client training from 1 controlled session 
o  client and impostor testing from all conditions sessions (within the same group) 



Note that the scores SX(y) necessary for this experiment can be obtained directly from experiments 
Mc, Ud and Ua. 
•  Grand test (G): 



o  client training from 1 controlled, 1 degraded and 1 adverse sessions 
o  client and impostor testing from all conditions sessions (within the same group) 
 



It is to be noted that: 
• P and G are defined as primary protocols, and the others as secondary protocols. 
• In P, the client training has already been performed during protocols M or U. 
• In G, for client training, there is a solution which does not need new computation. 



 



 











 



6. Result and Discussions 
 
6.1 Unimodal Verification 
 
The performance of the unimodal verification systems like face and speech is not the same. As can be 
seen in Figure 1(a) and (b), g2 group shows better performance in the unimodal (face and speech) 
verification system than group g1, for all protocols, except for Ua. All the values for FAR, FRR and 
HTER are presented in percentage for enhanced readability. 
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Figure 1: Comparisons of the unimodal verification systems for two groups (g1 and g2) in all the 
protocols in (a) Face and (b) Speech. 
 
Average performance of each unimodal verification system for all the protocols are summarized in 
Table 1. It is clear from the table that the statistical performance of speech verification system is better 
than face verification system for all the protocols except G protocol, which has almost similar result. 
 



Face Speech  
Protocols FAR FRR HTER FAR FRR HTER 



G 1.60 3.63 2.62 3.37 1.93 2.64 
P 9.29 19.66 14.48 5.93 2.35 4.14 



Ma 7.21 8.34 7.77 2.89 2.56 2.72 
Mc 0.48 6.43 3.45 0.48 0.64 0.56 
Md 5.29 7.70 5.53 2.41 1.93 2.16 
Ua 12.98 30.13 21.90 12.99 3.31 8.09 
Ud 11.06 17.31 14.18 1.93 0.64 1.28 



 
Table 1: Performance of different unimodal verification system 



 
6.2 Multimodal Approach 
 
As can be seen in the previous paragraph, it is not always possible to rely on unimodal system 
verification. The approach to fuse different unimodal verification system is now well established. Here 
the results are verified using two fusion methods namely SVM and MLP as discussed already (section 
3.1 and 3.2). The results are summarized in Table 2. There are significant improvements in the 
performance of fusion process in comparison to the unimodal system in all the methods. Again from 
the Figure 2 it is not so clear which method is more reliable, both are look same. The average values of 
HTER on the 7 protocols are calculated to be 1.84 and 1.87 for SVM and MLP method respectively. 
So, it may conclude that SVM fusion method is little more reliable than MLP method. 
 



SVM MLP  
Protocols FAR FRR HTER FAR FRR HTER 



G 0.16 0.43 0.29 0.00 0.67 0.32 
P 1.60 3.21 2.40 1.76 2.79 2.27 



Ma 0.96 2.56 1.76 1.44 2.56 1.52 
Mc 1.44 0.00 0.72 1.44 0.00 0.72 



 











 



Md 0.48 1.92 1.20 1.92 0.64 1.28 
Ua 5.77 3.85 4.81 5.29 4.49 4.89 
Ud 3.37 0.64 2.00 0.96 3.21 2.08 



 
Table 2: Comparison of fusion methods in all the protocols 
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Figure 2: Performance of SVM and MLP methods 



6.3 Confidence Estimation 
 
Table 3 shows the performance of the different confidence estimators in terms of HTER for all the 
protocols using Gaussian, non parametric and distance methods. A complete comparison of different 
confidence estimation methods in all the protocols is shown in Figure 3. 



Protocols 



G P Ma Mc Md Ua Ud Average 



 
Confidence 



Method 



 
Fusion 
Method 



HTER HTER HTER HTER HTER HTER HTER HTER 



SVM 0.16 2.03 1.12 0.24 1.04 5.05 1.52 1.59 Gaussian 
Method 



MLP 0.27 2.27 1.12 0.72 1.12 4.17 2.00 1.67 



SVM 0.40 2.48 0.88 0.00 0.80 5.21 1.76 1.65 Non 
Parametric 



Method MLP 0.35 2.91 1.12 0.00 1.20 3.85 2.08 1.64 



SVM 0.53 2.14 2.64 1.20 1.52 3.77 1.76 1.94 Distance 
Method 



MLP 0.16 1.76 1.36 0.32 1.04 3.45 2.24 1.48 



 
Table 3: Comparison of the performance of different confidence methods 
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Figure 3: Comparative performance of confidence estimations in all the protocols 
 



Looking through Figure 3, it is very difficult to select the best method for confidence estimation. But 
taking the average values of HTER, it is found that confidence estimation by distance method on MLP 
fusion data has the best performance. But considering only the confidence method, Gaussian 
Hypothesis method is found to me statistically more significant than non parametric method than 
distance method. 



 
How the confidence estimation improves the reliability of the verification system can be clearly visible 
from Table 4. Here MLP was chosen as fusion method and distance as confidence estimation, which is 
found to be the best.  



 
Unimodal 



Speech Face 
Fusion Fusion + 



Confidence 
 



Protocol 



HTER HTER HTER HTER 
G 2.65 2.62 0.32 0.16 
P 4.14 14.48 2.27 1.76 



Ma 2.72 7.77 1.52 1.36 
Mc 0.56 3.45 0.72 0.32 
Md 2.16 6.49 1.28 1.04 
Ua 8.09 21.56 4.89 3.45 
Ud 1.28 14.18 2.08 2.24 



 
Table 5: Comparison of confidence estimation method with unimodal and fusion 
 



The results also graphically represented to compare the performance of confidence estimation with 
unimodal and fusion method. Figure 4 (a) and (b) depicts the DET curves for protocol G for 
comparison. It is interesting to note that the performance of the confidence is tremendous for group g1, 
as seen in Figure 4 (a). The performance of confidence for group g2 is also good except upper part. 
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Figure 4 (a): Comparison of the DET curves on the test set for group g1 of protocol G 
(In the confidence estimation FA(%) and FR(%) were found to be 0, so no trace) 
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Figure 4 (b): Comparison of the DET curves on the test set for group g2 of protocol G 
 
7. Conclusions 
 



 











 



 



State-of-the-art biometric verification algorithms, based on speaker verification, face verification, 
fusion of both modalities as well as various confidence estimation processes were presented in the 
report. Three different methods namely, Gaussian, non parametric and distance were used for 
confidence estimation. The performance of these three methods over the BANCA database were 
compared using two standard fusion methods namely MLP and SVM. Confidence estimation by 
distance method on MLP fusion data showed best performance. However, considering only the 
confidence method, Gaussian Hypothesis method is found to be better than non parametric method and 
distance method. 
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