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Abstract. Automatic Speech Recognition (ASR) systems typically use smoothed spectral fea-
tures as acoustic observations. In recent studies, it has been shown that complementing these
standard features with pitch frequency could improve the system performance of the system
[FNSS01, SEMDBO02]. While previously proposed systems have been studied in the framework
of HMM/GMNMs, in this paper we study and compare different ways to include pitch frequency
in state-of-the-art hybrid HMM/ANN system. We have evaluated the proposed system on two
different ASR tasks, namely, isolated word recognition and connected word recognition. Our re-
sults show that pitch frequency can indeed be used in ASR systems to improve the recognition
performance.
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1 Introduction

Speech is produced by a linear time-variant vocal tract system excited by the vibration of vocal cords.
The acoustic speech signal mainly contains two kinds of information, namely, source information and
vocal tract system information. Traditional ASR systems use features derived from the smoothed
spectral envelope of the speech signal which basically represent the characteristics of the vocal tract
system (alleviating the knowledge of voice source characteristics), e.g. perceptual linear prediction
(PLP) features[Her91].

Voice source characteristic such as pitch is a perceptual quantity; but its acoustic correlate (rate
of vibration of vocal cords) referred to as pitch frequency, can be estimated from the speech signal.
Pitch frequency can convey different information, information about the speaker; its existence or non-
existence can convey information about the type of sound (voiced or unvoiced); its variation across time
can convey prosodic information. Hence, pitch frequency is not an ideal source of information for ASR.
It has been observed in literature that pitch frequency affects the estimation of the spectral envelope,
in particular, the estimation of the spectral peaks, making the standard acoustic features sensitive to
changes in pitch frequency, e.g. [Her91]. Thus, we may expect certain correlation between standard
acoustic feature and pitch frequency, for example [FNSS01] illustrates a negative correlation between
7th Mel cepstral coefficient and logarithm of the pitch frequency of a phoneme sample. In recent
studies, it has been shown that the standard acoustic features can be supplemented with additional
information such as pitch frequency to improve the performance of ASR system [FNSS01, SEMDB02].

In standard automatic speech recognition systems, at each time frame n, hidden Markov models
(HMMs) estimate the likelihood (also called emission probability) of the acoustic observation z,, being
emitted on a specific state ¢, [BM94]

p($n|Qn) (1)

where ¢, € {1,--- ,k,---, K}, set of possible HMM states. This is typically estimated using Gaussian
Mixture Models (GMMs) or Artificial Neural Network (ANN). In incorporating pitch frequency (Fo,)
at time frame n, we can model (1) in the following ways:

(a) Augmenting the standard features with pitch frequency Fp, and estimating the emission distri-
bution using the augmented features.

p(fEn, F0n|Qn) (2)

(b) Conditioning the emission distribution upon Fy,,.

p($n|QnaF0n) (3)

A particular example of such a system is gender modelling. In gender modelling [KMC91], two
different acoustic models are trained corresponding to each gender using their respective training
data. During recognition, there are different options such as one can run a gender recognizer and
pick the acoustic models accordingly or pick the one which gives the best match (max operation)
for decision making or hide the gender information (integrating over all possible values).

While implementing (2) seems easy, the implementation of a system based upon (3) is not straight-
forward, if Fp, is continuous valued. Approaches to realize systems using (3) when the emission
distribution is modelled by GMMs were recently proposed in [FNSS01, SEMDBO02].

In this paper, we study different ways in which the pitch frequency information can be introduced
in a hybrid HMM/ANN based ASR. Hybrid HMM/ANN systems naturally address both the time-
dependence and the within feature vector dependence assumption. There are known advantages in
using an ANN to model emission distribution such as better discrimination, modelling higher-order
correlation between the components of the feature vector, access to posterior probabilities etc [BM94].
In hybrid HMM/ANN systems, the emission probability is estimated from the state posterior distri-
bution (which is discrete) obtained from the output of the ANN, whereas, in HMM/GMM systems
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the emission probability is estimated from the mixture of Gaussian distributions (which is continu-
ous). Hence, there is no direct extension to the approach suggested in [FNSS01, SEMDBO02]. Also, in
[SEMDBO02] it has been shown that observing the pitch frequency during training and hiding it during
recognition may help in improving the performance of the system. As we will see in the next section,
this is not always possible in case of hybrid HMM/ANN system.

In Section 2, we present the different approaches to model pitch frequency in hybrid HMM/ANN
based ASR. Section 3 then describes our system and the experimental studies, before concluding with
an analysis of the results obtained.

2 Modelling Pitch Frequency in Hybrid HMM/ANN ASR
Standard HMM based ASR models p(Q,X) [BM94], the evolution of the observed space X =

{z1, -+ ,Zn, - ,zn} and the hidden state space Q@ = {q1, - ,qn, - ,qn} for time n = 1,--- | N
as:

N
p(@,X) ~ ] p(xnlgn) - Plgnlgn-1) (4)

In case of hybrid HMM/ANN based ASR p(x,|g,) is replaced by the scaled likelihood pg(zy|gn),
which is estimated as [BM94]:

P(Tn|gn) P(gn|zn)
1z = = 5
pS( n|Qn) p(n) P(qn) ( )
For incorporating pitch frequency information Fy = {Fo1,--- ,Fon, -+, Fon}, we have to model

p(Q, X, Fy). The pitch frequency can be discrete valued i.e. Fy, € {1,---,l,---,L} or continuous
valued. The simplest and most common practice is to augment the feature vector x, with Fy, and
model the evolution of the augmented feature vector over the hidden state space @ similar to (4),
resulting in:

N
p(Qa X, FO) ~ H p(mn|QH7 FOn) : p(FOnlqn) : P(Qqu”fl) (6)

n=1

The implementation of such a system is straightforward, irrespective of whether the pitch frequency
is discrete or continuous valued. As it can be observed from (6), this approach also implicitly models
the dependency between the state ¢, and the pitch frequency Fp,,, which may be noisy. For example,
pitch frequency cannot tell anything about the state g, or what has been spoken. In such a case, it
would be better to relax the joint distribution in (6) by assuming independence between Fy, and gy,
yielding

N
p(Q, X, Fo) = [ p(@nlgn, Fon) - P(Fon) - P(gnlgn-1) (7)

n=1

If the pitch frequency is discrete valued then, a system based upon (7) could be realized by training
an ANN corresponding to each discrete value. This is similar to the case of gender modelling, where
acoustic models for male and female speaker are simply trained separately. In case of continuous valued
FEyn, it is not evident how to implement a hybrid HMM/ANN system according to (7). For the case
of emission distribution modelled by Gaussian such a system is realized using conditional Gaussian
[LJO1, FNSS01, SEMDBO02], where the first order moment of the distribution is a linear regression
upon the pitch frequency.

It has been shown in literature that pitch frequency estimation is error prone [BHJ93]. In such a
case, it may be good to observe Fg, during training and hide it i.e. integrate over all possible values
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during recognition [SEMDBO02]. The pitch frequency then can be hidden in two ways depending upon
how the pitch frequency is treated. The pitch frequency can be a static information (average pitch
frequency over the entire utterance, e.g., gender modelling). In such a case, the discrete valued pitch
frequency can be hidden in the following way:

L

p(Q,X)=> p(Q,X,F=1) ®)

=1

This would mean running the decoder over all the L different systems and summing their output.
If the pitch frequency is a dynamic variable, it could be hidden by marginalizing the distribution
p(Zn, Fonlqn) over Fy, to obtain the emission distribution p(z,|¢,) and performing decoding according
to (4) [SEMDBO02]. Again in hybrid HMM/ANN system it is not clear how to marginalize continuous
valued pitch frequency. However, for the case of discrete valued pitch frequency, it could be hidden to
estimate p(z,|gn) in the following way:

M=

p(xn|qn) = P(Tp, Fon = l|Qn) 9)

-~

1

2
M=

p(xnllthOn = l) ) P(FOn = l) (10)

«.
I
-

and performing decoding according to (4). Equation (10) corresponds to (7), when the pitch frequency
is hidden. In an earlier study, we investigated the effectiveness of pitch frequency as static information.
We did not observe any improvement in the performance of the system [MDSB02]. Hence, in this paper
we restrict ourselves to the case where pitch frequency is treated as dynamic information.

3 Experiments

3.1 Systems

We study 3 different hybrid HMM/ANN systems.

Baseline: System using standard acoustic features based on (4).

System 1: System with z, and Fp, based on (6); Foy, is continuous valued.
System 2: System with Fp,, independent of ¢, based on (7); Fg,, is discrete valued.

3.2 Database and Features

The above systems are studied for two different tasks of ASR: isolated word recognition and connected
word recognition. We use the PhoneBook speech corpus for speaker-independent task-independent,
small vocabulary (75 words) isolated word recognition [PEW*95]. For the connected word recognition
task, we use the OGI Numbers speech corpus which contains free-format numbers spontaneously
spoken by different speakers [CFL94]. The definitions of the training, validation, and evaluation sets
are similar to [DBD197] and [MM98], for the PhoneBook corpus and the OGI Numbers corpus,
respectively.

There are 42 context-independent phones including silence, each modelled by a single emitting
state in the systems trained on PhoneBook corpus. The acoustic vector x, is the MFCCs extracted
from the speech signal using a window of 25 ms with a shift of 8.3 ms. Cepstral mean subtraction and
energy normalization are performed. Ten Mel frequency cepstral coefficients (MFCCs), the first-order
derivatives (delta) of the ten MFCCs and the ¢y (energy coefficient) are extracted for each time frame,
resulting in a 21 dimensional acoustic vector.
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In the systems trained on OGI Numbers, there are 27 context-independent phones including silence,
each modelled by a single emitting state. The acoustic observation x,, consists of 12th order perceptual
linear prediction (PLP) coefficients plus the energy cepstral features, their deltas and their delta-deltas
extracted from a 25 ms speech signal with a frame shift of 12.5 ms.

The pitch frequency is extracted using simple inverse filter tracking (SIFT) algorithm [Mar72].
A 5-point median smoothing is performed on the pitch frequency contour. We evaluated our pitch
estimation algorithm on the Keele Pitch Database ! [PMA95]. The results of this evaluation are given
in Table 1. It shows that the pitch frequency estimation is reliable. In future, we would like to improve
it further using other pitch frequency estimation approaches. In case of the systems where pitch
frequency is continuous valued, the pitch frequencies are normalized by the highest pitch frequency
which is 400Hz in our case (same for all utterances). The normalization is done in order to avoid
saturation of the sigmoids [LBOM98].

Table 1: Evaluation of pitch estimation algorithm
for 5 male and 5 female utterances. Gross error =
ns where n is the total number of comparisons for
which the difference between estimated pitch fre-
quency and reference pitch frequency is higher or
lower than 20% of reference pitch frequency and n,, is
the total number of comparisons for which estimated
pitch frequency and reference pitch frequency repre-
sent voiced speech. AMD - Absolute mean deviation.

Voiced | Unvoiced | High | Low
Gender in in gross | gross | AMD
error error error | error
(%) (%) %) | (%) | (Hz)
Female 6.5 2.9 1.1 16.0 3.7
Male 22.3 1.5 3.7 5.1 2.0

3.3 Experimental Studies

The PhoneBook systems were trained with the 21 dimensional MFCC features. The OGI Numbers
systems were trained with the 39 dimensional PLP features. The baseline systems were trained with
the standard acoustic features. The number of parameters of system trained on PhoneBook database
and OGI database are 139K and 538K, respectively. We have trained different baseline systems by
varying the size of the ANN, all of them yielding performance similar to the one quoted in this paper.

In case of System 1, we trained a multilayer perceptron (MLP) by concatenating the standard
acoustic feature vector with the pitch frequency at every frame i.e. the input layer contains additional
inputs corresponding to the pitch frequency. In this case, we would be taking advantage of the MLPs
ability to estimate higher order correlation between the components of the input feature, e.g. [BM94,
page 75]. The number of parameters of system trained on PhoneBook database and OGI Numbers
database are 144K and 465K, respectively.

The System 2 was implemented in the following manner.

1. The pitch frequency contour is estimated for all the training utterances.

2. The pitch frequencies are then vector quantized into three discrete regions, where one of the
discrete regions models the unvoiced speech.

Lftp://ftp.cs.keele.ac.uk/pub/pitch/Speech
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Figure 1: Isolated word recognition on PhoneBook database. The performance is expressed in-terms of
word error rate (WER). ET-ER: Systems trained with estimated Fy,, and tested with estimated Fg,,,
ET-RR: Systems trained with estimated Fy,, and tested with random Fy,. RT-ER: Systems trained
with random Fo,, and tested with estimated Fy,, (results presently not available for System 1).

3. An MLP corresponding to each of the discrete regions is trained by finding the nearest discrete
region corresponding to the value of the pitch frequency at that frame. The only exception is
that the silence regions are observed by all the three MLPs. This is done because silence regions
are nonspeech regions.

During recognition, we study two strategies, namely, having the pitch frequency observed (O) and
having the pitch frequency hidden (H). When the pitch frequency is observed during recognition, the
single MLP corresponding to each observed Fy,, is used. This is done on a frame-by-frame basis. When
the pitch frequency is hidden, all the MLPs are used the according to (10). The number of parameters
(sum of the parameters of all the 3 neural networks) of system trained on PhoneBook database and
OGI Numbers database are 144K and 465K, respectively.

The results of the studies conducted on the PhoneBook database and OGI Numbers database are
shown in Figure 1 and Figure 2, respectively (labelled ET-ER in Figures 1 and 2). In both the studies,
System 1 and System 2 perform better than the baseline. In the case of PhoneBook system, the
significant improvement (99% confidence) is observed for System 1, where as in case of OGI Numbers
signification improvement (98% confidence) is observed for both System 1 and System 2.

In order to verify that the improvement in the performance of System 1 is due to pitch frequency
and not due to increase in the input dimensionality or knowledge of voicing, we trained System 1 by
concatenating the voicing decision with z,, i.e. substituting the pitch frequency value by 1 wherever
pitch existed. The performances obtained were similar to the baseline. This suggests that improvement
was not just due to the increase in the input dimension or voicing knowledge. We conducted two
additional studies to investigate the role of pitch frequency during training and recognition. In the
first study (labelled RT-ER in the Figures 1 and 2), we trained System 1 and System 2 with random
pitch frequency values (within the range of the pitch frequency estimator) and conducted recognition
with estimated pitch frequency values. In another study (labelled ET-RR in Figures 1 and 2), we
conducted recognition experiments where the System 1 and System 2 were trained with estimated
pitch frequency values and during recognition the estimated pitch frequency values were substituted
by random pitch frequency values (within the range of the pitch frequency estimator). The results of
this study are shown in Figures 1 and 2 for the PhoneBook Database and OGI Numbers Database,
respectively. It can be observed from the results that the performance of the systems does not improve
over the baseline system. This suggests that during training, the system has learned the relationship
between the acoustic feature, the true estimate of the pitch frequency and the HMM states and this
relationship is the one which is contributing towards the improved performance of the systems (labelled
ET-ER in Figures 1 and 2) when the true estimate of the pitch frequency is observed.
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Figure 2: Connected word recognition on OGI Numbers database. The performance is expressed in-
terms of word error rate (WER). ET-ER: Systems trained with estimated Fy,, and tested with estimated
Fon, ET-RR: Systems trained with estimated Fy,, and tested with random Fy,,. RT-ER: Systems trained
with random Fy,, and tested with estimated Fy,,.

4 Summary and Conclusion

In this paper, we studied two different ways in which pitch frequency can be incorporated in state-of-
the-art hybrid HMM/ANN systems. Both approaches studied here performed better than the baseline
system. System 1 yielded significant improvement for both the isolated word recognition task and
connected word recognition task; whereas System 2 performed significantly better than the baseline
for the connected word recognition task only. Our results suggest that pitch frequency can indeed
help in improving the performance of ASR. The results obtained complements the recent efforts
to model pitch frequency within the framework of HMM/GMM and dynamic Bayesian networks
[FNSS01, SEMDBO02].

In case of System 2, the difference between the performance of observed case and hidden case when
random pitch frequencies were substituted for the estimated pitch frequencies (ET-RR case in Figures
1 and 2) shows the advantage of hiding the pitch frequency during recognition, when reliable estimate
of pitch frequency is not available.

In the future, we would like to extend this study to incorporate other additional information such
as rate-of-speech and short-time energy in the context of modelling speaker variability in spontaneous
speech.

5 Acknowledgements

This work was supported by the Swiss National Science Foundation under grants PROMO (21-
57245.99) and BN_ASR (20-64172.00). We would like to thank TCTS, FPMS, Belgium for providing
us the segmentation of PhoneBook database. We would also like to thank Prof. Hynek Hermansky
OGI, USA for his valuable comments and suggestions.

References

[BHJ93] P. C. Bagshaw, S. M. Hiller, and M. A. Jack. Enhanced pitch tracking and the processing
of FO contours for computer aided intonation teaching. In Eurospeech, pages 1003—1006,
1993.

[BM94] H. Bourlard and N. Morgan. Connectionist Speech Recognition - A Hybrid Approach.
Kluwer Academic Publishers, 1994.



[CFL94]

[DBD+97]

[FNSS01]
[Her91]

[KMCO1]

[LBOMOYS]

[LJO1]

[Mar72]

[MDSB02]

[MMO98]

[PFW+95]

[PMA95]

[SEMDB02]

IDIAP-RR 03-23

R. A. Cole, M. Fanty, and T. Lander. Telephone speech corpus at CSLU. In ICLSP,
1994.

S. Dupont, H. Bourlard, O. Deroo, V. Fontaine, and J.-M. Boite. Hybrid HMM/ANN
systems for training independent tasks: Experiments on ’PhoneBook’ and related im-
provements. In ICASSP, pages 524-528, 1767-1770, 1997.

K. Fujinaga, M. Nakai, H. Shimodaira, and S. Sagayama. Multiple-regression hidden
Markov model. In ICASSP, pages 513-516, 2001.

H. Hermansky. Perceptual linear predictive(PLP) analysis of speech. J. Acoust. Soc.
Amer., 87(4):1738-1752, 1991.

Yochai Konig, Nelson Morgan, and Claudia Chandra. GDNN: A gender-dependent neural
network for continuous speech recognition. Technical Report TR-91-071, ICSI, Berkeley,
Berkeley, Califronia, USA, December 1991.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R Miiller. Effiecient BackProp. In Genevieve N.
Orr and Klaus-Robert Miller, editors, Neural Networks: Tricks of the Trade, chapter 1,
pages 9-50. Springer-Verlag, 1998.

S. L. Lauritzen and F. Jensen. Stable local computations with conditional gaussian
distributions. Statistics and Computing, 11(2):191-203, April 2001.

J. D. Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Trans.
Awudio and FElectroacoustics, 20:367-377, 1972.

Mathew Magimai.-Doss, Todd A. Stephenson, and Hervé Bourlard. Modelling auxiliary
information (pitch frequency) in hybrid HMM/ANN based ASR systems. IDIAP-RR 62,
IDIAP, 2002.

N. Mirghafori and N. Morgan. Combining connectionist multi-band and full-band prob-
ability streams for speech recognition of natural numbers. In ICLSP, pages 743-746,
1998.

J. F. Pitrelli, C. Fong, S. H. Wong, J. R. Spitz, and H. C. Leung. PhoneBook: A
phonetically-rich isolated-word telephone-speech database. In ICASSP, pages 1767-1770,
1995.

F. Plante, G. F. Meyer, and W. A. Ainsworth. A pitch extraction reference database. In
Eurospeech, pages 837-840, 1995.

T. A. Stephenson, J. Escofet, M. Magimai-Doss, and H. Bourlard. Dynamic Bayesian
network based speech recognition with pitch and energy as auxiliary variables. In NNSP,
2002.



