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Abstract. Variational methods have proved popular and effective for inference and learning in
intractable graphical models. An attractive feature of the approaches based on the Kullback-
Leibler divergence is a rigorous lower bound on the normalization constants in undirected models.
In the suggested work we explore the idea of using auxiliary variables to improve on the lower
bound of standard mean field methods. Our approach forms a more powerful class of approx-
imations than any structured mean field technique. Furthermore, the existing lower bounds of
the variational mixture models could be seen as computationally expensive special cases of our
method. A byproduct of our work is an efficient way to calculate a set of mixture coefficients for
any set of tractable distributions that principally improves on a flat combination.
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1 Introduction

Probabilistic graphical models provide a convenient framework for the graphical representation of
joint probability distributions via local constraints, and facilitate computation of many quantities of
interest required for both inference and learning. Such a probabilistic treatment of uncertainty offers
a consistent and principled approach to inference in complex domains. However, many distributions
used to model practical domains are inherently intractable. For example, for distributions p(x) of the
(Boltzmann) form

p(x) = exp{E(x)}/Z, Z =) exp{E(x)}, (1)

the complexity of evaluating the partition function (normalization constant) Z is exponential in the
size of the largest clique in the associated junction tree Lauritzen and Spiegelhalter (1988). For dense
graphs the exact evaluations are in general computationally infeasible, and approximations need to
be considered. In this paper we focus on approximate inference, specifically the computation of lower
bounds on normalization constants, which can also be used to approximate marginals of a formally
intractable distribution.

Variational approximations have been extensively used in physics and engineering and more re-
cently applied to approximate inference and learning in intractable graphical models (see e.g. Jordan
et al. (1998); Barber and Wiegerinck (1998); Wainwright et al. (2002)). In this context they were
shown to result in relatively simple dual representations of the induced optimization problems. Their
other advantage for graphical models is availability of rigorous bounds on the normalizing constant
(Jaakkola and Jordan, 1996).

A popular class of such approximations is based on the Kullback-Leibler divergence

KL(g(x)[[p(x)) = (log g(x))q() = (10gP(x))q() = 0. (2)

Here (.. .)q(x) denotes an average over g(x), and the bound is saturated if and only if ¢(x) = p(x). In the
case of the Boltzmann distribution (1), non-negativity of the KL divergence (2) yields the well-known
class of lower bounds

IOgZ > <7 IOg Q(X»q(x) + <E(X)>q(x)v (3)

where ¢(x) is typically restricted to a class of tractable distributions and varied to obtain the tightest
bound within the tractable class. Coupled with an upper bound on the normalizing constant (Wain-
wright et al., 2002), expression (3) may be used for bounding expectations in the original model. A
further use for this procedure is to provide a lower bound on the marginal likelihood in situations of
observed and unobserved variables, which is a natural derivation and extension of the EM procedure
(Neal and Hinton, 1998).

1.1 Existing Variational Approximations

The computational tractability of the bound (3) depends on the choice of the approximating distribu-
tion g(x). The simplest choice is given by the factorized mean field model (see Figure 1 (a), (b)) with
qur(x) =I[; ¢(x;), which discards all the edges from the original graph. This results in the simplest
form of the bound (3). However, the bound may be inaccurate when the variables in the true distribu-
tion are strongly correlated. Moreover, factorized approximations of distributions of the exponential
family are unimodal. This implies a fundamental limitation of the mean field approximation in the
case when p(x) is multi-modal, since significant mass contributing to the partition function may be
missed.

One way to go beyond the factorized assumption for g(x) is to consider a structured mean field
approximation (Ghahramani and Jordan, 1995; Barber and Wiegerinck, 1998) which retains some of
the structure of p(x). Often it is assumed that g(x) has a sparse graphical representation (e.g. it is
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Figure 1: (a) A fully connected pairwise Markov network representing the intractable distribution p(x);
(b) standard mean field approximation ¢ysr(x); (c) structured mean field approximation gsasr(x); (d)
mixture of mean field models. [All the variables x are coupled through the mixture label y. The dotted
lines serve to indicate that the marginal gaspsr(x) is in general fully connected.)

pP(xy): qx.y):

Figure 2: A special case of the auxiliary variational framework — an auxiliary mean field approximation.
Here the target distribution p(x,y) is approximated by ¢(x,y), which is structured in the augmented
space. Note that the marginal p(x) expressed from p(x,y) is identical to the original fully connected
pairwise target shown on Figure 1 (a).

a (poly)tree, see Figure 1 (c¢)), which typically leads to an improvement on the bound at a moderate
increase in computational cost. Note, however, that discarded edges in ¢(x) introduce conditional
independencies which may not exist in the original distribution p(x).

Another approach examined recently (Lawrence et al., 1998; Jaakkola and Jordan, 1998) uses
mixtures of mean field type models (see Figure 1 (d)). This is a powerful extension of the standard
factorized approximation, since the resulting approximating distribution ¢(x) is in general multi-
modal and not factorized in x. However, in general optimization of the bound (3) in this case requires
minimization of the KL divergence between two fully connected distributions p(x) and ¢(x), which
requires a formally computationally intractable evaluation of the entropy of the mixture H(x). Further
approximations suggested in Lawrence et al. (1998); Jaakkola and Jordan (1998); El-Hay and Friedman
(2002) circumvent the computational intractability of variational mixture approximations by relaxing
(3) at the cost of introducing additional variational parameters. Unfortunately, unless all the mixture
components ¢(x|y) have the same tractable structure, optimization of the resulting bound on log Z is
numerically unstable, which makes it difficult to generalize the existing results to variational mixtures
of arbitrarily structured tractable experts. Moreover, additional variational parameters increase the
computational cost of optimization.

2 Auxiliary Variational Method

The primary goal of this work is to extend the idea of using augmented variable spaces in a variational
context. Note that the computational problems of the variational mixture approximations arise from
the fact that marginalization of the mixture labels y from the joint distribution g¢(x,y) results in
a fully connected marginal g(x) (see Figure 1 (d)). Indeed, computation of the bound on log Z in
this case requires minimization of the KL divergence between two fully-connected distributions (see
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expression (2)). It is intuitive that from the computational viewpoint it would be significantly more
beneficial to retain the structural form of the joint distribution and use ¢(x,y) as an approximation.
In this case in order for the bound (3) to be well-defined, we introduce auziliary variables y to the
target distribution. This can be readily done in such a way that the marginal p(x) of the joint
p(x,y) has the same graphical structure as the original target p(x) (see Figure 2). Then we minimize
the KL divergence between ¢(x,y) and p(x,y) in the joint variable spaces. Note that in contrast to
standard structured approximations all the variables x of the marginal ¢(x) remain fully connected.
However, similarly to structured mean field techniques, our auziliary variational method does not
require evaluations of the computationally intractable entropy of the mixture H(x). As we later show,
this also applies to the cases when ¢(x,y) has loops (as long as each ¢(x|y) remains structured).

Another motivation for our work on variational auxiliary approximations is the reported success of
auxiliary sampling techniques, such as the Swendsen- Wang (Swendsen and Wang, 1987), partial decou-
pling (Higdon, 1998), and Hybrid Monte-Carlo (e.g. Neal (1993)) algorithms. It has been shown that
by extending the original variable space with auxiliary variables and drawing samples from the joint
distribution p(x,y) in the augmented space, one can achieve a significant improvement over standard
MCMC approaches. The purpose of the auxiliary variables in this context is to capture (structural)
information about clusters of correlated variables. It is therefore hoped that an auxiliary variational
method performing approximations in the augmented space may lead to a natural improvement over
standard approaches.

Indeed, we demonstrate that the auxiliary variational technique forms a more powerful class of
approximations than any structured mean field approach. Moreover, the method offers an efficient
way of calculating a set of mixture coefficients for any choice of tractable approximators (for example,
trees with different structures). These coefficients may be used to form a mixture which is principally
better than a single best tractable approximator or their flat combination. Finally, we show that our
approach provides a computationally simple extension of the existing variational mixture methods.

2.1 Optimizing the Auxiliary Variational Bound

Let p(x,y) = p(x)p(y|x) define the joint distribution of the original variables x and auxiliary variables y
in the augmented {x,y} space. From the divergence K L(gq(x,y)||p(x,y)) in the joint space it is easy to
obtain an expression for the lower bound on the log partition function of p(x) = exp{E(x)}/Z, given
by

log Z > _<10g Q(X> y)>q(x,y) + <E(X)>q(x) + <10gp(Y|X)>q(x,y)7 (4)

where p(y|x) def p(y|x; ®) is an auziliary conditional distribution parameterized by ¥. Equivalently,
(4) may be written as

g Z > " ay) [{EG) — loga))aouy] + 1 T= 33 alx,y)log % (5)

The first of the two terms in expression (5) is a convex summation of the standard lower bounds
(3) on log Z for the {x}-variables, which cannot improve on the tightest individual bound in the
set. The auxiliary variational lower bound on log Z may improve on the standard bounds only if
I > 0. In the case that the auxiliary space y contains no information about x, i.e. p(y|x) = p(y),
it is straightforward to show that the method reproduces the standard variational bound which uses
the single best approximation g(x|y). If p(y|x) = q(y|x) then I defines the non-negative mutual
information between the original variables x and the auxiliary variables y. However, this specification
leads to computational difficulties of evaluating or bounding the intractable entropy of the mixture
H{(y).

We can attempt to avoid computational difficulties by imposing appropriate parametric constraints
on p(y|x; ¥) and maximizing the bound (5) with respect to the parameters or clique potentials ¥, the
marginal ¢(y), and the conditionals g(x]y). The general optimization algorithm in this case is given
as follows:
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1. Choose the auxiliary conditional p(y|x). For the remainder, we choose

pyl) = exp{®(y;x)}/Zy, Zyw= > exp{¥(y;x)}, (6)

though more general distributions may potentially be considered.
2. Initialize q(x|y), ¢(y), and parameters ¥ of p(y|x).

3. For the fixed ¢(y,x), obtain ¥"“* by solving for zeros of
dlog Z/0® = (9log p(y[x)/0¥) 4(x,y), (7)
or performing numerical ascent on log Z for ¥ [see the bound (5)].
4. For the fixed p™*(y,x) def p(x)p(y|x; ") and q(y) set

q" " (xly) oc p" (y, x) (8)

for all instances vy.

5. For the fixed p™*(y,x) and ¢""(x|y) set

new 03— N7 e () Jog LX)
q"(y) xe p{ zqu (xly)1 gp(x)p(yx;q,new)}- (9)

6. Iterate steps 3-5 untill a termination criterion is met.

Note that for a parametric auxiliary conditional p(y|x) step 3 is analogous to the M-step of the
generalized EM algorithm (Neal and Hinton, 1998), while steps 4 and 5 are analogous to the E-step.
An update rule for each term was obtained from (5) by taking functional derivatives while keeping
other terms fixed.

Up to this point, the results are completely general. However, for computational reasons it is
fundamentally important to impose constraints on the auxiliary conditional p(y|x) and the ap-
proximate joint g(x,y). If both distributions are in a tractable family (for example, if each node y;
has a small number of x-parents), the bound (5) may be computed and optimized exactly. Another
case leading to exact computations is when p(y|x) ~ N (®x, X), though in this case ¢(x|y) should also
be parameterized.

If one wishes to have a large number of parental variables x influencing y, approximations need to
be employed. For the special case of distributions of the form (6), we can utilize the standard linear
upper bound logz < mx — logm — 1. This transforms the objective (5) to

log Z > 1+ 3 ay)(B(x) ~ 10g a(x,Y) gty + (@ (yi%) + pulx;y) - e“(X;y)Zy|x>q(x ) (10)
- ,

where e#(%Y) is an additional variational functional of the exponential form.

In general, optimization of the bound (10) is numerically unstable and computationally expensive.
However, as we show below, by imposing parametric or structural constraints on p(y|x) we may obtain
a number of efficient approximations which obviate a recourse to (10).

2.2 Specific Auxiliary Representations

Here we briefly outline variational auxiliary representations for jointly Gaussian distributions, binary
MRFs, and structured auxiliary models.
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Jointly Gaussian Spaces

In order to test applicability of auxiliary variational approximations we may consider the simplest
case of normally distributed data p(x) ~ N(0,X,) approximated by the auxiliary variational model
with a one-dimensional Gaussian auxiliary variable.

Assume that the approximating distributions are parameterized as

p(ylx) ~ N(u"x+b,5%), qly) ~ Ny, 03), q(xily) ~ N(wi(y), o7). (11)

By self-consistently solving (8) for parameters of g(x;|y) it is possible to show that the optimal
variational conditional means are given by linear functions of the auxiliary variable y, which can be
written explicitly as p;(y) = ©;y + ¢;. By performing some algebraic manipulations we can transform
the fixed point equations (7) — (9) to a system of non-linear equations for the parameters of the
auxiliary conditional p(y|x) and the approximate joint g(x,y) as

L. q(zkly) ~ N(Ory + ck, 0}):

op = [wer + ui/sﬂfl
O =0} (Uk — 2 ik O [uiug /5% + wik]) (12)
cp =0} (— Z#k Ci [uiuk/SQ + wik} — buk/SQ)

2. q(y) ~ N(py, 03):

-1
o2 = {(1 _uT@)2/s? 4 @Twe} 1)
1y = o7 [(b +cTu)(1—uTO)/s? — @Twc}

3. pylx) ~ N(uTx + b, s%):

-1
s? = Z@?/J?+1/U§‘| , u; = 0;5%/a?, b:—SQZCi@i/U?+uys2/U§, (14)

where W = {w;;} = =, is the inverse covariance matrix of the data. This may be viewed as an
alternative formulation of the 1-factor factor analysis model.

Discrete Spaces with Parametric Auxiliary Distributions

If the auxiliary space is given by a single multinomial variable y € {1,..., M}, a natural choice for
p(y|x) is to use a softmax type representation

P(Yr|x) o eXp{f(xTu(k) + b(k))} ;U= uDy e REXM e RM (15)

Here f(x;U,b) is some differentiable function and p(yx|x) is the probability of the auxiliary variable
y being in state k. Although the expectation (log p(y|x))q(xy) is in general intractable, we can make
a use of the transformed bound (10). A significantly cheaper alternative is to perform optimization
of (5) by approximating the term at log p(yx|(X)4(x,y))- In practice this is often reasonably accurate,
since p(y|x) is typically uni-modal.

A potential disadvantage of using multinomial univariate y-spaces with the softmax parameteri-
zation (15) of p(y|x) is the large number of parameters, namely |x+ 1| x M. One way to decrease it is
to use a multivariate factorial representation of the auxiliary variables. In the case when |x| is large,
p(y[x) =[], p(yx|x), and each factor uses a simple (generalized) linear type dependency

def
p(yelx) = p(yklar), ar = fr(x"u® + k), (16)
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the Gaussian field approximation Barber and Sollich (2000) can be employed. From the Central Limit
Theorem we can assume approximate Gaussianity of the field a; and approximate the expectation
(log p(yi|x"))g(x|ys) by performing 1-D Gaussian integration of the general form [ f(a)p(a), where
p(a) ~ N(pta,02). The mean and variance of the fields are readily relatable to first and second order
moments of q(x|y).

In practice, the described approximations do not lead to significant deviations and are shown to
be both accurate and efficient (Agakov and Barber, 2003). Probably the greatest disadvantage of
these relaxations is due to the fact that for any realistic limit of |x| the bound is no longer strict. One
way to address this is to impose additional structural constraints on the conditionals by limiting the
number of parental variables for each factor.

Discrete Spaces with Structured Auxiliary Distributions

The use of sparsely-connected structured distributions ¢(x) in the standard variational framework can
greatly improve the accuracy of the bound. Similar improvements in performance may be obtainable
from using sparse ¢(x|y) and p(y|x), which generally result in a tractable objective (5).

Indeed, the potentially problematic term in the bound (5) is the average of the auxiliary conditional
over the joint approximating distribution (logp(y[x))g(x,y). However, since we are free to choose the
form of the distribution p(y|x), we can limit its parental structure so that the average (log p(y|x))q(x,y)
is tractable. For example, we may assume the factorial form for p(y|x) and constrain the number of
x-parents 7, (y;) of each auxiliary variable y;, so that

Iyl

plylx) = _Hp(yz-lﬂ'x(yi))- (17)

If the approximating distribution ¢(x|y) is also sparse and factorized in x, then all the terms in the
objective (5) may be computed exactly.

Finally, note that if all components ¢(x|y) have the same structure for all values of y then the joint
q(x,y) is also structured, and the steps (8), (9) may be combined. Then if p(y|x) is fixed, the auxiliary
variational method will be performing a structured approximation in the augmented space, and the
existing techniques (e.g. Ghahramani and Jordan (1995); Barber and Wiegerinck (1998)) may be
used.

3 Relation to Variational Mixture Models

In Section 2 we performed optimization of the bound on the log partition function subject to parametric
constraints on the auxiliary conditional. Fundamentally, it is exactly due to the choice of a constrained
p(y|x) that computationally efficient exact and approximate evaluations of the bound (5) are possible.
In cases when there are no utilizable parametric constraints on p(y|x), optimization of (5) requires
significantly more expensive relaxations, such as the one given by (10).

Formally, (10) generalizes the term in the objective criterion

Tix,y) > <1ogM> oW +1= 300 T aelanie ) (18)

q(y)

used by all the (known to us) variational mixture approaches (Jaakkola and Jordan (1998); Bishop
et al. (1998); Lawrence et al. (1998); El-Hay and Friedman (2002)). The resulting bound is further
optimized with respect to the variational functionals A(y), “smoothing” conditionals ¢(x|y), and pa-
rameters of the mixture ¢(y) and ¢(x|y). While, theoretically, one could use (18) to variationally fit
a mixture of (hyper)trees of different structures (as opposed to the mixture of completely factorized
Lawrence et al. (1998) or identically structured El-Hay and Friedman (2002) models), the smoothing
distributions will generally still need to be factorized, since the final term in (18) would otherwise be
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Figure 3: Approximation of the Gaussian data covariance [(a), (d)] with the auxiliary [(b), (e)] and
traditional mean field [(c), (f)] approaches. Top: X, corresponds to the data covariance of a 1-factor
Factor Analysis model; Bottom: X, is unstructured.

intractable. Also in practice, if some of the conditionals g(x|y) have different structures, the optimiza-
tion of (18) in general becomes numerically unstable (e.g. Bishop et al. (1998) show that it involves
non-factorized ratios of summations of exponentially small terms).

By permitting a tractable choice of the auxiliary conditional distribution p(y|x), the auxiliary
variational method generalizes a variational mixture model in the same way as the variational EM
algorithm (Neal and Hinton, 1998) generalizes the standard expectation maximization (Dempster
et al., 1977). In addition to simplification of the theoretical framework, this can lead to a significant
improvement in computational efficiency and numerical stability of the optimization. Moreover, it
suggests fundamental extensions of the variational mixture approaches to factorial and structured
auxiliary spaces. This is interesting, because it potentially allows us to boost the effective number of
mixture states while remaining in the bounds of computational tractability (for example, when p(y|x)
and ¢(y|x) are constrained to be reasonably sparse). A further pleasing result from the auxiliary
framework, demonstrated in Section 4, is a simple and fast way to re-weight any set of tractable
distributions, which principally improves on any single structured approximation.

4 Experimental Results

Here we summarize some of the experimental results comparing performance of the auxiliary varia-
tional framework with the standard factorized approaches. Also, for discrete variable spaces we apply
our method to computing reweightings of fixed approximations ¢(x|y) with different structures.

4.1 Approximating Covariance of a Gaussian

In order to verify efficiency of the auxiliary mean field approximation for normally distributed data we
experimentally compared its performance with the standard mean field approximation. To quantify
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the performance, we computed the KL divergence between q(x) ~ N(u, X¢g) and p(x) ~ N(0,W™1),
which is given by

1 1
KL(gllp) = =5 log|ZqW| + 5tr(W[Sq + ppt] ). (19)

Figure 3 shows typical covariances obtained by auxiliary and standard MF models for structured
1-factor Factor Analysis (top) and unstructured (bottom) 10-dimensional data covariance matri-
ces. After a few iterations of equations (12) — (14) the KL divergences are K L(q||p)mr = 1.6077,
K L(q|lp) amr = 0.0002 for the structured and K L(q||p)mr ~ 0.7484, K L(q||p) amr ~ 0.2991 for the
unstructured case. As we see, the auxiliary mean field approximation results in a significantly higher
accuracy than the standard mean field approach.

4.2 Inference in Discrete Markov Networks

Here we demonstrate systematic changes in the auxiliary variational estimates of the second-order
moments for discrete variable spaces. Throughout the simulations, it was assumed that p(x) is a
pairwise Markov network with the energy FE(x) = x?Wx + xb and x € {—1,1}X.. The weight
matrix W was constrained not to be positive-definite, so that p(x) was inherently multi-modal. In
the following experiments it is assumed that y € {1,..., M} is multinomial and p(y|x) has a softmax
form (15) (though analogous experiments with the factorial auxiliary spaces led to principally similar
results). In all cases the average (logp(y(x))q(x,y) Was approximated at the mean of p(y|x).

By analogy with Lawrence et al. (1998), we generated 100 biases b € T'° and matrices W € T19*10
of the 10-D pairwise Markov network p(x), where I defines the uniform range [—1,1]. Then we
computed the squared errors (M) between exact and estimated second moments (z;x;), averaged
for all networks and all ¢ # j. Note that for M = 1 the auxiliary variational representation (5)
is equivalent to the mean field model. As can be seen from Figure 4 (a), we obtain a systematic
improvement in the accuracy with an increase in M. The scale of the changes in the accuracy is
different from that reported by Lawrence et al. (1998), whose mean field error (1) was approximately
0.15, though we observe qualitatively similar improvements. This discrepancy is undoubtedly due to
details of the optimization approaches, and does not detract from our conclusion that the auxiliary
method conveys a systematic improvement.

4.3 Reweighting Structured Approximators

Finally, we applied our framework to computing reweightings of fixed structured approximations
q(x|]y). For a uniformly chosen W € T1%*19 we generated K = 10 random spanning trees with the

weights W™ such that Wgn) =W,; for all 4,5 and m = 1,..., K. Then we re-weighted the trees by
recomputing ¢(y) according to

q(yx) x exp {(E(x) — log q(x|yx) + 1og p(yx|X))g(xiys) } - (20)

which follows directly from (9). Figure 4 (b) illustrates typical re-weightings of fixed structured
approximators and the induced lower bounds on log Z for the case of the softmax parameterization
of p(y|x) and for fixed parameters of the auxiliary conditional (selected at uniform random on I).
The corresponding bounds in this case were L, ~ 8.38, L, ~ 8.87, L, =~ 8.33, and L4, =~ 9.52 for
the random, uniform, best single, and auxiliary variational weightings respectively. Note that the
single-step optimization of (20) has a reasonable order of computational complexity [~ O(|x|?)] and
can be easily extended to high dimensional approximations. Finally, we tried to optimize the standard
bound (18) of the variational mixture models with the differently structured conditionals ¢(x|y) and
fully factorized smoothing factors ¢(x|y). However, in this case even for |x| = 8 we often encountered
numerical problems.
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Figure 4: (a) Systematic changes in the mean squared error for estimates of the second-order moments
with M; (b) Top: re-weightings of the fixed structured approximators; Bottom: the bounds on log Z
for each individual tree.

5 Summary

We have presented an approach that generalizes the standard Kullback-Leibler variational procedure
to the use of auxiliary variables, which provides a systematic improvement over the standard theory
for any structured approximation. We also showed that the approximations commonly employed
by variational mixture models could be seen as special and more computationally expensive cases
of our approach. Furthermore, our method potentially avoids numerical difficulties present in other
approaches. One way to use it in practice is to find weightings for any set of tractable distributions.
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