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Bayesian Linear Gaussian State Spae Models forBiosignal Deomposition

Silvia Chiappa and David Barber

Abstrat. We disuss a method to extrat independent dynamial systems underlying a singleor multiple hannels of observation. In partiular, we searh for one dimensional subsignals toaid the interpretability of the deomposition. The method uses an approximate Bayesian analysisto determine automatially the number and appropriate omplexity of the underlying dynamis,with a preferene for the simplest solution. We apply this method to un�ltered EEG signalsto disover low omplexity soures with preferential spetral properties, demonstrating improvedinterpretability of the extrated soures over related methods.



2 IDIAP�RR 05-841 IntrodutionDeomposing a multivariate time series vn
t , t = 1, . . . , T , n = 1, . . . , V into a set of C simpler subsignals(soures) is a entral goal in signal proessing and is of partiular interest in the analysis of biomedialsignals (see for example [1℄). Our riteria for the deomposition is that independent dynamial systemsgenerate the soures whih, under linear mixing, give rise to the observations. For any salar soure

si and another soure sj and all times t, we seek a model of independent dynamis p(si
1:T , sj

1:T ) =

p(si
1:T )p(sj

1:T ). Furthermore, the aim is to �nd a matrix W that relates the soures to observations vtthrough linear mixing vt = Wst, where1 vt = vert(v1
t , . . . , vV

t ), st = vert(s1
t , . . . , s

C
t ) . This is a formof Independent Components Analysis (ICA) [2℄ although di�ers from the more standard assumptionof independene at eah time step, that is p(si

1:T , sj
1:T ) =

∏T
t=1 p(si

t)p(sj
t ). Whilst there are manymethods to deal with suh temporal dependene (see [2℄), in biosignal analysis it is important tohave a method whih enodes strong onstraints suh as desired frequenies of the soures. A loselyrelated tehnique to ours is Nonlinear Dynamial Fator Analysis (NDFA) [3, 4℄. Whilst being anattrative and powerful method, standard NDFA plaes no onstraint that the observations are formedfrom mixing independent salar dynami soures, whih makes interpretation of the resulting fatorsdi�ult. Furthermore, NDFA does not diretly onstrain the fators to ontain partiular frequeniesso that in [4℄, in order to extrat rhythmi ativity, bias is inorporated by initializing the model withband-�ltered prinipal omponents of the data. In addition, NDFA uses nonlinear state dynamis andmixing, whih hampers inferene and makes the inorporation of known onstraints more omplex.We therefore onsider a simpler linear model whih is nevertheless powerful, yet remains relativelyinterpretable and tratable. An important issue in deomposing signals into soures is the numberof appropriate soures and also their omplexity. To address this we use a Bayesian analysis of theLinear Gaussian State Spae Model (LGSSM), as in [5℄, but onstrained in order that independentdynamial proesses an be identi�ed and furthermore that salar soures an be extrated from thesignal.2 Linear Gaussian state spae modelsIn LGSSMs [6, 7, 8℄ the visible observation vt ∈ RV is linearly related to the hidden state vetor

ht ∈ RH by
vt = Bht + ηv

t , ηv
t ∼ N (0,ΣV ) ,where N (0,ΣV ) denotes a Gaussian distribution with zero mean and ovariane ΣV . The transitiondynamis is also linear,

ht = Aht−1 + ηh
t , ηh

t ∼ N (0,ΣH) .Probabilistially, we express this as
p(v1:T , h1:T ) = p(v1, h1)

T
∏

t=2

p(vt|ht)p(ht|ht−1) ,with p(vt|ht) = N (Bht,ΣV ), p(ht|ht−1) = N (Aht−1,ΣH) and p(h1) = N (µ,Σ). To make indepen-dent dynamial subsystems we use a blok diagonal transition matrix A = diag
(

A1, . . . , AC
), andstate noise ΣH = diag

(

Σ1
H , . . . ,ΣC

H

), where eah blok has dimension Hc. A one dimensional soure
sc

t for eah independent dynamial system is formed from sc
t = 1Tc hc

t , where 1c is a Hc×1 unit vetor2.We an represent this as st = Pht, where P = diag(1T1 , . . . ,1TC), ht = vert(h1
t , . . . , h

C
t ) and hc

t is a1vert(a, b, c) is the matrix formed by vertially staking the matries (inluding salars and vetors) a,b,c.2A more general approah would be to projet to more than one dimension. This may then be interpreted as usinga higher dimensional linear state spae approximation of [3℄ whih seeks independent subspae dynamis.
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Hc × 1 dimensional vetor representing the state of dynamial system c. The graphial struture ofthis model is presented in Fig 1. As in standard ICA, we assume linear mixing of the soures to makethe observation vt = Wst + ηv

t . Sine the soures are formed from projetion, the resulting emissionmatrix is onstrained to be of the form3
B = WP ,where W is the V × C mixing matrix and P is a C × H projetion, H =

∑

c Hc. Suh a onstrainedform for B is needed to provide interpretable salar soures4.Bayesian Linear Dynamial SystemsIn our Bayesian treatment of learning we de�ne priors p(A|α) and p(W |β), where α and β are hyper-parameters. Then
p(v1:T |α, β) =

∫

A,W

p(v1:T |A,W )p(A|α)p(W |β) . (1)Here we take the ML-II (`evidene') framework, whih involves maximising p(v1:T |α, β) with respetto the hyperparameters α, β [3, 5, 9℄. Ideally, the number of soures e�etively ontributing to theobserved signal should be small. This suggests the prior
p(W |β) =

C
∏

j=1

(

βj

2π

)V/2

e−
βj
2

PV
i=1

W 2

ij .We an bias eah dynamial system to be lose to a desired transition Â (possibly zero) by using
p(Ac|αc) =

(αc

2π

)H2

c /2

e−
1

2
αc

P

ij(Ac
ij−Âc

i,j)
2for eah omponent c, so that p(A|α) =

∏

c p(Ac|αc).3Unlike [5, 3℄ we annot then assume ΣH ≡ I by parameter resaling.4Other projetions would be equally valid.



4 IDIAP�RR 05-84Variational BayesWe would like to optimize equation (1) with respet to α and β, but this is di�ult due to theintratability of the integrals. Instead we onsider the bound [3, 5, 9℄
log p(v1:T |α, β) ≥ Hq(A,W, h1:T ) + 〈log p(v1:T , h1:T A,W )〉q(A,W,h1:T ) , (2)where we dropped the expliit dependene on the hyperparameters on the right hand side5. The nota-tion Hd(x) signi�es the entropy of the distribution d(x) and 〈·〉d(x) denotes the expetation operator.For ertain simplifying hoies of the variational distribution q, we hope to ahieve a tratable lowerbound on the likelihood, whih we may then optimize with respet to q, α, β. The key approxima-tion in Variational Bayes is q(A,W |h1:T ) ≡ q(A,W ). This assumption allows other simpli�ationsto follow, without further loss of generality. Sine A and W separate in equation (2), optimally

q(A,W ) = q(A)q(W ) and hene
log p(v1:T |θ) ≥ −D(q(A), p(A))−D(q(W ), p(W ))+Hq(h1:T )+〈log p(v1:T , h1:T |A,W )〉q(h1:T )q(A)q(W ) ,(3)where D(q(x), p(x)) is the KL divergene 〈log q(x)/p(x)〉q(x).Determining q(W )By examining equation (3), the ontribution of q(W ) an be interpreted as the KL divergene be-tween q(W ) and a Gaussian distribution in W (sine log p(W |β) = − 1

2

∑

i,j βjW
2
ij + const). Hene,optimally, q(W ) is a Gaussian, for whih we simply need to �nd the mean and ovariane. For aquadrati form xT Mx− 2xTm the ovariane is M−1 and the mean is M−1m. Hene the ovariane

[ΣW ]ij,kl ≡ 〈(Wij − 〈Wij〉) (Wkl − 〈Wkl〉)〉 (averages wrt q(W )) is given by the inverse of the quadrationtribution
[

Σ−1
W

]

ij,kl
=

[

Σ−1
V

]

i,k

∑

t

〈

h̃j
t h̃

l
t

〉

q(ht)
+ βjδi,kδj,l ,where h̃t = Pht. The mean is given by

〈W 〉i,j =
∑

k,l,n,t

[ΣW ]ij,kl

[

Σ−1
V

]

k,n

〈

h̃l
t

〉

q(ht)
vn

t ,where q(h1:T ) needed in the above is determined below.Determining q(A)Sine the dynamis are independent, optimally we have a fatorised distribution q(A) =
∏

c q(Ac),where q(Ac) is Gaussian with ovariane [ΣAc ]ij,kl ≡
〈(

Ac
ij −

〈

Ac
ij

〉)

(Ac
kl − 〈Ac

kl〉)
〉 (averages wrt

q(Ac)) given by the inverse of the quadrati ontribution. Momentarily dropping the dependene onthe soure c, the ovariane for eah soure is
[

Σ−1
A

]

ij,kl
=

[

Σ−1
H

]

i,k

T
∑

t=2

〈

hj
t−1h

l
t

〉

+ αδi,kδj,l ,and the mean is
〈A〉i,j =

∑

k,l

[ΣA]ij,kl

(

Âk,l +
∑

n

[

Σ−1
H

]

k,n

T
∑

t=2

〈

hl
t−1h

n
t

〉

)

,where in the above all parameters and the variable h should be interpreted as pertaining to dynamisoure c only (e.g. h
(c),j
t−1 ) and the averages are with respet to q(hc

t−1, h
c
t).5Stritly we should write here and throughout q(·|v1:T ). We omit the dependene on the observations for notationalonveniene.



IDIAP�RR 05-84 5Determining q(h1:T )Optimally q(h1:T ) is Gaussian sine equation (3) is quadrati in h1:T , being namely
−

1

2

T
∑

t=1

〈

(vt − WPht)
TΣ−1

V (vt − WPht)
〉

q(W )

−
T

∑

t=2

1

2

〈

(ht − Aht−1)
T

Σ−1
H (ht − Aht−1)

〉

q(A)
−

1

2
(h1 − µ)

T
Σ−1 (h1 − µ) .We an arry out the averages over A and W sine q(A) and q(W ) are Gaussian and the above isquadrati in the parameters A and W . This means that q(h1:T ) may be fatored into ∏

t q(ht|ht−1).There are several mathematially equivalent ways to �nd the numerial form of the fatorisation.In [5℄ novel smoother reursions are onstruted. Here we take a simpler approah, motivated bythe idea that when the ovarianes of q(A) and q(W ) are zero the hain is exatly of the form of astandard Kalman Filter (KF), with emission matrix B = WP and transition A. Our aim is to �nd anequivalent form for whih the standard numerially stable Rauh-Tung-Striebel smoother reursionsmay be applied [6℄. In order to do that, we rewrite
〈

(vt − Bht)
TΣ−1

V (vt − Bht)
〉

q(W )
= (vt − 〈B〉ht)

TΣ−1
V (vt − 〈B〉ht) + hTt PTSW Pht,where 〈B〉 ≡ 〈W 〉P and

[SW ]j,l =

V
∑

i,k=1

[ΣW ]ij,kl

[

Σ−1
V

]

i,k
, j, l ∈ 1, . . . ,H.Similarly

〈

(ht − Aht−1)
TΣ−1

H (ht − Aht−1)
〉

q(A)
= (ht − 〈A〉ht−1)

TΣ−1
H (ht − 〈A〉ht−1) + hTt−1SAht−1,where

[SA]j,l =
H

∑

i,k=1

[ΣA]ij,kl

[

Σ−1
H

]

i,k
, j, l ∈ 1, . . . ,H.To represent the above as a KF, with dynamis Ã, emission B̃ and observation ṽ, we augment vt and

B as
ṽt = vert(vt,0,0), B̃ = vert(〈B〉 , UA, UW P ),where 0 is a H × 1 zero vetor and UA is the Cholesky deomposition of SA, so that UT

AUA =
SA. Similarly, UW is the Cholesky deomposition of SW . The equivalent KF is then ompleted byspeifying Σ̃ ≡ Σ, µ̃ ≡ µ, Ã ≡ 〈A〉. Stritly speaking we need to make a slight adjustment and use atime-dependent emission B̃t = B̃, for t = 1, . . . , T − 1. For time T , B̃T has the Cholesky fator UAreplaed by 0.Finding the optimal ParametersDi�erentiating equation (3) with respet to βj and αc we �nd that, optimally:

βj =
V

∑

i

〈

W 2
ij

〉

q(W )

, αc =
H2

c
∑

ij

〈

[Ac − Âc]2ij

〉

q(Ac)

,
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ΣV =

1

T

T
∑

t=1

〈

(vt − WPht) (vt − WPht)
T〉

q(W )q(ht)
,

Σc
H=

1

T − 1

T
∑

t=2

〈

(

hc
t − Achc

t−1

)(

hc
t − Achc

t−1

)T〉

q(Ac)q(hc
t−1

,hc
t)

.The prior mean µ and ovarianeΣ are set to those of the distribution q(h1). Learning then proeeds byiterating the parameter update step followed by updating q(h1:T ), q(A), q(W ). The initial parametersare set randomly.2.1 DemonstrationIn a proof of onept experiment, we used a LGSSM to generate 3 soures with random 5×5 transitionmatries Ac, h1 ∼ N(0, I) and ΣH = I. The soures were mixed into three observations vt = Wst+ηv
t ,for W hosen with elements from a zero mean unit variane Gaussian distribution, and ΣV = I. Wethen trained a di�erent LGSSM with 5 soures and 7 dimensions for eah dynami omponent c. Tobias the model to �nd the simplest soures, we used Âc ≡ 0 for all soures. In Fig2a and Fig2b we see



IDIAP�RR 05-84 7the original soures and the noisy observations respetively. The observation noise is so high that agood estimation of the soures is possible only by taking the dynamis into aount. In Fig 2 we seethe estimated soures from our method after 400 iterations. Two of the 5 soures have been removed,the remaining three are a reasonable estimation of the original soures. The FastICA [2℄ result isgiven in Fig 2d. In fairness, FastICA annot deal with noise and also seeks independent omponents,whereas in this example the soures are slightly orrelated. Nevertheless, this example demonstratesthat, whilst a standard method suh as FastICA indeed produes independent omponents, this maynot be a satisfatory result, sine there is no searh for simpliity of the underlying dynamial system,nor indeed may independene at eah time point be a desirable riterion.2.2 Appliation to EEG analysisIn Fig 3a (blue), we show three seonds of EEG data reorded from 4 hannels (loated in the righthemisphere) while a subjet is performing imagined movement of his right hand. As is typial inEEG, eah hannel shows low frequeny drift terms, together with the presene of 50 Hz mainsontamination, whih masks the information related to the mental task, mainly entered at 10 and20 Hz. Standard ICA methods suh as FastICA do not �nd satisfatory soures based on raw `noisy'data, and preproessing with band-pass �lters is usually required. However, even with pre-�ltering,the number of omponents is usually restrited in ICA to be equal to the number of hannels. InEEG this is potentially too restritive sine there may be many independent osillators of interestunderlying the observations and we would like some way to automatially determine the e�etivenumber of suh osillators. We used our method with 16 soures and, to preferentially �nd souresat partiular frequenies, we spei�ed a blok diagonal matrix Âc with eah blok being a rotation atthe desired frequeny. The frequenies for the 16 soures were [0.5℄, [0.5℄, [0.5℄, [0.5℄, [10,11℄, [10,11℄,[10,11℄, [10,11℄, [20,21℄, [20,21℄, [20,21℄, [20,21℄, [50℄, [50℄, [50℄, [50℄ Hz respetively. After training, theBayesian approah removed 4 unneessary soures from the mixing matrix W , that is one [10,11℄ Hzand three [20,21℄ Hz soures. The temporal evolution of the 12 retained soures is presented in Fig3a (blak). We an see that e�etively the �rst 4 soures ontain dominant low frequeny drift, thefollowing 3 ontain [10,11℄ Hz, while the 8th ontains [20,21℄ Hz entered ativity. Out of the 4 souresinitialized to 50 Hz, only 2 retained 50 Hz ativity, while the Ac of last two soures have hangedin order to model other frequenies present in the signals. In order to asses the advantage of usingprior frequenies for extrating task-related information and the potential limitations of using a linearmodel, we have ompared our method with NDFA [3℄. We extrated 16 fators using a NDFA modelin whih both MLPs had one hidden layer of 30 neurons. The other parameters were set to the defaultvalues. In Fig 3b we show the temporal evolution of the resulting fators. The �rst 10 fators fromthe top give the strongest ontribution to the observations. In agreement with our method, there are2 main 50 Hz soures (�rst two fators), even if a small 50 Hz ativity is present also in other fators,namely 7, 11, 12 and 14. The slow drift has not been isolated and is present in almost all fators.The information related to hand movement, namely [10,20℄ Hz ativity is spread over fators 3, 4, 9,10 and 13, whih however ontain also other frequenies. From this example we an onlude that,while the two methods give similar results, the prior spei�ation of independent dynamial proessesat partiular frequenies has helped our model to better isolate the ativity of interest into a smallernumber of soures, and, among these soures, to separate the ontribution of osillators at di�erentfrequenies, that is 10 Hz and 20 Hz osillators.3 ConlusionWe presented a method to identify independent dynamial soures in noisy temporal data, based on aBayesian proedure whih automatially biases the solution to �nding a small number of soures. Thisproedure is losely related to others previously proposed in the literature, but has the partiular prop-erty that the soures are themselves projetions from higher dimensional independent linear dynamial
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