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BAYESIAN LINEAR GAUSSIAN STATE SPACE MODELS FOR
BIOSIGNAL DECOMPOSITION

Silvia Chiappa and David Barber

Abstract. We discuss a method to extract independent dynamical systems underlying a single
or multiple channels of observation. In particular, we search for one dimensional subsignals to
aid the interpretability of the decomposition. The method uses an approximate Bayesian analysis
to determine automatically the number and appropriate complexity of the underlying dynamics,
with a preference for the simplest solution. We apply this method to unfiltered EEG signals
to discover low complexity sources with preferential spectral properties, demonstrating improved
interpretability of the extracted sources over related methods.
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1 Introduction

Decomposing a multivariate time series v’, t = 1,..., 7, n = 1,...,V into a set of C simpler subsignals
(sources) is a central goal in signal processing and is of particular interest in the analysis of biomedical
signals (see for example [1]). Our criteria for the decomposition is that independent dynamical systems
generate the sources which, under linear mixing, give rise to the observations. For any scalar source
s’ and another source s/ and all times ¢, we seek a model of independent dynamics p(si ., s]..) =
p(st.7)p(s].). Furthermore, the aim is to find a matrix W that relates the sources to observations v
through linear mixing v; = Ws;, where! v, = vert(vi,...,v)), sy = vert(sy,...,s¢) . This is a form
of Independent Components Analysis (ICA) [2] although differs from the more standard assumption

of independence at each time step, that is p(si.p, s.,) = Hthl p(si)p(s]). Whilst there are many

methods to deal with such temporal dependence (see [2]), in biosignal analysis it is important to
have a method which encodes strong constraints such as desired frequencies of the sources. A closely
related technique to ours is Nonlinear Dynamical Factor Analysis (NDFA) [3, 4]. Whilst being an
attractive and powerful method, standard NDFA places no constraint that the observations are formed
from mixing independent scalar dynamic sources, which makes interpretation of the resulting factors
difficult. Furthermore, NDFA does not directly constrain the factors to contain particular frequencies
so that in [4], in order to extract rhythmic activity, bias is incorporated by initializing the model with
band-filtered principal components of the data. In addition, NDFA uses nonlinear state dynamics and
mixing, which hampers inference and makes the incorporation of known constraints more complex.
We therefore consider a simpler linear model which is nevertheless powerful, yet remains relatively
interpretable and tractable. An important issue in decomposing signals into sources is the number
of appropriate sources and also their complexity. To address this we use a Bayesian analysis of the
Linear Gaussian State Space Model (LGSSM), as in [5], but constrained in order that independent
dynamical processes can be identified and furthermore that scalar sources can be extracted from the
signal.

2 Linear Gaussian state space models

In LGSSMs [6, 7, 8] the visible observation v; € RY is linearly related to the hidden state vector
ht S RH bY

Ut:Bht‘F?ﬁ, 7’];}"‘4./\[(072\/),

where AV (0,Xy) denotes a Gaussian distribution with zero mean and covariance Xy. The transition
dynamics is also linear,

hy = Ahy +7]£La 771’51 NN(OaEH) .

Probabilistically, we express this as

T
p(vir, hir) = p(vr, ha) Hp(vt\ht)p(hdht—ﬂ ;
t=2
with p(v¢|hy) = N (Bhy, 2v), p(hi|hi—1) = N (Ahi—1,2g) and p(hy) = N (p, X). To make indepen-
dent dynamical subsystems we use a block diagonal transition matrix A = diag (Al7 e ,AC), and
state noise Xy = diag (E}{, ey Eg), where each block has dimension H.. A one dimensional source

s¢ for each independent dynamical system is formed from s§ = lzhf, where 1, is a H, x 1 unit vector?.
We can represent this as s; = Phy, where P = diag(1],...,1L), hy = vert(h},...,hS) and h§ is a

Lyert(a,b, c) is the matrix formed by vertically stacking the matrices (including scalars and vectors) a,b,c.
2A more general approach would be to project to more than one dimension. This may then be interpreted as using
a higher dimensional linear state space approximation of [3] which seeks independent subspace dynamics.
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Figure 1: The variable h{ represents the vector dynamics of component ¢, which are projected by
summation to form the dynamics of the scalar s§ (higher dimensional projections are an obvious
extension). These sources are linearly mixed to form the visible observation vector v;.

H, x 1 dimensional vector representing the state of dynamical system c. The graphical structure of
this model is presented in Fig 1. As in standard ICA, we assume linear mixing of the sources to make
the observation v, = Ws; + . Since the sources are formed from projection, the resulting emission
matrix is constrained to be of the form?

B=WP,

where W is the V' x €' mixing matrix and P is a C x H projection, H = ) _H.. Such a constrained

form for B is needed to provide interpretable scalar sources®.

Bayesian Linear Dynamical Systems

In our Bayesian treatment of learning we define priors p(A|«) and p(W|f3), where « and 3 are hyper-
parameters. Then

p(orla, ) = / p(orr| A, W)p(Ala)p(W|5) (1)

AW

Here we take the ML-IT (‘evidence’) framework, which involves maximising p(vi.7|c, 5) with respect
to the hyperparameters a, 8 [3, 5, 9]. Ideally, the number of sources effectively contributing to the
observed signal should be small. This suggests the prior

c V/2

B BV

p(W|B) = | I (2; e 3 2= Wij |
j=1

We can bias each dynamical system to be close to a desired transition A (possibly zero) by using

87 Hf/Q 1 c ic \2
A€ . :< C) *gaczij(Aij*Ai,j)
p(A%ac) = (55) e

for each component ¢, so that p(Ala) = [[.p(A°|ac).

3Unlike [5, 3] we cannot then assume ¥y = I by parameter rescaling.
4Other projections would be equally valid.



4 IDIAP RR 05-84

Variational Bayes

We would like to optimize equation (1) with respect to « and (3, but this is difficult due to the
intractability of the integrals. Instead we consider the bound [3, 5, 9]

logp(vl;ﬂoz,ﬂ) Z H(](A7 VV? h’l:T) + <logp(U1:Ta hl:TA7 W)>q(A)W,h1:T) ) (2)

where we dropped the explicit dependence on the hyperparameters on the right hand side®. The nota-
tion Hg(x) signifies the entropy of the distribution d(z) and (), denotes the expectation operator.
For certain simplifying choices of the variational distribution ¢, we hope to achieve a tractable lower
bound on the likelihood, which we may then optimize with respect to ¢,«, 3. The key approxima-
tion in Variational Bayes is q(A, W|hy.7) = q(A,W). This assumption allows other simplifications
to follow, without further loss of generality. Since A and W separate in equation (2), optimally
q(A, W) = q(A)q(W) and hence

log p(vi.r]#) = =D(q(A),p(A)) = D(g(W),p(W))+Hq(h1.r)+(log p(vr.r, hir |A W) 1y g a)a(w) -

3)

where D(q(z),p(z)) is the KL divergence (log q(z)/p(2)),(.)-

Determining ¢(W)

By examining equation (3), the contribution of ¢(WW) can be interpreted as the KL divergence be-
tween g(W) and a Gaussian distribution in W (since log p(W|[3) = —3 Do B;W7 + const). Hence,
optimally, ¢(W) is a Gaussian, for which we simply need to find the mean and covariance. For a
quadratic form 2T Mz — 22"m the covariance is M1 and the mean is M ~'m. Hence the covariance
Ewlijm = (Wi — (Wij)) Wit — (W) (averages wrt g(W)) is given by the inverse of the quadratic
contribution

[Z;I/I]ij,kl = [E;fl]i,k Z <l~lﬁlé>q(h ) + Bj0ik05.1
+ t
where h; = Ph;. The mean is given by
<W>i,j = k;;)t [Ew]ij,kl [Eljl]k7n <Bé>q(h1) (A

where ¢(h1.7) needed in the above is determined below.

Determining ¢(A)

Since the dynamics are independent, optimally we have a factorised distribution ¢(A4) = [].q(A°),
where ¢(A°) is Gaussian with covariance [Zac]; , = ((Af; — (A5;)) (Ag — (A5,))) (averages wrt
q(A€)) given by the inverse of the quadratic contribution. Momentarily dropping the dependence on
the source ¢, the covariance for each source is

T
[E;ll]ij,kl = [Zl_il]i,k Z <hi—1hi> + @i k0j,0
t=2

and the mean is

T
<A>i,j = Z [ZAL‘J‘M (Ak,l + Z [Ef_il]k,n Z <hi_1h?>> ,

k,l n t=2

where in the above all parameters and the variable h should be interpreted as pertaining to dynamic

source ¢ only (e.g. hgi)ij) and the averages are with respect to q(h{_q, h{).

5Strictly we should write here and throughout ¢(-|v1.7). We omit the dependence on the observations for notational
convenience.
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Determining ¢(hy.r)

Optimally g(hi.r) is Gaussian since equation (3) is quadratic in hy.p, being namely

ol
MH

{(vi = WPhy) TS (v — WPht)>q(W

&~
Il
-

1 T -1 1 T -1
— — Ah;_ by — Ahs_ — = — b)) — .
3 <(ht hi—1) Eg (hy I 1)>q(A) 5 (h1 — ) (hy — )

M-

t=

l\')

We can carry out the averages over A and W since ¢(A) and ¢(W) are Gaussian and the above is
quadratic in the parameters A and W. This means that ¢(h;.7) may be factored into [], ¢(h¢|hi—1).
There are several mathematically equivalent ways to find the numerical form of the factorisation.
In [5] novel smoother recursions are constructed. Here we take a simpler approach, motivated by
the idea that when the covariances of ¢(A) and ¢(WW) are zero the chain is exactly of the form of a
standard Kalman Filter (KF), with emission matrix B = WP and transition A. Our aim is to find an
equivalent form for which the standard numerically stable Rauch-Tung-Striebel smoother recursions
may be applied [6]. In order to do that, we rewrite

<(vt — Bht)TE‘—/l(vt - Bht)>q(w) = (v, — (B) hy)T oy Y, — (B) hy) + h] PT Sy Phy,
where (B) = (W) P and
%
Z EWZJkl 1Lk, j,lel, ... H
ik=1

Similarly

{(he — Ahy—1) TS5 (hy — Ahy_y)) = (he = (AY hy—1) "S5 (hye — (A hy—1) + h{_1Sahi—1,

a(A)

where

H
Z EA”M 1]i,k’ j;ZEL-..,H.
k=1

Z?

To represent the above as a KF, with dynamics A, emission B and observation o, we augment v; and
B as

o = vert(v;,0,0), B =vert((B),Ua, Uy P),

where 0 is a H x 1 zero vector and Uy, is the Cholesky decomposition of S4, so that U}UA =
Sa. Similarly, Uy is the Cholesky decomposition of Sy. The equivalent KF is then completed by
specifying =%, i=p, A= (A). Strictly speaklng we need to make a slight adjustment and use a
time-dependent emission B, = B, for t = 1,...,T — 1. For time T, By has the Cholesky factor Uy
replaced by 0

Finding the optimal Parameters

Differentiating equation (3) with respect to §; and a. we find that, optimally:

v H;
Zz’ <Wi%'>q(w) ’

8 =
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Figure 2: (a) Original (correlated) sources s. (b) Observations resulting from mixing the original
sources, v = Ws+n", n° ~ N(0,I). (c) Recovered sources using our method. (d) Independent
sources found using FastICA.

1 T
Yy == — WPh — WPh
VT ;«Uﬁ t) (v 2 >q<w>q<m) ’
c __ 1 = <(hc Ac c hc Ac c T>
H=p 1;2 ¢ A (= Ahi) a(A)a(hg_yhg)

The prior mean p and covariance ¥ are set to those of the distribution ¢(hq). Learning then proceeds by
iterating the parameter update step followed by updating q(hi.1),q(A), ¢(W). The initial parameters
are set randomly.

2.1 Demonstration

In a proof of concept experiment, we used a LGSSM to generate 3 sources with random 5 x 5 transition
matrices A°, hy ~ N(0,I) and ¥y = I. The sources were mixed into three observations vy = Ws;+ny,
for W chosen with elements from a zero mean unit variance Gaussian distribution, and ¥y = I. We
then trained a different LGSSM with 5 sources and 7 dimensions for each dynamic component ¢. To
bias the model to find the simplest sources, we used A¢ = 0 for all sources. In Fig2a and Fig2b we see
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the original sources and the noisy observations respectively. The observation noise is so high that a
good estimation of the sources is possible only by taking the dynamics into account. In Fig2c we see
the estimated sources from our method after 400 iterations. Two of the 5 sources have been removed,
the remaining three are a reasonable estimation of the original sources. The FastICA [2] result is
given in Fig2d. In fairness, FastICA cannot deal with noise and also seeks independent components,
whereas in this example the sources are slightly correlated. Nevertheless, this example demonstrates
that, whilst a standard method such as FastICA indeed produces independent components, this may
not be a satisfactory result, since there is no search for simplicity of the underlying dynamical system,
nor indeed may independence at each time point be a desirable criterion.

2.2 Application to EEG analysis

In Fig3a (blue), we show three seconds of EEG data recorded from 4 channels (located in the right
hemisphere) while a subject is performing imagined movement of his right hand. As is typical in
EEG, each channel shows low frequency drift terms, together with the presence of 50 Hz mains
contamination, which masks the information related to the mental task, mainly centered at 10 and
20 Hz. Standard ICA methods such as FastICA do not find satisfactory sources based on raw ‘noisy’
data, and preprocessing with band-pass filters is usually required. However, even with pre-filtering,
the number of components is usually restricted in ICA to be equal to the number of channels. In
EEG this is potentially too restrictive since there may be many independent oscillators of interest
underlying the observations and we would like some way to automatically determine the effective
number of such oscillators. We used our method with 16 sources and, to preferentially find sources
at particular frequencies, we specified a block diagonal matrix A¢ with each block being a rotation at
the desired frequency. The frequencies for the 16 sources were [0.5], [0.5], [0.5], [0.5], [10,11], [10,11],
[10,11], [10,11], [20,21], [20,21], [20,21], [20,21], [50], [50], [50], [50] Hz respectively. After training, the
Bayesian approach removed 4 unnecessary sources from the mixing matrix W, that is one [10,11] Hz
and three [20,21] Hz sources. The temporal evolution of the 12 retained sources is presented in Fig
3a (black). We can see that effectively the first 4 sources contain dominant low frequency drift, the
following 3 contain [10,11] Hz, while the 8th contains [20,21] Hz centered activity. Out of the 4 sources
initialized to 50 Hz, only 2 retained 50 Hz activity, while the A€ of last two sources have changed
in order to model other frequencies present in the signals. In order to asses the advantage of using
prior frequencies for extracting task-related information and the potential limitations of using a linear
model, we have compared our method with NDFA [3]. We extracted 16 factors using a NDFA model
in which both MLPs had one hidden layer of 30 neurons. The other parameters were set to the default
values. In Fig 3b we show the temporal evolution of the resulting factors. The first 10 factors from
the top give the strongest contribution to the observations. In agreement with our method, there are
2 main 50 Hz sources (first two factors), even if a small 50 Hz activity is present also in other factors,
namely 7, 11, 12 and 14. The slow drift has not been isolated and is present in almost all factors.
The information related to hand movement, namely [10,20] Hz activity is spread over factors 3, 4, 9,
10 and 13, which however contain also other frequencies. From this example we can conclude that,
while the two methods give similar results, the prior specification of independent dynamical processes
at particular frequencies has helped our model to better isolate the activity of interest into a smaller
number of sources, and, among these sources, to separate the contribution of oscillators at different
frequencies, that is 10 Hz and 20 Hz oscillators.

3 Conclusion

We presented a method to identify independent dynamical sources in noisy temporal data, based on a
Bayesian procedure which automatically biases the solution to finding a small number of sources. This
procedure is closely related to others previously proposed in the literature, but has the particular prop-
erty that the sources are themselves projections from higher dimensional independent linear dynamical



8 IDIAP RR 05-84

B T

5

0

-0.5
0.2 T T

o
-0.2 : !

0

1 2 3s

|

|

o O Pl o bl O

(a) (b)

Figure 3: (a) The top four (blue) signals are the original unfiltered EEG channel data. The remaining
12 subfigures are the sources s estimated by our method. (b) The 16 factors estimated by NDFA after
convergence (800 iterations).

systems. A particular advantage of the linear dynamics approach is the tractability of inference, and
we demonstrated how this can be achieved reliably by conversion to a standard Kalman Smoother
form. Here we concentrated on the projection to a single dimension since this aids interpretability of
the signals, being of particular importance for applications in biomedical signal analysis. The method
is able then to automatically extract signals, for example, biased towards particular frequencies. One
disadvantage of the current model is that some signals or artifacts in for example EEG may be so
complex that they are difficult to model with a stationary state space model. One possibility would
be to include additional components which are assumed temporally independent (as in the standard
ICA), along the lines of those used in [10]. We think that the development of this and related methods
may provide useful tools particularly in multichannel signal analysis.
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