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Abstra
t. We dis
uss a method to extra
t independent dynami
al systems underlying a singleor multiple 
hannels of observation. In parti
ular, we sear
h for one dimensional subsignals toaid the interpretability of the de
omposition. The method uses an approximate Bayesian analysisto determine automati
ally the number and appropriate 
omplexity of the underlying dynami
s,with a preferen
e for the simplest solution. We apply this method to un�ltered EEG signalsto dis
over low 
omplexity sour
es with preferential spe
tral properties, demonstrating improvedinterpretability of the extra
ted sour
es over related methods.



2 IDIAP�RR 05-841 Introdu
tionDe
omposing a multivariate time series vn
t , t = 1, . . . , T , n = 1, . . . , V into a set of C simpler subsignals(sour
es) is a 
entral goal in signal pro
essing and is of parti
ular interest in the analysis of biomedi
alsignals (see for example [1℄). Our 
riteria for the de
omposition is that independent dynami
al systemsgenerate the sour
es whi
h, under linear mixing, give rise to the observations. For any s
alar sour
e

si and another sour
e sj and all times t, we seek a model of independent dynami
s p(si
1:T , sj

1:T ) =

p(si
1:T )p(sj

1:T ). Furthermore, the aim is to �nd a matrix W that relates the sour
es to observations vtthrough linear mixing vt = Wst, where1 vt = vert(v1
t , . . . , vV

t ), st = vert(s1
t , . . . , s

C
t ) . This is a formof Independent Components Analysis (ICA) [2℄ although di�ers from the more standard assumptionof independen
e at ea
h time step, that is p(si

1:T , sj
1:T ) =

∏T
t=1 p(si

t)p(sj
t ). Whilst there are manymethods to deal with su
h temporal dependen
e (see [2℄), in biosignal analysis it is important tohave a method whi
h en
odes strong 
onstraints su
h as desired frequen
ies of the sour
es. A 
loselyrelated te
hnique to ours is Nonlinear Dynami
al Fa
tor Analysis (NDFA) [3, 4℄. Whilst being anattra
tive and powerful method, standard NDFA pla
es no 
onstraint that the observations are formedfrom mixing independent s
alar dynami
 sour
es, whi
h makes interpretation of the resulting fa
torsdi�
ult. Furthermore, NDFA does not dire
tly 
onstrain the fa
tors to 
ontain parti
ular frequen
iesso that in [4℄, in order to extra
t rhythmi
 a
tivity, bias is in
orporated by initializing the model withband-�ltered prin
ipal 
omponents of the data. In addition, NDFA uses nonlinear state dynami
s andmixing, whi
h hampers inferen
e and makes the in
orporation of known 
onstraints more 
omplex.We therefore 
onsider a simpler linear model whi
h is nevertheless powerful, yet remains relativelyinterpretable and tra
table. An important issue in de
omposing signals into sour
es is the numberof appropriate sour
es and also their 
omplexity. To address this we use a Bayesian analysis of theLinear Gaussian State Spa
e Model (LGSSM), as in [5℄, but 
onstrained in order that independentdynami
al pro
esses 
an be identi�ed and furthermore that s
alar sour
es 
an be extra
ted from thesignal.2 Linear Gaussian state spa
e modelsIn LGSSMs [6, 7, 8℄ the visible observation vt ∈ RV is linearly related to the hidden state ve
tor

ht ∈ RH by
vt = Bht + ηv

t , ηv
t ∼ N (0,ΣV ) ,where N (0,ΣV ) denotes a Gaussian distribution with zero mean and 
ovarian
e ΣV . The transitiondynami
s is also linear,

ht = Aht−1 + ηh
t , ηh

t ∼ N (0,ΣH) .Probabilisti
ally, we express this as
p(v1:T , h1:T ) = p(v1, h1)

T
∏

t=2

p(vt|ht)p(ht|ht−1) ,with p(vt|ht) = N (Bht,ΣV ), p(ht|ht−1) = N (Aht−1,ΣH) and p(h1) = N (µ,Σ). To make indepen-dent dynami
al subsystems we use a blo
k diagonal transition matrix A = diag
(

A1, . . . , AC
), andstate noise ΣH = diag

(

Σ1
H , . . . ,ΣC

H

), where ea
h blo
k has dimension Hc. A one dimensional sour
e
sc

t for ea
h independent dynami
al system is formed from sc
t = 1Tc hc

t , where 1c is a Hc×1 unit ve
tor2.We 
an represent this as st = Pht, where P = diag(1T1 , . . . ,1TC), ht = vert(h1
t , . . . , h

C
t ) and hc

t is a1vert(a, b, c) is the matrix formed by verti
ally sta
king the matri
es (in
luding s
alars and ve
tors) a,b,c.2A more general approa
h would be to proje
t to more than one dimension. This may then be interpreted as usinga higher dimensional linear state spa
e approximation of [3℄ whi
h seeks independent subspa
e dynami
s.
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t represents the ve
tor dynami
s of 
omponent c, whi
h are proje
ted bysummation to form the dynami
s of the s
alar sc

t (higher dimensional proje
tions are an obviousextension). These sour
es are linearly mixed to form the visible observation ve
tor vt.
Hc × 1 dimensional ve
tor representing the state of dynami
al system c. The graphi
al stru
ture ofthis model is presented in Fig 1. As in standard ICA, we assume linear mixing of the sour
es to makethe observation vt = Wst + ηv

t . Sin
e the sour
es are formed from proje
tion, the resulting emissionmatrix is 
onstrained to be of the form3
B = WP ,where W is the V × C mixing matrix and P is a C × H proje
tion, H =

∑

c Hc. Su
h a 
onstrainedform for B is needed to provide interpretable s
alar sour
es4.Bayesian Linear Dynami
al SystemsIn our Bayesian treatment of learning we de�ne priors p(A|α) and p(W |β), where α and β are hyper-parameters. Then
p(v1:T |α, β) =

∫

A,W

p(v1:T |A,W )p(A|α)p(W |β) . (1)Here we take the ML-II (`eviden
e') framework, whi
h involves maximising p(v1:T |α, β) with respe
tto the hyperparameters α, β [3, 5, 9℄. Ideally, the number of sour
es e�e
tively 
ontributing to theobserved signal should be small. This suggests the prior
p(W |β) =

C
∏

j=1

(

βj

2π

)V/2

e−
βj
2

PV
i=1

W 2

ij .We 
an bias ea
h dynami
al system to be 
lose to a desired transition Â (possibly zero) by using
p(Ac|αc) =

(αc

2π

)H2

c /2

e−
1

2
αc

P

ij(Ac
ij−Âc

i,j)
2for ea
h 
omponent c, so that p(A|α) =

∏

c p(Ac|αc).3Unlike [5, 3℄ we 
annot then assume ΣH ≡ I by parameter res
aling.4Other proje
tions would be equally valid.



4 IDIAP�RR 05-84Variational BayesWe would like to optimize equation (1) with respe
t to α and β, but this is di�
ult due to theintra
tability of the integrals. Instead we 
onsider the bound [3, 5, 9℄
log p(v1:T |α, β) ≥ Hq(A,W, h1:T ) + 〈log p(v1:T , h1:T A,W )〉q(A,W,h1:T ) , (2)where we dropped the expli
it dependen
e on the hyperparameters on the right hand side5. The nota-tion Hd(x) signi�es the entropy of the distribution d(x) and 〈·〉d(x) denotes the expe
tation operator.For 
ertain simplifying 
hoi
es of the variational distribution q, we hope to a
hieve a tra
table lowerbound on the likelihood, whi
h we may then optimize with respe
t to q, α, β. The key approxima-tion in Variational Bayes is q(A,W |h1:T ) ≡ q(A,W ). This assumption allows other simpli�
ationsto follow, without further loss of generality. Sin
e A and W separate in equation (2), optimally

q(A,W ) = q(A)q(W ) and hen
e
log p(v1:T |θ) ≥ −D(q(A), p(A))−D(q(W ), p(W ))+Hq(h1:T )+〈log p(v1:T , h1:T |A,W )〉q(h1:T )q(A)q(W ) ,(3)where D(q(x), p(x)) is the KL divergen
e 〈log q(x)/p(x)〉q(x).Determining q(W )By examining equation (3), the 
ontribution of q(W ) 
an be interpreted as the KL divergen
e be-tween q(W ) and a Gaussian distribution in W (sin
e log p(W |β) = − 1

2

∑

i,j βjW
2
ij + const). Hen
e,optimally, q(W ) is a Gaussian, for whi
h we simply need to �nd the mean and 
ovarian
e. For aquadrati
 form xT Mx− 2xTm the 
ovarian
e is M−1 and the mean is M−1m. Hen
e the 
ovarian
e

[ΣW ]ij,kl ≡ 〈(Wij − 〈Wij〉) (Wkl − 〈Wkl〉)〉 (averages wrt q(W )) is given by the inverse of the quadrati

ontribution
[

Σ−1
W

]

ij,kl
=

[

Σ−1
V

]

i,k

∑

t

〈

h̃j
t h̃

l
t

〉

q(ht)
+ βjδi,kδj,l ,where h̃t = Pht. The mean is given by

〈W 〉i,j =
∑

k,l,n,t

[ΣW ]ij,kl

[

Σ−1
V

]

k,n

〈

h̃l
t

〉

q(ht)
vn

t ,where q(h1:T ) needed in the above is determined below.Determining q(A)Sin
e the dynami
s are independent, optimally we have a fa
torised distribution q(A) =
∏

c q(Ac),where q(Ac) is Gaussian with 
ovarian
e [ΣAc ]ij,kl ≡
〈(

Ac
ij −

〈

Ac
ij

〉)

(Ac
kl − 〈Ac

kl〉)
〉 (averages wrt

q(Ac)) given by the inverse of the quadrati
 
ontribution. Momentarily dropping the dependen
e onthe sour
e c, the 
ovarian
e for ea
h sour
e is
[

Σ−1
A

]

ij,kl
=

[

Σ−1
H

]

i,k

T
∑

t=2

〈

hj
t−1h

l
t

〉

+ αδi,kδj,l ,and the mean is
〈A〉i,j =

∑

k,l

[ΣA]ij,kl

(

Âk,l +
∑

n

[

Σ−1
H

]

k,n

T
∑

t=2

〈

hl
t−1h

n
t

〉

)

,where in the above all parameters and the variable h should be interpreted as pertaining to dynami
sour
e c only (e.g. h
(c),j
t−1 ) and the averages are with respe
t to q(hc

t−1, h
c
t).5Stri
tly we should write here and throughout q(·|v1:T ). We omit the dependen
e on the observations for notational
onvenien
e.



IDIAP�RR 05-84 5Determining q(h1:T )Optimally q(h1:T ) is Gaussian sin
e equation (3) is quadrati
 in h1:T , being namely
−

1

2

T
∑

t=1

〈

(vt − WPht)
TΣ−1

V (vt − WPht)
〉

q(W )

−
T

∑

t=2

1

2

〈

(ht − Aht−1)
T

Σ−1
H (ht − Aht−1)

〉

q(A)
−

1

2
(h1 − µ)

T
Σ−1 (h1 − µ) .We 
an 
arry out the averages over A and W sin
e q(A) and q(W ) are Gaussian and the above isquadrati
 in the parameters A and W . This means that q(h1:T ) may be fa
tored into ∏

t q(ht|ht−1).There are several mathemati
ally equivalent ways to �nd the numeri
al form of the fa
torisation.In [5℄ novel smoother re
ursions are 
onstru
ted. Here we take a simpler approa
h, motivated bythe idea that when the 
ovarian
es of q(A) and q(W ) are zero the 
hain is exa
tly of the form of astandard Kalman Filter (KF), with emission matrix B = WP and transition A. Our aim is to �nd anequivalent form for whi
h the standard numeri
ally stable Rau
h-Tung-Striebel smoother re
ursionsmay be applied [6℄. In order to do that, we rewrite
〈

(vt − Bht)
TΣ−1

V (vt − Bht)
〉

q(W )
= (vt − 〈B〉ht)

TΣ−1
V (vt − 〈B〉ht) + hTt PTSW Pht,where 〈B〉 ≡ 〈W 〉P and

[SW ]j,l =

V
∑

i,k=1

[ΣW ]ij,kl

[

Σ−1
V

]

i,k
, j, l ∈ 1, . . . ,H.Similarly

〈

(ht − Aht−1)
TΣ−1

H (ht − Aht−1)
〉

q(A)
= (ht − 〈A〉ht−1)

TΣ−1
H (ht − 〈A〉ht−1) + hTt−1SAht−1,where

[SA]j,l =
H

∑

i,k=1

[ΣA]ij,kl

[

Σ−1
H

]

i,k
, j, l ∈ 1, . . . ,H.To represent the above as a KF, with dynami
s Ã, emission B̃ and observation ṽ, we augment vt and

B as
ṽt = vert(vt,0,0), B̃ = vert(〈B〉 , UA, UW P ),where 0 is a H × 1 zero ve
tor and UA is the Cholesky de
omposition of SA, so that UT

AUA =
SA. Similarly, UW is the Cholesky de
omposition of SW . The equivalent KF is then 
ompleted byspe
ifying Σ̃ ≡ Σ, µ̃ ≡ µ, Ã ≡ 〈A〉. Stri
tly speaking we need to make a slight adjustment and use atime-dependent emission B̃t = B̃, for t = 1, . . . , T − 1. For time T , B̃T has the Cholesky fa
tor UArepla
ed by 0.Finding the optimal ParametersDi�erentiating equation (3) with respe
t to βj and αc we �nd that, optimally:

βj =
V

∑

i

〈

W 2
ij

〉

q(W )

, αc =
H2

c
∑

ij

〈

[Ac − Âc]2ij

〉

q(Ac)

,
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10 (d)Figure 2: (a) Original (
orrelated) sour
es s. (b) Observations resulting from mixing the originalsour
es, v = Ws + ηv, ηv ∼ N (0, I). (
) Re
overed sour
es using our method. (d) Independentsour
es found using FastICA.
ΣV =

1

T

T
∑

t=1

〈

(vt − WPht) (vt − WPht)
T〉

q(W )q(ht)
,

Σc
H=

1

T − 1

T
∑

t=2

〈

(

hc
t − Achc

t−1

)(

hc
t − Achc

t−1

)T〉

q(Ac)q(hc
t−1

,hc
t)

.The prior mean µ and 
ovarian
eΣ are set to those of the distribution q(h1). Learning then pro
eeds byiterating the parameter update step followed by updating q(h1:T ), q(A), q(W ). The initial parametersare set randomly.2.1 DemonstrationIn a proof of 
on
ept experiment, we used a LGSSM to generate 3 sour
es with random 5×5 transitionmatri
es Ac, h1 ∼ N(0, I) and ΣH = I. The sour
es were mixed into three observations vt = Wst+ηv
t ,for W 
hosen with elements from a zero mean unit varian
e Gaussian distribution, and ΣV = I. Wethen trained a di�erent LGSSM with 5 sour
es and 7 dimensions for ea
h dynami
 
omponent c. Tobias the model to �nd the simplest sour
es, we used Âc ≡ 0 for all sour
es. In Fig2a and Fig2b we see



IDIAP�RR 05-84 7the original sour
es and the noisy observations respe
tively. The observation noise is so high that agood estimation of the sour
es is possible only by taking the dynami
s into a

ount. In Fig 2
 we seethe estimated sour
es from our method after 400 iterations. Two of the 5 sour
es have been removed,the remaining three are a reasonable estimation of the original sour
es. The FastICA [2℄ result isgiven in Fig 2d. In fairness, FastICA 
annot deal with noise and also seeks independent 
omponents,whereas in this example the sour
es are slightly 
orrelated. Nevertheless, this example demonstratesthat, whilst a standard method su
h as FastICA indeed produ
es independent 
omponents, this maynot be a satisfa
tory result, sin
e there is no sear
h for simpli
ity of the underlying dynami
al system,nor indeed may independen
e at ea
h time point be a desirable 
riterion.2.2 Appli
ation to EEG analysisIn Fig 3a (blue), we show three se
onds of EEG data re
orded from 4 
hannels (lo
ated in the righthemisphere) while a subje
t is performing imagined movement of his right hand. As is typi
al inEEG, ea
h 
hannel shows low frequen
y drift terms, together with the presen
e of 50 Hz mains
ontamination, whi
h masks the information related to the mental task, mainly 
entered at 10 and20 Hz. Standard ICA methods su
h as FastICA do not �nd satisfa
tory sour
es based on raw `noisy'data, and prepro
essing with band-pass �lters is usually required. However, even with pre-�ltering,the number of 
omponents is usually restri
ted in ICA to be equal to the number of 
hannels. InEEG this is potentially too restri
tive sin
e there may be many independent os
illators of interestunderlying the observations and we would like some way to automati
ally determine the e�e
tivenumber of su
h os
illators. We used our method with 16 sour
es and, to preferentially �nd sour
esat parti
ular frequen
ies, we spe
i�ed a blo
k diagonal matrix Âc with ea
h blo
k being a rotation atthe desired frequen
y. The frequen
ies for the 16 sour
es were [0.5℄, [0.5℄, [0.5℄, [0.5℄, [10,11℄, [10,11℄,[10,11℄, [10,11℄, [20,21℄, [20,21℄, [20,21℄, [20,21℄, [50℄, [50℄, [50℄, [50℄ Hz respe
tively. After training, theBayesian approa
h removed 4 unne
essary sour
es from the mixing matrix W , that is one [10,11℄ Hzand three [20,21℄ Hz sour
es. The temporal evolution of the 12 retained sour
es is presented in Fig3a (bla
k). We 
an see that e�e
tively the �rst 4 sour
es 
ontain dominant low frequen
y drift, thefollowing 3 
ontain [10,11℄ Hz, while the 8th 
ontains [20,21℄ Hz 
entered a
tivity. Out of the 4 sour
esinitialized to 50 Hz, only 2 retained 50 Hz a
tivity, while the Ac of last two sour
es have 
hangedin order to model other frequen
ies present in the signals. In order to asses the advantage of usingprior frequen
ies for extra
ting task-related information and the potential limitations of using a linearmodel, we have 
ompared our method with NDFA [3℄. We extra
ted 16 fa
tors using a NDFA modelin whi
h both MLPs had one hidden layer of 30 neurons. The other parameters were set to the defaultvalues. In Fig 3b we show the temporal evolution of the resulting fa
tors. The �rst 10 fa
tors fromthe top give the strongest 
ontribution to the observations. In agreement with our method, there are2 main 50 Hz sour
es (�rst two fa
tors), even if a small 50 Hz a
tivity is present also in other fa
tors,namely 7, 11, 12 and 14. The slow drift has not been isolated and is present in almost all fa
tors.The information related to hand movement, namely [10,20℄ Hz a
tivity is spread over fa
tors 3, 4, 9,10 and 13, whi
h however 
ontain also other frequen
ies. From this example we 
an 
on
lude that,while the two methods give similar results, the prior spe
i�
ation of independent dynami
al pro
essesat parti
ular frequen
ies has helped our model to better isolate the a
tivity of interest into a smallernumber of sour
es, and, among these sour
es, to separate the 
ontribution of os
illators at di�erentfrequen
ies, that is 10 Hz and 20 Hz os
illators.3 Con
lusionWe presented a method to identify independent dynami
al sour
es in noisy temporal data, based on aBayesian pro
edure whi
h automati
ally biases the solution to �nding a small number of sour
es. Thispro
edure is 
losely related to others previously proposed in the literature, but has the parti
ular prop-erty that the sour
es are themselves proje
tions from higher dimensional independent linear dynami
al



8 IDIAP�RR 05-84
−3

0
3

−3
0
3

−3
0
3

−3
0
3

−0.6
0

0.6

−3
0
3

−2
0
2

−2
0
2

−1
0
1

−3
0
3

−1
0
1

−2
0
2

−3
0
3

−3
0
3

−0.5
0

0.5

0  1 2 3 s
−0.2

0
0.2 (a)

−2
0
2

−2
0
2

−3
0
3

−3
0
3

−3
0
3

−3
0
3

−1
0
1

−5
0
5

−4
0
4

−2
0
2

−1
0
1

−1
0
1

−5
0
5

−0.5
0

0.5

−0.5
0

0.5

0  1 2 3 s
−1

0
1 (b)Figure 3: (a) The top four (blue) signals are the original un�ltered EEG 
hannel data. The remaining12 sub�gures are the sour
es s estimated by our method. (b) The 16 fa
tors estimated by NDFA after
onvergen
e (800 iterations).systems. A parti
ular advantage of the linear dynami
s approa
h is the tra
tability of inferen
e, andwe demonstrated how this 
an be a
hieved reliably by 
onversion to a standard Kalman Smootherform. Here we 
on
entrated on the proje
tion to a single dimension sin
e this aids interpretability ofthe signals, being of parti
ular importan
e for appli
ations in biomedi
al signal analysis. The methodis able then to automati
ally extra
t signals, for example, biased towards parti
ular frequen
ies. Onedisadvantage of the 
urrent model is that some signals or artifa
ts in for example EEG may be so
omplex that they are di�
ult to model with a stationary state spa
e model. One possibility wouldbe to in
lude additional 
omponents whi
h are assumed temporally independent (as in the standardICA), along the lines of those used in [10℄. We think that the development of this and related methodsmay provide useful tools parti
ularly in multi
hannel signal analysis.Referen
es[1℄ A. Delorme and S. Makeig. EEGLAB: an open sour
e toolbox for analysis of single-trial EEGdynami
s in
luding independent 
omponent analysis. Journal of Neuros
ien
e Methods, (134):9�21, 2004.
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