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Abstract

Although non-parametric tests have already been proposed for that pur-
pose, statistical significance tests for non-standard measures (different
from the classification error) are less often used in the literature. This
paper is an attempt at empirically verifying how these tests compare with
more classical tests, on various conditions. More precisely, using a very
large dataset to estimate the whole “population”, we analyzed the behav-
ior of several statistical test, varying the class unbalance, the compared
models, the performance measure, and the sample size. The main re-
sult is that providing big enough evaluation sets non-parametric tests are
relatively reliable in all conditions.

1 Introduction

Statistical tests are often used in machine learning in order to assess the performance of
a new learning algorithm or model over a set of benchmark datasets, with respect to the
state-of-the-art solutions. Several researchers (see for instance [4] and [9]) have proposed
statistical tests suited for 2-class classification tasks where the performance is measured in
terms of the classification error (ratio of the number of errors and the number of examples),
which enables the use of assumptions based on the fact that the error can be seen as a sum
of random variables over the evaluation examples. On the other hand, various research do-
mains prefer to measure the performance of their models using different indicators, such as
the F1 measure, used in information retrieval [11], described in Section 2.1. Most classical
statistical tests cannot cope directly with such measure as the usual necessary assumptions
are no longer correct, and non-parametric bootstrap-based methods are then used [5].

Since several papers already use these non-parametric tests [2, 1], we were interested in
verifying empirically how reliable they were. For this purpose, we used a very large text
categorization database (the extended Reuters dataset [10]), composed of more than 800000
examples, and concerning more than 100 categories (each document was labelled with one
or more of these categories). We purposely set aside the largest part of the dataset and
considered it as the whole population, while a much smaller part of it was used as a training
set for the models. Using the large set aside dataset part, we tested the statistical test in the
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same spirit as was done in [4], by sampling evaluation sets over which we observed the
performance of the models and the behavior of the significance test.

Following the taxonomy of questions of interest defined by Dietterich in [4], we can dif-
ferentiate between statistical tests that analyze learning algorithms and statistical tests that
analyze classifiers. In the first case, one intends to be robust to possible variations of the
train and evaluation sets, while in the latter, one intends to only be robust to variations of
the evaluation set. While the methods discussed in this paper can be applied alternatively
to both approaches, we concentrate here on the second one, as it is more tractable (for the
empirical section) while still corresponding to real life situations where the training set is
fixed and one wants to compare two solutions (such as during a competition).

In order to conduct a thorough analysis, we tried to vary the evaluation set size, the class
unbalance, the error measure, the statistical test itself (with its associated assumptions),
and even the closeness of the compared learning algorithms. This paper, and more precisely
Section 3, is a detailed account of this analysis. As it will be seen empirically, the closeness
of the compared learning algorithms seems to have an effect on the resulting quality of the
statistical tests: comparing an MLP and an SVM yields less reliable statistical tests than
comparing two SVMs with a different kernel. To the best of our knowledge, this has never
been considered in the literature of statistical tests for machine learning.

2 A Statistical Significance Test for the Difference of F1

Let us first remind the basic classification framework in which statistical significance tests
are used in machine learning. We consider comparing two models A and B on a two-class
classification task where the goal is to classify input examples xi into the corresponding
class yi ∈ {−1, 1}, using already trained models fA(xi) or fB(xi). One can estimate their
respective performance on some test data by counting the number of utterances of each
possible outcome: either the obtained class corresponds to the desired class, or not. Let
Ne,A (resp. Ne,B) be the number of errors of model A (resp. B) and N the total number
of test examples; The difference between models A and B can then be written as

D =
Ne,A −Ne,B

N
. (1)

The usual starting point of most statistical tests is to define the so-called null hypothesis
H0 which considers that the two models are equivalent, and then verifies how probable this
hypothesis is. Hence, assuming that D is an instance of some random variable D which
follows some distribution, we are interested in

p (|D| < |D|) < α (2)

where α represents the risk of selecting the alternate hypothesis (the two models are dif-
ferent) while the null hypothesis is in fact true. This can in general be estimated easily
when the distribution of D is known. In the simplest case, known as the proportion test,
one assumes (reasonably) that the decision taken by each model on each example can be
modeled by a Bernoulli, and further assumes that the errors of the models are independent.
This is in general wrong in machine learning since the evaluation sets are the same for both
models. When N is large, this leads to estimate D as a Normal distribution with zero mean
and standard deviation σD

σD =

√

2C̄(1− C̄)

N
(3)

where C̄ =
Ne,A+Ne,B

2N
is the average classification error. In order to get rid of the wrong

independence assumption between the errors of the models, the McNemar test [6] concen-
trates on examples which were differently classified by the two compared models. Follow-
ing the notation of [4], letN01 be the number of examples misclassified by modelA but not



by model B and N10 the number of examples misclassified by model B but not by model
A. It can be shown that the following statistics is approximatively distributed as a χ2 with
1 degree of freedom:

z =
(|N01 −N10| − 1)2

N01 +N10

. (4)

More recently, several other statistical tests have been proposed, such as the 5x2cv
method [4] or the variance estimate proposed in [9], which both claim to better estimate
the distribution of the errors (and hence the confidence on the statistical significance of
the results). Note however that these solutions assume that the error of one model is the
average of some random variable (the error) estimated on each example. Intuitively, it will
thus tend to be Normally distributed as N grows, following the central limit theorem.

2.1 The F1 Measure

Text categorization is the task of assigning one or several categories, among a predefined set
of K categories, to textual documents. As explained in [11], text categorization is usually
solved as K 2-class classification problems, in a one-against-the-others approach. In this
field two measures are considered of importance:

Precision =
Ntp

Ntp +Nfp
, and Recall =

Ntp

Ntp +Nfn
,

where for each category Ntp is the number of true positives (documents belonging to the
category that were classified as such), Nfp the number of false positives (documents out
of this category but classified as being part of it) and Nfn the number of false negatives
(documents from the category classified as out of it). Precision and Recall are effective-
ness measures, i.e. inside [0, 1] interval, the closer to 1 the better. For each category k,
Precisionk measures the proportion of documents of the class among the ones considered
as such by the classifier and Recallk the proportion of documents of the class correctly
classified.

To summarize these two values, it is common to consider the so-called F1 measure [12], of-
ten used in domains such as information retrieval, text categorization, or vision processing.
F1 can be described as the inverse of the harmonic mean of Precision and Recall:

F1 =

(

1

2

[

1

Recall
+

1

Precision

])

−1

=
2 · Precision · Recall
Precision + Recall

=
2Ntp

2Ntp +Nfn +Nfp
.

(5)

Let us consider two models A and B, which achieve a performance measured by F1,A and
F1,B respectively. The difference dF1 = F1,A − F1,B does not fit the assumptions of the
tests presented earlier. Indeed, it cannot be decomposed into a sum over the documents of
independent random variables, since the numerator and the denominator of dF1 are non
constant sums over documents of independent random variables. For the same reason F1,
while being a proportion, cannot be considered as a random variable following a Normal
distribution for which we could easily estimate the variance.

An alternative solution to measure the statistical significance of dF1 is based on the Boot-
strap Percentile Test proposed in [5]. The idea of this test is to approximate the unknown
distribution of dF1 by an estimate based on bootstrap replicates of the data.

2.2 Bootstrap Percentile Test

Given an evaluation set of size N , one draws, with replacement, N samples from it. This
gives the first bootstrap replicate B1, over which one can compute the statistics of interest,



dF1,B1
. Similarly, one can create as many bootstrap replicates Bn as needed, and for

each, compute dF1,Bn
. The higher n is, the more precise should be the statistical test.

Literature [3] suggests to create at least 50

α
replicates where α is the level of the test; for

the smallest α we considered (0.01), this amounts to 5000 replicates. These 5000 estimates
dF1,Bi

represent the non-parametric distribution of the random variable dF1. From it, one
can for instance consider an interval [a, b] such that p(a < dF1 < b) = 1 − α centered
around the mean of p(dF1). If 0 lies outside this interval, one can say that dF1 = 0 is not
among the most probable results, and thus reject the null hypothesis.

3 Analysis of Statistical Tests

We report in this section an analysis of the bootstrap percentile test, as well as other more
classical statistical tests, based on a real large database. We first describe the database itself
and the protocol we used for this analysis, and then provide results and comments.

3.1 Database, Models and Protocol

All the experiments detailed in this paper are based on the very large RCV1 Reuters
dataset [10], which contains up to 806,791 documents. We divided it as follows: 798,809
documents were kept aside and any statistics computed over this set Dtrue was considered
as being the truth (ie a very good estimate of the actual value); the remaining 7982 docu-
ments were used as a training set Dtr (to train models A and B). There was a total of 101
categories and each document was labeled with one or more of these categories.

We first extracted the dictionary from the training set, removed stop-words and applied
stemming to it, as normally done in text categorization. Each document was then repre-
sented as a bag-of-words using the usual tfidf coding. We trained three different models:
a linear Support Vector Machine (SVM), a Gaussian kernel SVM, and a multi-layer percep-
tron (MLP). There was one model for each category for the SVMs, and a single MLP for
the 101 categories. All models were properly tuned using cross-validation on the training
set.

Using the notation introduced earlier, we define the following competing hypotheses:
H0 : |dF1| = 0 and H1 : |dF1| > 0. We further define the level of the test
α = p(Reject H0|H0), where α takes on values 0.01, 0.05 and 0.1. Table 1 summarizes
the possible outcomes of a statistical test. With that respect, rejecting H0 means that one is
confident with (1− α) · 100% that H0 is really false.

Table 1: Various outcomes of a statistical test, with α = p(Type I error).

Decision
Truth Reject H0 Accept H0

H0 Type I error OK
H1 OK Type II error

In order to assess the performance of the statistical tests on their Type I error, also called
Size of the test, and on their Power = 1− Type II error, we used the following protocol.

For each categoryCi, we sampled overDtrue, S (500) evaluation setsDs
te ofN documents,

ran the significance test over each Ds
te and computed the proportion of sets for which H0

was rejected given that H0 was true over Dtrue (resp. H0 was false over Dtrue), which we
note αtrue (resp. π).

We used αtrue as an estimate of the significance test’s probability of making a Type I error



and π as an estimate of the significance test’s Power. When αtrue is higher than the α fixed
by the statistical test, the test underestimates Type I error, which means we should not rely
on its decision regarding the superiority of one model over the other. Thus, we consider
that the significance test fails. On the contrary, αtrue < α yields a pessimistic statistical
test that decides correctly H0 more often than predicted.

Furthermore we would like to favor significance tests with a high π, since the Power of the
test reflects its ability to reject H0 when H0 is false.

3.2 Summary of Conditions

In order to verify the sensitivity of the analyzed statistical tests to several conditions, we
varied the following parameters:

• the value of α: it took on values in {0.1, 0.05, 0.01};
• the two compared models: there were three models, two of them were of the same

family (SVMs), hence optimizing the same criterion, while the third one was an
MLP. Most of the times the two SVMs gave very similar results, (probably because
the optimal capacity for this problem was near linear), while the MLP gave poorer
results on average. The point here was to verify whether the test was sensitive to
the closeness of the tested models (although a more formal definition of closeness
should certainly be devised);

• the evaluation sample size: we varied it from small sizes (100) up to larger sizes
(6000) to see the robustness of the statistical test to it;

• the class unbalance: out of the 101 categories of the problem, most of them re-
sulted in highly unbalanced tasks, often with a ratio of 10 to 100 between the
two classes. In order to experiment with more balanced tasks, we artificially cre-
ated meta-categories, which were random aggregations of normal categories that
tended to be more balanced;

• the tested measure: our initial interest was to directly test dF1, the difference of
F1, but given poor initial results, we also decided to assess dCerr, the differ-
ence of classification errors, in order to see whether the tests were sensitive to the
measure itself;

• the statistical test: on top of the bootstrap percentile test, we also analyzed the
more classical proportion test and McNemar test, both of them only on dCerr
(since they were not adapted to dF1).

3.3 Results

Figure 1 summarizes the results for the Size of the test estimates. All graphs show αtrue,
the number of times the test rejected H0 while H0 was true, for a fixed α = 0.05, with
respect to the sample size, for various statistical tests and tested measures.

Figure 2 shows the obtain results for the Power of the test estimates. The proportion of
evaluation set over which the significance test (with α = 0.05) rejected H0 when indeed
H0 was false, is plotted against the evaluation set size.

Figures 1(a) and 2(a) show the results for balanced data (where the positive and negative
examples were approximatively equally present in the evaluation set) when comparing two
different models (an SVM and an MLP).

Figures 1(b) and 2(b) show the results for unbalanced data when comparing two very dif-
ferent models.

Figures 1(c) and 2(c) show the results for balanced data when comparing two similar mod-
els (a linear SVM and a Gaussian SVM) for balanced data, and finally Figures 1(d) and 2(d)



show the results for unbalanced data and two similar models.

Note that each point in the graphs was computed over a different number of samples, since
eg over the 500×100 experiments only thoses for which H0 was true in Dtrue were taken
into account in the computation of αtrue.

When the proportion ofH0 true inDtrue equals 0 (resp. the proportion ofH0 false inDtrue

equals 0), αtrue (resp. π) is set to -1. Hence, for instance the first points ({100, . . . , 1000})
of figures 2(c) and 2(d) were computed only over 500 evaluation sets on which respectively
the same categorization task was performed. This makes these points unreliable. See [8]
for more details.

For each of the Size’s graphs, when the curves are over the 0.05 line, we can state that the
statistical test is optimistic, while when it is below the line, the statistical test is pessimistic.
As already explained, a pessimistic test should be favored whenever possible.

Several interesting conclusions can be drawn from the analysis of these graphs. First of
all, as expected, most of the statistical tests are positively influenced by the size of the
evaluation set, in the sense that their αtrue value converges to α for large sample sizes 1.

On the available results, the McNemar test and the bootstrap test over dCerr have similar
performances. They are always pessimistic even for small evaluation set sizes, and tend to
the expected α values when the models compared on balanced tasks are dissimilar. They
have also similar performances in Power all over the different conditions, higher in general
when comparing very different models.

When the models compared are similar, the bootstrap test over dF1 has a pessimistic be-
havior even on quite small evaluation sets. However, when the models are really different
the bootstrap test over dF1 is in average always optimistic. Note nevertheless that most
of the points in Figures 1(a) and 1(b), have a standard deviation std, over the categories,
such that αtrue − std < α (see [8] for more details). Another interesting point is that in
the available results for the Power, the dF1’s bootstrap test have relatively high values with
compare to the others test.

The proportion test have in general, on the available results, a more conservative behavior
than the McNemar test and the dCerr bootstrap test. It has more pessimistic results and
less Power. It is too often prone to “Accept H0”, ie to conclude that the compared models
have equivalent performances, whether it is true or not. This results seem to be consistent
with those of [4] and [9]. However, when comparing close models in a small unbalanced
evaluation set (figure 1(d)), this conservative behavior is not present.

To summarize the findings, bootstrap-based statistical test over dCerr obtained a good
performance in Size comparable to the one of the McNemar test in all conditions. How-
ever both significance test performance in Power are low even for big evaluation sets in
particular when the compared models are close. The bootstrap-based statistical test over
dF1 have higher Power than the other compared tests, however it must be known that it is
slightly over-optimistic in particular for small evaluation sets. Finally, when applying the
proportion test over unbalanced data for close models we obtained an optimistic behavior,
untypical of this usually conservative test.

4 Conclusion

In this paper, we have analyzed several parametric and non-parametric statistical tests for
various conditions often present in machine learning tasks, including the class balancing,
the performance measure, the size of the test sets, and the closeness of the compared mod-

1Note that the same is true for the variance of αtrue(→ 0), and this for any of the α value tested.
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(c) Linear vs RBF SVMs - Balanced data
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(d) Linear vs RBF SVMs - Unbalanced data

Figure 1: Several statistical tests comparing Linear SVM vs MLP or vs RBF SVM. The
proportion of Type I error equals -1, in Figure 1(b), when there was no data to compute the
proportion (ie H0 was always false).

els. More particularly, we were concerned by the quality of non-parametric tests since in
some cases (when using more complex performance measures such as F1), they are the
only available statistical tests.

Fortunately, most statistical tests performed reasonably well (in the sense that they were
more often pessimistic than optimistic in their decisions) and larger test sets always im-
proved their performance. Note however that for dF1 the only available statistical test was
too optimistic although consistant for different levels. An unexpected result was that the
rather conservative proportion test used over unbalanced data for close models yielded an
optimistic behavior.

It has to be noted that recently, a probabilistic interpretation of F1 was suggested in [7],
and a comparison with bootstrap-based tests should be worthwhile.
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