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Abstract. Head pose estimation is a research area which has many applications, e.g. in human
computer interfaces design or in the analysis of people’s focus-of-attention. The paper addresses
the issue of head pose estimation, and makes two contributions. First it introduces a database
of more than 2 hours of video with head pose annotation involving people engaged in office
activities or meeting discussion. The database will be made publicly available. The second is an
algorithm which couples tracking and head pose estimation in a mixed-state particle filter. The
approach combines the robustness of color-based tracking by exploiting skin head/face models
with the localization accuracy of texture-based head models, as demonstrated by the reported
experiments.



2 IDIAP–RR 05-05

1 Introduction

The automatic analysis of the gestures, activities and behavior of people constitutes an emerging
research field in computer science. It can rely on the extraction of many person-oriented information,
such as their localization, the localization of their limbs, or their speaking activity. In particular,
the visual focus-of-attention (FOA) plays an important role in the recognition of people activity or
the understanding of non-verbal behavior in human interactions. In principle, the FOA should be
estimated from a person’s gaze. However, in the absence of high-resolution images of faces, which
prevents from the analysis of eyes orientation, the head pose can be employed as a surrogate.

A large amount of head pose algorithms have been proposed in the past. However, in most cases,
algorithms are evaluated either qualitatively [1] on some sample videos, or quantitatively but on
static images (e.g. [2, 3, 1]). There are several exceptions (e.g. [4]), but unfortunately, no data has
been made publicly available. Moreover, in many occasions, the recorded sequences involve people
performing constrained head motions in front of the camera, a situation which does not reflect the
whole variety of natural head attitudes encountered in real environments. In this paper, we introduce
a video database with 3D head pose ground-truth that will be made publicly available. The videos
depict people engaged in either some office activity, or in a meeting discussion. The ground-truth
has been obtained by exploiting the output of magnetic flock-of-birds (FOB) sensors attached to
people’s head. We believe that the use of common databases is important to evaluate and compare
different algorithms, in order to have a better understanding of them, and hope that our database
will contribute to such goals.

The second contribution of the paper is an algorithm that performs jointly head tracking and pose
estimation, exploiting both texture and skin information. Most of the existing work for head tracking
and pose estimation defines the task as two sequential and separate problems: the head is tracked,
its location is extracted and then used for pose estimation [2, 5, 6, 7, 4, 8, 9]. As a consequence, the
estimated head pose totally depends on the tracking accuracy. Indeed, it has been showed in the past
[2] that head pose estimation is very sensitive to head location. Hence, the above formulation of the
task misses the fact that knowledge about head pose could be used to improve head modeling and thus
improve tracking accuracy. Thus, like others [10, 11] before, we recently proposed [1] an algorithm that
couples the head tracking and pose estimation problem. The method relies on a Bayesian formulation
of the task, which is implemented using a particle filter (PF) approach [12]. The head modeling is
achieved by learning discrete head pose models from training sets [2]. In [1], only texture-like features
were used. We preferred this approach to the use of 3D head models, since the latter usually require
higher resolution head images than those considered in our experiments. Initial results evaluated on
some sample sequences using manual ground-truth showed that the algorithm worked better than the
track-then-pose paradigm. In this paper, this is confirmed on the much larger database described
above. However, these experiments also show that due to the presence of highly textured background
in our data (see Fig. 4), the tracker sometimes temporarily locks on the background. To improve
its robustness, we propose here to exploit skin masks to model head poses, and during tracking, to
automatically build skin maps using a skin color adaptation framework. This way, the approach
combines the robustness of standard color trackers [13] with the accuracy of textured-based head
modeling.

The paper is organized as follows. Section 2 describes the head pose representation and head
modeling. Section 3 presents the probabilistic setting for joint head tracking and pose estimation.
Section 4 compares head pose tracking algorithms and Section 5 concludes the paper.

2 Head Pose Models

2.1 Head Pose Representation

There exist different parameterization of head pose. Here we present two of them which are based
on the decomposition into Euler angles (α, β, γ) of the rotation matrix of the head configuration with
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Figure 1: Left: pan-tilt space discretization in the Pointing representation. Right: same discretization
in the PIE representation.

respect to the camera frame, where α denotes the pan, β the tilt and γ the roll of the head. In the
Pointing database representation [3], the rotation axis are rigidly attached to the head. In the PIE
representation [14], the rotation axis are those of the camera frame. The Pointing representation leads
itself to more natural head-centric values, with direct interpretation. However, the PIE representation
has a computational advantage: the roll angle corresponds to in-plane rotations. Thus, only appear-
ances of poses with varying pan and tilt values need to be modeled, as the head roll can be simulated
by applying in-plane rotation to images. Thus, we will perform the tracking in the PIE angular space.

2.2 Head Pose Modeling

We use the Pointing’04 database to build our head pose models since the discrete set of pan and tilt
values available covers a larger range of poses than the one found in other databases (e.g. Ferret, PIE).
The left plot of Figure 1 shows the discretization that was used in building the Pointing database,
while the right plot displays the same head poses in the PIE representation. While the discretization
is regular in Pointing, this is no longer true in the PIE representation. Texture and color based head
pose models are built from all the sample images available for each of the 93 discrete head poses
θ ∈ Θ = {θj = (αj , βl, 0), j = 1, ..., 93}. In the Pointing database, there are 15 people per pose.

2.2.1 Head Pose Texture Model

Head pose texture is modeled by the output of four filters Ψi, 1 = 1, ..., 4: a Gaussian at coarse scale
and 3 Gabor filters at three different scales (finer to coarser). Training image patches are obtained
by locating a tight bounding box around the head. The patch image is resized to the same resolution
64× 64 and preprocessed by histogram equalization to reduce the effect of lighting conditions. Then,
patches are filtered by each of the above filters at locations of a grid G inside a head mask. For
each filter Ψi, the features computed from an image patch {f i

j , j ∈ G} are normalized to give

f̃ i = {f̃ i
j =

f i
j−mi

si
, j ∈ G}, where mi and s2

i are the mean and variance of the ith features. This
normalization is made to prevent the features of a filter to dominate the other because their values
are higher. These features are then concatenated in a single feature vector z = {f̃ i, i = 1, 2, 3, 4}.

The feature vectors associated with each head pose θ ∈ Θ are clustered into K clusters using a
kmeans algorithm. The cluster centers eθ

k = (eθ
k,i), k = 1, ..., K are taken to be the exemplars of the

head pose θ. The diagonal covariance matrix of the features σθ
k = diag(σθ

k,i) inside each cluster is also
exploited to define the pose likelihood models. Here, due to the small amount of training data, we
considered only K=2 clusters. Furthermore, by defining the head eccentricity as the ratio of the width
over the height of the head, the head eccentricity distribution inside each cluster k of a head pose θ

is modeled by a Gaussian pr(θ,k)(.) where the mean and the standard deviation are learned from the
training head image eccentricities.
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The texture likelihood of an input image characterized by its extracted features zT , with respect
to an exemplars k of the head pose θ, is given by:

pT (z|k, θ) =
∏

i

1

σθ
k,i

max(exp−
1

2

(
zT

i − eθ
k,i

σθ
k,i

)2

, T ) (1)

where T = exp− 9
2 is a lower threshold set to reduce the effects of outlier components of the feature

vector.

2.2.2 Head Pose Color Model

To make our head models more robust to background clutter, we learn for each head pose exemplar
eθ

k a face skin color model denoted by M θ
k using the training images belonging to the cluster of this

exemplar. Training images are resized to 64 × 64, then their pixels are classified interactively as skin
or non skin. The skin model M θ

k is a binary mask in which the value at a given location is 1 when
the majority of the training images have this location detected as skin, and 0 otherwise.

To detect skin pixels at run time, we model the distribution of skin pixel values with a single
Gaussian distribution in the normalized (r,g) feature space, as it has been shown in [15] that such a
model holds well for people of any race. Thus, the parameters of a general skin color model (means and
variances), denoted by m0, are learned using the whole set of Pointing training images in the database.
These parameters are used in the first image of any test sequence, and then adapted through time
using standard a Maximum A Posteriori technique, leading to the parameters mt at time t. The
measurements used at time t for adaptation are computed from the image pixels extracted using the
estimated mean state of the head (see next section), taking into account both the 2D spatial head
localization parameters and the estimated pose, which, through the skin mask, tells which pixels of
the head corresponds to the face part.

The color likelihood of an input patch image at time t with respect to the kth exemplar of a pose
θ is obtained in the following way. Skin pixels are first detected on the 64x64 grid by thresholding
the skin likelihood obtained using the skin color distribution model with parameter mt. The resulting
skin mask is then compared against the model M θ

k , and we defined the likelihood as:

pc(z|k, θ) ∝ exp−λ||zC
t − Mθ

k ||1 (2)

where λ is a hyper parameter learned from training data.

3 Head Pose Tracking

3.1 Mixed State Particle Filter

Particle filtering (PF) implements a recursive Bayesian filter by Monte-Carlo simulations. Let X0:t =
{Xj , j = 0, . . . , t} (resp. z1:t = {zj , j = 1, . . . , t}) represents the sequence of states (resp. of observa-

tions) up to time t. Furthermore, let {X i
0:t, w

i
t}

Ns

i=1 denote a set of weighted samples that characterizes
pX0:t|z0:t the posterior probability density function (pdf), where {X i

0:t, i = 1, . . . , Ns} is a set of sup-
port points with associated weights wi

t. The samples and weights can be chosen using the Sequential
Importance Sampling (SIS) principle [12]. Assuming that the observations {zt} are independent given
the sequence of states, the state sequence X0:t follows a first-order Markov chain model, and that the
prior distribution pX0:t is employed as proposal, we obtain the following recursive update equation
[12] for the weight wi

t ∝ wi
t−1 pzt|X i

t . To avoid sampling degeneracy an additional resampling step is
necessary [12]. The standard PF is given by :

1. Initialization : ∀i, sample X i
0 ∼ pX0; set t = 1

2. IS step: ∀i sample X̃ i
t ∼ pX i

t |X
i
t−1; evaluate w̃i

t.



IDIAP–RR 05-05 5

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pan difference values

pr
ob

ab
ilit

ies
temporal pan difference distribution

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

tilt difference values

pr
ob

ab
ilit

ies

temporal tilt difference distribution

Figure 2: green: histogram of (pan/tilt) differences; blue: fitted GMM to temporal differences

3. Selection: Resample Ns particles {X i
t , w

i
t = 1

Ns
} from the set {X̃ i

t , w̃
i
t}; set t = t + 1; go to step

2.

In order to implement the filter, three elements have to be specified: a state model, a dynamical model
and an observation model.

3.2 State Space

The mixed state particle filter approach [16], allows to represent jointly in the same state variable dis-
crete variables and continuous variables. In our specific case the state X = (S, γ, l) is the conjunction
of the continuous variable S = (x, y, sx, sy) and discrete variable γ, which together parameterize the
2D spatial transform T(S,γ), and of the discrete index l = (θ, k) which labels an element of the set of

head pose models eθ
k. The transform T(S,γ) is defined by:

T(S,γ)u =

(
sx 0
0 sy

)(
cos γ − sin γ

sin γ cos γ

)
u +

(
x

y

)
. (3)

and characterizes the image object configuration. (x, y) specifies the translation, i.e. the position of
the object in the image plane, (sx, sy) denote the width and height scales of the object according
to a reference size, and γ specifies the in-plane rotation angle of the object. The γ parameter was
discretized for convenience, though this not a necessity of the approach.
We need to define what we use as output of the particle filter. The set of particle defines a probability
density function (pdf) over the state space. Thus, we can use as output the expectation value of this
pdf, obtained by standard averaging over the particle set. Note that usually, with mixed-state particle
filters, averaging over discrete variable is not possible (e.g. if a discrete index represents a person
identity). However, in our case, there is no problem since our discrete indexes indeed correspond to
real Euler angles which can be combined to produce an average output.

3.3 Dynamical models

The process density on the state sequence is modeled as a second order process P (Xt|Xt−1, Xt−2).
1

We assume that the three components of the states are conditionally independent, and that a head
pose at a given time t, lt, depends only on the head pose at the previous time lt−1. Then the equation
of the process density is given by:

p(Xt|Xt−1, Xt−2) = p(St|St−1, St−2) × p(lt|lt−1) × p(γt|γt−1, lt−1, lt) (4)

1By letting the state corresponds to the augmented state X?

t
= (Xt, Xt−1), it is easy to show that we end up with

a first order process, as assumed in Section 3.1.
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Let us now describe these three terms.
The dynamic of the continuous variable St is modeled as a second order auto regressive dynamical

model, which includes the prior model on the head eccentricity (see 2.2.1) pr(k,θ)(
sx

sy ). The expression
of this process dynamic is given by:

p(St|St−1, St−2) ∝ N







xt

yt

sx
t

s
y
t


 ,




xt−1 + (xt−1 − xt−2)
yt−1 + (yt−1 − yt−2)

sx
t−1

s
y
t−1


 ,




σ2
x 0 0 0
0 σ2

y 0 0
0 0 σ2

sx 0
0 0 0 σ2

sy





× pr(k,θ)(

sx

sy
)

(5)
where N (u, m, Σ) denotes the density function of a Gaussian with mean m and covariance matrix
Σ evaluated at a point u. The diagonal covariance matrix Σ = diag(σ2

x, σ2
y, σ2

sx , σ2
sy ) encodes the

uncertainty in predicting St knowing St−1 and St−2.
The dynamic of the discrete variable lt is defined by the transition process p(lt|lt−1):

p(lt|lt−1) = p(θt, kt|θt−1, kt−1) = p(kt|θt, kt−1, θt−1)p(θt|θt−1). (6)

where the dynamics p(θt|θt−1) models the transitions between head pose and p(kt|θt, kt−1, θt−1) models
transition between exemplars given the head poses. Transition between poses p(θt|θt−1) is learned
from continuous head pose ground truth. First we assume that for each pose θ = (α, β) the pan
component α and the tilt component β are independent leading to p(θt|θt−1) = p(αt|αt−1)p(βt|βt−1).
Then the temporal pan and tilt differences αt − αt−1 and βt − βt−1 are modeled as two Gaussian
mixture models (GMM) pα and pβ in the continuous space. The parameters are obtained by fitting a
GMM with two mixture components to the temporal differences. Intuitively one mixture component
will model situations when the head remains static, while the other one will account for head pose
variations when a person moves his head. Figure 2 displays the fitted mixtures. These Gaussian
mixture processes are then used to compute the transition matrix between the discrete poses:

p(θt|θt−1) ∝ pα(αt − αt−1)pβ(βt − βt−1) (7)

The probability table p(kt|θt, kt−1, θt−1), which encodes the transition probability between exemplars,
is learned using the training set of faces. We assume that two exemplars of different head poses are
more related when the head images of the same persons were used to build them. Let us denote by
L(θ, k) the set of person’s labels used to build the exemplar k of the head pose θ and |E| the number
of elements of a set E. When θ 6= θ′, the transition between the exemplar k′ of head pose θ′ to the
exemplars k of head pose θ is taken to be

p(k|θ, k′, θ′) =
|L(θ′, k′)

⋂
L(θ, k)|

|L(θ′, k′)|
(8)

and, when θ = θ′,

p(k|θ, k′, θ) =

{
1 − (K − 1)ε if k = k′

ε otherwise
(9)

with ε taken small.
Finally, p(γt|γt−1, lt = (kt, θt)), the dynamic of the in plane rotation variable, is also learned using

the sequences in the training dataset, and comprises a Gaussian prior on the head roll pΘ(γt). More
specifically, the pan tilt space is divided into nine regions Θi, i = 1, ..., 9, with pan and tilt ranging
from -90 to 90 with a step of 60 degrees. Inside each region Θi, a Gaussian distribution pγ,i is fitted
to the roll temporal differences γt − γt−1 of the training data of head pose with pan tilt in Θi. Also
a prior distribution on the roll values pΘi

(γ) is learned by fitting a Gaussian distribution to the roll
values of head pose with pan-tilt values in Θi. If we define Φ : θ → i to be the mapping between the
pan-tilt space to the indexes of the 9 regions, the roll transition is defined as

p(γt|γt−1, lt = (kt, θt)) ∝ pγ,Φ(θt)(γt − γt−1)pΘΦ(θt)
(γt) (10)

Hence, the variable lt acts on the roll dynamic like a switching variable, and this also holds for the
prior on the roll value.
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Figure 3: Histograms of pan (left) tilt (center) and roll(right) of the test data values in the Pointing
Representation

3.4 observation models

The observation likelihood p(z|X) is defined as follows :

p(z|X = (S, γ, l) ) = pT (zT (S, γ)|l)pc(z
C(S, γ)|l), (11)

where the observations z are composed of texture and color observations (zT , zC), and we have assumed
that these observations where conditionally independent given the state. The texture likelihood pT

and the color likelihood pc have been defined in Section 2.
The computation of the observations is done as follows. First the image patch associated with the
image spatial configuration of the state space, (S, γ), is cropped from the image according to C(S, γ) =
{T(S,γ)u, u ∈ C}, where C corresponds to the set of 64x64 locations defined in a reference frame. Then,
the texture and color observations are computed using the procedure described in sections 2.2.1 and
2.2.2.

4 HEAD POSE TRACKING EVALUATION

4.1 Dataset and Protocol Evaluation

We built a head pose video database of people in real situation with their head poses continuously
annotated using a device called flock of bird, a magnetic field 3D location and orientation tracker.
The device was well camouflaged behind people’s ear. After calibration of the sensor frame with the
camera frame, we can for each image output the person’s head pose.

With this system, we recorded two databases, one in an office environment (not used here) and one
in a meeting environment. In the later case, 8 meetings were recorded and each lasted approximatively
8 minutes. In each meeting, two out of four persons had their head poses continuously annotated.
The scenario of the meeting was to discuss statements displayed on the projection screen. There were
no restrictions on head motions or on head poses. As a result, we obtained a meeting video database
of 16 different annotated people.

The tracking evaluation protocol is the following. For our experiments we use half of the persons
of the meeting database as train set to train pose dynamic model and the half remaining persons as
test set to evaluate the tracking algorithms. In each one of the recording of the 8 persons of the test
set, we selected 1 minute of recording (1500 video frames) for evaluation data. We decided to use
only one minute to save machine computation time, as we use a quite slow matlab implementation of
our algorithms. Figure 3 shows the distribution of the pan, tilt and roll values on the evaluation data
in the PIE representation. Because of the scenario used to record data, people have more frequently
negative pan values corresponding to them looking at the projection screen located at the right of
them (cf Fig. 4). The majority of pan values ranges from -60 to 60 degree. Tilt values range from -60
to 15 degrees and roll value from -30 to 30 degrees.

In this paragraph, we define the head pose estimation error measures used to evaluate tracking
performances. A head pose defines a vector in the 3D space, the vector indicating where the head
is pointing at. It can be thought of as a vector based on the center of the head and passing trough
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pose vector error pan errors tilt errors roll errors

M1 (texture) 28.1 16.2 22.4 15.1

M1 (texture+color) 28.4 16.6 27.2 13.9

M2 (texture) 32.6 19.0 26.4 16.1

M2 (texture+color) 32.7 19.9 26.2 14.6

Table 1: mean of pose vector, pan, tilt and roll errors for tracking then pose estimation methods (M1
and M2) with texture likelihood or texture+color likelihood for pose estimation

mean std median

M1 28.15 14.6 25.2

M2 32.6 17.7 29.2

M3 23.4 16.6 19.2

M4 21.3 15.2 14.1

Table 2: Mean, standard deviation and median of head pointing vector errors over evaluation data

the nose. It is worth noticing that in the Pointing representation, this vector depends only on the
head pan and tilt angles. The angle between the 3D pointing vector defined by the head pose ground
truth (GT) and the head pose estimated by the tracker can be used as the first pose estimation
error measure. This measure of error will be well suited for studies on the focus of attention, where
the main concern is to know where the head/person is looking at. However, it gives no information
about the roll estimation error. In order to have more details about the origins of the errors we will
also measure the individual errors made separately on the pan, tilt and roll angles measured in the
Pointing representation. For each one of the four error measures, we will compute the mean, standard
deviation, and median value of the absolute value of the errors. We used the median value because it
is less sensitive to extremal values than the mean. Thus, the median value will be less biased by short
time period pose estimation errors due to bad head localization. Before describing the experimental
results, let us remind that all the error measures are computed in the Pointing representation.

4.2 Experimental Results

Experiments were conducted to compare two classes of trackers. The first class track the head then
estimates the pose. In this class we used two methods, an histogram and correlation tracker (M1)
[17] and an histogram, correlation and shape tracker (M2) [17]. The principle of estimating the pose
with these two methods is the following. At each time t the tracker outputs the head center location
and size Ŝt = (x̂t, ŷt, ŝ

x
t , ŝ

y
t ). Then, for all the discrete roll values γi, the image patch corresponding

to the spatial configuration (Ŝt, γi) is extracted and the texture features zt(Ŝt, γ) computed. Finally,

the head pose (θ̂t, γ̂t) is estimated by a MAP principle (θ̂t, γ̂t) = argmaxθ,γp(zt(Ŝt, γ)|θ) with:

p(zt(Ŝt, γ)|θ) =

K∑

k=1

πθ
kpT (zt(Ŝt, γ)|θ, k) (12)

where πθ
k is proportional to the number of images used to build exemplar k. Equation 12 corresponds

to modeling a head pose θ as a GMM with it’s corresponding exemplars as mixture centers and πθ
k

as mixture weights. The likelihood model for tracking then head pose estimation in Equation 12
does not include the color likelihood part of Equation 11. Indeed, experiments we have conducted
using a joint texture and color likelihood gave similar results (see Table 1) . Color is helpful when
searching for a good head localization, but given the head localization head texture is sufficient for
pose determination.
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pan tilt roll
mean std med mean std med mean std med

M1 16.2 13.6 13.1 22.4 15.0 19.1 15.1 12.0 12.5

M2 19.0 17.4 14.2 26.4 17.5 21.5 16.1 12.7 13.4

M3 13.6 14.9 8.3 17.6 13.8 12.8 11.5 10.3 12.9

M4 8.7 9.1 6.2 19.1 15.41 14.0 9.7 7.1 8.6

Table 3: pan, tilt and roll errors statistics over evaluation data (Pointing representation)

The second set of algorithms jointly track head and estimate pose. Two methods were also used in
this class. Both methods follow the framework described in Section 3 of this paper. The first tracker
(M3) rely on head texture likelihood models only (i.e only pT (.) of Equation 1 is used in Equation 11)
while the second (M4) exploits both texture and color likelihood models.

We ran the four trackers on the test data . Table 2 reports the head pointing vector errors of the
four methods over the whole set of evaluation data. The mean and the median errors are smaller for
methods M3 and M4. As illustrated in Figure 4, this is due to a better head localization obtained by
the methods performing jointly tracking and head pose estimation. Furthermore M4 is surpassing M3
because of the use of the multiple visual cues. More precisely, the Texture cue is very accurate for
head pose estimation but is very sensitive to localization accuracy: the texture likelihood function is
very peaky. Moreover the texture cue is sometimes distracted by the heavy cluttered background (see
Figure 4). The color cue is complementary to the texture cue because it’s likelihood is smoother and
help in removing most of the ambiguities. According to the head pointing error measure the ranking
of the methods from best to worst is M4, M3, M1, and M2.

Table 3 provides the pan, tilt and roll error measures. As for the head pointing errors, the mean
and the median of the errors are smaller for methods performing jointly tracking and pose estimation
(M3 and M4). The results of Table 3 are showing also that for all the methods, the head pan and
head roll estimation are more accurate than the head tilt estimation. This is due to the fact that head
tilt estimation is more sensitive to head head localization than head pan estimation, as also reported
in [2]. To have more details about the performances of (M4), we computed the mean of the pan tilt
and roll error values depending on whether the absolute value of the pan component of the head pose
ground truth is lower or higher than 45 degrees. In our test data, the head poses which have a pan
value between -45 and 45 degrees represent 79% of the data. The errors are displayed in Table 4.
For comparison purposes, this table displays also the results reported in [4] (Wu 01 ) for a similar
experiment. More precisely, the authors used 10 persons to train head models, and used these models
to perform head tracking and estimation of a person who was not part of the training set. For this
experiment they reported the mean of pan and tilt errors in the Pointing representation. From the
results of our tracker (M4) we can conclude that pan estimation is more reliable when the pan value
is in the interval [−45, 45]. According to the results, our method M4 is performing much better than
Wu 01 for pan estimation. For head tilt estimation Wu 01 performs better when pan values are within
[−45, 45]. A possible explanation is that we have more head tilt variations in our test data. In our
test data, the tilt angle are varying from -60 to 15 degrees (see Figure 3). Also for near frontal head
pose , head appearances are very similar for different tilt values and are person dependent. When pan
values are out of the range [−45, 45] their is a noticeable increase of performance of our method M4
for head tilt estimation and it performs better than Wu 01.

Finally, results on individual people are displayed in Figure 5. The results of this figure show that
for all the persons, method M4 estimates the pan and roll with lower errors. Additionnaly they show
that there are substantial performance variations across people. This is in good part due to presence
or not of a similar looking head in the training set. (e.g. person 5).
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abs(pan of GT)≤ 45 45 < abs(pan of GT)≤ 90
pan tilt roll pan tilt roll

M4 7.6 20.86 8.05 13.5 11.6 17.1

Wu 01 19.2 12.0 × 33.6 16.3 ×

Table 4: mean of pan, tilt and roll errors for abs(pan of GT)≤ 45 and 45 < abs(pan of GT)≤ 90
(Pointing representation)

Figure 4: Head localization results for M2 (top row) and M4 (bottom row); left column: frame 571;
right column: frame 661

5 Conclusion

In this paper, we described a probabilistic setting for joint head tracking and pose estimation with
multiple visual cues. This algorithm was compared to three other algorithms on a set of 8 one minute
long annotated real data sequences with a defined protocol of evaluation. The experimental results
show that our method outperforms the others for two main reasons. Firstly, the method performs
the tracking and pose estimation tasks jointly. Secondly, the use of multiple cues improves head
localization.
The test data are part of a larger database which comprises more than two hours of annotated data.
This database will be made public, as well as the protocol we followed. We hope that, as people have
been working on head pose tracking for many years, such a database will be helpful in allowing for
better algorithm evaluation and performance comparison.
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