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Abstract— In this paper we investigate the use of a temporal or to aid analysis of the signal. In contrast to our approach
extension of Independent Component Analysis (ICA) for the pelow, they do not use ICA itself to directly form a classifier
dlsqnmmatlon of three mental tasks for as_ynchronous EEGbased In [8], the authors analyze a visual attention task and show
Brain Computer_Inter_face_s_yst_ems. ICA is most commonly used that ICA finds - ts which sh tral fivit
with EEG for artifact identification with little work on the u se of a Indsy-components which snow a spectral reactivity
ICA for direct discrimination of different types of EEG sign als. In {0 motor events stronger than the one measured from scalp
a recent work we have shown that, by viewing ICA as a generatey  channels. They suggest that ICA can be used for optimizing
model, we can use Bayes’ rule to form a classifier obtaining ate-  prain-actuated control. In [3] ICA is used for analyzing EEG
of-the-art results when compared to more traditional methals data recorded from subjects which attempt to regulate pawer

based on using temporal features as inputs to off-the-shelf . .
classifiers. However, in that model no assumption on the tengpal 12 Hz over the left-right central scalp. Other studies us& IC

nature of the independent components was made. In this work &S @ denoising technique or as a feature extractor for inipgov
we model the hidden components with an autoregressive prosge the performance of a separate classifier. For example, in [4]

in order to investigate whether temporal information can bring |CA is used to remove ocular artefacts, while [5] extracts
any advantage in terms of discrimination of spontaneous meal 5ok _related independent components prior the applicaifo
tasks. several classifiers. In contrast to these approaches, Jrtlj&0
authors introduce a combination of Hidden Markov Models
l. INTRODUCTION and Independent Component Analysis as a generative model
) of the EEG data and give a demonstration of how this model
EEG-based Brain Computer Interface (BCI) systems allow@n pe applied directly to the detection of when switching
person to control devices by using observed electricaViagti occyrs between the two mental conditions of baseline agtivi
v}, at timet, recorded by electrodes placed over the scalpq imaginary movement.
at locationsj = 1,...,V. In the case of systems based on Following a similar approach, in a recent work [2] we
spontaneous brain activity, the user concentrates onrelifte jave ysed directly a simple static ICA generative model of
mental tasks (e.g. imagination of hand movement) which a8 sjgnals as a classifier for the recognition of three nienta
associated with different device commands. Tasks are fifyrmaasks. We have shown that a performance similar to standard
selected so that task-dependent areas in the brain becodﬁﬁroaches based on using temporal features as inputs-to off
active. The most prominent characterization of activityhe  the_shelf classifiers can be obtained. It is still an operstioe
attenuation of rhythmic components, mostly in theband. \yhether we can do better by using a more complex model of
Standard approaches extract the frequency content of {ig gata, since in [2] the temporal nature of the independent
signal, which is then processed by a static classifier (S2f [komponents was not taken into account. Temporal modeling
for a general introduction on BCI research). of the hidden components, for example with autoregressive
Signals recorded at scalp electrodes are commonly consighdels [9], has shown to improve separation in the case of
ered as a linear and instantaneous{ superposition of un@useriher types of recordings.
or hiddep electromagnetic activity; generated by indepen- | this paper we further investigate the use of ICA for
dent brain processes,= 1,..., H. For these reasons Inde-|gssification by modeling each hidden component with an
pendent Component Analysis (ICA) [6] seems an approprigigitoregressive process. Our interest is to asses perfoenian
model of EEG signals and has been extensively applied deperiments which are close to the real use of a BCI system.
related tasks, such as the identification of artifacts [1]) Rather than using a synchronous protocol, in our system the
and the analysis of the underlying brain sources. subject performs repetitive movements and word generation
More specifically related to BCI research, several StUdi%%elf-paced manner, without being synchronized to aneater
have addressed the issue of whether an ICA decomposition ggg.
enhance differences in the mental tasks such as to impreve &\ approach is to fit, for each person, an ICA generative
performance of brain-actuated systems. Most of theseestudihode| to each separate task, and then use Bayes’ rule to
use static versions of ICA either as a form of preprocessingrm directly a classifier. This model will be compared with
_ _ its static special case, where no temporal information is
b This work was supported by the Swiss N?F thro_ugh the NCCR Ih2 % taken into account, and with two standard techniques for the
y the PASCAL Network of Excellence, IST-20002-506778,ded in part )
by the Swiss OFES. recognition of mental tasks: the Multilayer Perceptron VL



Fig. 2. Generalized exponential distribution far= 2 (solid line),« = 1
(dashed line) andx = 100 (dotted line), which correspond to Gaussian,
Laplacian and approximately uniform distributions respety.

Fig. 1. Graphical representation of an ICA model with tenapdiependence
between the hidden variables (of order 1).
( der=1) Whereht = W,_lvt.
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We will model p(h}|h;_,.; ,,c) with the generalized expo-

and Support Vector Machine (SVM) [1], trained with powepemial distribution:
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Generative Independent Component Analysis is a proba- . ] . )
bilistic model in which a vector of observationsis assumed and_F(-) is the Gamma function. The generall_zed exporyenﬂal
to be generated by statistically independent (hidden)oand family encompasses many types of symmetric and unimodal

« determines the sharpness of the distribution, as showrgin Fi
Uy = Wht -+ €¢, 2

The logarithm of the likelihood (2) is summed over all traigi
wheree; is noise. For reasons of tractability, in our modedequences belonging to each class and then maximized by
(and others in the literature) will be assumed to be zerousing the scaled conjugate gradient method described in [1]
throughout, andV" will be assumed to be a square matrix. This requires computing the derivatives with respect tatal

Like in Contextual ICA [9] and HMMICA [10], we as- parameters, that is, the mixing matriX., the autoregressive
sume temporal dependence between the hidden varidblegoefficientsa;, and the parameters of the exponential distri-
by modeling thei’® hidden brain procesa: with a linear bution o anda’® (see APPENDIX).
autoregressive model of order After training, a novel test sequeneg. . is classified using
v Bayes’ rulep(c|vi.) « p(vi.p|c), assumingp(c) is uniform.
hi 1; @ichi g 1 = P 0 I1l. EXPERIMENTAL SETUP

o ) . ) EEG potentials were recorded with the Biosemi ActiveTwo
wherer; is the noise term. Graphically, the Bayesian networksiem (http:/www.biosemi.com), using 32 electrodested
which corresponds to this model is shown in Frg. at standard positions of the 10-20 International Systena at
Our aim will be to fit a model of the above form to each clasg;mpje rate of 512 Hz. The raw potentials were re-referenced
of taskc. In order to do this, we will describe the model as g, the common Average Reference in which the overall mean
joint probability distribution, and use maximum likelin®@s s yemoved from each channel. Subsequently, the band 6-16 Hz
the training criterion. . , _ was selected with a Butterworth filter. This preprocessitgyfi
Given the above assumptions, we can factorize the density,0f simple way to remove strong drift terms in the signale (th
the observed and hidden variables as fofiow so-called DC level) and the 50 Hz noise, which are artifacts
T H of instrumentation and do not correspond to brain activity.
prr, haerle) = [ p(vilhe, o) [ p(hilhi_14—prc). (1)  Experimentally, we also found that removing frequencies
t=1 i=1 outside the band 6-16 Hz robustified the performance. Only
the following 19 electrodes were considered for the angalysi
F3, FC1, FC5, T7, C3, CP1, CP5, P3, Pz, P4, CP6, Cp2, C4,
T8, FC6, FC2, F4, Fz and Cz.
The data were acquired in an unshielded room from two
healthy subjects without any previous experience with BCI

Usingp(vt|ht) = 6(v—Wh,) we can easily integrate (1) over
the hidden variables; to form the likelihood of the observed
sequencey.r:

T H
pirle) = [det W | T [T p(hilbi_1s—pi0). ()

el 2Due to the indeterminacy of variance of thé (h? can be multiplied by

a scaling termu as long as the corresponding columnlt. is multiplied by
1/a), o could be set to one in the general model described above. \owe
1This is a slight abuse for reasons of notational simplicitge model is this cannot be done in the constrained versidh = W considered in the

only defined fort > p. This is true for all subsequent dependent formulae. experiments (see Sec. IlI).



. - . TABLE |
systems. During an initial day the subjects learned how to
CLASSIFICATIONS ERRORS FOR THREE MENTAL TASKS USINSTATIC

perforr.n the mental .taSkS' In the f.O”OWIng two day§, 1O|CA, TEMPORALICA, MLP AND SVM. W, USES A SEPARATE MATRIX
recordings, each lasting around 4 minutes, were acquined fo

. . . . FOR EACH CLASS AS OPPOSED TO A COMMON MATRIXIV .
the analysis. During each recording session, every 20 sscon _ _
an operator instructed the subject to perform one of three Da%bje%g,3 Dafuzbje%g,3
different mental tasks. The tasks were: (1) imaginatioretff s S.ICAW | 40.0% | 34.8% | 28.5% | 31.5%
paced left, (2) right hand movement and (3) mental generatio T.ICAW | 40.2% | 36.7% | 27.8% | 30.8%

f wor rting with iven | I S.ICAW,. | 37.1% | 36.0% | 25.6% | 30.8%
of words starting with a given lette T.ICA W, | 38.8% | 36.2% | 27.1% | 28.2%

MLP 37.1% | 38.1% | 30.5% | 34.2%
SVM 35.1% | 38.1% | 32.4% | 36.6%

IV. RESULTS

The time series obtained from each recording session was
split into segments of signal lasting one second. ICA was
compared with two standard approaches, in which for eaphh;), while in the Temporal ICA model they were selected
segment the power spectral density was extracted and then ity looking at the conditional distributiop(hj|h;_,., ,) for
cessed using an MLP and a SVM. The best performance whe orderp that gave the best performance in the test set.
obtained using the following Welch’s periodogram method:he projection of each component on the 19 scalp electrodes
each pattern was divided into a quarter of second long wii*" column of W) gives an indication of which part of the
dows with an overlap of 1/8 of second. Then the overaicalp received more activity from that component. The scalp
average was computed. projections and time courses (300 frames of the word task) of
The first three sessions of each day were used for trainiit¢ selected hidden components are shown in Fig. 3. As we can
the models while the other two sessions where used alterf@€ from the projections, there is a correspondence between
tively for validation and testing. the static components (s1, s2, s3) and temporal components
A softmax, one hidden layer MLP was trained using cros§tl, t2, t3). The time courses are also very similar. In gaher
entropy, with the validation set used to choose the numberW¢ have found a high correspondence among almost all the
iterations, the number ofanh hidden units (ranging from 1 19 components of the Static and Temporal ICA model. The
to 100) and the learning rate of the gradient ascent methogomponents for which a correspondence was not found don't
In the SVM, each class was trained against the others, a#tpw differences in the autoregressive coefficients antien t
the standard deviation for the Gaussian SVM found using teenditional distribution, thus are not relevant for distna-
validation set (ranging from 1 to 20000). tion. Finally note that the hidden components found by the
In the ICA model, for computational expediency only, theadatfemporal ICA don't look smoother as we would expect.
were down-sampled from 512 to 64 samples per second. The
validation set was used to choose the number of conjugate
gradient iterations and the ordeiof the autoregressive model V. CONCLUSIONS
(from 1 to 8), even if we have observed that the appropriate
order does not change for different sessions. Since we assumin this work we have presented a preliminary analysis
that the scalp signal is generated by linear mixing of saircen the use of a simple temporal Independent Component
in the cortex, provided the data are acquired under the safwalysis model for the discrimination of three mental tasks
conditions, it would seem reasonable to further assume tfi@t asynchronous EEG-based BCI systems. Unlike standard
the mixing is the same for all classe®/’{ = W) and this static ICA, which assumes temporal independence of the
constrained version is also considered. hidden components, we have modeled each component
A comparison of the performance is shown in Table Wwith an autoregressive process. While this approach has
Besides the results obtained with the Temporal ICA modegen successfully applied to the separation of sources not
(T. ICA), in which the independent components are model#¢ell separable using static ICA, it does not seem to bring
by an autoregressive process, we present the results etta@dditional discriminant information when ICA is used as a
with a Static ICA model (S. ICA), which can be seen as @enerative model for direct classification. The reason may
particular case in which the autoregressive orgés set to be that a simple linear model is not suitable for our EEG
zero. Classification is measured on around 420 test exampléfa, due to strong non-stationarity in the hidden dynamics
ICA consistently performs as well as the temporal featutemay be more appropriate to use a switching model which
approach using MLP and SVMs. However, by modeling thean handle changes of regime in the EEG dynamics.
independent components with an autoregressive process we
don’t obtain improvements in discrimination with respeat t
the static case.
For Subject A, we used the third day's data to select ACKNOWLEDGMENT
the three hidden components whose distribution varied most
across the three classes, using the ICA model with a matrixThe authors would like to acknowledge Dr. S. Bengio and
W common to all classes. In the Static ICA model, th€. Dimitrakakis for useful discussions.
three components were selected by looking at the distabuti
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Fig. 3. Projection on the scalp of three hidden componentsSiabject

A, Day 3 using Static ICA (Comp. s1, Comp. s2, Comp. s3) and pteal
ICA (Comp. t1, Comp. t2, Comp. t3) (From blue to red, negativeositive
values). The topographic plots have been obtained by ioleipg the
values at the electrode (black dots) using the open sourgkked¢oolbox
(http://lwww.scen.ucsd.edu/eeglab). Below the projedtiadtime courses (300
frames) of the corresponding hidden components. Due toritieterminacy
of variance of the hidden components, axes scale betwetsretif figures
cannot be compared and has been removed. This also applies &bsolute
scalp projection.

APPENDIX

Here we write the normalized log-likelihood of a set of

Se
1
L(c) = ST Zlogp vp+1 T|h1p,c)
¢ s=1

where s indicates thes'" training pattern of class. We write
p(vpi1.7|hip, ), rather than the notational abugévy.r|c) in the
main text, since this takes care of the initial time stepsobvhvi/ould
otherwise be problematic. In the followingy{ = W, 'vf, for
t=1,...,T. We want to maximizeL. = > _L(c). Dropping the
pattern indexs, the component indekand the class indexwe have:

1
L S e

s=1t=p+1

or _
do

that is the maximum likelihood solution is:

ZZlht i)

s=1t=p+1

o= ( S
Using this solution we obtain:

oL _ 1 il“(l/a)’ +L1 (azle Z?:p+1|ht_ﬁi
9o~ o aZT(lja) a2 *® S(T —p)
_ Ef:l Zz:p+1 |ht - }Alt|a log |hz — iltl

S T =
oy Et:p+l |he — e

)

«

SettingA = WL

aL 5 &
94~ ST —p Z Z bvr + Z 2. B
s=1t=p+1 sflt7p+1
+ (A/)—l ,
whereb; is a vector of elements
bi = —9(_0‘a)i a'sign(hi — hi)|hi — hi|® !
(o)

and B, is a matrix of rows

Bi— g(ai)

Zra'sign(h; — hi)|hi —

. P
: hil* Y aivi
(o) Pt

Finally, the derivative with respect to the autoregressigefficient
ag is:

oL g( .
= ST — Vo) he — he)lhe — R h
Oar,  S(T —p)(o)~ a;ﬁ;f'gn( ¢ — he)lhe — B =k -
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