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ABSTRACT

In this paper, we present initial investigations towardsgtimg pos-
terior probability based speech recognition systems biynating
more informative posteriors taking into account acoustiatext
(e.g., the whole utterance), as well as possible prior métion
(such as phonetic and lexical knowledge). These posteaierssti-
mated based on HMM state posterior probability definitigpigtally
used in standard HMMs training). This approach providesva ne
principled, theoretical framework for hierarchical estiion/use of
more informative posteriors integrating appropriate eaténd prior
knowledge. In the present work, we used the resulting piosser

terms of HMM topological constraints. This approach pregc
new, principled, theoretical framework for hierarchicatimation,
integration and use of more informative posteriors, from filame
level up to the phone and word levels. They investigated the e
timation and usage of these posteriors as features for aasthn
HMM/GMM layer. Such an approach was shown to yield significan
performance improvement over Tandem approach on Numigers’9
and on a reduced vocabulary version of the DARPA Convernsaltio
Telephone Speech-to-text (CTS) task. i, these new posteriors
were used as local scores for decoding and the resultingraysts
favorably compared with a standard HMM/GMM system.

as local scores for decoding. On the OGI numbers databaise, th

resulted in significant performance improvement, compaoeds-
ing MLP estimated posteriors for decoding (hybrid HMM/ANK-a
proach) for clean and more specially for noisy speech. Thiegayis
also shown to be much less sensitive to tuning factors (ssiphane
deletion penalty, language model scaling) compared totdrelard
HMM/ANN and HMM/GMM systems, thus practically it does not
need to be tuned to achieve the best possible performance.

1. INTRODUCTION

Posterior probabilities have been mainly used either ea kxores
(measures) or as features in speech recognition systembridHy
Hidden Markov Model / Artificial Neural Network (HMM/ANN)

In the present paper, we continue investigating the estimat
and use of these more informative posteriors as scores ¢odie.
However, compared to the previous woff,[here we compare the
new posteriors with MLP estimated posteriors, and explomneesad-
ditional new aspects of the system such as sensitivity amilisy to
tuning, as well as the behavior and more efficiency of the otkth
when there is a lack of clear acoustic information (noisyespg.
In our system, the new more informative posteriors are eséth
from MLP estimated posteriors by introducing prior and ectal
knowledge. We then use these more informative posteriordde
coding. Therefore, comparing with hybrid HMM/ANN approach
which uses MLP estimated posteriors for decoding, we use imer

approaches?] were among the first ones to use posterior probabil-formative posteriors for decoding. We have shown that tipeste-

ities as local scores. In these approaches, ANNs (and merifisp
cally Multi-Layer Perceptrons, MLPs) are used to estimiagegmis-
sion probabilities required in HMM systems. Hybrid HMM/ANN
method allows for discriminant training, as well as the flaty of
using small acoustic context by presenting a few numberashés
at MLP input. Posterior probabilities have also been useldca
scores for word lattice rescorin@][ beam search pruning] and
confidence measures estimatic®). [ Regarding the use of poste-
rior probabilities as features, the most successful agbrégTan-

riors perform significantly better than MLP estimated prsts for
decoding (hybrid HMM/ANN approach) for clean and noisy spee
We also show that the relative improvement is higher for nmmigy
speech. Since some acoustic information are lost in nosgdp the
role of integrating prior knowledge in getting more inforiia pos-
teriors is more evident. It confirms that integration of pfoowl-
edge can compensate the lack of clear acoustic informafidre
resulting system is also much less sensitive to tuning faduch
as phone deletion penalty, language model scaling), whighusu-

dem []. In Tandem, MLP estimated posteriors are used as inpuélly required in standard HMM/ANN or HMM/GMM systems for
features for a standard HMM/GMM configuration. Tandem takesnumerical compensation during decoding. Therefore, jmalbt it

the advantage of discriminative acoustic model trainirggywall as
being able to use the techniques developed for standard H}M s
tems.

does not need to be tuned to reach the best possible perfceman

In both hybrid HMM/ANN and Tandem approaches, posteriors

are estimated based only on the information in local frama lon-
ited number of local frames. I?[ 7], a method was presented to
estimate more informative posteriors based on HMM statéepios
probability definition (usually used in HMMs training) totesate
posteriors taking into account all acoustic informatiomikable in
each utterance, as well as prior knowledge, possibly feated!in

In the present paper, Secti@f shows how posterior probabili-
ties can be estimated to capture the whole context and pmimwlk
edge. Sectior?? explains decoding and the complete recognition
system using these posteriors. Experiments and resulpsesented
in Section??. Conclusions and future work plans are discussed in
Section??.



2. INTEGRATING PRIOR AND CONTEXTUAL
INFORMATION IN POSTERIOR ESTIMATION

In this section, we study how more informative posteriorns loa es-
timated by integrating possible prior knowledge, as wekhesustic
context information (e.g., using the whole utterance). Basic idea

between phones, thus a phone gamma is estimated by additlg up a
state gammas associated with the phone in the whole model.
Although in this paper we only study phone level posteriors,
this posterior estimation/integration approach provialékeoretical
framework for hierarchical estimation, integration ane o$ poste-
riors, from the frame level up to the phone and word levels.rdVo

as studied in?}, ?, 7] is to estimate posteriors based on HMM state gammas can be estimated basically in the same way as stateagam

posterior probability definition (as usually used in HMMaitting).
According to the standard HMM formalism, this posterior éided
as the probability of being in staieat timet, given the whole obser-
vation sequence ;.7 and modelM encoding specific prior knowl-
edge (topological/temporal constraints):
v(i,t[M) = p(g;|@1.r, M) @

where,z, is a feature vector at timg z1.7 = {z1,...,zr}isan
acoustic observation sequengejs the HMM state at time, which
value can range from 1 &, (total number of HMM states), ang
shows the eventg; = i". In the following, we will drop theM,
keeping in mind that all recursions are processed througtegwior
(Markov) modelM. We call~(i,t) as “state gamma posterior” or
simply “state gamma”.

The state gammag(i, t) can be estimated by using forwasd
and backward3 recursions (as referred to in HMM formalisn] [
using local emission likelihoods(z:|q}) (€.9., modeled by GMMs):

p(x14,q1)
p(elgd) Y p(ailagl_1)a(i t — 1)
7

a(i,t)

@)

p(zes1rlal)
Zp(xm|q§+1)10(q{+1|q§)5(j,t+ 1) (3)
J

B(i,1)

thus yielding the estimate @f(¢;|z1.7):

(i, t)B(i, t)
Z]’ O[(], T)
Similar recursions, also yielding “state gammas”, can heslde

oped for local posterior based systems such as hybrid HMNNAN
systems using MLPs to estimate HMM emission probabilitids [

v(i, t) = p(gt|wrr) = 4)

are integrated into phone gammas. The ultimate goal is td bui
hierarchical processing system, in which each layer erésatie es-
timation of posteriors coming from the previous layer byaniucing
appropriate prior knowledge, context or even auxiliarpiniation.

The HMM layer used for gamma posterior estimation can have
different topologies, thus encoding different types obpiknowl-
edge. As the simplest case, we can model each phone with a mini
mum number of states and connect phone models with ergodic un
form transition probabilities. In this case, only the prkoowledge
about minimum duration of phones is introduced in the pastes-
timation. We can do one more step and use real estimated phone
transitions instead of ergodic transitions between phoodets. In
this case, we can also introduce some phonetic prior kn@eledi-
nally, we can have a fully constrained model composed of ecteal
word models made by phone models, and each phone modeled by
a minimum number of states. The parameters of this modelsare e
timated from the training set. This topology can integratergetic
and lexical knowledge in the posterior estimation.

3. DECODING AND RECOGNITION

Decoding is performed by a Viterbi decoder (NOWAY decoddy [
using phone gammas as local scores. For each phone, 3 setes a
reserved in the decoder structure. Phone models belongiegdch
word are connected to make words. Words are also connecsed ba
on the language model. The local scores in the decoder arepho
gammas and the transition penalties between states aze stane

or word transition probabilities.

The whole recognition system is composed of three layershwhi
are shown in Figur@?. The first layer is an MLP or GMM layer
which estimates initial evidences for phones in the formastpriors
or likelihoods. The second Layer is a HMM layer which inteégsa
prior and contextual knowledge by using the initial evideshin for-
ward and backward HMM recursions (E2f, ??) to get the estimate

The estimated state gammas can then be used to estimate phafegamma state posteriors (EG?). These state gamma posteriors

posteriors or higher level posteriors. We call these phastepiors

are integrated into phone gammas using BYjthen they are used as

as “phone gammas¥,(i,t), which can be expressed in terms of local scores in the last layer which is a decoding layer. €phally,

state gammas(i, t) as follows:

Nq
Wi t) = pilzir) =Y ppi, aflenr) ®)
=1
Nq
= > plpilgl, zrr)p(al|rr) (6)
Jj=1
Nq
= > plpilgl, z10)70t) @
=1

wherep; is a phone at time andp! represents the evenp; = i".
Probability p(pi|ql, z1.7) represents the probability of being in a
given phone at timet knowing to be in the statgat timet. If there

is no parameter sharing between phones, this is deteriniaist
equal to 1 or 0. Otherwise, this can be estimated from thaeitgi

the second layer gets phone initial evidences as input aiscaaca
corrective filter by introducing some context and prior kiexge.
The prior knowledge has been encoded in the topology of HMM in
this layer. The corrective filter suppresses the effect adesces
not matching with prior knowledge or contextual informati@and
magnifies the effect of evidences matching them. The outjthi®
corrective filter is more informative evidences in the forhposteri-
ors. The decoder makes decision about the word sequenaz drase
this more informative posteriors.

4. EXPERIMENTSAND RESULTS

In this section, we compare the gamma posteriors with MLRepos
riors (for clean and noisy speech) to investigate the rolatefyrat-
ing prior and contextual information in estimating moreoimhative
posteriors. We also compare and discuss the sensitivityawinga
posterior based system and MLP posterior based system it@tun

data. In this work, we assume that there is no parameternghari factors (e.g. phone deletion penalty, scaling of the lagguaodel).
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Fig. 1. The whole recognition system. First, initial phone evidenare estimated using GMMs or MLPs, then these evidencassatkto
estimate gamma state posteriors through a HMM, which are thiegrated into phone gammas. Finally, phone gammas ard as local

scores for decoding.

We did two sets of experiments to investigate different etpe
of our gamma posterior based system. In the first set of expeits,
we compare our system with the state-of-the-art hybrid HMNIN

method in which MLP estimated posteriors are used as scores f

decoding. The configuration of our system is the same asiergla

in Section??. In this system, the MLP estimated initial posteriors
are used in HMM forward and backward recursions to get gamma

state posteriors. These more informative posteriors @ tised as
scores, instead of MLP estimated posteriors for decodinigerd-
fore, the difference between our system and the hybrid HMWYA
system is in the posteriors used for decoding. The formes nE@e
informative posteriors estimated from MLP posteriors kggnating
prior and contextual knowledge, while the latter uses diyedLP
estimated posteriors for decoding. For the experimentsigpaper,
we used a fully constrained model (as explained in Se@®o get
estimates of gamma posteriors. This means we integratealeand
phonetic knowledge in the posterior estimation. The decettac-

ture was explained in Secti@? and it is the same for both systems.

Table 1. Comparing word recognition performance (in %) after de-
coding, for MLP estimated posteriors and gamma posteriors

Noise MLP Gamma Relative

level posterior | posterior | improvement
Clean | 86.6(90.0) 90.8 4.8
SNR 12 | 79.0(82.3) 84.5 7.0
SNR 6 | 65.5(70.4) 74.1 13.0
SNRO | 42.8(49.1) 52.7 23.0

The second set of experiments compares the sensitivityeof th
two mentioned systems to tuning factors (e.g. phone delegoalty).
Phone deletion penalty (or word deletion penalty which cofnem
the same idea) is a tuning factor and an engineering trickhvisi
used for numerical compensation of scores for differenipalur-

We used OGI Numbers'95 database for connected word recodtd decoding P]. It can significantly affect the recognition perfor-
nition task P]. The training set contains 3330 utterances spokerinance of standard HMM/ANN and HMM/GMM systefnsn order

by different speakers. The test set contains 2250 uttesaf@&38

to compare the sensitivity of the systems, we vary the phete-d

words). The vocabulary consists of 31 words with a single- pro tion penalty value in the decoder and observe the changerfufrpe

nunciation for each word. There are 27 context-indepenpleahes
(monophones). The acoustic vector is the PLP cepstral cizefts

mance for two systems. Figuf® shows the results. Comparing
the two curves, we can conclude that the gamma based system is

extracted from the speech signal using a window of 32 ms with dnuch less sensitive to tuning than the standard hybrid HMWNA

shift of 12.5 ms. At each framg 13 PLP coefficients, their first and
second order derivatives are extracted resulting in 39 wsoaal
acoustic vector. An MLP with 351 input nodesx@9 vector, corre-
sponding to the concatenation of 9 frames of 39 dimensicmis
tic vector) and 27 output units corresponding to the 27 mboops
were used to estimate initial posteriors.

system. It can be explained by the fact that gamma postdearcs
to have very close to binary values (like a decision) becdheg
are estimated by integrating some extra knowledge, whdeMhP
posteriors can change more smoothly between 0 and 1, thas¢he
mulated scores obtained by gamma posteriors during degdelival
to be discrete while it is continuous for the case of MLP paste

Table?? compares the performance of the two systems (gamm@&'S- Tuning which slightly changes the scores can affeatéesion

based system and hybrid HMM/ANN system) for clean speech a

well as different levels of factory noise (the numbers apipgain
the second column inside brackets will be explained in tx p&ra-
graph). Itis clear that the decoder which uses gamma posiqrér-
forms significantly better than the one which uses MLP egtha

posteriors (hybrid method) It is also interesting to observe that the

relative improvement increases by increasing the noisgl.levhis
implies that integrating prior and contextual knowledge ba even
more useful when there is no clear acoustic informationabse it
provides extra knowledge which can compensate the lackoofstic
information.

1Better performances can even be obtained if context-demerhone
(triphone) posteriors are estimated instead of monophostepors P, but
training MLP for triphones is computationally expensivertzularly for
larger databases) and it will not lead to new conclusions.

made based on continuous scores more than the one made based o
discrete scores. This is another advantage of the gammd bpse
proach which means it needs much less tuning to achieve ste be
performance. Moreover, the numbers inside brackets inebersl
column of Table?? show the recognition rates of the MLP posterior
based system when it is tuned to reach the best performarmgeen A

you can see how the performance of MLP posterior based system

be sensitive and rely on tuning to reach the best, which itheotase

for gamma based system. The sensitivity of the gamma based sy

2ysually this factor is tuned using a development set to gednmam per-
formance, which does not guarantee the same improvemeifiectedt set,
specially if the conditions (e.g. noise level, task, etdijprmge. Sometimes
it is even tuned over the test set which is an incorrect mrads it shows
optimistically biased results! In any case, there is norgjriheoretical ex-
planation for tuning, it makes the system less robust ageiveges and it is
time consuming.
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Fig. 2. Comparing the sensitivity of gamma posterior based systeirLP posterior based system to tuning phone deletion penahe
diagram inside is a zoom of performance curves for smalleshf phone deletion penalty (fine tuning).

tem to tuning is also much less than standard HMM/GMM systemdvianagement (IM2)”. The authors also like to thank Hynek Hamm
using likelihoods for decoding. The same less sensitivigpprties  sky and Hemant Misra for helpful discussions.

was also observed to scaling of language model (anothergdac-

tor) for gamma based system comparing with standard HMM/ANN
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