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Abstract

This thesis proposes a robust Automatic Face Verification (AFV) system using Local Binary Pat-

terns (LBP). AFV is mainly composed of two modules: Face Detection (FD) and Face Verification

(FV). The purpose of FD is to determine whether there are any face in an image, while FV involves

confirming or denying the identity claimed by a person. The contributions of this thesis are the

following: 1) a real-time multiview FD system which is robust to illumination and partial occlusion,

2) a FV system based on the adaptation of LBP features, 3) an extensive study of the performance

evaluation of FD algorithms and in particular the effect of FD errors on FV performance.

The first part of the thesis addresses the problem of frontal FD. We introduce the system of Viola

and Jones which is the first real-time frontal face detector. One of its limitations is the sensitivity

to local lighting variations and partial occlusion of the face. In order to cope with these limitations,

we propose to use LBP features. Special emphasis is given to the scanning process and to the

merging of overlapped detections, because both have a significant impact on the performance. We

then extend our frontal FD module to multiview FD.

In the second part, we present a novel generative approach for FV, based on an LBP description

of the face. The main advantages compared to previous approaches are a very fast and simple

training procedure and robustness to bad lighting conditions.

In the third part, we address the problem of estimating the quality of FD. We first show the

influence of FD errors on the FV task and then empirically demonstrate the limitations of current

detection measures when applied to this task. In order to properly evaluate the performance of a

face detection module, we propose to embed the FV into the performance measuring process. We

show empirically that the proposed methodology better matches the final FV performance.

Keywords: Face Detection and Verification, Boosting, Local Binary Patterns.
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Résumé

Cette thèse présente un système d’authentification biométrique basé sur la reconnaisance de visage.

Le système est composé de deux modules: détection et authentification. Le but du premier module

consiste à détecter si un visage est contenu dans l’image. Le second module détermine si ce visage

appartient ou non à la personne qui tente de s’authentifier. Les contributions de cette thèse sont

les suivantes: 1) un module de détection temps-réel robuste à lumière et capable de localiser des

visages non frontaux, 2) un module d’authentification basé sur l’adaptation de filtres locaux appelés

LBP (Local Binary Pattern), 3) une étude sur l’évaluation de la qualité des modules de détection.

La première partie de ce travail discute le problème de la détection de visages. Les principales

limites des systèmes existants résident dans le manque de robustesse à la lumière et aux occulta-

tions partielles du visage. Pour y remédier, nous proposons une représentation du visage basée sur

les LBP. Une attention particulière est apportée aux processus de recherche dans l’image et de la

fusion des multiples détections, qui peuvent avoir un impact significatif sur les performances du

système.

Dans la deuxième partie, nous présentons une nouvelle méthode d’authentification, basée sur

une représentation LBP de l’image. Elle offre une meilleure robustesse aux conditions de lumière

et une procédure d’entrainement plus simple et rapide.

La troisième partie adresse le problème de l’évaluation de la qualité de la détection de visages.

En premier lieu, nous analysons l’influence des erreurs de détection sur l’authentification. Ensuite,

nous démontrons empiriquement les limites des mesures de détection existantes, puis nous pro-

posons d’encapsuler le module d’authentification dans le processus d’évaluation. La méthodologie

proposée améliore l’évaluation de la performance finale du module d’authentification.

Mots-clés: Détection et authentification de visages, Boosting, Local Binary Patterns.
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Chapter 1

Introduction

Face Recognition involves recognizing people with their intrinsic facial characteristics. Compared

to other biometrics, such as fingerprint, DNA, or voice, face recognition is more natural, non-

intrusive and can be used without the cooperation of the subject. Since the first automatic system of

Kanade [44], a growing attention has been given to face recognition. Due to powerful computers and

recent advances in pattern recognition, face recognition systems can now perform in real-time and

achieve satisfying performance under controlled conditions, leading to many potential applications.

A face recognition system can be used in two modes: verification (or authentication) and identi-

fication. A face verification system involves confirming or denying the identity claimed by a person

(one-to-one matching). On the other hand, a face identification system attempts to establish the

identity of a given person out of a pool of N people (one-to-N matching). When the identity of the

person may not be in the database, this is called open set identification. While verification and iden-

tification often share the same classification algorithms, both modes target distinct applications. In

verification mode, the main applications concern access control, such as computer or mobile de-

vice log-in, building gate control, digital multimedia data access. Over traditional security access

systems, face verification has many advantages: the biometric signature can not be stolen, lost

or transmitted, like for ID card, token, badges or forgotten like passwords or PIN codes. In iden-

tification mode, potential applications mainly involve video surveillance (public places, restricted

areas), information retrieval (police databases, multimedia data management) or human computer

interaction (video games, personal settings identification).

3
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1.1 Automatic Face Verification

Figure 1.1. Structure of an automatic face verification system, composed of two main modules: face detection and
face verification.

An automatic face verification system is composed of two main modules (Fig. 1.1): face detection

and face verification. The purpose of the face detection module is to determine whether there are

any faces in an image (or video sequence), and if so, to return their position and scale. The term face

localization is employed when there is one and only one face in the image. When the localization

step only provides a rough segmentation of the face region, a post-processing face alignment step

may be required. This step involves locating facial features, such as eyes, nose, mouth or chin, in

order to geometrically normalize the face region. Face detection is an important area of research

in computer vision, because it serves, as a necessary first step, any face processing system, such as

face recognition, face tracking or expression analysis. Most of these techniques assume, in general,

that the face region has been perfectly localized. Therefore, their performance significantly depend

on the accuracy of the face detection step.

The face verification module consists in two steps: feature extraction and classification. Ideal

features should have a discriminant power to differentiate people’s identities and should be robust

to intra-class variability, due for instance to illumination, expression changes or slight variation

of the pose. Furthermore, as real-time operation is often needed in real-life scenarios, features

should be fast to compute. In the classification step, the extracted features (or face representation)

is compared to the face model of the claimed identity and the face access is either accepted (client)

or rejected (impostor).
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1.2 Challenges

Although face detection receives considerable attention, it still remains a difficult pattern recog-

nition task, because of the high variability of the face appearance. Faces are non-rigid, dynamic

objects with a large diversity in shape, color and texture, due to multiple factors such as head pose,

lighting conditions (contrast, shadows), facial expressions, occlusions (glasses) and other facial fea-

tures (make-up, beard).

Large variability in face appearance also affects face verification. Furthermore, quoting Moses et

al., "the variations between the images of the same face due to illumination and viewing direction

are almost always larger than the image variation due to change in face identity" [70]. Another

difficulty comes from the lack of reference images to train face templates. In real-life applications,

the enrolment procedure has to be fast and is generally done once. The few available training data

are usually not enough to cover the intra-personal variability of the face. Moreover a significant

mismatch between training and testing conditions may happen (especially lighting). Finally, the

verification performance is highly related to the quality of the face localization step.

1.3 Scope and Contributions

This thesis aims to build a fully automatic face verification system which works in real-time. The

system must be robust enough to small head pose and lighting variations in order to be used in a

real-life low level application such as computer access log-in. Most research has been done in face

detection, face alignment and face verification, but few works treat these distinct modules as an

ensemble. Most of the papers on face detection do not consider the final application for which the

detector is designed and most of the papers on face verification assume a perfect localization of the

face, which is not realistic. In this thesis, we consider the automatic face verification as a unified

task. The main contributions of this work are briefly presented in the following:

• performance evaluation of face detection systems [80]: several aspects make perfor-

mance comparisons very difficult. We underline the importance of a unified face criterion,

assessing what is a correctly detected face, when reporting detection rates. We also show how

the image scanning process, the overlapped detections merging or even the size of the training
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dataset may affect the performance of a detection system.

• multiview face detection [93]: we propose a novel architecture, based on a pyramid of de-

tectors trained for each view. Individual detectors are based on the boosting of Local Binary

Pattern (LBP) features. The system works in real-time and shows high performance on bench-

mark test sets. Compared to traditional approaches based on Haar-features [105], the detector

is more robust to illumination changes and partial occlusion of the face.

• face verification [84]: we propose a new generative approach based on the adaptation of

LBP histograms. Generative approaches have proven to be more effective than discriminative

ones, mainly because of the lack of training data. Our system shows improved performance

compared to other state-of-the-art LBP based techniques.

• face alignment [59]: we extend the Active Shape Model (ASM) [13] method by using an LBP

representation instead of pixel intensities. The LBP-ASM system achieves more accurate

alignment and is more robust to illumination.

• system-dependent performance measure [82, 83]: we explain that face localization errors

may have different impacts depending on the final application. We analyze the effect of the

different kinds of localization errors (shift, scale, rotation) on the specific task of face verifi-

cation. To properly evaluate the performance of face localization algorithms, we propose to

embed the final application (here verification) into the performance measuring process. We

empirically demonstrate that the proposed measure gives a better estimate of the quality of

the face localization step.

• demonstrators [60]: based on the findings of this thesis, we built several demonstrators,

such as a bi-modal (face and speech) biometric demonstrator, a computer access log-in and a

face tracking system.

• Torch3vision: it is an open source machine vision library, written in simple C++, designed for

scientific research. It includes standard image processing and feature extraction algorithms

and is available from: http://torch3vision.idiap.ch/. All experiments in this thesis

have been implemented with Torch3vision.
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1.4 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 addresses the problem of frontal face detection. The main previous approaches are

reviewed and a method based on boosting LBP features is presented. Special attention is also given

to the important issue of performance evaluation. (Papers V, VI)

Chapter 3 extends the frontal face detection system in order to deal with multiview faces. Some

recent approaches are reviewed and a novel pyramid architecture is introduced. Experimental

analysis is provided for different kinds of head rotations. (Paper X)

Chapter 4 describes a new face verification system based on the adaptation of LBP histograms.

Experimental evaluation is provided for both manual and automatic segmentation of the face. (Pa-

pers II, VII, IX)

Chapter 5 concerns the performance evaluation of face localization algorithms. It first analyzes

the effect of localization errors on the performance of a face verification system. It then presents

a new measure which takes into account the performance of the final application. An empirical

evaluation is provided for the particular case of face verification. (Papers I, V, VI)

Chapter 6 summarizes the main findings and remarks of the previous chapters and discusses

some ideas for future research.

Appendices present additional LBP-based works, respectively on face alignment (Appendix A,

Paper VIII), hand posture recognition (Appendix B, Paper IV) and image normalization (Appendix C,

Paper III), as well as some demonstrators on face detection and verification (Appendix D).
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Chapter 2

Frontal Face Detection

Face detection is the first module of the automatic face verification system illustrated in Fig. 1.1. In

a verification scenario, we generally assume that the user will cooperate with the system, and thus

that the detection module will deal with frontal faces. This is the subject of this chapter.

We first present some previous approaches to the frontal face detection task (Section 2.1). Spe-

cial attention is given to boosting-based methods which have been so far the most effective in prac-

tice, both in terms of accuracy and speed. One of the main limitations in early boosting-based

approaches is the robustness to illumination and partial occlusion of the face. To cope with these

limitations, we propose to use Local Binary Pattern (LBP) features (Section 2.2). We also discuss

the fundamental problem of evaluating the quality of the face detection step, because its reliability

largely affects the performance of the whole verification system (Section 2.3). A detailed description

of the experimental setup is then provided (Section 2.4). While not mentioned in the majority of the

papers, experiments show that the scanning and overlapped detection merging processes may sig-

nificantly influence the accuracy and/or speed of the face detection process (Section 2.5). We finally

give some concluding remarks (Section 2.6).

2.1 Related Work

Numerous methods have been proposed to detect faces in images. Many of them are reviewed in

two recent survey papers by Yang et al. [111], and by Hjelmas and Low [33]. These methods can be

9



10 CHAPTER 2. FRONTAL FACE DETECTION

organized in two categories: feature-based approaches and appearance-based approaches.

Feature-based approaches make explicit use of face knowledge. They are usually based on the

detection of local features of the face, such as the nose, the mouth or the eyes, and the structural

relationship between these facial features. Feature-based methods are generally used for face lo-

calization (one face) in good quality images. They are robust to illumination conditions, occlusions

and viewpoint, but may also be computationnaly expensive.

Appearance-based approaches consider face detection as a two-class pattern recognition prob-

lem. They rely on statistical learning methods to build a face/nonface classifier from training sam-

ples. These methods are used for multiple face detections in lower image resolutions. Although

both classes of methods do not deal with the same problems and environments, appearance-based

approaches have recently received considerable attention and have proven to be more successful

and robust than feature-based approaches. We will discuss them in more detail hereafter.

2.1.1 Appearance-based Approaches

The concept of scanning window is the root idea of appearance-based methods. A sliding window

scans the input image at different locations and scales. Each subwindow is then given to a classifier

whose goal is to classify the subwindow as either face or nonface. The different appearance-based

methods mainly differ in the choice of this classifier. Among the most popular learning classifiers,

Support Vector Machines [75, 88, 79], Neural Networks [85, 112], Bayesian classifiers [14] or Hid-

den Markov Models [72] have been tried. Some of the most significant approaches are reported

below.

Turk and Pentland [101] proposed to perform Principal Component Analysis (PCA) on training

face images and to use the eigenvectors, also called eigenfaces, as a face template. A candidate sub-

window region is classified according to the distance computed in the PCA subspace after projection.

This distance can be interpreted as a measure of faceness.

Sung and Poggio [97] developed a distribution-based system which consists of two steps. First,

they partition the face distribution into 6 clusters, approximated by Gaussian functions, and de-

compose each cluster in the PCA subspace. The same is done to model the nonface distribution.

A distance is then computed between a candidate subwindow and its projection onto the PCA sub-

space for each of the 12 clusters. In a second step, a neural network is trained to classify face and
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nonfaces based on these distances.

Rowley et al. [85] presented an ensemble of Neural Networks which works on pixel intensities

of candidate regions. Each network has a different structure with retinal connections to capture

the spatial relationships of pixels (facial features). Detections from individual networks are then

merged to provide the final classification decision.

Féraud et al. [19] proposed another Neural Network model, based on the Constrained Gen-

erative Model (CGM). CGMs are auto-associative connected Multi-Layer Perceptrons (MLP) with

three large layers of weights, trained to perform a non-linear PCA. Classification is obtained by

considering the reconstruction errors of the CGMs.

One of the most accurate face detector was reported by Roth et. al [112] who use the Sparse Net-

work of Winnows (SNoW) learning architecture. SNoW is a single layer Neural Network, composed

of linear threshold units, that uses the Littlestone’s Winnow update rule [50]. Their system uses

boolean features that encode the positions and intensity of pixels. A comparative analysis of SNoW

with Neural Networks and Support Vector Machines (SVM) can be found in [113] and [18].

Appearance-based methods reported above provide accurate detection results with few false

alarms. However, all of them need several seconds at best to process an image, mainly because

candidate subwindows need to be geometrically and photometrically normalized before classifica-

tion. This limitation is restrictive for real-life applications that need real-time face detection (> 15

frames per second).

In 2001, Viola and Jones [105] introduced the first real-time frontal face detection system. In-

stead of using pixel information, they proposed to use a new image representation and a set of

simple features that can be computed at any position and scale in constant time. Boosting learning

is both used for feature selection and classifier design. [105] is the first work of a new family of

face detection methods, called boosting-based methods, which we will describe in more details in

the next section.
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2.1.2 Boosting-based Approaches

Boosting learning

Recently, most of the attention has been paid to boosting-based approaches since the famous work

of Viola and Jones [105]. These approaches show very good results both in terms of accuracy and

speed, and are then well suited for real-time applications. The Viola and Jones face detector is

presented in more details in this section because a lot of recent work has concentrated on improving

this detector and because it will serve as a baseline comparison system in our experiments.

A complete introduction to the theoretical basis of boosting and its applications can be found

in [65]. The underlying idea of boosting is to linearly combine simple classifiers hj(X) to build a

strong ensemble H(X):

H(X) =

n
∑

j=1

wjhj(X). (2.1)

The selection of the weak classifiers hj(X) as well as the estimation of the weights wj are learned

by the boosting procedure. Each classifier hj(X) aims to minimize the classification training error

on a particular distribution of the training samples. At each iteration (i.e. for each weak classifier),

the boosting procedure updates the weight of each sample such that the misclassified ones get more

weight in the next iteration. Boosting hence focuses on the examples that are hard to classify.

Several variants of Boosting exist. They mainly differ in the iterative reweigting process of the

training samples. AdaBoost [20] is probably the most well known.

Haar-like feature classifiers

In 2001, Pavlovic and Garg [77] proposed to boost pixel-based classifiers for face detection. Instead

of directly using pixel information, Viola and Jones introduce a set of simple features (Fig. 2.1),

derived from Haar wavelets. A feature is computed by summing the pixels in the white region and

Figure 2.1. Five types of Haar-like features.
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subtracting those in the dark region. Haar-like features can be computed efficiently with the inte-

gral image representation or summed area table, first introduced by Crow [16] for texture mapping.

At a given location (x; y) in an image, the value of the integral image ii(x; y) is the sum of the pixels

above and to the left of (x; y):

ii(x; y) =
∑

x′≤x,y′≤y

i(x′; y′),

where i(x′; y′) is the pixel value of the original image at location (x′; y′). If s(x; y) is the cumulative

row sum, with s(x;−1) = 0 and s(−1; y) = 0, the integral image can be computed in one pass over

the original image using the following pair of recurrences:

s(x; y) = s(x; y − 1) + i(x; y), (2.2)

ii(x; y) = ii(x − 1; y) + s(x; y). (2.3)

An example is given in Fig. 2.2. To compute the illustrated feature, only 6 table accesses and 7

simple operations are needed. Haar-like features can then be computed very quickly at any scale

and position in constant time.

BA

D FE

C

S S1 2

integral image

Figure 2.2. Haar-like feature computation with the integral image. The feature value is: S1−S2, with S1 = E−B−D+A

and S2 = F − C − E + B

The feature set is obtained by varying the size and position of each type of Haar-like features. To

select the weak classifiers hj(X) of Eq. 2.1, the learning procedure works as follows. Each candidate

feature fi is computed on a training set of positive and negative samples (faces and nonfaces).
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The weak classifier then determines the optimal threshold θi which minimizes the classification

error. The task of the learning procedure is to find the feature f such that the minimum number of

samples are misclassified. A weak classifier hj(X) thus consists of a Haar-like feature f , a threshold

θ and a parity p indicating the direction of the inequality:

hj(X) =











1 if pf(X) < pθ,

0 otherwise.
(2.4)

Such classifier can be seen as a single-node decision tree, also called decision stump.

Cascade architecture

Considering a set of images, the detection rate of a face detector is defined as the number of correctly

detected faces over the total number of faces in the test set. A false alarm is accounted each time

the system badly classifies a background region as a face. A higher detection rate (with less false

alarms) can be achieved by increasing the number n of weak classifiers hj(X) of the ensemble H(X)

of Eq. 2.1 . On the other hand, increasing n will also increase the complexity of the ensemble and

then the computation time.

To deal with the trade-off performance vs. computation time, Viola and Jones propose a cascade

structure of ensembles. This framework is motivated by the nature of the problem which is a rare

event detection problem. In an image, only a very small number of subwindows contain a face

(generally < 0.1%).

2τ>
Mτ>

1τ<
2τ<

Mτ<

1τ>
M

H (x)

reject subwindow (Non Face)

Face

all candidate
subwindows

H (x)
1

H (x)
2

Figure 2.3. Overview of the cascade architecture which works as a degenerated decision tree. At each stage, the
classifier either rejects the sample and the process stops, or accepts it and the sample is forwarded to the next stage.
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The cascade, illustrated in Fig. 2.3, works as follows: Each ensemble Hi(X) is designed to detect

almost all faces (>99%) while rejecting as much background regions as possible. This is done by

adjusting the thresholds τi on a validation set. The first ensemble H1(X), composed of only two

features, rejects approximately 50% of the background subwindows. As the task becomes more

difficult, the next ensembles contain more weak classifiers. With such a simple-to-complex ap-

proach, most of the background regions are quickly discarded early in the cascade and only face

subwindows should pass over all the cascade. Viola and Jones compare a cascade of ten 20-feature

classifiers with a monolithic 200-feature classier. They report that the accuracy of both classifiers

is not significantly different, but that the cascade version performs almost 10 times faster.

2.1.3 Discussion

Since the work of Viola and Jones [105] published in 2001, most of the research in face detection

has focused on the improvement of their cascade architecture. Related works can be classified in

three directions, whether they provide alternative feature set, boosting algorithm or architecture

design.

Alternative boosting algorithms

At each iteration, AdaBoost selects the weak classifier which minimizes the (weighted) classification

error, regardless if the error is a false positive or false negative. The goal of the detection cascade

is however to achieve high detection rates (>99%) with moderate false alarm rates (>50%) for each

stage. In [106], Viola and Jones proposed a modified version of the original boosting algorithm,

called Asymmetric AdaBoost, which gives more weight to the positive examples. A very similar

cost-sensitive algorithm, CS-AdaBoost, has been published by Ma and Ding [56].

Wu et al. [108] also observed that AdaBoost is an indirect way to meet the learning goals of

the cascade. They proposed a cascade learning procedure based on direct forward feature selection

which is much faster than AdaBoost while yielding similar performance. McCane and Novins [64]

also proposed an alternative to boosting. They explained that since the feature set is parame-

terizable (size and position of the Haar-like masks), the feature selection is a form of numerical

optimization, and they provided a fast (300-fold) heuristic to find (suboptimal) features.

In [49], Lienhart et al. compared three boosting algorithms, Discrete, Real and Gentle AdaBoost,
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and showed that the latter performs slightly better. However, according to [9], the choice of the

boosting algorithm has more impact on the speed of the detector than on classification performance.

Li et al. [46] proposed a new boosting algorithm, called FloatBoost, to solve the monotonicity

problem encountered in the sequential forward search procedure of AdaBoost. After each iteration,

FloatBoost removes the least significant weak classifier which leads to a higher error rate of the

global classifier. Compared to the sequential AdaBoost, FloatBoost needs fewer weak classifiers

to achieve the same error rate. The cost of such improvement is a learning time of about 5 times

longer.

Other variants of AdaBoost have been tried for face detection, like Kullback-Leibler Boost-

ing [51], LogitBoost [21], Jensen-Shannon Boosting [37], Vector Boosting [34] or MRC-Boosting [110]

Alternative feature sets

Lienhart et al. [49] proposed an extended set of Haar-like features, including 45◦ rotated features

(Fig. 2.4). To compute these features, they described a fast calculation scheme for rotated rectangles,

which is very similar to the integral image. At a given detection rate, the authors reported a 10%

false alarm (non-face regions classified as being faces) improvement with this extended features

set. Li and Zhang [46] also extended the original Haar-like feature set by including features with

non-adjacent regions (Fig.2.5).

Figure 2.4. Extended Haar-like feature set used by Lienhart et al. [49].
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Figure 2.5. Extended Haar-like feature set used by Li et al. [46].

Zhang et al. remarked in [115] that in the last stages of the cascade, the nonface examples

collected by bootstrapping become very similar to face examples and that weak classifiers based on

local Haar-like features reach their limit. Instead, they proposed to switch to a global representa-

tion of the face and boost PCA coefficients.
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Mita et al. [68] proposed new features based on co-occurrence of multiple Haar-like features,

called joint Haar-like features, which capture the structural similarities within the face class. Given

the same number of features, they reported improved performance compared to the original system.

In [22], Fröba and Ernst used a Modified version of the Census Transform (MCT) to build weak

classifiers, while Hadid et al. [29], Jin et al. [40] or Zhang et al. [117] chose LBP features (cf.

Section 2.2.1).

Alternative cascade architecture

The two main limitations of the detector of Viola and Jones [105] are a long training procedure and

the choice of the cascade parameters. A lot of effort has been given on finding training alternatives,

but much less attention has been paid to the fundamental problem of the cascade architecture

design.

In [54], Luo published a method to adjust the stage thresholds after the training of the cascade.

He reported improved performance compared to the original Viola and Jones detector. However,

his post-processing technique does not help to chose the threshold values during training and then

does not solve the problem of when to stop training the current stage and go for the next one.

McCane and Novins [64] pointed out that the root idea of the cascade architecture is to quickly

discard nonface subwindows. Since there are much less faces than nonfaces regions, the speed of

the detector can be seen as the average speed to reject a nonface subwindow. McCane and Novins

argued that the speed of the detector is the function to minimize and proposed a method to deter-

mine the optimal cascade speed.

Grossman [28] first trained a single-stage classifier with AdaBoost. Using dynamic program-

ming, he then partitioned the weak classifiers of this single stage to build a cascade of optimal

speed with almost identical behavior to the original single-stage classifier. The main drawback

of Grossman’s method is to produce more false alarms, because it does not take advantage of the

bootstrapping technique of the original cascade training approach.

Li and Satoh [45] proposed to sequentially combine a classical boosted cascade with a cascade

of three SVM classifiers, trained with the features selected by AdaBoost in the last stage of the

classical cascade.

Lienhart et al. [49] tried Classification And Regression decision Trees (CART) as weak clas-
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sifiers instead of simple decision stumps (Eq. 2.1). They reported improved results for the same

computation time.

Wu et al. [107] described a nested cascade structure. The difference with the classical cascade

approach is that each layer is used as the first weak classifier of the following layer, thus retaining

the discriminative power of previous layers (confidence of the predecessor). A similar approach was

proposed by Xiao et al. [109].

Brubaker et al. [9] introduced a new criterion for cascade training to select stage thresholds

(balance between detection and false alarm rates) and number of weak classifiers (when to stop

training in one stage and move on to the next one), based on a probabilistic model of the overall cas-

cade’s performance. They also evaluated several feature selection methods to speed up the training

process and investigated CART as weak classifiers.

2.2 Frontal Face Detection Using Local Binary Patterns

The face detection algorithm introduced in this section is an extension of Viola and Jones sys-

tem [105] based on boosted cascades of Haar-like features. As pointed out by Zhang et al. [115],

these features are very efficient early in the cascade to quickly discard most of the background

regions. However, in the last stages of the cascade, a large number of Haar-like features (several

hundreds) are necessary to reach the desired detection/false acceptance rate trade-off. It results in

a long training procedure and cascades with several dozens of stages which are difficult to design.

Furthermore, Haar-like features are not robust to local illumination changes.

To cope with the limitation of Haar-like features, we propose to use LBP features (Section 2.2.1).

The method to build the weak classifiers is inspired by the work of Fröba and Ernst [22] and the

cascade training is done with AdaBoost [20] (Section 2.2.2).

2.2.1 LBP Features

The LBP operator is a non-parametric 3x3 kernel which summarizes the local spacial structure of

an image. It was first introduced by Ojala et al. [73] who showed the high discriminative power of

this operator for texture classification. At a given pixel position (xc, yc), LBP is defined as an ordered

set of binary comparisons of pixel intensities between the center pixel and its eight surrounding
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Figure 2.6. The basic Local Binary Pattern (LBP) operator.

pixels (Fig. 2.6). The decimal form of the resulting 8-bit word (LBP code) can be expressed as

follows:

LBP (xc, yc) =
7

∑

n=0

s(in − ic)2
n, (2.5)

where ic corresponds to the grey value of the center pixel (xc, yc), in to the grey values of the 8

surrounding pixels, and function s is defined as:

s(x) =











1 if x > 0,

0 if x < 0.
(2.6)

Note that each bit of the LBP code has the same significance level and that two successive bit

values may have a totally different meaning. Actually, The LBP code may be interpreted as a

kernel structure index. By definition, the LBP operator is unaffected by any monotonic gray-scale

transformation which preserves the pixel intensity order in a local neighborhood (Fig. 2.7).

Later, Ojala et al. [74] extended their original LBP operator to a circular neighborhood of dif-

ferent radius size. Their LBPP,R notation refers to P equally spaced pixels on a circle of radius

Figure 2.7. LBP robustness to monotonic gray-scale transformations. On the first row, the original image (left) as well
as several images (right) obtained by varying the brightness, contrast and illumination. The second row depicts the
corresponding LBP images which are almost identical.
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R. In [74], they also noticed that most of the texture information was contained in a small subset

of LBP patterns. These patterns, called uniform patterns, contain at most two bitwise 0 to 1 or 1

to 0 transitions (circular binary code). 11111111, 00000110 or 10000111 are examples of uniform

patterns. They mainly represent primitive micro-features such as lines, edges, corners. LBPu2
P,R

denotes the extended LBP operator (u2 for only uniform patterns, labelling all remaining patterns

with a single label). The LBP8,2 operator is illustrated in Fig. 2.8.

Figure 2.8. The extended LBP operator with (8,2) neighborhood. Pixel values are interpolated for points which are not
in the center of a pixel.

Recently, new variants of LBP have appeared. For instance, Jin et al. [40] remarked that LBP

features miss the local structure under some certain circumstance, and thus they introduced the

Improved Local Binary Pattern (ILBP). Huang et al. [38] pointed out that LBP can only reflect the

first derivation information of images, but could not present the velocity of local variation. To solve

this problem, they proposed an Extended version of Local Binary Patterns (ELBP).

Due to its texture discriminative property and its very low computational cost, LBP is becom-

ing very popular in pattern recognition. Recently, LBP has been applied for instance to face de-

tection [40], face recognition [116, 1], image retrieval [98], motion detection [31], visual inspec-

tion [102], hand posture recognition [43] (see Appendix B) or image normalization [43]1 (see Ap-

pendix C). We finally point out that, approximately in the same time the original LBP operator

was introduced by Ojala [73], Zabih and Woodfill [114] proposed a very similar local structure fea-

ture. This feature, called Census Transform, also maps the local neighborhood surrounding a pixel.

With respect to LBP, the Census Transform only differs by the order of the bit string. Later, the

Census Transform has been extended to become the Modified Census Transform (MCT) [22] which

takes into account the center pixel in the bit string and compares to the average intensity value

within the neighborhood. Again, one can point out the same similarity between ILBP and MCT

(also published at the same time).

1a more exhaustive list of applications can be found on Oulu University web site at:

http://www.ee.oulu.fi/research/imag/texture/lbp/lbp.php
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In this chapter, we will consider the ILBP version (or MCT), described in [40] (or in [22]), which

outputs a 9-bit word (ILBP code). In the rest of this chapter, we will use the LBP notation to refer

to ILBP (or MCT) features.

2.2.2 Weak Classifiers and Cascade Training

Weak classifiers

A weak classifier hp(x) consists of a look-up table of 29 − 1 = 511 bins 2, which is the total number

of possible LBP codes x, and is associated to a specific pixel location p. Each bin of the look-up table

contains a real value which corresponds to the weight of the related LBP code. In a test image, at

a given location p, the output of classifier hp(x) is the value of the bin x, where x is the LBP code

computed at location p. Let Hn(X) be the ensemble classifier of stage n:

Hn(X) =
∑

p∈Wn

hp(x), (2.7)

where Wn is the set of pixel locations for stage n. Fig. 2.9 illustrates a stage ensemble of 5 weak

classifiers, as well as the look-up table for one of them.

Figure 2.9. Pixel classifier (left) and its associated look-up table (right).

Cascade training

In the AdaBoost framework, the algorithm selects the weak classifier which minimizes the clas-

sification error rate on a weighted distribution of positive and negative samples. Here, a weak

classifier consists of a look-up table associated to a pixel location. Then, AdaBoost aims to select

2000000000 and 111111111 LBP codes get the same label.
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pixel locations and to build the associated look-up tables. The training algorithm is detailed in [22]

and is explained below.

At each stage n of the cascade, the number Pn of weak classifiers is fixed, as well as the number

Tn of boosting iterations. Pn is then the size of the set of pixel locations Wn.

At each boosting iteration t, to select the best pixel classifier, two look-up tables Lface
p and

Lnonface
p are allocated for each pixel location of Wn. Then, for each location p, the LBP operator

is applied on a training set of face samples. For each sample, the computed LBP code is used to

identify the bin of Lface
p , which is increased by an amount equal to the weight of the sample. The

same is done with a training set of nonfaces to populate the Lnonface
p tables. The classification error

ε at position p is given by:

εp =
511
∑

j=1

min(Lface
p [j], Lnonface

p [j]). (2.8)

The look-up table Lp∗ of the selected pixel classifier at iteration t is then computed for each bin j:

Lp∗ [j] =











1 if Lface
p [j] > Lnonface

p [j],

0 otherwise.
(2.9)

A pixel classifier thus consists of a look-up table of 0s and 1s. During the boosting learning, a

discriminative pixel location may be selected several times. At the end of the boosting procedure,

look-up tables associated to the same pixel location are merged into a single table. For each bin, a

weighted (by coefficient wt of AdaBoost, Eq. 2.1) sum is done on the bin values of each table. Weak

classifiers hp(x) of Eq. 2.7 consist of these single weighted look-up tables.

Note that this boosted cascade of LBP framework has been successfully applied to the task of

hand posture recognition [43] and described in Appendix B.
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2.3 Performance Evaluation

2.3.1 Performance Measure

On a given test database, the performance of a face detection system is measured in terms of De-

tection Rate (DR), which is the proportion of faces detected, and the number of False Acceptances

(nFA), which is the number of background regions badly classified as face regions. DR and nFA

are related. Increasing (resp. decreasing) DR usually means increasing (resp. decreasing) nFA as

well. Then, instead of providing a single operating point, it is more appropriate to provide the Free

Receiver Operator Characteristic (FROC) curve, which plots DR versus nFA. The ROC curve is very

similar. It represents the detection rate versus the false acceptance rate. However, the ROC curve

is not adapted for face detection because the false acceptance rate, which is defined as the number

of false acceptances over the total number of scanned windows containing no face, depends on the

scanning process.

2.3.2 Face Criterion

Reporting detection and error rates is not enough to allow fair performance comparisons. The way

detections and errors are accounted should also be clearly described. In other words, a face criterion,

assessing what is a correctly detected face, should be defined. Fig. 2.10 illustrates the problem.

Some people will account five correct face detections, while other people, using a more restrictive

face criterion, will only report the detection on the left. Recently, Jesorsky et al. [39] introduced a

relative error measure based on the distance between the detected and the expected (ground-truth)

eye center positions. Let Cl (respectively Cr) be the true left (resp. right) eye coordinate position

and let C̃l (resp. C̃r) be the left (resp. right) eye position estimated by the face detection algorithm.

Figure 2.10. Examples of various detections of the same face. Which one is a correct detection?
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This measure can be written as:

deye =
max(d(Cl, C̃l), d(Cr, C̃r))

d(Cl, Cr)
(2.10)

where d(a, b) is the Euclidean distance between positions a and b. A successful detection is ac-

counted if deye < 0.25, which corresponds approximately to half the width of an eye. This is, to

the best of our knowledge, the first attempt to provide a unified face localization measure. This

fundamental problem of face criterion is analyzed in Chapter 5.

2.3.3 Application-dependent Evaluation

The performance evaluation should depend on the purpose of the detector. The balance between

detection rate, number of false acceptances and speed should be properly weighted. If the detector

is used for face recognition, the detection rate must be maximized, to the detriment of the number

of false acceptance which will be rejected by the recognition process. On the other hand, if the

detector is used for active tracking in video conferencing, accuracy may need to be sacrificed for

speed. One may use temporal information to refine the accuracy and remove false acceptances. A

clear description of the scenario (final application) and of the evaluation protocol (DR, nFA, speed)

is needed when assessing the performance of face detection systems.

2.4 Experimental Setup

2.4.1 Training Data

Appearance-based face detection methods highly rely on the training sets to find a discriminant

function between face and nonface classes. Robustness to appearance variability of the face is

achieved by incorporating this variability into the training set. For instance, to detect the face of

people wearing glasses, several samples of faces with glasses are added into the face training set.

We proceed similarly to deal with small pose variations of the head, facial expressions, people gen-

der, aging and so on. Actually, the richness of the training set is fundamental for the performance

of the face detector system.
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Faces

Many face databases are available on the Internet. Among them, we selected face images from

BANCA [3] (Spanish corpus), Essex 3, Feret [78], ORL [89], Stirling4 and Yale [6] databases. The

extraction of each face is done as follows:

1. Each face is labelled by manually locating the center position of both eyes. These two land-

mark points (groundtruth) are used to geometrically align the faces.

2. Face/head anthropometric measures are used to determine the face bounding box and crop the

face region. The width bbxw of this region (in pixels) is defined by:

bbxw =
zy_zy

2 ∗ pupil_se
∗ dGT (2.11)

where dGT is the distance (in pixels) between both eye centers, and zy_zy = 139.1 (mean width

of a human face in [mm]) and pupile_se = 33.4 (half of the inter-pupil distance in [mm]) are

anthropometric constants given by Farkas in [17]. According to Fig 2.11 and given y_up =

pupile_se, the position of the bounding box can be computed.

3. The cropped face is then subsampled to the size of 19x19 pixels. This template size was also

used by Sung et al. [97], Papageorgiou et al. [76] or Osuna et al. [75], while Rowley [85]

chose a template of 20x20 and Viola and Jones [105] a template of 24x24. In his thesis [15],

Cristinacce showed that the choice of an optimal face template size is not trivial. The set of

faces is then split in two sets of equal size (training and validation).

The concept of scanning window is a discrete process. Due to time constraints, a test image can

not be scanned at each position and scale. To detect faces which do not exactly fit the scanning

window, small localization errors are artificially generated by slightly shifting, scaling and rotating

the original face. Training and validation sets can be further extended by mirroring each face

example (Fig. 2.12). From each original face image, 10 virtual samples are randomly created.

3images available from: http://cswww.essex.ac.uk/mv/allfaces/index.html
4images available from: http://pics.psych.stir.ac.uk/
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face bounding box

eye center coordinates

2 * pupil_se

zy_zy

y_
up

(square)

Figure 2.11. Face bounding box determined by face anthropometric measures defined in [17].

Figure 2.12. Virtual face training examples (right), created from the original cropped face (left).

Nonfaces

Several hundreds of images containing no face have been collected on the Internet. Scanning these

images at different positions and scales provide potentially billions of nonface examples. Again,

variability of the training set is crucial for the classifier to appropriately estimate the decision

boundary. However, in the nonface case, it is not easy to define what is a nonface and choose

relevant examples (i.e. close to the face/nonface boundary). We also considered face images and

extracted multiple subwindows containing small parts of face regions. Some examples are shown

in Fig. 2.13.
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Figure 2.13. Nonface training examples.

Figure 2.14. Image examples of the XM2VTS database (standard set).

2.4.2 Benchmark Test Sets

XM2VTS database

The XM2VTS database [55] has been designed for multi-modal biometric authentication. It con-

tains synchronized image and speech data recorded on 295 subjects during four sessions taken at

one month intervals. Two shots were recorded per session, resulting in 2360 images. These images

represent the XM2VTS standard set. Each color image of size 720x576 contains one person on a

uniform blue background and in controlled lighting conditions (Fig. 2.14). For each of the 295 iden-

tities, 4 extra shots have been acquired with left/right side directional lighting. This set of 1180

images is called darkened set. Fig. 2.15 shows some examples.

Figure 2.15. Image examples of the XM2VTS database (darkened set).
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Figure 2.16. Image examples of the BioID database.

BioID database

The BioID database [39] has been recorded to test face detection algorithms on real world conditions

(variation in illumination, background and face size). The dataset consists of 1521 gray level images

of 23 individuals with a resolution of 384x286 pixel (Fig. 2.16).

Purdue AR database

The Purdue AR database [63] contains over 3000 color images of 126 people taken in controlled

lightning and background conditions. This database has been created to test face recognition algo-

rithms under several mixed factors: facial expressions (neutral, smile, anger and scream), illumi-

nation (left, right and both side light on) and occlusion (wearing glasses and scarf). Some examples

are given in Fig. 2.17.

2.4.3 Image Scanning

To detect faces in an image, the face detector (i.e. the face/nonface classifier) scans the image at

multiple locations and scales. At each position, the subwindow is evaluated by the detector and is

classified as either a face or a nonface with a certain confidence. The scanning window process is

the root idea of the detection system.
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Figure 2.17. Image examples of the Purdue database.

Scanning parameters

The choice of the scanning parameters has a direct impact on the number of subwindows to be

classified, and thus on the computation time. Let us introduce SW the size of the scanning window,

SWfacemodel the size of the face template (i.e. smallest possible value of SW ), and s = SWi

SWfacemodel

the scale of the scanning window. These scanning parameters are then defined as:

• SWmin, SWmax: the min/max sizes (in pixels) of the scanning window, with SWfacemodel ≤

SWmin ≤ SWmax ≤ min(Imagewidth, Imageheight)

• ds: the scale factor (ratio between two consecutive scales)

• dx, dy: the horizontal/vertical shift steps (in pixels)

The scanning process starts with a scanning window of size SWmin. The subwindow is horizontally

(resp. vertically) shifted in the image by [s · dx] (resp. [s · dy]), where [] is the rounding operator and

s = SWmin

SWfacemodel
is the scale. The scanning window is then scaled to a size of SWmin · ds and shifted

again across the image. The scaling process is repeated while SW ≤ SWmax.
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Two types of scanning

Scaling can be achieved in two different ways:

1. the image is iteratively subsampled, while the size of the scanning window is kept constant.

This method is referred to as pyramid scanning.

2. the scanning window is resized for each scale level, rather than subsampling the image. We

refer to this method as multiscale scanning.

When the computation cost to classify a subwindow does not depend on the size of the subwindow

(scale invariant), the multiscale mode is much faster, because no image subsampling nor subwin-

dow cropping is needed. Features based on summed area of pixels, like Haar-like or LBP features,

can be computed in constant time at different scales with the integral image representation. Those

features are then candidates for multiscale scanning. On the other hand, features based on inde-

pendent pixel values can not take advantage of this scanning method (the pixel interpolation cost

is scale dependent). In this work, we will only use multiscale scanning.

2.4.4 Merging Overlapped Detections

Multiple detections at different locations and scales may occur around a face in the image, because

the face classifier is trained to be insensitive to small localization errors. The same behavior may

happen around a background region. However, overlapped false alarms usually appear with less

consistency than true detections. This assumption is useful to reduce the number of false alarms

and to combine true detections, as illustrated in Fig. 2.18. The image on the left shows a scanned

image with multiple detections around the face and some false alarms in the background. In the

image on the right, false alarms have been removed and the detections around the face have been

merged. After the image scanning, the processing of the multiple detections consists in two steps:

1. clustering: two detections belong to the same cluster if the detected regions overlap by a

given percentage φ. A cluster is a candidate for merging (next step) if the number of detec-

tions (or sum of confidence detection) is above a given threshold η. Another variant could

consider the aggregate confidence score (output of the classifier) of the detections instead of

their occurrence. If a cluster is not candidate, all detections of this cluster are removed.
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Figure 2.18. Merging of multiple detections (isolated detections are removed).

2. merging: various heuristics exist to combine multiple detections of a cluster. The simplest

one selects the detection with the highest confidence score. However, a more precise face

localization is obtained by averaging the bounding boxes of each detected region (upper left

and down right positions). Again, each bounding box could also be weighted by its confidence

score.

Parameters φ and η are not easy to choose. If φ is too small, overlapped detections of the same

cluster may be separated, while if φ is too large, two close clusters may merge (ex: partially occluded

faces in a crowd). Similarly, If η is too small, overlapped false alarms may be considered as a

candidate cluster, while if η is too large, true candidate clusters may be discarded (balance between

detection rate and false alarms). Furthermore, η is related to the choice of scanning parameters,

because the finer the scanning, the larger the number of detections. The design of an efficient

clustering/merging module is therefore not trivial and may significantly affect the performance of

the face detector system in terms of detection rate and number of false alarms (clustering), and of

detection accuracy (merging).

2.4.5 Benchmark Face Detectors

FDLBP face detector

This face detector is based on the boosting of LBP features and is described in Section 2.2. The

baseline system is composed of 3 stages of respectively 5, 10, and 50 classifiers (empirically chosen),

trained with respectively 50, 100, and 300 boosting iterations (following [22] using a training set
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and a validation set of ∼50.000 faces. The decision threshold of each stage has been chosen on

the face validation set to achieve 99% detection rate. On a 3GHz Pentium 4 with 1Go RAM, the

training of the whole cascade lasts around 5 hours. The scanning and overlap merging parameters

were chosen as follows:

• step x factor: dx = 0.05 (corresponds to a shift of 1 pixel for a bounding box of size 19 × 19)

• step y factor: dy = 0.10 (empirically chosen twice the step x factor)

• scale factor: ds = 1.125 (according to [105])

• min scanning window size: depends on the experiment

• min scanning window size: SWmax = size of the image

• surface overlap factor: φ = 0.5 (empirically chosen; depends on the step factors)

• detection confidence threshold: η = 1.5

FDHaar face detector

We use the face detector included in the OpenCV library available at: http://sourceforge.

net/projects/opencvlibrary/. The detector has been implemented by Lienhart and is related

to his paper [49]. We chose the model called alt tree. The 47-stage cascade is composed of 8468

Haar-like stump classifiers. We have no information on the training of the model (training set size,

threshold selection, face model, training duration, ..). Because the system only outputs bounding

boxes, we empirically estimated the coordinates of the eyes from the boxes by running the detector

on a set of simple face images and computing the average detected face image.

2.5 Frontal Face Detection Results

In this Section, face detection experiments will be done in localization mode (only one face per

image). For each detector, we only consider the detection with the highest confidence score. In order

to assess the localization accuracy of a system, cumulative distributions of Jesorsky’s deye metric are

reported (detection rate vs. deye). In a first set of experiments, we will compare FDLBP and FDHaar
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detectors in several conditions: controlled (XM2VTS standard set), uncontrolled lighting (XM2VTS

darkened set), realistic office scenario (BioID), facial occlusions and expression variation (Purdue),

uncontrolled environment (BANCA English). In a second set of experiments, we will only consider

FDLBP and show the effect of several parameters such as scanning or merging parameters, which

may affect detection performance, both in terms of accuracy and speed.

In the following experiments, we will consider that system A is significantly better than system

B, when system A will give statistically better results than system B with a confidence level of

99%, with a standard proportion test, assuming a binomial distribution for the errors, and using a

normal approximation.

2.5.1 LBP vs. Haar Face Localization Results

Evaluation on the XM2VTS database (standard set)

The deye cumulative distributions were collected for FDLBP and FDHaar face detectors. The XM2VTS

database has been recorded in well controlled conditions (uniform background and frontal lighting).

Both systems are supposed to give similar performance. Fig. 2.19(a) confirms this assumption. For

deye ≤ 0.255, FDLBP achieves 99.5% detection rate compared to 97.7% for FDHaar.

Evaluation on the XM2VTS database (darkened set)

The XM2VTS darkened set set has been recorded with the same setup than the standard set, but

with directional lighting respectively illuminating the left and the right side of the face. We ex-

pect that the resulting shadows on the face should more affect the FDHaar system, because of the

sensitivity to local variations of pixel values. However, Fig. 2.19(b) shows that both systems are

similarly affected (97.5% compared to 99.5% for FDLBP and 95.7% compared to 97.7% for FDLBP ).

Both deye curves are very close for deye ≤ 0.10 and FDLBP looks better for deye > 0.10, although not

significantly.

5Jesorsky et al. [39] consider a face found if deye ≤ 0.25
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Figure 2.19. Cumulative distributions of deye for FDLBP and FDHaar face detectors on standard and darkened sets
of the XM2VTS database.

Evaluation on the BioID database

Ten images have been excluded from the original set, when the face bounding box (as defined in

Fig. 2.11) was not fully included in the image. Fig. 2.20(a) depicts the deye cumulative distributions

for the BioID subset (1511 images). With regards to XM2VTS frontal and darken sets, the BioID

database was recorded in more realistic conditions: faces of different sizes, difficult back-light illu-

mination, complex background. For deye ≤ 0.25, FDLBP still achieves a high detection rate (98.7%)

and significantly outperforms FDHaar (91.2%).

Evaluation on the BANCA database (English corpus)

The BANCA database was designed to experiment face verification algorithms. Images were recorded

with several cameras, in complex background and lighting conditions. People are sometimes close

to the recording device or not looking at it, resulting in some distortion of the face. Fig. 2.20(b)

illustrates the robustness to these challenging conditions of FDLBP which obtains 98.2% detection

rate for deye ≤ 0.25. On the other hand, FDHaar performs much worse and only achieves 86.4%.

The realistic and challenging scenarios of BioID and BANCA databases underline the robustness

of FDLBP and the limitations of FDHaar.
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Figure 2.20. Cumulative distributions of deye for FDLBP and FDHaar face detectors on BioID and BANCA (English
corpus) databases.

Evaluation on the Purdue database

This database was designed to test the robustness of face recognition algorithms to changing illumi-

nation, facial expression and partial occlusions (scarf, glasses). Pictures were taken under strictly

controlled conditions. Faces are perfectly frontal on uniform white background. Fig. 2.21(a) shows

the localization for the whole database. For deye ≤ 0.25, FDLBP achieves 91.5% detection rate and

FDHaar 84.1%. This results are surprisingly quite low, considering the performance on the previous

challenging databases, such as BANCA or BioID. We then decided to partition the whole set into

three subsets: lighting, expression and occlusion which respectively contain faces with varying il-

lumination, facial expression and partial occlusion. Cumulative distributions of deye are reported

in Fig. 2.21. Both systems perform well (more than 97% for deye ≤ 0.25) on lighting and expression

subsets. On the occlusion subset, FDLBP only achieves a detection rate of 87.1%, while FDHaar

fails with a small 67.5%. Half of the images in the occlusion subset contain people wearing large

bright sun glasses, while the other half is composed of people wearing a scarf which covers the bot-

tom half of the face. On the scarf subset, FDLBP achieves 93.7% detection rate and FDHaar 82.0%,

while they respectively yield 80.4% and 52.9% on the glasses subset. We first remark that FDLBP

is significantly more robust to occlusion than FDHaar, which may be explained by the local descrip-

tion of LBP (Haar features cover larger face areas). We thus point out the significant performance

difference between glasses and scarf subsets. Both systems probably rely more on eye regions than

the mouth region for faces/nonfaces classification.
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Figure 2.21. Cumulative distributions of deye for FDLBP and FDHaar face detectors on the whole Purdue database,
as well as for lighting, expression and occlusion subsets.

2.5.2 Influence of Merging Parameters

Section 2.4.4 described the process of merging multiple overlapped detections in two steps: clus-

tering and merging. Two detections belong to the same cluster if they overlap by a factor φ. We

explained that if φ is too small, overlapped detections of the same cluster may be separated, while

if φ is too large, two close clusters may merge. Fig. 2.22(a) displays the deye cumulative distribution

on the XM2VTS database (standard set), for the FDLBP baseline system (φ = 0.5), as well as for

φ = 0.3 and φ = 0.7. If the detection rate for deye < 0.25 is not significantly different for the three

systems, the localization accuracy in the range 0 < deye < 0.20 varies.

We then compare two detectors with two different merging strategies. The baseline FDmean
LBP

averages the bounding box of the detections of each cluster. FDmax
LBP simply considers the detection of
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the cluster with the highest confidence score. Fig. 2.22(b) shows that FDmax
LBP is much less accurate

than the baseline system. While rarely described in the papers, the overlap merging process is not

a trivial task and may affect significantly the accuracy of the face detection.
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Figure 2.22. Cumulative distributions of deye for FDLBP face detector on the XM2VTS database (standard set).

2.5.3 Influence of the Size of the Training Set

Section 2.4.1 underlined the importance of the training set for appearance-based methods. This set

of experiments analyzes the influence of the size of the training set on the performance accuracy

of the FDLBP face detector. The baseline training set contains around 50.000 face samples. From

this initial set, five subsets have been created by randomly subsampling (without replacement) 500,

1.000, 5.000, 10.000 and 20.000 samples. Fig. 2.23(a) shows the cumulative deye distributions on the

XM2VTS database (standard set) for the baseline system (trained with 50.000 samples), as well as

for five systems trained with the five subsets. FD20.000
LBP , FD10.000

LBP and FD5.000
LBP present very similar

deye curves with respect to the baseline detector, while FD1.000
LBP performs clearly worse and FD500

LBP

fails. On the simple XM2VTS database, it seems that a baseline face detector can be trained with a

set of only 5.000 samples.

We repeat the experiment on the challenging BioID database to know whether the size of the

training set depends on the database. This assumption is verified in Fig. 2.23(b). A training set of

5.000 samples is clearly not enough to build a robust face detection model for such difficult database.

Even FD10.000
LBP or FD20.000

LBP perform significantly worse than the baseline system. In the literature,
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Figure 2.23. Cumulative distributions of deye for FDLBP face detector, respectively trained with 500, 1.000, 5.000, 10.000
and 20.000 samples on XM2VTS (standard set) and BioID databases.

little room is given to the experimental setup, and particularly to the training set preparation and

its effect on the system performance. Fig. 2.23 only shows the influence of the size of the training

set on the localization accuracy. The variability of the face samples is probably also very important.

In [15], Cristinacce showed that the number of virtual samples (see Section 2.4.1), generated from

original faces, affects the performance as well. As reported by Yang [111], we thus fully agree that

the same training set should be used to fairly compare two systems.

2.5.4 Time Constraints

Comparing two face detection algorithms in terms of performance accuracy is not an easy task, be-

cause localization accuracy may be affected by several factors such as the training set, the criterion

or the overlapped detections merging process. A comparison in terms of speed should also respect

some requirements. A least, experiments should be performed on a set of images (and not on a

single image) and the hardware characteristics such as computer CPU and RAM memory should

be described. It is also useful to note whether the reported time includes the image loading step or

not.

For window scanning based approaches, the detection duration can be expressed as a linear

function t(x) = Ax + B, where constant B includes the image loading/preprocessing step and the

postprocessing merging step, A is the number of subwindows in the whole image which are pro-

cessed by the detector, and x the average time needed by the detector to process a subwindow. B
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can generally not be compressed and x concerns the optimization of the face/nonface classifier (ar-

chitecture design for cascade-based approaches). We describe below some techniques to reduce the

number of subwindows A:

• scanning parameters: Increasing the scanning parameters (see Section 2.4.3) will decrease A,

but usually at the cost of a loss in localization accuracy. A trade-off has to be found in practice.

• pruning: fast preprocessing methods can quickly discard subwindows before processing by the

classifier. For instance, thresholding the mean and standard deviation of pixels may easily

rejects uniform or too bright/dark regions. Skin color or edge filtering cues may also help.

• scanning tricks: instead of a constant horizontal or vertical shift step between two consecutive

subwindows, the amount of the shift can depends on the confidence score of the previous

subwindow.

• scanning techniques: in localization mode (one face), starting at a given (central) location and

at a given scale may largely speed-up the detection of the face.

In practical applications, other factors have to be taken into account, such as hardware (acquisition

device, image processing controller), source code/compilation optimizations, parallelization of the

image search. However, these factors are usually out of the research scope.

2.6 Conclusion

In this chapter, we gave an overview of recent methods in automatic face detection. Special at-

tention has been paid to boosting-based methods, which have been the most effective so far. The

main limitations of these approaches consist in long training procedures and the design of optimal

cascade architectures. We also showed the advantages of LBP features compared to the traditional

Haar-like features:

• the higher discriminative power of LBP allows similar error rates with much fewer features.

An effective system only needs about 200 LBP features distributed on 3 or 4 stages instead

of several thousands of Haar-like features on more than 30 stages. The training procedure is

then much shorter and the cascade design easier.



40 CHAPTER 2. FRONTAL FACE DETECTION

• LBP features are more robust to local illumination changes as well as to partial occlusion.

Experiments on BioID and BANCA databases underlined the limitation of Haar-like features

in difficult lighting conditions.

• LBP features can be computed quickly and take advantage of the integral image technique.

The fundamental issue of performance evaluation has also been discussed. We pointed out the

necessity of a standard face criterion to determine what is a correctly detected face when report-

ing error rates. However, even with a unified criterion, comparing face detection algorithms is

still tricky, because the performance of a system is affected by a wide range of factors such as the

training set, the image scanning parameters or the process of merging the overlapped detections.

Furthermore, in real-life applications, not only the accuracy but also the speed of the face detection

may be crucial.

Frontal face detection is now mature enough to be used in many practical applications. However,

performances are not comparable with those obtained by humans. It is still challenging to detect

partially occluded faces in a crowd in bad lighting conditions. In order to handle such limitations,

further improvements should consider additional feature sets with complementary discriminative

properties. However, the main challenge in face detection is to deal with head pose variations. This

is the subject of the next chapter.



Chapter 3

Multiview Face Detection

In real-life applications, faces are most of the time not in frontal view. Even with a cooperative

subject (verification scenario) the face is usually not perfectly frontal. An effective detector should

then be able to detect faces of varying head poses, called multiview faces. This chapter addresses

the problem of multiview face detection and extends the frontal system presented in Chapter 2.

We will first review recent state-of-the art approaches to the multiview face detection task (Sec-

tion 3.1) and then present a novel architecture, based on a pyramid of detectors that are trained

for different views of the face (Section 3.2). Individual detectors are based on the boosting of Local

Binary Pattern (LBP) features. Overlapped detection merging and performance evaluation are also

discussed (Section 3.3). We show that the proposed system works in real-time and achieves high

performance on benchmark test sets, comparable to some state-of-the art approaches (Section 3.4).

We finally give some concluding remarks (Section 3.5).

3.1 Related work

Multiview face detection involves three types of head rotations: up-down nodding rotation (tilt),

in-plane rotation (roll) and frontal to profile out-of-plane rotation (pan). The different viewpoints

largely increase the variety of face appearance and make the detection of multiview faces much

more difficult than the detection of frontal faces. Detecting faces across multiple views is however

becoming a topic of growing interest. Usually, a divide-and-conquer strategy is adopted and multi-

41
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ple face models are trained individually for each view. Several architectures have been proposed:

• parallel: this structure involves applying all face models. A voting strategy is then used

to merge the output of each model which has detected a face. The main drawback of this

approach is that the computational cost linearly grows with the number of views (Fig. 3.1a).

• pose estimator + single model: this architecture can be seen as a decision tree structure.

The root node first tries to predict the view, and then the corresponding face model is applied.

This approach is much faster but may also be less accurate because it fully relies on the view

estimator (Fig. 3.1b).

• pyramid: a coarse-to-fine view-partition strategy is adopted. The top level is trained with

all views. In the next levels, the full range of views is partitioned into increasingly smaller

subranges and a classifier is trained for each subrange. If a sample is classified as a face, it

goes to the next level. Otherwise, it passes through the next classifier of the current level. If

the last classifier of a layer still does not accept the sample as a face, the sample is rejected and

the process stops. One drawback of this structure is that if a nonface sample passes a level, it

has to be sent to all the classifiers of the next level, which is time consuming (Fig. 3.1c).

Garcia and Delakis [24] proposed a monolithic approach which tries to model all face views

with one face template. Their system is based on a convolutional neural network architecture to

detect ±20◦ in-plane and ±60◦ out-of-plane rotated faces. The neural network consists of six locally

connected layers to extract elementary visual features. The first four layers contain a series of

planes where successive convolutions and subsampling operations are performed, while the last

two layers carry out the classification. The detector is trained using highly variable face patterns

artificially rotated by ±20◦, covering the range of ±60◦ out-of-plane. They reported high detection

rates with a particularly low level of false alarms, compared to other state-of-the-art approaches.

Rowley et al. [86] extended their frontal face detector based on neural networks to a 360◦ in-

plane rotation invariant system. They chose the pose estimator architecture. A multiclass neural

network is trained to determine the orientation of the input sample. Afterward, the sample is

rotated accordingly and processed by the frontal face detector.

In order to overcome the limitation of the image rotation step (computation cost), Viola and

Jones [41] proposed to train a face model for each view. The pose estimation is performed with
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a decision tree, designed to distinguish between 12 poses (subranges of 30◦). Each face model

is a cascade of boosted classifiers, following the same framework of their frontal face detection

system [105]. To deal with out-of-plane rotated faces, a second pose estimator is trained to detect

left and right profiles.

Y. Li et al. [47] also used the pose estimation strategy. They chose a face representation based on

Sobel filters. Pose is predicted with a Support Vector Machine in regression mode. Each individual

face model is a hybrid method of eigenfaces (to model the probability of face patterns) and Support

Vector Machine (to estimate the decision boundary). Because their method is computationnaly

expensive, they use motion and skin color pruning before applying the detector.

F

NF

F

NF

F

NF

F

NF

F

NF

F

NF

F

NF

F

NF

F

NF

F F FF

NF

NF

F F F

F

NF NF

NF NF NF NF

F

NF

F

NF

(2) pose estimator (decision tree)

(3) pyramid

(1) parallel

Figure 3.1. Different architectures of multiview face detection systems.
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S. Li and Zhang [46] introduced the pyramid architecture. Their system, reported as the first

real-time multiview face detection system, is based on an extended set of Haar-like features and on

a new boosting algorithm called FloatBoost. Their pyramid consists of 13 detectors distributed on

three levels. The detector of the top level deals with the full [−90◦; +90◦] out-of-plane range. This

range is partitioned into three subranges in the second level, and each subrange is again partitioned

three times in the third level. Each detector is robust to ±15◦ in-plane rotation. To increase the

in-plane range to ±45◦, the pyramid detector is applied on the original image as well as on two ±30◦

in-plane rotated images.

Wu et al. [107] proposed an improved version of the detector of Viola and Jones. RealAdaBoost

is used to train the cascades, composed of lookup tables of Haar-like features. They also remarked

that successive layers in the cascade are loosely correlated and suggested a nested structure where

the output of a given layer is used as the first weak classifier of the next layer. The in-plane range

is partitioned in 12 views and the out-of-plane range in 5 views. Wu et al. also chose the pose

estimation strategy. To predict the orientation, they computed the first six layers of each cascade

and selected the best score. Their method is thus an hybrid version of parallel and pose estimation

strategy.

Huang et al. [34] proposed a novel tree-structured detector. Again, the full range of views is

partitioned in smaller and smaller subranges. They explained that the pyramid architecture treats

all faces as a single class (a sample has to be sent to all the classifiers of the next level), which slows

down the detection process. They also pointed out that in the decision tree architecture, a node

works as a pose estimator and has to select one branch, which may result in a loss in accuracy. In

their proposed tree approach, each branching node is trained with a multiclass version of AdaBoost

which outputs a vector of binary values instead of a single value. Thus, there is no exclusive path

like for a decision tree. A sample may be sent to more than one child node. If all values of the

decision vector are equal to zero, the process stops and the sample is rejected. Huang et al. showed

significant improvements in both accuracy and speed and is currently one of the most effective

multiview face detectors.
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3.2 Proposed Multiview Face Detection System

Most of the previous approaches are based on the pose prediction strategy. While very fast, these

approaches fully rely on the pose estimator which may affect the accuracy of the detector. The

pyramid approach of Li and Zhang [46] does not focus on the diversity between face poses, but

consider all poses as the same class and try to separate them from nonfaces. This method is more

accurate but also slower. In this section, we propose an improved version of the pyramid detector

of Li and Zhang, which takes advantage of both the pose estimator and the pyramid architectures.

3.2.1 Multiview Face Detector

Our multiview face detector is designed to handle out-of-plane face rotations in the range of [−90◦; +90◦]

and in-plane face rotations in the range of [−67.5◦; +67.5◦]. The detector architecture, illustrated

in Figure 3.2, is composed of two levels. The top-level detector is trained with all views to quickly

reject as many nonfaces as possible. The second level consists of two modules: one to deal with out-

of-plane rotations and another one to deal with in-plane rotations. The face space is divided into 7

subspaces in the in-plane case and into 9 subspaces in the out-of-plane case, as shown in Fig. 3.3.

If a sample is not rejected by the top-level classifier, it goes through both modules of the second

level. At the top of both modules of the second level, a classifier, called a router, evaluates the sam-

Figure 3.2. Overview of the architecture of the multiview face detector.
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(a)

(b)

Figure 3.3. (a)In-plane and (b) out-of-plane view partitions.

ple. If both routers reject the sample, the process stops and the sample is classified as a nonface.

Otherwise, the router with the highest score wins and the sample goes through the corresponding

module. We will detail hereafter the architecture of the out-of-plane and in-plane modules.

3.2.2 Out-of-plane Face Detector

The out-of-plane module consists of 13 detectors distributed on 3 levels (Fig. 3.4). This architecture

is inspired by the pyramid of Li and Zhang [46], but differs in the structure of the bottom level. The

top-level detector is trained with face examples in the [−90◦; +90◦] out-of-plane view range. The sec-

ond level is composed of three detectors, respectively trained to detect faces in the [−22.5◦; +22.5◦],

[−90◦;−45◦] and [+45◦; +90◦] subranges. At the third level, one detector is built for each of the nine

poses, according to the partition illustrated in Figure 3.3. All the detectors of the out-of-plane mod-

Figure 3.4. Overview of the architecture of the out-of-plane detector. Each gray box represents a boosted cascade of
LBP features. The numbers beside each box indicate the number of weak classifiers per stage.
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ule are boosted cascades of LBP. For each detector, the number of stages as well as the number of

weak classifiers per stages are given in Fig. 3.4. These values have been chosen empirically. The

same training procedure used for frontal face detection and described in Section 2.2 is applied to

train these detectors.

Let us explain the path taken by a testing sample through the module. First, the sample is

processed by the top-level detector, designed to quickly reject nonfaces. If classified as a face, the

sample goes to the second level. The sample is sent to the third level if one detector of the second

level classifies it as a face; otherwise, the next classifier of the second level is applied. Detectors of

this level may be seen as decision tree nodes, because if accepted as a face, the sample is not sent to

all children node detectors but a subset of three of them. At the third level, the sample is processed

by at most the three detectors of the selected subset, but it is classified as a face as soon as one

detector accepts it. The pose of the sample corresponds to the view of the detector which classified

the sample as a face.

3.2.3 In-plane Face Detector

Instead of rotating the image to handle in-plane rotations like in [46] or [86], we use an architecture

similar to the out-of-plane detector. The in-plane module consists of 8 detectors distributed on 2

levels (Fig. 3.5). The top-level detector is trained with face examples covering the [−67.5◦; +67.5◦] in-

plane view range. At the second level, the range is divided into 7 views, according to the partitions

of Fig. 3.3 and one detector is independently trained for each view. As for the out-of-plane module,

all the detectors are trained with the boosting procedure described in Section 2.2. If a sample is not

rejected by the top-level detector, it sequentially goes through the detectors of the second level until

Figure 3.5. Overview of the architecture of the in-plane detector. Each gray box represents a boosted cascade of LBP
features. The numbers beside each box indicate the number of weak classifiers per stage.
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one detector classifies it as a face. Again, the pose of the sample is identified by the detector which

accepts the sample as a face.

3.3 Experimental Setup

3.3.1 Training Data

The top-level detector of the multiview pyramid-cascade was trained with faces covering the [−90◦; +90◦]

out-of-plane range and the [−67.5◦; +67.5◦] in-plane range. Let us describe it in more details.

Out-of-plane Training Data

Our multiview face detector is designed to handle out-of-plane face rotations in the range of [−90◦; +90◦].

This range is partitioned in 9 subranges. 4700 face samples from Feret [78], PIE [96] and Prima

Head Pose [26] databases were collected to create the +22.5◦, +45◦, +67.5◦ and +90◦ face sets. The

faces were mirrored to create the −22.5◦, −45◦, −67.5◦ and −90◦ face sets. Each face was manually

labelled, cropped according to a face model specific to each pose and subsampled to the size of 19x19

pixels. 15 virtual samples were added from each training face by slightly shifting, scaling, rotating

and mirroring the original sample, leading to a set of about 16000 training samples per pose. These

8 face training sets were used to train the 8 bottom detectors of the out-of-plane detector-pyramid

(the 9th detector is the frontal face detector). The 3 second-level detectors were trained with faces

respectively covering the view ranges of [−22.5◦; +22.5◦], [−90◦;−45◦] and [+45◦; +90◦]. A selection

of faces in the full range of [−90◦; +90◦] were used to train the top-level detector.

In-plane Training Data

Our multiview face detector is designed to handle in-plane face rotations in the range of [−67.5◦; +67.5◦].

This range is partitioned in 7 subranges. Each face set was created by rotating the training set used

for frontal face detection, respectively by −67.5◦, −45◦, −22.5◦, +22.5◦, +45◦, and +67.5◦. These 6

face training sets were used to train the 6 bottom detectors of the in-plane detector-pyramid (the

7th detector is the frontal face detector). The top-level detector was trained with a selection of faces

covering the full [−67.5◦; +67.5◦] in-plane range.
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Nonface Training Data

As for the frontal face detection system, nonfaces have been collected by scanning several hundreds

of images containing no face, potentially providing billions of nonface samples. This huge set has

been used to train all detectors of the multiview pyramid-cascade.

3.3.2 Benchmark Test Sets

CMU Rotated Test Set

This data set contains 50 gray-scale images with a total of 223 faces, of which 207 are rotated in

the [−67.5◦; +67.5◦] in-plane range. This set was collected by Rowley at CMU [86].

CMU Profile Test Set

This data set consists of 208 images with 441 faces of which 347 are profile views. They were

collected from various news Web sites at CMU by Schneiderman and Kanade [94].

Web and Cinema

These two sets were collected by Garcia and Delakis [24]. The Web test set contains 215 images with

499 faces. The images come from a large set of images that have been submitted to the interactive

demonstration of their system, available on the Web. The Cinema test set consists of 162 images

with 276 faces in challenging conditions (facial expressions, occlusion, complex background).

Sussex

This face database was collected by Jonathan Howell at the University of Sussex. It is composed

of 10 individuals with 10 orientations in the range of [0◦; +90◦], leading to a total of 100 gray-scale

images with 100 faces. The faces are surrounded by a simple background. This database can be

freely downloaded from: http://www.cogs.susx.ac.uk/users/jonh/.

3.3.3 Image Scanning

As for frontal face detection, the detector scans the test image at multiple locations and scales.

At each position, the subwindow is evaluated by the detector and classified as either a face or a
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nonface. If it is a face, the detector also provides the pose of the face, which is important for the

overlapped detection merging step.

3.3.4 Merging Overlapped Detections

In Section 2.4.4, we explained that multiple detections at different locations and scales may occur

around faces or face-like regions in the image. The same behavior happens for multiview face

detection. Moreover, these multiple detections may occur for several face poses. Merging overlapped

detections of different poses, like a −22.5◦ in-plane detection and a +45◦ out-of-plane detection,

would not make much sense. Hence, we propose the following method, illustrated in Figure 3.6, to

merge multiview overlapped detections:

Figure 3.6. Merging overlapped multiview detections. First, patterns which belongs to the same pose are merged.
Then, when several patterns from different poses overlap we choose the one with the highest score.

1. merging per pose: for each pose, detections are merged using the method described in Sec-

tion 2.4.4 for frontal faces. The method consists in a clustering step followed by a merging

step using a detection averaging strategy.

2. final merging: after pose-wise, a clustering step is applied to check whether merged detec-

tions overlap. If it happens, the merged detection with the highest confidence score wins.

The method is illustrated in Figure 3.7. Image (a) shows all the detections of the multiview face

detector (multiple detections for several poses). The merging-per-pose step is applied and the re-

sulting merged detections per pose are displayed on image (b). Multiple detections appear around

some faces, meaning that these faces have been detected by several detectors of different poses. The

best-win merging strategy is applied for each cluster and final detections are drawn in image (c).
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(a)

(b)

(c)

Figure 3.7. Output of the multiview detector-pyramid (a) before merging, (b) after merging the overlapped detections
per pose and (c) after final merging.
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(a) correct detections

(b) incorrect detections

Figure 3.8. Examples of correct and incorrect detections.

3.3.5 Performance Evaluation

As for frontal face detection, the performance of a multiview face detector is measured in terms of

detection rate (proportion of faces detected) and number of false acceptances (background patterns

badly classified as faces). In Section 2.3, we pointed out that a clear definition of what a correctly

detected face means (face criterion) is a fundamental issue. If Jesorsky et al. [39] introduced an

error measure to assess the quality of a frontal face detection, no such measure exists for multiview

face detection. In this work, we account for a correct detection if both the mouth and eyes are

included in the bounding box, without too much background (Fig. 3.8). However, we are aware that

the evaluation is subjective and does not lead to completely fair comparisons with other works.
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3.4 Multiview Face Detection Results

In this section, some examples of images with detected faces are included. Table 3.1 gives the color

code we use to differentiate the face poses.

Table 3.1. Bounding box color codes to differentiate face poses.
Frontal

Bounding Box Color Pose

Red 0◦

In-plane

Bounding Box Color Pose

Green −67.5◦, −45◦, −22.5◦

Yellow +22.5◦, +45◦, +67.5◦

Out-of-plane

Bounding Box Color Pose

Seagreen −90◦

Orange −67.5◦, −45◦, −22.5◦

Cyan +22.5◦, +45◦, +67.5◦

Blue +90◦

3.4.1 Multiview Detector vs. Frontal Detector

Table 3.2 compares the detection rate and the number of false alarms between the baseline frontal

face detector and the multiview face detector, on the CMU-MIT Frontal Test Set (Section 2.4.2).

The proposed system achieves a significantly higher detection rate (91.7%) than the frontal detector

(84.6%) with a similar number of false alarms. Indeed, even though the CMU-MIT set contains only

frontal faces, some of them can be slightly rotated in-plane or out-of-plane (see Fig. 3.9 for some

examples). The multiview face detector is by definition more robust to variation in orientation and

pose, but on the other hand it is also twice as slow.

Table 3.2. Detection rate (DR) and number of false alarms (FA) for our frontal and multiview face detectors on the
CMU-MIT Frontal Test Set.

System

CMU Frontal Test Set

DR FA

Baseline Frontal Face Detector
84.6% 435

Multiview Face Detector
91.7% 441
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Figure 3.9. Some results obtained on the CMU-MIT Frontal Test Set. All 44 faces have been detected (with 12 false
alarms).
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3.4.2 In-plane and Out-of-plane Face Detection Results

Table 3.3 compares the detection rate and the number of false alarms between the multiview face

detector and two state-of-the art detectors on the CMU Rotated Test Set and the CMU Profile Test

Set.

Our multiview face detector achieves a higher detection rate (92.3%) than Viola and Jones de-

tector (89.7%), but with a higher number of false alarms. Viola and Jones trained their detector to

detect 12 different poses covering the full 360◦ in-plane range, whereas our multiview face detec-

tor was trained to detect 16 different poses in-plane and out-of-plane, covering only 135◦ in-plane.

Thus, the results can not fairly be compared since both detectors are not trained to detect the same

types of faces. Some examples are presented in Fig. 3.10.

Our multiview face detector achieves a much lower detection rate (53.1%) than Schneiderman

and Kanade detector (92.8%) with a lower number of false alarms. The low performance of our

multiview face detection system on this test set can have several reasons. First, Schneiderman and

Kanade trained their detector to cover the full 180◦ out-of-plane range, when our multiview face

detector also detects faces in the [−67.5◦; +67.5◦] in-plane range. Moreover, their detector only dis-

tinguishes frontal, from left or right profile, whereas the proposed system estimates the pose more

precisely: 16 poses are tested where Schneiderman and Kanade only test 3 poses. Furthermore,

Table 3.3. Multiview face detection rate (DR) and number of false alarms (FA) for our multiview face detector and two
baseline detectors on (a) CMU Rotated Test Set and (b) CMU Profile Test Set.

(a)

System
CMU Rotated Test Set

DR FA

Multiview Face Detector

(in-plane and out-plane)
92.3% 342

Viola and Jones [105]

(in-plane only)
89.7% 221

(b)

System
CMU Profile Test Set

DR FA

Multiview Face Detector

(in-plane and out-plane)
53.1% 416

Schneiderman and Kanade [94]

(out-plane only)
92.8% 700
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Figure 3.10. Some results obtained on the CMU Rotated Test Set. All 18 faces have been detected (with 8 false alarms).

many faces in the test set are very small, since their size is close to 19 × 19 pixels, corresponding

to the limit of the detector. Finally, the proposed approach is a lot faster. Indeed, it takes about 1

minute to process a 320 × 240 pixel image with their detector, whereas our multiview face detector

is real-time. However, as previously with the CMU Rotated Test Set, the results can not be fairly

compared since both detectors are not trained to detect the same types of faces. Some examples

from the CMU Profile Test set are shown in Fig. 3.11.
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Figure 3.11. Some results obtained on the CMU Profile Test Set. 23 faces have been detected, while 4 faces have been
missed (with 17 false alarms).
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3.4.3 Multiview Face Detection Results

Table 3.4 compares the detection rate and the number of false alarms between the multiview face

detector and the one proposed by Garcia and Delakis [24] on the Web and Cinema Test Sets. Both

detectors are multiview detectors, by contrast to Viola and Jones and Schneiderman and Kanade

detectors. This allows a better comparison. Our multiview face detector achieves a lower detection

rate on the Web Test Set (94%) when compared to Garcia and Delakis detector (98%), but a similar

detection rate on the Cinema Test Set (95.3%). On both test sets, our multiview face detector

obtains many more false alarms. However, Garcia and Delakis trained their detector on [−20◦; +20◦]

in-plane and [−60◦; +60◦] out-of-plane. The view range covered is thus narrower than with our

multiview detector, since the proposed system covers [−67.5◦; +67.5◦] in-plane and [−90◦; +90◦] out-

of-plane. Moreover, they do not estimate the pose and our system is faster. Fig. 3.12 shows some

results obtained on these test sets.

Table 3.4. Multiview face detection rate (DR) and number of false alarms (FA) for our multiview face detector and
Garcia and Delakis detector on Web and Cinema Test Sets.

System
Web

DR FA

Cinema

DR FA

Multiview Face Detector 94% 743 95.3% 682

Garcia and Delakis [24] 98% 108 95.3% 104
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(a)

(b)

Figure 3.12. Some results obtained on (a) Web and (b) Cinema Test Sets. All faces have been detected (but one for
the upper right Cinema image), at the cost of 24 false alarms for Web images and 26 false alarms for Cinema images.
Note how the false alarms in yellow in the lower right Cinema image look like faces.
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3.4.4 Pose Estimation

For each detection, the multiview face detector also estimates the pose. The pose estimation is

evaluated on the Sussex face database (Fig. 3.13). However, only the estimation of the out-of-plane

pose can be evaluated on this database, since it only contains faces rotated out of the image plane.

The 100 images were mirrored (Fig. 3.13 (b)) in order to obtain faces covering the [−90◦; +90◦] out-

of-plane view range, leading to a total of 200 images with 10 images per pose (20 for the frontal

pose). The system achieves a detection rate of 98.5% with 10 false alarms and approximately 75%

of the poses which are correctly estimated. Table 3.5 details the number of detections per pose and

gives the percentage of correctly estimated poses. The pose of a face is correctly estimated if the

difference between its angle and the one given by the detector does not exceed +22.5◦. As each

bottom detector of the detector-pyramid is trained to be robust to pose variations, the ranges that

they cover overlap. Thus, the poses between ±60◦ and ±30◦ are those where there are most of the

errors.

Table 3.5. Out-of-plane pose estimation on Sussex Face Database. The bold numbers correspond to the poses
considered as correctly estimated.

Number of correct detections / detector view Correct

Pose -90˚ -67.5˚ -45˚ -22.5˚ 0˚ 22.5˚ 45˚ 67.5˚ 90˚ Pose Estimation

-90˚ 10 - - - - - - - - 100%

-80˚ 9 1 - - - - - - - 100%

-70˚ 6 2 1 - - - - - - 80%

-60˚ 5 3 1 1 - - - - - 40%

-50˚ 2 3 4 - 1 - - - - 70%

-40˚ - 1 4 3 1 - - - - 70%

-30˚ - 1 4 1 4 - - - - 50%

-20˚ - 1 1 1 7 - - - - 80%

-10˚ - - - 1 9 - - - - 100%

0˚ - - 1 1 16 1 1 - - 90%

10˚ - - - 1 7 - 2 - - 70%

20˚ - - - - 6 2 2 - - 80%

30˚ - - - - 6 - 4 - - 40%

40˚ - - - - 2 - 6 1 1 60%

50˚ - - - - 1 - 1 5 3 60%

60˚ - - - - - - 2 4 4 60%

70˚ - - - - - - 1 1 8 90%

80˚ - - - - - - 1 1 8 90%

90˚ - - - - - - - - 9 90%
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(a) (b)

Figure 3.13. Out-of-plane pose estimation example (a) left profile (b) right profile. All face pose have been perfectly
estimated, without any false alarm.
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3.5 Conclusion

In this chapter, we extended the frontal face detection system described in Chapter 2 in order to

deal with faces rotated in-plane and out-of-plane. We proposed a novel architecture based on an

improved version of the pyramid detector of Li and Zhang [46]. The system is designed to detect

rotated faces in [−90◦; +90◦] out-of-plane range and [−67.5◦; +67.5◦] in-plane range. As for frontal

faces, the multiview detector is based on the boosting of LBP features which have shown to be

robust to illumination changes. We showed that the proposed system achieves high performance on

benchmark test sets, comparable to some state-of-the art approaches. The systems handles 16 face

poses, but it is only twice slower than the frontal face detector, and can thus work in real-time.

One limitation of our system is the number of false acceptances. We see two main directions

to cope with this limitation. First, a post-processing stage could be added to reject most false

alarms while keeping a high detection rate. This stage should use another feature space. This

step would however slow down the detection process. Second, the overlapped detections merging

strategy could be improved. Instead of first merging per pose and then applying a best-win strategy

to the resulting overlapped detections, a more relaxed constraint may be considered. For instance,

if a subwindow is classified as a face for pose α, one could consider the score (confidence) of the two

detector adjacent to detector α. This information may help to reject false alarms.

Real-time frontal face detection in controlled conditions (simple background, uniform lighting)

is well solved. Facial expressions, partial occlusions (glasses) or small pose variations around the

frontal pose should also be handled, providing the face appearance variability has been introduced

in the training set. For unconstrained conditions (bad lighting, cluttered background), current

systems still achieve good enough performance for many practical applications.

However, multiview face detection is still a challenging topic, even in controlled scenarios and

especially if real-time is needed. Face appearance variability due to lighting or facial expression

is even larger for profile views than for frontal view. Furthermore, most current algorithms rely

on a pose estimation strategy which is a difficult task in itself and produces many false alarms. If

a precise head pose estimation is required, other techniques, such as particle filtering [2] could be

employed. However, they do not work in real-time. In conclusion, more research is still needed in

order to achieve robust multiview face detection.



Chapter 4

Face Verification Using Adapted

Local Binary Pattern Histograms

Face verification is the second module of the automatic face verification system illustrated in Fig. 1.1.

In this chapter, we propose a novel generative approach for face verification, based on a Local Bi-

nary Pattern (LBP) description of the face. A generic face model is considered as a collection of

LBP-histograms. A client-specific model is then obtained by an adaptation technique from this

generic model under a probabilistic framework. We compare the proposed approach to standard

state-of-the-art face verification methods on two benchmark databases. We also compare our ap-

proach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the

verification task.

This chapter is organized as follows. First, we review some previous approaches to the face

verification task (Section 4.1) and then introduce a new generative method based on the maximum

a posteriori adaptation of local feature histograms (Section 4.2). Performance evaluation for face

verification and benchmark databases with their protocol are also presented (Section 4.3). We

then compare the proposed approach to state-of-the-art face verification methods, for manual and

automatic face localization (Section 4.4). Finally, we give some concluding remarks and discuss

some possible future ideas (Section 4.5).

63
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4.1 Related Work

A face verification system involves confirming or denying the identity claimed by a person (one-

to-one matching). In the verification mode, people are supposed to cooperate with the system (the

claimant wants to be accepted). The main applications are access control systems, such as computer

log-in, building gate control or digital multimedia access. Face verification has been widely studied

and is performing well in controlled lighting environment and on frontal faces. In real-world ap-

plications (unconstrained environment and non-frontal faces), face verification does not yet achieve

efficient results. Besides the pose of the subject, a major difficulty comes from the appearance vari-

ability of a given identity due to facial expressions, lighting, facial features (mustaches, glasses,

make-up or other artefacts) or even the hair cut and skin color. As depicted in Fig. 1.1, the face

verification module is composed of two steps: feature extraction and feature classification.

4.1.1 Feature Extraction

The main challenge of face verification is to find relevant facial features which best discriminate

individuals, but are robust to intra-personal face appearance variability. In order to allow fast

processing, features should also be easy and fast to extract. Many features have been proposed for

face verification. Among them, we can distinguish holistic and local facial representation.

Holistic facial representation: Holistic approaches consider the face as a whole and repre-

sent it by a single feature vector. The most popular methods include Principal Component Analysis

(PCA) [101] and its extensions (for instance dual PCA [69] or probabilistic PCA [100]), Indepen-

dent Component Analysis (ICA) [4] and Linear Discriminant Analysis (LDA) [52]. Some works do

not perform dimensionality reduction and directly rely on pixel values [58]. Holistic approaches

also include methods which locally extract features in block regions, such as DCT [12], but which

then concatenate all block features in one single high dimensional feature vector. Holistic methods

require a rigid face alignment.

Local facial representation: Approaches that decompose the face into an ensemble of block

regions have reported better performance than holistic approaches and have shown a better robust-

ness against partial occlusions [62] and face localization errors (see Chapter 5). Gabor filters [95]

and DCT [91, 11, 53] are the main representative features of local approaches.
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4.1.2 Classification

Given the feature representation of a face sample, the classification step aims to compute a score for

the sample and, according to a decision threshold, accept or reject the sample. Similarity measure

methods, such the Normalized Correlation (NC) [48], are the most simple and popular classifiers.

More complex statistical models such as Neural Networks (NN) [57] or Support Vector Machines

(SVM) [42] are also used. NC, NN or SVM are discriminative approaches. For each client, two

training sets are collected: one containing client examples and another one containing examples

of as many other identities as possible. The classifier is trained to best separate both data sets.

The main limitation of these approaches comes from the small amount of available training data

in practice which makes difficult the design of such models. Recently, it has been shown that

generative approaches such as Gaussian Mixture Models (GMMs) [12] and Hidden Markov Models

(HMMs) [71, 10] were more robust to automatic face localization than the above discriminative

methods. A generative approach computes the likelihood of an observation (holistic) or a set of

observations (local) given a client model and a world model. The client model is trained only with

client data, while the world model is built with data from as many other identities as possible.

4.2 Proposed Approach

4.2.1 Face Representation with Local Binary Patterns

The LBP operator and its extensions have been presented in Section 2.2.1. This operator is defined

as an ordered set of binary comparison between the intensity of the center pixel and the pixels in a

defined neighborhood. It is then unaffected by any monotonic gray-scale transformation which pre-

serves the pixel intensity order in a local neighborhood. Due to its texture discriminative property

and its very low computational cost, LBP is becoming very popular in pattern recognition.

In [1], Ahonen proposed a face recognition system based on a LBP representation of the face.

The individual sample image is divided into R small non-overlapping block regions of same size.

Histograms of LBP codes Hr, with r ∈ {1, 2, . . . , R} are calculated over each block and then concate-

nated into a single histogram representing the face image.
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Figure 4.1. LBP face description with three levels of information: pixel level (LBP codes), region level (local histograms),
image level (concatenated histogram).

A block histogram can be defined as:

Hr(i) =
∑

x,y∈blockr

I(f(x, y) = i), i = 1, ..., N, (4.1)

where N is the number of bins (number of different labels produced by the LBP operator), f(x, y) the

LBP label 1 at pixel (x, y) and I the indicator function. This model contains information on three

different levels (Fig. 4.1): LBP code labels for the local histograms (pixel level), local histograms

(region level) and a concatenated histogram which builds a global description of the face image

(image level). Because some regions are supposed to contain more information (such as eyes),

Ahonen propose an empirical method to assign weights to each region. For classification, a nearest-

neighbor classifier is used with Chi square (χ2) dissimilarity measure ([1]).

Following the work of Ahonen, Zhang et al. [116] underlined some limitations. First, the size

and position of each region are fixed which limits the size of the available feature space. Second,

the weighting region method is not optimal. To overcome these limitations, they propose to shift

and scale a scanning window over pairs of images, extract the local LBP histograms and compute

a dissimilarity measure between the corresponding local histograms. If both images are from the

same identity, the dissimilarity measure are labelled as positive features, otherwise as negative

features. Classification is performed with AdaBoost learning, which solves the feature selection and

classifier design problem. Optimal position/size, weight and selection of the regions are then chosen

by the boosting procedure. Comparative study with Ahonen’s method showed similar results. Zhang

et al.’s system uses however much less features (local LBP histograms).

1Note that LBP (x, y), the LBP operator value, may not be equal to f(x, y) which is the label assigned to the LBP operator

value. With the LBP u2

P,R
operator, for instance, all non-uniform patterns (cf. Section 2.2.1) are labelled with a single label.
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4.2.2 Model Description

In this chapter, we propose a new generative model for face verification, based on a LBP description

of the face. Sample images are divided in R non-overlapping block regions of same size. This block

by block basis is mainly motivated by the success of some recent works [53, 91, 10]. Similar to [1],

a histogram of LBP codes is computed for each block. However, this histogram is not seen as a

static observation. We instead consider it as a probability distribution. Each block histogram is

thus normalized:
∑

i Hr(i) = 1, where r ∈ {1, 2, . . . , R}.

Given a claim for client C, let us denote a set of independent features X = {xr}
R
r=1, extracted

from the given face image. If θC is the set of parameters to be estimated from sample X, we can

define the likelihood of the claim coming from the true claimant C as:

P (X|θC) =

R
∏

r=1

p(xr|θC) (4.2)

=

R
∏

r=1

p(xr|θC1
, . . . , θCR

) (4.3)

=

R
∏

r=1

p(xr|θCr
), (4.4)

assuming that each block is independent and that θC can be decomposed as a set of independent

parameters per block (θC1
, . . . , θCR

).

The next important step consists in choosing the function to estimate the likelihood functions

p(xr|θCr
). We chose a very simple and computationally inexpensive non parametric model: his-

togram of LBP codes (Fig. 4.2). xr = {lk}
K
k=1 is thus defined as a set of K labelled LBP code

observations, where K is the maximum number of kernels which can be computed in the block by

the LBP operator. This value is constant because all blocks have the same size. Assuming that each

LBP code observation is independent, we can thus develop further:

P (X|θC) =

R
∏

r=1

p(xr|θCr
) (4.5)

=

R
∏

r=1

p(l1, . . . , lK |θCr
) (4.6)

=

R
∏

r=1

K
∏

k=1

p(lk|θCr
) (4.7)
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Figure 4.2. Client model composed of histogram of LBP codes.

where p(lk|θCr
) = Hr

C(lk), then:

P (X|θC) =
R

∏

r=1

K
∏

k=1

Hr
C(lk) (4.8)

4.2.3 Client Model Adaptation

In face verification, the available image gallery set of a given client is usually very limited (one

to five images). To overcome this lack of training data, adaptation methods have been proposed,

first for speaker verification [81] and then adapted for face verification [91, 10]. They consist in

starting from a generic model and then adapting it to a specific client. This generic model, referred

to as world model or universal background model, is trained with a large amount of data, generally

independent of the client set, but as representative as possible of the client population to model.

The most used technique of incorporating prior knowledge in the learning process is know as Maxi-

mum A Posteriori (MAP) adaptation [25]. MAP assumes that the parameters θC of the distribution

P (X|θC) is a random variable which has a prior distribution P (θC). The MAP principle states that

one should select θ̂C such that it maximizes its posterior probability density, that is:

θ̂C = arg max
θC

P (θC |X)

= arg max
θC

P (X|θC) · P (θC). (4.9)

Moreover, one can simplify further without loss of performance by using a global parameter to tune

the relative importance of the prior. The parameter updating can be described from the general
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Figure 4.3. Illustration of the client model adaptation.

MAP estimation equations using constraints on the prior distribution presented in [25]:

Ĥr
C(lk) = αHr

W (lk) + (1 − α)Hr
C(lk) (4.10)

where Hr
W (lk) is the feature value (bin lk of the histogram of block r) of the world model (prior),

Hr
C(lk) is the current estimation (client training data) and Ĥr

C(lk) is the updated feature value

(Fig. 4.3). The weighting factor α is chosen by cross-validation. The client model is thus a combina-

tion of parameters estimated from an independent world model and from training samples. After

adaptation, each block histogram Ĥr
C is normalized to remain a probability distribution.

4.2.4 Face Verification Task

Let us denote θC the parameter set for client model C, θW the parameter set for the world model

and a set of feature X. The binary process of face verification can be expressed as follows:

Λ(X) = log P (X|θC) − log P (X|θW ) (4.11)

where P (X|θC) is the likelihood of the claim coming from the true claimant and P (X|θW ) is the

likelihood of the claim coming from an impostor. Given a decision threshold τ , the claim is accepted

when Λ(X) > τ and rejected when Λ(X) < τ . P (X|θ.) is computed using Eq.4.8.
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4.3 Experimental Setup

4.3.1 Databases and Experimental Protocols

Face verification experiments will be carry out on two popular, publicly available databases: XM2VTS [67]

and BANCA [3]. Both databases are associated with a well defined protocol which allows fair com-

parisons between verification algorithms. Each protocol divides the subject into three groups: the

training set used to build the client models, the validation set (called evaluation set in the XM2VTS

protocol and development set in the BANCA protocol) used to select hyper-parameters and deci-

sion thresholds, and the test set (called evaluation set in the BANCA protocol) used to evaluate the

performances.

The XM2VTS database

The XM2VTS database [67] has been designed for multi-modal biometric authentication. It con-

tains synchronized image and speech data recorded on 295 subjects during four sessions taken at

one month intervals. Two shots per session were extracted from the video, resulting in 2360 im-

ages, which represent the XM2VTS standard set. Each color image of size 720x576 contains one

person on a uniform blue background and in controlled lighting conditions. Intra-personal vari-

ability mainly comes from expression changes and time elapse between sessions (hair cut, glasses).

Some examples are proposed in Fig. 4.4. For each identities, 4 additional images have been taken

with left/right side directional lighting. This set of 1180 images is called darkened set and is used

to test the robustness to illumination. Fig. 4.5 shows some examples.

The Lausanne protocol [55] associated with the XM2VTS database divides the 295 subjects into

200 clients and 95 impostors (20 for the evaluation set and 70 for the test set), and proposes two

configurations. In configuration I (LP1), the first image of the three first sessions compose the

training set, the second image of the same sessions are used for validation and images from the

fourth session are used to test the system. In configuration II (LP2), all images of sessions one

and two are used for training, the third session constitutes the validation set and the last session

is used to test the system. Experiments on the darkened set follow the Lausanne protocol for the

training and validation sets, but used the darkened images as test set. The darkened set serves to

analyze the robustness to illumination changes.
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Figure 4.4. Example of images from the XM2VTS (standard set), for three subjects in different sessions recorded over a
period of 5 months.

The BANCA database

The purpose of the European project BANCA [3] was to record multi-modal (face and speech) data

for biometric person authentication. Data has been acquired in four countries, following the same

protocol. For each corpus (English, French, Spanish and Italian), 52 people (half men and half

women) participated in 12 recording sessions in different scenarios (controlled, adverse and de-

graded). Each session contains two sets of five shots: one set is used for a true client access and

the other one for an impostor attack. Whereas XM2VTS database contains face images in well con-

Figure 4.5. Example of images from the XM2VTS (darkened set).
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Figure 4.6. Examples of images from the BANCA database. The left column represents images from the controlled con-
dition, the middle column corresponds to degraded condition and the right column corresponds to adverse condition.

trolled conditions (uniform blue background), BANCA is a much more challenging database with

face images recorded in uncontrolled environment (complex background, difficult lightning condi-

tions). Some examples are given in Fig. 4.6.

For each corpus, the 52 subjects are split in two groups (g1 and g2) of 26 identities (13 males

and 13 females), used alternatively as validation and test set. The BANCA protocol [3] defines

seven configurations: Matched Controlled (Mc), Matched Degraded (Md), Matched Adverse (Ma),

Unmatched Degraded (Ud), Unmatched Adverse (Ua), Pooled test (P) and Grand test (G). For each

configuration, the protocol specifies which images are used for training and testing.

4.3.2 Performance Evaluation

A verification system makes two types of errors: false acceptances (FA), when the system accepts

an impostor or false rejections (FR), when the system rejects a client. To be independent on the dis-

tribution of client and impostor accesses, the performance is measured in terms of false acceptance
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rate (FAR) and false rejection rate (FRR), defined as follows:

FAR =
number of FAs

number of impostor accesses
(4.12)

FRR =
number of FRs

number of true claimant accesses
(4.13)

Generally, the Half Total Error Rate (HTER) is reported to assess the performance of a verification

system:

HTER =
FAR + FRR

2
(4.14)

However, because FAR and FRR are related (decreasing one means increasing the other), a more

useful measure, called Weighted Error Rate (WER), is used in practice:

WER(τ∗) = ωFAR(τ∗) + (1 − ω) FRR (τ∗) (4.15)

where ω ∈ [0, 1] is set for a specific situation and τ∗ is the threshold that minimizes the WER for a

given ω. This FAR vs. FRR trade-off may be seen as a trade-off between level of security (controlled

by the FAR) and usability (controlled by the FRR). Note that to correspond to a realistic situation,

τ∗ should not be chosen (a posteriori) on the test set, but (a priori) on the validation set.

In order to illustrate the FAR vs. FRR trade-off, the Receiver Operating Characteristics (ROC)

curve [103], which plots FRR as a function of FAR, is often reported in the literature. Sometimes

the Detection Error Tradeoff (DET) [61] curve, which is a non-linear transformation of the ROC

curve, is preferred for easier comparison. Recently, Bengio et al. [7] observed that these curves

can be misleading, because, they do not take into account that, in real life, the threshold has to be

selected a priori. Instead, they propose the Expected Performance Curve (EPC). For each value of ω

in Equation 4.15, the threshold τ∗ is first found on the validation set; the HTER is then found on

the test set and is plotted as a function of ω. The EPC may be seen as an unbiased version of the

ROC curve.

In the following sets of experiments, we will only report HTERs, with the decision threshold

chosen a priori on the validation set at Equal Error Rate (i.e. for FAR = FRR). ROC curves or

EPCs are practically useful to compare systems which have very similar performances, and select
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the best system for a particular operating point.

4.3.3 The Proposed LBP/MAP Face Verification System

For both XM2VTS and BANCA databases, face images are extracted to a size of 84 × 68 (rows ×

columns), according to the eye positions, either provided by the groundtruth (manual localization)

or by a face detection system (automatic localization). The cropped faces are then processed with

the LBPu2
8,2 operator (N = 59 labels). The resulting 80× 64 LBP face images do not need any further

lighting normalization, due to the gray-scale invariant property of LBP operators. In a block by

block basis, the face images are decomposed in 8 × 8 blocks (R = 80 blocks). Histograms of LBP

codes are then computed over each block r and normalized (
∑

i Hr(i) = 1, where i ∈ {1, 2, . . . , N}).

For experiments on the XM2VTS database, we use all available training client images to build

the generic model. For BANCA experiments, the generic model was trained with the additional

set of images, referred to as world data (independent of the subjects in the client database). For

all experiments, the adaptation factor α of Eq. 4.10 (client model adaptation) is selected on the

validation set.

For comparison purpose, we implemented the systems of Ahonen [1] and Zhang [116], briefly

described in Section 4.2.1. Similarly, we used a 8 × 8 block decomposition and computed LBP

histograms for each block with the LBPu2
8,2 operator.

4.4 Face Verification Results

4.4.1 Manual Face Localization

Results on the XM2VTS Database

Table 4.1 reports comparative results for Ahonen and Zhang systems, our proposed LBP/MAP his-

togram adaptation approach, as well as for two standard state-of-the-art methods. LDA/NC, as

described in [66], combines Linear Discriminant Analysis with Normalized Correlation (holistic

representation of the face), while DCT/GMM [12] is a generative approach based on a modified

version of the Discrete Cosine Transform and Gaussian Mixture Models (local description of the

face).
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Table 4.1. HTER performance comparison (in %) for two state-of-the-art methods (LDA/NC and DCT/GMM), Ahonen
and Zhang systems and our proposed LBP/MAP histogram adaptation approach, on Configuration I of the XM2VTS
database (standard set and darkened set), with manual face localization.

Models Test sets

standard set darkened set

LDA/NC 1.84 22.88

DCT/GMM [12], [66] 1.97 44.34

LBP Ahonen 3.40 22.56

LBP Zhang 3.94 35.61

LBP/MAP 1.42 12.76

Standard set. We first remark that our method obtains state-of-the-art results. The main ad-

vantage of LBP/MAP is its very simple training procedure (only one hyper-parameter, the map fac-

tor). Training PCA and LDA matrices takes time (several hours) and is not trivial (initial dataset,

data normalization, % of variance). Training GMMs is neither straightforward (choice of num-

ber of gaussians, iteration, variance floor factor, etc). We also note that compared to LDA/NC or

DCT/GMM, LBP/MAP does not need any lighting normalization preprocessing. Compared to the

two other LBP methods, LBP/MAP performs clearly better. However, it must be noted that these

methods have been originally designed for face identification task. We also point out that as re-

ported in [116] for identification, Ahonen and Zhang methods give similar results.

Darkened set. The models have been trained with face images in well controlled condition (uni-

form frontal lighting). It is then not surprising that all verification systems perform clearly worse

on the darkened set. The best performance (12.76% HTER) is achieved by our proposed LBP/MAP

approach (12.76% HTER), without any lighting normalization preprocessing. The robustness to

illumination comes from the LBP face representation, but also from the client model training pro-

cedure, considering the score of LBP Ahonen (22.56% HTER). Then follows the LDA/NC system

(22.88% HTER) which photometrically normalized the images using histogram equalization. On the

other hand, LBP Zhang (35.61% HTER), based on boosted overlapped blocks of different size, fails

on the darkened set. The histogram equalization preprocessing of the DCT/GMM (44.34% HTER)

does not seem to help. The authors [66] also tried the illumination normalization model proposed

by Gross and Brajovic [27] before DCT/GMM and reported a much better 17.15% HTER. However,

it is not trivial to find the optimal parameters of this model [32] which is also computationally

expensive.
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Results on the BANCA Database

Table 4.2 reports results from the same systems than those in Table 4.1, but the LBP Zhang sys-

tem. This is because Huang et al. [37] recently proposed an improved version of Zhang et al. sys-

tem [116], based on a modified version of the boosting procedure called JSBoost, and provided re-

sults on BANCA. We then denote this method LBP/JSBoost. Unfortunately they only gave results

with Protocol G.

Table 4.2. HTER performance comparison (in %) for two state-of-the-art methods (LDA/NC and DCT/GMM), Ahonen
and LBP/JSBoost systems and our proposed LBP/MAP histogram adaptation approach, for Protocol Mc, Ud, Ua, P and
G of the BANCA database, with manual face localization. Boldface indicates the best result for a protocol.

Models Protocols

Mc Ud Ua P G

LDA/NC [87] 4.9 16.0 20.2 14.8 5.2

DCT/GMM [10] 6.2 23.7 17.6 18.6 -

LBP Ahonen 8.3 14.3 23.1 20.8 10.4

LBP/JSBoost [37] - - - - 10.7

LBP/MAP 7.3 10.7 22.6 19.2 5.0

Looking at the last three rows of Table 4.2, we notice again that our generative method performs

better that the two other LBP-based methods for all conditions. On protocol G, where more client

training data is available, LBP/MAP clearly outperforms the improved version of Zhang system

(LBP/JSBoost).

The LDA/NC model obtains the best result in matched condition (Mc). For uncontrolled envi-

ronment, LBP/MAP shows the best results in degraded condition (Ud). This is certainly due to

the illumination invariant property of LBP features. Indeed, in controlled (Mc) and adverse (Ua)

conditions, the lighting is almost uniform on the faces, whereas in degraded condition, the left part

of most of the faces are illuminated.

In adverse condition, the recording camera was below the horizontal plan of the head. Moreover,

people were not really looking at the camera, leading to a distortion effect. The local representation

of the face in the DCT/GMM model can probably explain why this approach outperforms the other

holistic models2. Finally, it is interesting to notice that no single model appears to be the best one

in all conditions.

2Although based on local histograms, all three LBP methods are holistic because of the concatenated histogram repre-

senting the face.
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4.4.2 Automatic Face Localization

Results on the XM2VTS Database

Table 4.3 reports comparative results for DCT/GMM [12], LBP Ahonen and LBP/MAP methods. The

two baseline face detectors, FDLBP and FDHaar, described in Chapter 2 (Section 2.4.5), as well as

a system based on Active Shape Models (FDLBP + ASMLBP ) are used for automatic segmentation

of the face images. A description of FDLBP + ASMLBP can be found in Appendix A. We report the

accuracy of each detection system in Fig. 2.19(a) and add the deye curve of FDLBP + ASMLBP .

Table 4.3. HTER performance comparison (in %) for DCT/GMM and Ahonen systems, as well as for our proposed LBP/MAP
histogram adaptation approach, on Configuration I of the XM2VTS database, with three automatic face localization
systems.

Models Face detection systems

FDHaar FDLBP FDLBP + ASMLBP

DCT/GMM [10] 2.77 3.54 2.40

LBP Ahonen 6.17 9.53 5.72

LBP/MAP 3.91 4.97 2.77

For the three verification models, the 80 × 64 face images are divided in 8 × 8 block regions. The

GMM model considers the resulting blocks as a set of observations, regardless of their location in

the face image. DCT/GMM is then a local approach. On the other hand, in the LBP Ahonen and
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Figure 4.7. Cumulative distributions of deye for FDLBP , FDHaar and FDLBP +ASMLBP face detectors on the XM2VTS
database standard set.
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LBP/MAP face representation, all blocks are concatenated. While based on local LBP histograms,

both systems are holistic. A small face localization error affects all block histograms. The two LBP-

based models are then supposed to be less robust to imperfect automatic face localization. Table 4.3

verifies this assumption. DCT/GMM performs better for each of the three face detectors. We also

remark that LBP/MAP outperforms LBP Ahonen in the automatic mode too.

According to Fig. 4.7, FDLBP+ASM provides the most accurate face detections. Furthermore,

this feature-based alignment technique can deal with small rotations of the face, while the two

scanning window techniques cannot. Then, for each verification model, the best performance is

obtained with FDLBP+ASM detector. Between FDLBP and FDHaar detectors, surprisingly, better

verification results are obtained with the latter, while it is supposed to be less accurate (Fig. 4.7). In

Chapter 5, we will analyze the Jesorsky’s measure and show that it is not appropriate to measure

the quality of a face detection algorithm when applied to face verification.

Finally, we notice that with an efficient face localization module (FDLBP+ASM ), our proposed

LBP/MAP approach performs as good as the DCT/GMM model, with a much simpler (only one pa-

rameter to choose) and faster training procedure (several minutes for the LBP/MAP against several

hours for the DCT/GMM).

4.5 Conclusion

In this chapter, we proposed a novel generative approach for face verification, based on a LBP

description of the face. A generic face model was considered as a collection of LBP-histograms. A

client-specific model was then obtained by an adaptation technique from this generic model under

a probabilistic framework. Experiments were performed on two databases, namely XM2VTS and

BANCA, associated to their experimental protocol. Results have shown that the proposed approach

performs better than state-of-the-art LBP-based face recognition techniques and is much faster

than other state-of-the-art face verification techniques that perform similarly than the proposed

approach, for both manual and automatic face localization.

Experimental results on BANCA database show that our method was performing well in un-

controlled lighting condition (Ud), due to the illumination invariance property of the LBP oper-

ator. However, our system was limited in the adverse condition (Ua), whereas the local approach
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(DCT/GMM) was performing best. This limitation comes from the holistic representation of the face

(concatenated LBP histograms). The next step would be to relax the constraints on the location of

the blocks and consider a more elastic grid. One promising direction we are investigating is to look

at the close neighborhood of each block and select the region with the highest likelihood.

The experimental section also showed the limitation of the current face detection measure (deye).

FDHaar detector, which was supposed to be less accurate than FDLBP detector according to the deye

measure, actually led to better face verification performance. In the next chapter, we will analyze

the limitation of deye measure in more details.
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Chapter 5

Measuring the Performance of

Face Localization Systems

This chapter concerns the performance evaluation of face localization algorithms. We argue that

a universal performance measure does not exist, because localization errors may have different

impacts depending on the final application for which the localization algorithm has been designed.

We think that the performance measure should be specifically tailored for the final application. In

this chapter, we focus on the face verification task. In that context, the best localization system

should be the one that minimizes the number of errors made by a specific verification system.

First, we start by analyzing how the various types of localization errors (shift, rotation, scale)

affect the performance of two face verification algorithms. This empirical analysis demonstrates

that the different types of localization errors do not induce the same verification error, even if

current localization performance measures would have rated them similarly.

Then, we propose a new localization measure which embeds the final application (here face ver-

ification) into the performance measuring process. This measure estimates directly the verification

errors as a function of the errors made by the localization algorithm. We then empirically show that

the proposed measure better matches the final verification performance.

This chapter is organized as follows. First, we will review classical measures currently used in

the literature to evaluate the performance of a face localization algorithm (Section 5.1). Then, we

81
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will present two empirical analyses that both show that the performance of a localization algorithm

can only make sense in the context of the application for which the localization algorithm was built

for (Section 5.2). Thus, we propose a new face localization measure which takes into account the

performance of the final application, here face verification (Section 5.3). The idea of the proposed

measure consists in estimating the error made by the verification process given the error made by

the localization process. We provide an empirical evaluation on how performance measure behaves

on a real benchmark database (Section 5.4), and we finally conclude (Section 5.5).

5.1 Performance Measures for Face Localization

5.1.1 Lack of Uniformity

Direct comparison of face localization systems is a very difficult task, mainly because there is no

clear definition of what a good face localization is. While most concerned papers found in the litera-

ture provide localization and error rates, almost none mention the way they count a correct/incorrect

hit that leads to computation of these rates. Furthermore, when reported, the underlying criterion

is usually not clearly described. For instance, in [99] and [36], a detected window is counted as a

true or false detection based on the visual observation that the box includes both eyes, the nose and

the mouth. According to Yang’s survey [111], Rowley et al. [85] adjust the criterion until the exper-

imental results match their intuition of what a correct detection is (i.e. the square window should

contain the eyes and also the mouth). In some rare works, the face localization criterion is more pre-

cisely presented. In [49] for instance, Lienhart et al. count a correct hit if the Euclidean distance

between the centers of the detected and the true face is less than 30% of the width of the true face,

and the width of the detected face is within ±50% of the true face. In [23], the authors consider

a true detection if the measured face position (through the position of the eyes) and size (through

the distance between the eyes) do not differ more than 30% from the true values. Unfortunately,

the lack of uniformity between reported results makes them particularly difficult to compare and

reproduce.
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5.1.2 A Relative Error Measure

Recently, Jesorsky et al. [39] introduced a relative error measure based on the distance between the

detected and the expected (ground-truth) eye center positions. Let Cl (respectively Cr) be the true

left (resp. right) eye coordinate position and let C̃l (resp. C̃r) be the left (resp. right) eye position

estimated by the localization algorithm. This measure can be written as

deye =
max(d(Cl, C̃l), d(Cr, C̃r))

d(Cl, Cr)
(5.1)

where d(a, b) is the Euclidean distance between positions a and b. A successful localization is ac-

counted if deye < 0.25 (which corresponds approximately to half the width of an eye).

This is, to the best of our knowledge, the first attempt to provide a unified face localization

measure. We can only encourage the scientific community to use it and mention it when reporting

detection/error rates when the task is localization only. Researchers seem to only start to be aware

of this problem of uniformity in the reporting of localization errors and now sometimes report cu-

mulative histograms of deye [5, 30] (detection rate vs. deye), but this still concerns only a minority

of papers. Furthermore, a drawback of this measure is that it is not possible to differentiate errors

in translation, rotation and scale.

~
Co

Co C r

C l

C l
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C r
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∆ α
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Figure 5.1. Summary of some basic measurements made in face localization. Cl and Cr (resp. C̃l and C̃r) represent
the true (resp. the detected) eye positions. C0 (resp. C̃0) is the middle of the segment [ClCr] (resp. [C̃lC̃r]).
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5.1.3 A More Parametric Measure

More recently, Popovici et al. [80] proposed a new parametric scoring function whose parameters

can be tuned to more precisely penalize each type of errors. Since face localization is often only a

first step of a more complex face processing system (such as a face recognition module), analyzing

individually each type of errors may provide useful hints to improve the performance of the upper

level system.

In the same spirit as in [80], let us now define four basic measures to represent the difference in

horizontal translation (∆x), vertical translation (∆y), scale (∆s) and rotation (∆α):

∆x =
dx

d(Cl, Cr)
, (5.2)

∆y =
dy

d(Cl, Cr)
, (5.3)

∆s =
d(C̃l, C̃r)

d(Cl, Cr)
, (5.4)

∆α =
̂−−−→

ClCr,
−−−→
C̃lC̃r , (5.5)

where dx is the algebraic measure of vector
−→
dx. All these measures are summarized in Fig. 5.1.

The four delta measures are easily computed given the ground-truth eye positions (Cl and Cr) and

the detected ones (C̃l and C̃r). Furthermore, as it will appear useful later in the paper, one can

artificially create detected positions given these four delta measures. Note finally that both the

choices of Jesorsky’s threshold (0.25) and Popovici’s weights on each of these delta measures (in

order to obtain a single measure) still remain subjective.

5.1.4 System-Dependent Measure

In this chapter, we argue that a universal objective measure for evaluating face localization algo-

rithms does not exist. A given localized face may be correct for the task of initializing a face tracking

system [35], but may not be accurate enough for a face verification system [12]. We therefore think

that there can be no absolute definition of what a good face localization is. We rather suggest to look

for a system-dependent measure representing the final task. Moreover, in the context of face verifi-

cation, there has been several empirical evidence [12] showing that the verification score obtained

with a perfect (manual) localization is significantly better than the verification score obtained with
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a not-so-perfect (automatic) localization, which shows the importance of measuring accurately the

quality of a face localization algorithm for verification.

Hence, in the remainder of the chapter, we will empirically show, using some real datasets, how

face localization errors affect face verification results, and how it can be more accurately measured

than using currently proposed measures.

5.2 Robustness of Current Measures

In this Section, we analyse how face localization errors affect the performance of face verification

systems. We start by observing the robustness of two verification systems to localization errors

which were artificially generated (Section 5.2.1). Then, we empirically demonstrate, for a particular

case, that a generic face localization measure is not accurate (Section 5.2.2). These preliminary

experiments are performed on the XM2VTS database, with two verification systems, DCT/GMM

and PCA/Gaussian, which we briefly describe here.

In both systems, a 80 × 64 (rows × columns) face window is first cropped out, based on the

result of the face localization process. Then, histogram equalization is applied to photometrically

normalize the the cropped face images. For the DCT/GMM system [12, 11], a set of modified Discrete

Cosin Transform (DCT) feature vectors [91] X are extracted from each face image. The DCT/GMM

system was implemented using a Gaussian Mixture Model (GMM) technique similar to those used

in text-independent speaker verification systems [81]. A generic GMM is trained with the features

computed on several faces (non-client specific), in order to maximize p(X|Ω), the likelihood of a face

X given the generic GMM parameters Ω, for all X of the training database. This GMM is then

adapted for each client i in order to produce a new GMM model of p(X|Ci), the likelihood of a face

X given the parameters of a client Ci. The ratio between these likelihoods represents the score of

the verification model, which is then compared to a threshold θ in order to take a final decision. A

conceptual example of the DCT/GMM system is represented in Fig. 5.2(a).

The PCA/Gaussian model is based on Principal Component Analysis (PCA) feature extraction [101].

The classifier used for the PCA system is somewhat similar to the DCT/GMM system; the main dif-

ference is that only two Gaussians are used: one for the client and one to represent the generic
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Accept/Reject

(a) DCT/GMM

Feature VectorsCropped Face

Accept/Reject

Models Decision

(b) PCA/Gaussian

Figure 5.2. Conceptual representations of the two face verification systems

model1. Due to the small size of the client specific training dataset, and since PCA feature extrac-

tion results in one feature vector per face, each client model inherits the covariance matrix from the

generic model and the mean of each client model is the mean of the training vectors for that client.

A similar system has been used in [90, 92]. A conceptual example of the PCA/Gaussian system is

represented in Fig. 5.2(b).

The models are trained with manually located images and the decision threshold is chosen a

priori at EER on the validation set (also using manually located images). The verification systems

are thus independent of the localization system used. FAR, FRR and HTER performance measures

are then computed with perturbed face images from the test set.

5.2.1 Effect of FL Errors

In Section 5.1.2, four types of localization errors were defined: horizontal and vertical translations

(respectively ∆x and ∆y), scale (∆s) and rotation (∆α). As a preliminary analysis, we studied how

each type of localization error affects the FV performance. Specifically, the eye positions were artifi-

1The number of Gaussians of the DCT/GMM model is in general much higher and is normally tuned on some validation

set.



5.2. ROBUSTNESS OF CURRENT MEASURES 87

cially perturbed in order to generate a configurable amount of translation (horizontal and vertical),

scale and rotation errors. Then experiments were performed for each type of errors independently;

i.e. when we generated one type of perturbation, the others were kept null. Fig. 5.3 shows the FV

performance as a function of the generated perturbations for the two FV systems. Several conclu-

sions can be drawn from these curves:

1. Regarding HTER curves, as expected, the FV performance is affected by localization errors.

The minimum of the HTER curves are always obtained at the ground-truth positions.

2. In the tested range, FRR is more sensitive to localization errors, the FAR is not significantly

affected. In other words, localization errors in a reasonable range do not induce additional

false acceptances. This was expected since, after all, a non face rarely becomes a face by

simple geometric transpositions.

3. HTER curves demonstrate that the two FL approaches are not affected in the same way.

Generally, the DCT/GMM system is more robust to perturbed images than the PCA/Gaussian

system; justification of this result is discussed further in [11]. Moreover, we remark that the

two systems are not sensitive to the same type of errors; while DCT/GMM is affected by scale

and rotation errors and very robust to translation errors, the PCA/Gaussian system is very

sensitive to all types of errors, including translation.

5.2.2 Indetermination of deye

In Section 5.1, we discussed the important problem of a universal measure to evaluate face local-

ization performance, in order to get fair and clean system comparisons. We also introduced the

currently unique existing measure, proposed by Jesorsky et al. [39], based on the true and the de-

tected eye positions (5.1). We also underlined that this measure does not differentiate errors in

translation, scale or rotation.

For the specific task verification, prior empirical evidence showed that the performance is closely

related to the accuracy of the face localization system. In Section 5.2.1, we went further by ex-

plaining that this performance is closely related to the type of error introduced by the localization

system and that this dependency varies from one verification system to another (eg. DCT/GMM vs
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Figure 5.3. Face verification performance (in terms of FAR, FRR and HTER error rates) as a function of face
localization errors. The error rates are shown for the DCT/GMM (left column) and for the PCA/Gaussian
(right column) face verification systems.
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PCA/Gaussian). We then argued that a universal criterion like deye is not adapted to the final task

of face verification and that we thus need to search for an application-dependent measure.

To illustrate this more clearly, let us look again at the deye measure and show why it is not

adapted to the FV task. In order to understand the limitations of this measure, we analyzed each

type of localization error independently, as done in Section 5.2.1.

Table 5.1. For the specific case of deye = 0.2, the first column contains the corresponding ∆ values and the third column
contains the resulting HTER

delta error deye HTER

∆x = −0.2 0.2 5.27

∆x = 0.2 0.2 5.43

∆y = −0.2 0.2 4.14

∆y = 0.2 0.2 3.27

∆s = 0.6 0.2 31.75

∆s = 1.4 0.2 24.65

∆α = 23◦ 0.2 32.35

∆α = −23◦ 0.2 31.24

We first arbitrarily selected a value of deye = 0.2, which commonly means that the detected

pattern is a face (since it is lower than 0.25). We then selected all kinds of delta errors which would

yield deye = 0.2. Details of how to obtain these corresponding delta errors are given in Appendix.

Fig. 5.4 shows examples of localizations obtained for each of these delta errors. The corresponding

∆ values are reported in the first column of Table 5.1. The last column shows the resulting face

verification performance, in terms of HTER, using the DCT/GMM face verification system. This

experiment basically shows the following:

1. There is a significant variation in HTER for the same value of deye.

2. The DCT/GMM system is more robust to errors in translation than to errors in scale or rota-

tion (for the same deye = 0.2).

Note that in practice, a face detector does not fail only on one type of error. However, this

experiment clearly shows that a face localization performance measure such as deye is not adapted

if we want to take into account the performance of the whole system.
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(a) ground-truth (deye = 0.0)

(b) ∆x = 0.2 (deye = 0.2)

(d) ∆y = 0.2 (deye = 0.2)

(f) ∆s = 1.4 (deye = 0.2)

(h) ∆α = 23
◦ (deye = 0.2)

(c) ∆x = −0.2 (deye = 0.2)

(e) ∆y = −0.2 (deye = 0.2)

(g) ∆s = 0.6 (deye = 0.2)

(i) ∆α = −23
◦ (deye = 0.2)

Figure 5.4. Figure (a) shows the face bounding box for the ground-truth annotation. For the given value of
deye = 0.2, Figures (b) to (i) illustrate the bounding box resulting from perturbations in horizontal translation
(b,c), vertical translation (d,e), scale (f,g) and rotation (h,i).
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5.3 Approximate Face Verification Performance

The preliminary experiments conducted in Section 5.2 should have convinced that current face lo-

calization measures are not adapted to the face verification task. We also argued that it is probably

not adapted to any other particular task. Hence, as explained in Section 5.1, instead of searching

for a universal measure assessing the quality of a face localization algorithm, we propose here to

estimate a specific performance measure adapted to the target task. We here concentrate on the

task of face verification, hence a good face localization algorithm in that context is a module which

produces a localization such that the expected error of the face verification module is minimized.

More formally, let xi be the input vector describing the face of an access i, yi = FL(xi) be the output

of a face localization algorithm applied to xi (generally in terms of eye positions), zi = FV(yi) be the

decision taken by a face verification algorithm (generally accept or reject the access) and Error(zi)

be the error generated by this decision. The ultimate goal of a face localization algorithm in the

context of a face verification task is thus to minimize the following criterion:

Cost =
∑

i

Error(FV(FL(xi))) . (5.6)

Our proposed solution for a meaningful FL measure adapted to a given task is thus to embed all

subsequent functions (FV and Error) into a single box and to estimate this box using some universal

approximator:

Cost =
∑

i

f(FL(xi); θ) (5.7)

where f(·; θ) is a parametric function that would replace the rest of the process following localization

using parameters θ. In this paper, we consider as function f(·) a simple K Nearest Neighbor (KNN)

algorithm [8]. In order to be independent of the precise localization of the eyes, we modified slightly

this approach by changing the input of function f(·) in order to contain instead the error made by

the localization algorithm in terms of very basic measures: ∆x, ∆y, ∆s and ∆α, as described in

Section 5.1. Let GT(xi) be the groundtruth eyes position of xi and Err(yi, GT(xi)) be the function
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that produces the face localization error vector; we thus have:

Cost =
∑

i

f(Err(FL(xi), GT(xi)); θ) . (5.8)

To train such a function f(·), we used the following methodology. First, in order to cover the space

of localization errors, we create artificial examples based on all available training accesses. The

training examples of f(·) are thus uniformly generated by adding small perturbations (localization

errors) bounded by a reasonable range. For each generated example, a verification is performed

and a corresponding target value of 1 (respectively 0) is assigned when a verification error appears

(respectively does not appear).

5.4 Experiments and Results

This Section is devoted to verifying experimentally if our proposed method to measure the perfor-

mance of localization algorithms in the context of a face verification task improves with respect to

other known measures.

5.4.1 Training Data

The XM2VTS database was used to generate examples to estimate our function f(·), which should

yield the expected verification error given a localization error. For each of the 1000 available client

images2, 50 localization errors were randomly generated following a uniform distribution in a pre-

defined interval [−1, 1] for ∆x and ∆y, [0.5, 1.5] for ∆s and [−20◦, 20◦] for ∆α. The training set thus

contains 50000 examples. A verification is performed for each example, which will be assigned a

target value of 1 (respectively 0) when the verification algorithm accepts the client (respectively

rejects him). Furthermore, a separate validation set of 50000 examples was created using the same

procedure (with the same set of clients, but a different random seed).The hyper-parameter K of the

KNN model, which controls the capacity [104] of f(·), was then chosen as the one which minimized

the out-of-sample error on the validation set.

2The preliminary analysis of Section 5.2.1 showed that FAR is not significantly affected by localization errors, so we did

not use any impostor access for this step.
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5.4.2 Face Localization Performance Measure

Given the set of errors ∆ = {∆x,∆y,∆s,∆α} generated by the FL algorithm on an image n we

define the error of the KNN localization algorithm as:

εKNN(∆n) =
1

K

∑

k∈KNN(∆n)

Ck (5.9)

where KNN(∆n) is the set of the K nearest training examples of ∆n and Ck is the error made on

example k defined as:

Ck =











0 if Accepted Client

1 if Rejected Client .
(5.10)

We then estimate the performance of the FL system on a set of N images using:

EKNN =
1

N

N
∑

n=1

εKNN(∆n) . (5.11)

Similarly, we measure the error made by the deye measure as follows:

εeye(n) =











0 if Accepted Client and deye(n) < 0.25

1 if otherwise
(5.12)

and

Eeye =
1

N

N
∑

n=1

εeye(n) . (5.13)

5.4.3 KNN Function Evaluation

In order to verify that the obtained KNN function is robust to the choice of the training dataset,

we chose to evaluate it on another dataset, namely BANCA English (Section 4.3). In order to ex-

tract the faces from the access images, we use a modified version of the FDLBP face detection

system described in Section 2.4.5. This system involves some scanning parameters typically cho-

sen empirically, such as horizontal and vertical steps and scale factor. When minimizing these
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L’

L

scale factor = L’/L

step x

step y

Figure 5.5. Face localization scanning parameters: step x, step y and scale factor. The choice of these parameters
both affects the speed of the system as well as accuracy.

parameters, the localization is expected to be more accurate, however the computational cost then

becomes intractable. These two parameters should thus be selected in order to have a good per-

formance/computational cost trade-off. To obtain a good trade-off we can either favor translation

accuracy by reducing horizontal and vertical steps or scale accuracy by reducing the scale factor

(Figure 5.5).

Note that the localization system only deals with upright frontal faces. It can not be used to test

the effect of rotational errors, which is actually independent of the scanning parameters.

We decided to test two different versions of the localization system, as follows:

1. The first system, FLshift, uses larger values for horizontal and vertical step factors. This

system is expected to introduce more errors in translation.

2. The second system, FLscale, uses finer translational step factors, but a larger scale factor,

expected to introduce errors in scale.

We thus have two scenarios. We want to verify that our KNN function is able to measure which is

the best FL system, or in other words the one which minimizes the FV error. Table 5.2 compares the

localization errors obtained with the deye criterion (second column) computed using equation (5.13),

our proposed function (third column) computed using equation (5.11), and the actual verification

score decomposed into its FAR, FRR and HTER components (last 3 columns) obtained with the

DCT/GMM FV system, on all the accesses of the BANCA database using protocol P. The findings of
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this experiment can be summarized as follows:

Table 5.2. Comparison of two FL performance measures for two face localization systems as well as for a perfect
localization (ground-truth). The last 3 columns contains the face verification score in terms of FAR, FRR and HTER for the
DCT/GMM system.

FL Systems Measures Verification

Eeye EKNN FAR [%] FRR [%] HTER [%]

ground-truth 0.00 0.05 15.1 23.9 19.5

FLshift 0.10 0.12 11.7 30.3 21.0

FLscale 0.04 0.15 14.7 33.8 24.3

1. As expected, the best verification score (HTER = 19.5) is obtained with perfect localization

(first conclusion of Section 5.2.1). Then follows the FLshift system, which yields an HTER of

21.0 and finally the FLscale system with an HTER of 24.3. This ordering was also expected,

following the third conclusion of Section 5.2.1.

2. Our proposed function correctly identifies the best localization system (FLshift, the system

which minimizes the face verification error), while the deye-based measure fails to order the

two modules. This can be mainly explained because the deye measure does not differentiate

errors in translation, shift or rotation, while the DCT/GMM FV system is more affected by a

certain type of error (third conclusion of Section 5.2.1).

3. The KNN almost perfectly predicts the FRR delta between the localization systems and the

groundtruth (0.12 − 0.05 ' (30.3 − 23.9)/100 and 0.15 − 0.12 ' (33.8 − 30.3)/100). Remember

that only client accesses were used to train the KNN function (Section 5.4.1).

4. We remark that the FAR corresponding to the FLshift system (11.7) and the FLscale system

(14.7) are lower than the FAR with perfect localization (15.1). This is because of impostor

accesses, a bad face localization only pushes the system to reject more accesses (including

impostors accesses), yielding a lower FAR.

Furthermore, the proposed KNN measure only takes 20 ms on a PIV 2.8 Ghz to evaluate an im-

age access, while it would take 350 ms for the DCT/GMM system (preprocessing, feature extraction

and classification).
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5.5 Conclusion

In this Chapter, we have proposed a novel methodology to compare face localization algorithms in

the context of the particular application of face verification. Note that the same methodology could

have been applied to any other task that builds on localization, such as face tracking. We have first

shown that current measures used in face localization are not accurate. We have thus proposed a

method to estimate the verification errors induced specifically by the use of a particular face local-

ization algorithm. This measure can then be used to compare more precisely several localization

algorithms. We tested our proposed measure using the BANCA database on a face verification task,

comparing two different face localization algorithms. Results show that our measure does indeed

capture more precisely the differences between localization algorithms (when applied to verifica-

tion tasks), which can be useful to select an appropriate localization algorithm. Furthermore, our

function is robust to the training dataset (training on XM2VTS and test on BANCA) and compared

to the DCT/GMM face verification system, the KNN performs more than 15 times faster (no prepro-

cessing and feature extraction steps). Finally, in order to compare FL modules, we do not need to

run face verification on the entire database, but we only use our function on a subset of face images.

In fact, one can view the process of training a localization system as a selection procedure where

one simply selects the best localization algorithm according to a given criterion. In that respect, an

interesting future work could concentrate on the use of such a measure to effectively train a face

localization system for the specific task of face verification.



Chapter 6

Conclusion

In this thesis, we presented a fully automatic face verification system which works in real-time

and which is robust to local illumination changes. The system is composed of two modules: face

detection and face verification. For both modules, we proposed a face representation based on Local

Binary Pattern (LBP) features. In this work, we considered face detection and verification as a

unified task. We argued that the measure to evaluate the detection step should include the final

task (here face verification) and that the verification step should be robust to the errors of the

detection module.

6.1 Face Detection

Most of the research in face detection has focused on the extension of the boosting based framework

of Viola and Jones [105]. These approaches generally suffer from a long training procedure and a

difficult optimal cascade design. In Chapter 2, we showed the advantages of LBP features compared

to traditional Haar-like features. Due to the higher discriminative power of the LBP, much fewer

features are needed for equivalent performances, leading to a much shorter training of the system

(hours instead of days) and to a simpler cascade design (3 cascade stages instead of more than 30).

Furthermore, we demonstrated on difficult lighting benchmarks that LBP features are more robust

to local illumination changes, as well as to partial occlusion of the face.

The fundamental issue of performance evaluation has also been discussed. We pointed out the

97



98 CHAPTER 6. CONCLUSION

necessity of a standard face criterion to determine what is a correctly detected face when reporting

error rates. However, this criterion is not enough to allow fair comparisons. Indeed, we empirically

demonstrated that the performance of a face detection system is affected by a wide range of factors

such as the training set, the image scanning parameters or the process of merging the overlapped

detections. Furthermore, in real-life applications, not only the accuracy but also the speed of the

face detection may be crucial.

In Chapter 3, we extended our frontal face detection system to deal with faces rotated in-plane

and out-of-plane. Our multiview system, based on an improved pyramid architecture, handles 16

different head poses but is only twice slower than the frontal face detector. We showed that the

multiview face detector achieves high detection performances but also that it produces many false

acceptances. We pointed out two possible future directions to cope with this limitation: 1) for

each pose, a post-processing classifier based on complementary discriminant features, 2) a more

sophisticated detection merging strategy.

Frontal face detection is now mature enough to be used in many practical applications, while

performances are not comparable with those obtained by humans. Face detection in a controlled

indoor environment has almost been solved, whereas it is still challenging to detect faces in out-

door unconstrained conditions (difficult lighting, cluttered background). However, one of the main

challenges in face detection is to deal with head pose variations, because face appearance variabil-

ity, due to lighting or facial expression is even larger for profile views than for frontal view. In

conclusion, more research is still needed in order to achieve robust multiview face detection.

6.2 Face Verification

In Chapter 4, we proposed a novel generative approach for face verification, based on a LBP de-

scription of the face. A generic face model was considered as a collection of LBP-histograms. A

client-specific model was then obtained by an adaptation technique from this generic model under

a probabilistic framework. We empirically showed that our proposed approach performs better than

state-of-the-art LBP-based face recognition techniques and is much faster than other state-of-the-

art face verification techniques that perform similarly than the proposed approach, for both manual

and automatic face localization. We also pointed out that our method, based on a holistic represen-
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tation of the face (concatenated LBP histograms), is very sensitive to small face localization errors

(due to the face detector) and to misalignment of facial features, such as the mouth or the eyes, with

respect to the face model (due to facial expressions). The next step would be to relax the constraints

on the location of the blocks and consider a more elastic grid of blocks (local representation). One

promising direction we are investigating is to look at the close neighborhood of each block and select

the region with the highest likelihood.

6.3 Combined Face Detection and Verification

In Chapter 5, we discussed the problem of the evaluation of face detection algorithms. We argued

that detection errors may have different impacts depending on the final application for which the

detection system has been designed, and thus that the evaluation measure should consider the

final task. We proposed a novel methodology to compare face detection algorithms in the context of

the particular application of face verification. We started by analyzing how detection errors affect

the performance of two face verification systems. This empirical analysis demonstrated that the

different types of detection errors, for instance errors in scale or rotation, do not induce the same

verification error, even if current detection performance measure would have rated them similarly.

We thus proposed a new measure which embeds the final application (here face verification) into

the performance measuring process. The proposed measure estimates directly the verification error

given the errors made by the detection system. We empirically showed that this measure can

be useful to efficiently select an appropriate face detection system. It is much faster to use our

measure on a subset of images than to run the face verification on entire databases. A future work

could concentrate on directly integrating such a function in the training process of a face detection

algorithm for the specific task of face verification.



100 CHAPTER 6. CONCLUSION



Acronyms

AFV Automatic Face Verification

ASM Active Shape Model

CART Classification And Regression Tree

CGM Constrained Generative Model

DCT Discrete Cosine Transform

DET Detection Error Trade-off

DR Detection Rate

EER Equal Error Rate

EPC Expected Performance Curve

FA False Acceptance

nFA number of False Acceptances

FAR False Acceptance Rate

FD Face Detection

FL Face Localization

FR False Rejection

FROC Free Receiver Operating Characteristic

FRR False Rejection Rate

FV Face Verification

GMM Gaussian Mixture Model

KNN K Nearest Neighbours

HCI Human Computer Interaction

HMM Hidden Markov Model

HTER Half Total Error Rate

LBP Local Binary Pattern

LDA Linear Discriminant Analysis

LP Lausanne Protocol

MAP Maximum A Posteriori

MLP Multi-Layer Perceptron

NC Normalized Correlation

PCA Principal Component Analysis

ROC Receiver Operating Characteristic

SNoW Sparse Network of Winnow

SVM Support Vector Machine

WER World Error Rate
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Appendix A

Face Localization using Active

Shape Models and LBP

This appendix addresses the problem of locating facial features in images of frontal faces taken un-

der different lighting conditions. The well-known Active Shape Model method proposed by Cootes

et al. is extended to improve its robustness to illumination changes. For that purpose, we introduce

the use of Local Binary Patterns (LBP). Experiments performed on the standard and darkened

image sets of the XM2VTS database demonstrate that our LBP-ASM approach gives superior per-

formance compared to the state-of-the-art ASM. It achieves more accurate results and fails less

frequently. Details can be found in our report [59].

A.1 Active Shape Models

Active Shape Model (ASM) is a popular statistical tool for locating examples of known objects in

images. It was first introduced by Cootes et al. [13] in 1995 and has been developed and improved

for many years. ASM is a model-based method which makes use of a prior model of what is expected

in the image. Basically, the Active Shape Model is composed of a deformable shape model and

a set of local appearance models. The shape model describes the typical variations of an object

exhibited in a set of manually annotated images and the local appearance models give a statistical

representation of the gray-level structures around each model point. Given a sufficiently accurate
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starting position, the ASM search attempts to find the best match of the shape model to the data in

a new image using the local appearance models.

Three steps are necessary to locate facial features in an image using Active Shape Models:

• build a model that can describe shapes and typical variations of a face. A set of training

images reflecting all possible variations is needed. The shape of a face is represented by a set

of landmark points. Fig. A.1 illustrates a face labelled with 68 landmarks. The coordinates

of each point are concatenated into a single vector. Then each training shape is geometrically

normalized and Principal Component Analysis (PCA) is applied on the aligned shapes.

• build local appearance models that represent local gray-level structures around each land-

mark. These models will be used during the image search to find the best movement in each

region around each point. The best approach according to Cootes is to learn this model from

the training set.

• perform the search in the image. An initial shape model which is generally the mean shape

model is first projected into the image being searched. We assume that we know roughly

the position in which the model should be placed. This involves finding the set of shape

parameters and pose parameters which best match the model to the image. Shape and pose

parameters are altered such that the model moves and evolves in the image plane, hopefully

converging to the best possible match of the model to the face image.

Figure A.1. Face image example annotated with 68 landmarks.
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A.2 Proposed Approach

We use the points which are located within a square centered at a given landmark to build the

LBP histogram. The square is divided into four regions from which the LBP histograms are ex-

tracted and concatenated into a single feature histogram representing the local appearance models

(Fig. A.2). Huang et. al [38] proposed a similar approach based on Extended Local Binary Patterns

(ELBP). This representation uses information on three different levels: LBP labels describe the

pixel-level patterns, histograms extracted from the small regions provide more spatial information

and the concatenated histogram gives a global description of the gray-level structures around each

landmark. And last but not the least, this representation is easy to compute.

Figure A.2. Local appearance representation using LBP.

A.3 Results on the XM2VTS Database

Experiments have been carried out on the standard and the darkened sets of the XM2VTS database,

following protocol LP1 (see Section 4.3). The training set was used to build the face shape model

and the local gray-level structures models. The evaluation set was then used to find the optimal

search parameters. Finally, the test set was selected to evaluate the performance of the facial

feature detection algorithms. To test the robustness to illumination changes, the detection was also

performed on the darkened set using the shape model and search parameters obtained with the

standard set. We assume that the facial feature detection follows a face detection step. The shape

model is thus initialized according to the estimated eye positions provided by FDLBP face detector

(see Section 2.4.5).

In this appendix, we compare the original ASM, Huang’s ELBP method as well as our proposed

LBP-ASM. Figure A.3 presents the mean and the median of the Jesorsky’s deye measure (see Sec-

tion 2.3) derived from the standard test set and the darkened set.
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Figure A.3. Mean and median of the Jesorsky’s measure on the standard test set and the darkened set, for the face
detector as well as for the three face alignment methods: the original ASM, Huang’s ELBP and the proposed LBP-ASM.

In Figure A.3, the detector’s values correspond to the measures obtained after the face detection

stage (before facial feature detection). On the standard set, all three face alignment methods per-

form similarly. As expected, the face detector is significantly less accurate than the face alignment

methods(i.e. larger Jesorsky’s values). On the darkened set, we first remark that the ELBP method

completely fails. We can also see that our proposed LBP-ASM shows better robustness to illumi-

nation than the original ASM. Figure A.4 shows examples of search on a darkened image using

the original ASM, and the proposed LBP-ASM. We can observe that the facial feature localization

performed by LBP-ASM is the most accurate whereas the Jesorsky’s measure is not the lowest.
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(a) Initial Condition. Je-

sorsky’s measure before facial

feature detection = 0.181623

(b) ASM: iteration 1, 4, 8 and 13. Jesorsky’s measure = 0.023976

(c) LBP-ASM: iteration 1, 5, 10 and 19. Jesorsky’s measure = 0.039618

Figure A.4. Example of search on a darkened image using the original ASM and the LBP-ASM
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Appendix B

Hand Posture Classification and

Recognition using LBP

Developing new techniques for human-computer interaction is very challenging. Vision-based tech-

niques have the advantage of being unobtrusive and hands are a natural device that can be used

for more intuitive interfaces. But in order to use hands for interaction, it is necessary to be able

to recognize them in images. In [43], we propose to apply the approach described in Section 2.2 for

face detection to the tasks of hand posture classification and recognition. This approach is based on

the boosting of Local Binary Patterns (LBP) features. A two-class model is trained for each hand

posture. The positive training set is composed of samples of the hand posture, while the negative

set is composed of background images as well as images of the other postures. Each posture model

is a one-stage classifier composed of 500 weak classifiers, trained with 2500 boosting iterations.

B.1 Database and Protocols

Results are reported on the Jochen Triesch database 1. It consists of 10 hand signs performed by

24 different people against 3 types of backgrounds (720 images): uniform light, uniform dark and

complex (Fig. B.1) The database is partionned into three subsets: train, validation and test. For

Protocol 1, training and validation sets are composed only of images in uniform background while

1http://www-prima.inrialpes.fr/FGnet/data/09-Pets2002/data/POSTURE/

109



110 APPENDIX B. HAND POSTURE CLASSIFICATION AND RECOGNITION USING LBP

(a) 10 hand postures (b) 3 types of backgrounds

Figure B.1. The Jochen Triesch hand posture database.

for Protocol 2, both sets include the images in complex background.

Following the method presented in Section 2.4.1 for faces, hand postures images are first cropped

according to manual annotation and then subsampled to the size of 30 × 30 pixels, followed by his-

togram equalisation. Training and validation sets have been extended by slightly shifting, scaling

and rotating the original images. 30 virtual samples have been created for each original image.

B.2 Hand Posture Classification

First, we would like to verify that our model is able to perform correct classification for each hand

posture. Classification rates are reported in Table B.1.

1. Background: Most hand postures are correctly classified. As expected, classification rate

with uniform background (99.2%) provides better results than with complex background (89.8%).

2. Posture: With uniform background, all postures are well classified. With complex back-

ground, better performance is obtained for Protocol 2 (matched conditions). With Protocol 1,

we remark that some postures (’C’, ’V’, ’Y’) are difficult to classify.

3. Protocol: For Protocol 2, almost all postures are well classified in both background conditions.

For Protocol 1 (no training data in complex background), the classification rate decreases for

all postures.
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Table B.1. Classification rate (in %) on the test set

Uniform Background Complex Background

Protocol1 Protocol2 Protocol1 Protocol2

A 100 100 91.67 100

B 93.75 100 75 100

C 96.88 100 66.67 93.75

D 100 100 87.5 100

G 100 100 87.5 100

H 100 100 100 100

I 100 100 95.83 93.75

L 100 100 100 100

V 96.77 100 54.17 100

Y 96.88 100 62.5 87.5

average 98.4 100 82.1 97.5

B.3 Hand Posture Recognition

This section concerns the recognition task, i.e. given a unknown posture, we would like to identify

its posture class label. For that purpose, we chose a “one versus all” strategy. For a given posture

test image, we apply all posture models and consider the one with the highest score to label the test

image. Recognition rates are reported in Table B.2.

1. Background: Recognition rate is higher for the images against uniform than complex back-

ground. We notice that some postures are not sensitive to the background type such as ’A’ or

’B’, while other postures are strongly affected, such as ’G’, ’I’, ’L’, ’V’ or ’Y’. The common fea-

tures of these postures is a closed fist with one ore two thin pointing fingers, which are “sunk”

in the background and thus difficult to find out.

2. Posture: Some postures like ’A’ are easier to recognize, regardless of the background type.

On the other hand, the ’Y’ posture achieves the lowest recognition rate in both conditions. The

explanation may be found in the high variability of the hand posture shape. While the ’B’

posture will be performed in a similar manner by every gesturer, it will not be the case with

the ’Y’ posture.
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Table B.2. Recognition rate (in %) on the test set

Uniform Background Complex Background

Protocol1 Protocol2 Protocol1 Protocol2

A 100 100 100 100

B 93.75 93.75 93.75 93.75

C 93.75 93.75 75 93.75

D 93.75 84.38 62.5 81.25

G 96.88 100 50 68.75

H 84.38 90.63 87.5 87.5

I 84.38 90.63 56.25 62.5

L 84.38 96.88 37.5 75

V 87.10 96.77 56.25 87.5

Y 81.25 81.25 25 62.5

average 89.97 92.79 64.38 81.25

3. Protocol: Like for classification, better performance is achieved with Protocol 2 (matched con-

ditions). However, the protocol does not affect each posture in the same way. While postures

’A’ or ’B’ are robust to the protocol, postures ’L’ or ’Y’ are dramatically affected.

Preliminary results are encouraging, although some postures (’G’, ’I’, ’Y’) are difficult to recog-

nize. The next step to a fully automatic hand posture recognition system would be the segmentation

of the hand which was done manually in this work.



Appendix C

Texture Representation for

Illumination Robust Face

Verification

One of the major problem in face verification systems is to deal with variations in illumination.

In a realistic scenario, it is very likely that the lighting conditions of the probe image does not

correspond to those of the gallery image, hence there is a need to handle such variations. In [32],

we present a new preprocessing algorithm based on Local Binary Patterns (LBP): a texture rep-

resentation is derived from the input face image before being forwarded to the classifier. The effi-

ciency of the proposed approach is empirically demonstrated using both an appearance-based (PCA-

LDA) and a feature-based (1D-HMM) face verification systems on BANCA and XM2VTS databases

(Section 4.3). Three illumination normalization techniques are compared: the standard histogram

equalization, the state-of-the-art Gross and Brajovic [27] method and the proposed LBP approach.

Details on these normalization techniques as well as on both face verification systems can be found

in the paper [43]. Tables C.1 and C.2 show comparative face verification results.
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C.1 Results on the XM2VTS Database

Table C.1. HTER performances on the standard and the darkened sets for both protocols of the XM2VTS database.
standard darkened

FA system LP1 LP2 LP1 LP2

LDA HEQ 2.97 0.84 10.86 17.02

LDA GROSS 5.76 4.88 12.62 13.38

LDA LBP 4.56 1.43 9.110 10.44

HMM HEQ 2.04 1.40 37.32 37.54

HMM GROSS 5.53 4.18 12.01 11.96

HMM LBP 1.37 0.97 9.61 9.88

Firstly, results on the XM2VTS database show that the LBP representation is suitable when

there is a strong mismatch, in terms of illumination conditions, between the gallery and the probe

image. This is evidenced by experiments on the darkened set, where the error rates of both classi-

fiers are decreased when using the LBP representation. Moreover, this texture representation out-

performs the illumination normalization approach (GROSS). Interestingly, standard experiments

also show an improvement for the HMM-based classifier: this suggest that our preprocessing tech-

nique is well suited for feature-based approaches. Although the best results obtained with LDA

are with the use of histogram equalization, error rates of the LBP are still lower than the GROSS

normalization.

C.2 Results on the BANCA Database

Table C.2. HTER performances on the different protocols of the BANCA database.
FA system Mc Ua Ud P

LDA HEQ 3.75 20.13 14.46 15.52

LDA GROSS 3.97 17.40 15.01 14.24

LDA LBP 5.83 19.52 15.61 16.30

HMM HEQ 2.40 19.87 18.75 18.32

HMM GROSS 1.92 11.70 7.21 11.75

HMM LBP 2.40 15.06 9.93 11.70

On the BANCA database, the LDA classifier seems to have a good discriminative capability,

since none of the method clearly outperforms the others (although GROSS normalization is the

best). A possible explanation could reside in the fact that we use the Spanish corpus (with all
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scenarios) to train the LDA, hence it may capture by itself the changes in acquisition conditions.

Concerning the HMM-based classifier, GROSS normalization results are better for three of the four

investigated protocol, and reduces error rates by a significant amount compared to histogram equal-

ization. Results obtained with the LBP representation are comparable, although performances are

a bit worse.

To summarize, conducted experiments shows that the proposed preprocessing approach is suit-

able for face verification: results are comparable with, or even better than those obtained using

the state-of-the-art preprocessing algorithm proposed in [27]. Moreover, the LBP representation

is simpler, faster to compute and there is no need for hyper-parameter selection, hence avoiding

extensive experiments.
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Appendix D

BioLogin Demonstrator

Several demonstrators have been developed during this thesis, such as FaceTracker (Fig. D.1) and

BioLogin (Fig. D.2). They are based on two open source (BSD license) C++ libraries developed at

IDIAP: Torch 1, a machine-learning library implemented by Ronan Collobert, Samy Bengio and

Johnny Mariéthoz and Torch vision 2, a machine vision library, implemented by Sébastien Marcel

and Yann Rodriguez, which provides basic image processing and feature extraction algorithms. It

also provides modules for face detection and face recognition/authentication.

Figure D.1. Face tracking demonstration system. The first version, FaceTracker1.0 (left), detects only frontal faces, while
the second version, FaceTracker2.0 (right), has been extended to deal with multiview faces.

1 http://www.torch.ch

2 http://www.idiap.ch/$\sim$marcel/en/torch3/introduction.php
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Figure D.2. Bimodal Authentication system based on face, speech and fusion developed at IDIAP. The system provides
a BioLogin application (left) to test a client, and a Manager application (right) to create a new account by enrollment.

In this appendix, we will only focus on BioLogin, a multimodal (face and speech) authentication

demonstration system that simulates the login of a user using its face and its voice. It runs both on

Linux and Windows and the Windows version is freely available for download at 3.

The system (Fig. D.2) includes two applications:

• BioLogin: login using the face and the voice (test a biometric template),

• User Manager: creates a new account and enables the user to enroll a biometric template.

First the user needs to create his/her account using the Manager application. The registration

consists in (1) filling a form and (2) recording a session of four audio/video shots. During each shot,

the system asks the user to pronounce his/her pass-phrase. The audio recording starts when a face

is detected and stops when the time is elapsed or when the user press <enter>. Face images are

automatically captured during the audio recording. At the end of the recording session, the user

can visualize/listen to the recordings. The user can decide to cancel the recording session and to

perform another one or to enroll his/her model from recordered data. The enrollment process takes

only few seconds. Finally, the user can launch the BioLogin application. This application presents

a list of registered persons. To perform an authentication test, the user simply needs to select a

person. Then the audio/video capture is immediately launched. As soon as the face is detected, the

3 http://www.idiap.ch/biologin



119

user has a few seconds to pronounce the pass-phrase. If the time is elapsed or if the user press

<enter> then the authentication is performed. The system displays either accepted in green if

the user is considered as a client or rejected in red if the user is considered as an impostor.

BioLogin has been internationally recognized as a finalist of the Swiss Technology Awards 2006

and presented at the CeBIT trade in Hannover.
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