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Abstract. The Support Vector Machine (SVM) is an acknowledged powerfulfardbuilding classifiers, but

it lacks flexibility, in the sense that the kernel is chosen prior to learningtipliel Kernel Learning (MKL)
enables to learn the kernel, from an ensemble of basis kernels, wdrodénation is optimized in the learning
process. Here, we propose Composite Kernel Learning to addreesdtihtion where distinct components
give rise to a group structure among kernels. Our formulation of theileaproblem encompasses several
setups, putting more or less emphasis on the group structure. We tehaeathe convexity of the learning
problem, and provide a general wrapper algorithm for computing sakutieinally, we illustrate the behavior
of our method on multi-channel data where groups correpond to elann
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1 Motivation

Kernel methods have been extensively used in learning @nub(Scblkopf & Smola, 2001). In these models,
the observations are implicitly mapped in a feature spagawmappingb : X — H, whereH is a Reproducing
Kernel Hilbert Space (RKHS) with reproducing kerd€l: X x X — R.

We address the problem of learning the kernel in Supportoveédachines (SVM) and related methods.
Indeed, the kernel is crucial in many respects, and its agle¥ is essential to the success of kernel methods.
Formally, the primary role of( is to define the evaluation functional #: Vf € H, f(x) = (f, K(x,"))n.,
but K also defines (i)H itself, sinceVf € H, f(zx) = Y .o, a;K(x;,x) ; (i) a metric, and hence a
smoothness functional ik: [|f||7, = > ;2 >y aiag K (x4, 25) 5 (i) a distance between observations:
|®(x) — ®(x)||? = K(z,z) + K(z',2') — 2K (z, ') .

In this paper, we devise Composite Kernel Learning (CKL)aafework where the kernel is learned in a
way to favor the selection of variables or groups of variablgection 2 motivates our approach while briefly
reviewing the different means proposed to extend kernehoust beyond the predefined kernel setup. We then
follow in Section 3 by considering some recent developmieniariable selection that are relevant for our aims.
Section 4 describes the CKL framework; the optimizatiorodtgm is provided in Section 5, and experiments
are reported in Section 6.

2 FlexibleKernel Methods

From now on, we restrict our discussion to classificatiorerehfrom a learning set = {(x;, y;)}_, of pairs

of observations and labél,, y;), one aims at building a decision rule that predicts the dissl y of any
observatione. We furthermore focus on the binary case, whetg y;) € X x {+1}. However, it should be
keptin mind that most of our observations carry on to othtirges, such as multiclass classification, clustering
or regression with kernel methods.

2.1 Support Vector Machines

A SVM builds the decision rulsign (f*(x) + b*), wheref* andb* are defined as the solution of

min |[f|IF+C X &
sote yi(fl®)+b) >1-& 1<i<n

& >0 1<i<n .

The regularization parametér is the only adjustable parameter in this procedure. Thisislly not flexible
enough to provide good results when the kernel is chosem fariseeing data. Hence, most applications of
SVM incorporate a mechanism for learning the kernel.

2.2 LearningtheKerne

Cross-validation is the most rudimentary, but also the ncostmon way to learn the kernel. It consists in
(i) defining a family of kernels€.g. Gaussian), indexed by one or more parameterg. (bandwidth), the
so-called kernel hyper-parameters, (ii) running the SVibathm on each hyper-parameter setting, and (iii)
finally choosing the hyper-parameter minimizing a crod&dasion score.

A thorough discussion of the pros and cons of cross-vatidasi out of the scope of this paper, but itis clear
that this approach is inherently limited to one or two hyparameters and few trial values. This observation
led to several proposals allowing for more flexibility.

221 Filters, Wrappers& Embedded Methods

Learning the kernel amounts to learn the feature mappirghdtld thus be of no surprise that the approaches
investigated bear some similarities with the ones develdpevariable selection, where one encounters filters,
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wrappers and embedded methods (Guyon & Elisseeff, 2003neSyeneral frameworks do not belong to a
single category but the distinction is appropriate in meses.

In filter approaches, the kernel is adjusted before buildirgSVM, with no explicit relationship to the
objective value of Problem (1). For example, the kernelgaalignment of Cristianini et al. (2002) adapts the
kernel to the available data without training any classifier

In wrapper algorithms, the SVM solver is the inner loop of taested optimizers, whose outer loop is
dedicated to adjust the kernel. This tuning may be guidedabipus generalization bounds (Cristianini et al.,
1999; Weston et al., 2001; Chapelle et al., 2002).

Kernel learning can also be embedded in Problem (1), withSii&1 objective value minimized jointly
with respect to the SVM parameters and the kernel hypempaters (Grandvalet & Canu, 2003). Our ap-
proach, which belongs to this family of methods, is basecherMultiple Kernel Learning (MKL) framework
(Lanckriet et al., 2004).

2.2.2 MultipleKernel Learning

MKL is a joint optimization problem of the coefficients of ti8/M classifier and a convex combination of
kernels that defines the actual SVM kernel

M
K(wi/) = Z Ume(:IJ7.’I3/) ) (2)
m=1

where each kernek’,,, is associated to a RKHE,,, whose elements will be denotd,, <’ir1d{crm}f‘,{=1 are
coefficients to be learned under the convex combinationtcaings

M
Som=1, 0m>0,1<m<M . (3)

m=1

Bach et al. (2004) proposed the following formulation of MKL

min L (3 | fullr, ) +C 36

Sy,
" )
st yi(X () +0) >1-¢& 1<i<n

whose solution leads to a decision rule of the fadgn (>, fr () + b*). This expression of the learning
problem is remarkable in that it only deviates slightly fréme original SVM problem (1). The squared RKHS
norm in’H is simply replaced by a mixed-norm, with the standard RKHBmwithin each feature spaéé,,,
and an/; norm inRM on the vector built by concatenating these norms. Phisorm encourages sparse
solutions, that is, solutions where some functigpshave zero norm. In this respect, the MKL problem may
be seen as the kernelization of the group-LASSO (Yuan & L296).

2.2.3 Composite Kernel Learning

When the individual kernel&(,,, represent a series, such as Gaussian kernels with diffecale parameters,
MKL may be used as an alternative to cross-validation. Wheniriput data originates from/ differents
sources, and that each kernel is affiliated to one input blaVIKL can be used to select relevant input
variables.

However, MKL is not meant to address problems where severaets pertain to one input variable. In
this situation, the sparseness mechanism of MKL does not &olutions discarding all the kernels computed

1To lighten notations, the range of indexes is often omitteslimmations, in which case: indexiand;j refer to examples and go
from 1 ton; indexm refers to kernels and goes from 11é; index/ refers to groups of kernels and goes from 1.to
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from an irrelevant input. Although most of the related caidints should vanish in combination (2), spurious
correlation may cause irrelevant input variables to pigdie to the solution.

The flat combination of kernels in MKL does not include a metsia to cluster the kernels related to one
input variable. In order to favor the selection of kernelshii predefined groups, one has to define a group
structure among kernels, which will guide the selectiorcpss through a structured kernel combination. This
type of hierarchy among variables has been investigatedead models (Szafranski et al., 2008; Zhao et al., to
appear). We briefly recapitulate the general frameworkerféliowing section, before discussing its adaptation
to kernel learning in Section 4.

3 Grouped and Hierarchical Selection

The introduction of’; penalties, with the seminal paper of Tibshirani (1996) altASSO, gave rise to many
important theoretical and practical advances in the $izgiand machine learning fields. As stated in Section
2.2.2, MKL itself belongs to the series of algorithms affiéid to the LASSO, through its relationship with
group-LASSO. In this lineage, Zhao et al. (to appear) defthedsery general Composite Absolute Penalties
(CAP) family.

3.1 Composite Absolute Penalties

Consider a linear model with/ parameters@ = (51,...,8:)", and letl = {1,..., M} be a set of index
on these parameters. A group structure on the parameteeined by a series df subsetG,}%_,, where

G, C 1. Additionally, let{~,}%_, be L + 1 norm parameters. Then, the member of the CAP family for the
chosen groups and norm parameters is

Q= Z( > 1) (5)

meGy

Mixed-norms correspond to groups defined as a partition@t#t of variables. A CAP may also rely on
nested groups;7; C Go C ... C G, andyy = 1, in which case it favors what Zhao et al. call hierarchical
selection, that is, the selection of groups of variablebéyredefined ordg/ \ G}, {G\Gr-1}, ..., {G2\
G1}, G1. This example is provided here to stress that Zhao et altismof hierarchy differs from the one that
follows.

3.2 Hierarchical Penalization

Hierarchical penalization uses shrinking coefficientsrémsform a ridge-like penalty into a sparse penalizer
(Szafranski et al., 2008). The model parameterize@ liy fitted by minimizing a differentiable loss function
J(-), subject to a ridge penalty with adaptive coefficients tlnmberages sparseness among and within groups:

omin JB)+ > > \/m

;01,02 ! meG,

s. t. Zdzo‘l)e—l o16>0 1</¢<L (6)
4

ZUQ,m:]- ,UQ’mZO lngM

The Lagrange parametercontrols the amount of shrinkage, addis the size of groug. The constraints
expressed on the two last lines encourage sparsenesg andos ,,,, which induces sparsenessgp.

Here, the groupss, form a partition of/, and the hierarchy refers to the tree-structure of the kimin
coefficients:os ,, shrinks parametes,,, while o1 , shrinks the parameters for groGf. In the words of Zhao
et al., the objective here is grouped variable selection.

The minimizer of Problem (6) is the minimizer of

wmin J (3 +)\<Zdl/4(z B2’ ) :

meGy
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which is essentially a CAP estimate, where paramétemly accounts for the group sizes (Szafranski et al.,
2008). The inner,,3 norm and the outef; norm form a mixed-norm penalty that will be denot&d)s 1).
The overall penalizer favors sparse solutions at the grexed,|with few leading coefficients within the selected
groups.

4 From Multiple to Composite Kernels

MKL has been formalized as a quadratically constrainedamodoy Lanckriet et al. (2004), then as a second-
order cone program by Bach et al. (2004). More recently,rdtirenulations led to wrapper algorithms, where
the optimization with respect to kernel hyper-parametsrstiil based on the SVM objective value, but is
performed in an outer loop that wraps a standard SVM solvee. duter loop is cutting planes for Sonnenburg
et al. (2006), and gradient descent for Rakotomamonjy e{(2007). Wrapper algorithms have appealing
features: (i) they benefit from the developments of solvpecHically tailored for the SVM problem in the
inner loop; (ii) they allow to address large-scale proble(i they are multipurpose, since the SVM inner
loop may be replaced by another algorithm with little or nfuatiments.

We chose to build on gradient-based MKL. First, it has beewshto be more efficient than the SILP
approach of Sonnenburg et al. (2006), thanks to the stabilithe updates performed in the outer loop, which
induces good initializations for the inner loop solver (Bamamonjy et al., 2007). Second, and even more
important for our purpose, gradient-based MKL is amenabléné extension to groups of kernels, thanks to
the formulation of hierarchical penalization of Sectio8.3.

4.1 Variational Multiple Kernel Learning

Problem (4) is not differentiable dtf,|l»,, = 0, a difficulty that causes a considerable algorithmic burden
The MKL formulation of Rakotomamonjy et al. (2007) can beweéel as a variational form of Problem (4),
whereM new variables, ..., o, are introduced in order to avoid these differentiabiligugs. The resulting
problem, which is equivalent to Problem (4), is stated as:

min 33 o= fmld, +C &

foeeonfm,
b.g,0
s. t. yi(me(aci)—i—b)zl—{i 1<i<n )
>0 1<i<n

Som=1 ,0mn>0 1<m< M.

Here and in what followsy /v is defined by continuation at zero ag0 = oo if « # 0and0/0 = 0.

The constraints expressed on the last line encourage spassigr,,,, which induces sparsenessfin. As
already mentioned in Section 2.2.2, the sparseness applies kernel level, ignoring the group structure. The
latter is taken into account in the formulation proposedmfollowing section.

4.2 Variational Composite Kernel Learning

Here, we build on the variational form of the composite absopenalties presented in Section 3.2 to take
into account the group structure. Hierarchical penaliratian deal with kernel methods if the ridge penalties
are replaced by RKHS norms. We first generalize Problem (6ptain smooth variational formulations for
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arbritrary mixed-norm penalties, so that to address a wédiety of problems including MKL:

min ZUI? 2 UianfmIIHerCZ&

Frodar,? meGy
bﬁo’l o2
& >0 1<i<n (

Sdeore=1 ,014,>0 1<{<L
7

Soom=1 ,00m>0 1<m<M,
m

wherep andq are exponents to be set according to the problem at hand.

This formulation, which is difficult to optimize, is simpki by replacing the two shrinking coefficierts
ando by o, defined by, = ai’,eag’m. In a first step, we consider the change of variable that mrape o
Wheng # 0, this mapping is one-to-one provided , # 0. Furthermore, it7 , ando3 ,,, denote the optimal
o1, andos ,, values for Problem (8), we have that, = 0 = o3 ,,, = 0, hence Problem (8) is equivalent to

f mln 2 Z T ”fm”Hm +CZ§1

----- IM

’S. t. yi(z.fm(mi) +b) Z 1 —le S 7 S n

& =0 1<:<n 9)
Zd/m/:l ,010>0 1<l<LL

Z p/qz Ul/q<1

14 meGy
om >0 1<m<M.

The new problem is simplified further by showing tlratcan be dropped out from the optimization process,
leading to the following formulation of Composite Kerneldreing (CKL):

min 33 2L fllF,, +C &
SO Ve B
b.§,0

st yi(X () +0) >1-& 1<i<n
&i sz 1<i<n (10)
1/(p+q)
Z( (x o) ) <1

4 meGy
Tm >0 1<m<M,

Before considering particular settings of interest, weeskelow two helpful propositions. The first one
gives a more interpretable formulation of Problem (10);2beond one presents the conditions for convexity of
formulation (10), that will guaranty the convergence tatgathe global minimum for the algorithm described
in Section 5.

Proposition 1. CAP Formulation: Problem (10) is equivalent to the following MKL problem watiCAP-like
penalty on the RKHS norms:

/70
mln %(Zdw (Z I fm %, )%/7>2 ’Y-i- CY ¢

1yeesJ M meG, i

bﬁ 11

st (S (@) 4h) 21-6 1<i<n (1D
1

§& =0

with vy = q%,% p+q+1 andy* =1—
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Sketch of proofLet £ be the Lagrangian of problem (10). The optimality condisiéor o,,, are obtained from
the first order optimality conditions far,, (-:25- = 0):

90 m
x (v0=2)/7 __+ _« _
om = (> s) ;7 ) 20 (12)
L
wheres; = Y || fmll3, - Plugging this expression in Problem (10) yields the claimeslt. O

meGy

Note that the outer exponeﬁot only influences the strength of the penalty, not its type. ddethe penalty
in the objective function (11) differs from (5) in the RKHS mus || - ||5;,, and in the parameter$, that
accommodate for group sizes.

Proposition 2. Conditionsfor Convexity: Problem (10) is convex ifand only f < ¢ < 1and0 < p+q¢ < 1.

Proof. A problem minimizing a convex criterion on a convex set isxan The objective function of Problem
(10) is convex (Boyd & Vandenberghe, 2004, p. 89). The fimstosd and fourth constraints define convex

q
sets, and the third one also provided(@:mece aﬁ{q) is a norm, thati$) < ¢ <1, and (ii)>_, t,f“”*” is
convex int,, thatisO < p+¢q < 1. O

Within the values op andq ensuring convexity, we pick the following particular casémterest:

e p =0, ¢ = 1yields a LASSO type penalty on the RKHS norms. It results endgeneralization of the
group-LASSO known as MKL, as formulated in (4);

e p =1, ¢ = 0yields a group-LASSO type penalty on the RKHS norms. It tssalanother MKL, with
L effective kerneld<,, defined asi, = > K,;

meG,

ep=q= % yields a hierarchical-penalization type penalty on the FKitbrms. It is a true CKL, where
there arel! effective kernels, and where the penalty favors sparseigntuat the group level, with few
leading kernels within the selected groups.

Hence, whem goes from zero to one, with= 1 — p, the penalty gives more and more emphasis to the group
structure. For most applications where convexity is a keyeéswe recommend the balanced setupg = %

Note however that convex penalties restrict the sparsesfebe solution to either the group level or the
kernel level. In Section 6, we will illustrate that giving gpnvexity may turn out to be an interesting option
when considering interpretability issues.

5 Algorithm

Our approach to solve Problem (10) draws on the MKL algorittiiRakotomamonjy et al. (2007). We use the
wrapper scheme described below, where the outer loop iedaiut by a projected gradient descent update.

5.1 A Gradient-Based Wrapper

The wrapper scheme considers the following constraineichigztion problem:

min J(o)

1/(p+q)
s. 1. E(dfg(zj a},{q)q> <1
4 m

om > 0, 1<m<M,
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whereJ (o) is defined as the objective value of

min §5 5 GLlfalk, + L

iy fms ’VILEG[ "
b€
s. t. yi(me(wi)—l—b)zl—fi,lgign (13)

The global optimization problem consists thus of two negismblems. In the inner loop, the criterion is
optimized with respect tg, . . ., far, b and&, considering that the coefficiendsare fixed. In the outer loop,
o is updated to decrease the criterion, with, b and¢ being fixed.

Equation (12) may be used to updaten closed form. However, this approach lacks convergenee-gu
antees and may lead to numerical problems, in particulanvgioee elements af approach zero. Hence,
following Rakotomamonjy et al. (2007), we use that the dfijedunction.J(o) is actually an optimal SVM
objective value to update by an efficient projected gradient descent scheme.

i

5.2 Computing the Gradient

The dual formulation offers a convenient means to compwegtiadientV.J(o). The derivation of the La-
grangian of Problem (13), which is omitted here for brewstypws that its dual formulation is identical to the
one of a standard SVM using the aggregated keffigdefined in Equation (2). Hence, the dual problem takes
the usual form

maxfi > ozzozjy,yjK (i, z;) + Z o
] 7

5. 6. gy =0 (14)
C>a; >0 1<i<n,

which can be solved by any SVM solver.
As J(o) is defined as the optimal objective value of the convex Prol&3) for which strong duality
applies,J(o) is also the dual objective value:

:_72(1 afyy; K :ci,:vj)—i—Za? , (15)

wherea* solves Problem (14).

The existence and computation of the derivatives/ 0} follow from general results on optimal values,
such as Theorem 4.1 of Bonnans and Shapiro (1998), whichnintshell states that the differentiability of
J(o) is ensured by the unicity of*, and by the differentiability of (15¢ Furthermore, the derivatives of
J (o) can be computed asdf* were not to depend om. Thus, the gradieri¥ J (o) is simply

7:_7204 yzyj :Bhw]) .

oy,

5.3 CKL Algorithm

Now, we have all the ingredients to adapt the machinery deeel for MKL by Rakotomamonjy et al. (2007).
According to the process described in Section 5.1, we pepdgorithm 1.

The stopping criterion for assessing the convergence dfuler loop can be based on standard criteria for
gradient-based algorithms or on the duality gap. In the¥alhg experiments, it is based on the stabilityoof
andJ(o).

2The unicity ofo* is ensured provided that the Gram matrix built from keritgl is positive-definite. To enforce this property, a small
ridge may be added to the diagonal.
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Algorithm 1 Composite Kernel Learning

initialize o
solve the SVM problem- J(o)
repeat
compute direction = —V.J (o)
repeat

computed’, the projection ofl onto the tangent of the surface of the admissible set
compute the smallest step that nullifies a componeant of
S={j:d;<0ando; # 0}

. a . g;
v=min—— k=argmn—— d=0
JES , JES ,
J J
ol=c+vd

projecto’ onto the surface of the admissible set
solve the SVM problem- J (o)
if J(oT) < J(o) then o = of
until J(at) > J(o)
computer* = argmin, J(o + v d)
o=0c+v*d
until convergence

6 Channe Sdlection for BCI

This experiment deals with single trial classification of&Eignals coming from Brain-Computer Interface
(BCI). Depending on each BCI paradigm, these EEG signalsesn@ded from specific electrode positions.
However, as stated by Scider et al. (2005), automated channel selection should Herpeed for each
single subject since it leads to better performances or staatial reduction of the number of useful channels.
Reducing the number of channels involved in the decisiortfan is of primary importance for BCI real-life
applications, since it makes the acquisition system e&sigse and to set-up.

We use here the dataset from the BCI 2003 competition for akk of interfacing the P300 Speller
(Blankertz et al., 2004). The dataset consist§360 EEG signals paired with positive or negative stimuli
responses. The signal, processed as in (Rakotomamonjy 20ab), leads td560 examples of dimension
896 (14 time frames for each of th@l channels).

The experimental protocol is then the following: we haved@nly picked567 training examples from the
datasets and used the remaining as testing examples. Fopagmeter(' has been selected by retaining a
small part of the training set as a validation set, for selgdhe parameter which the highest AUC. This overall
procedure has been repeatédtimes. Using a small part of the examples for training canuséfjed by the
use of ensemble of SVMs (that we do not consider here) onex stthge of the EEG classification procedure
(Rakotomamonijy et al., 2005), and the AUC performance nreasyustified by how the EEG recognition is
transformed into selected character in the P300.

The896 features extracted from the EEG signals are not tranforreat® classification: we do not use any
kernelization. However, to unify the presentation, we wéfler to these features as linear kernels. Hence, in
this application where the kernels related to a given chidfona a group of kernels, we have to leatih = 896
coefficientss,,, divided intoL = 64 groups.

CKL is well-suited to the classification objectives, since aim at classifying the EEG trials with as few
channels as possible. Furthermore, itis also likely thatestme frames are irrelevant, so that variable selection
may be carried out within each channel. To reach a sparsgaoat the channel and the time frame levels, we
test a non-convex parametrization of CKL that encouragassspess within and between groups.

In the following, CKL, /, stands for a convex version of our algorithm, with= ¢ = 1/2 (a/(4/3,1) mixed-
norm), CKL; is a non-convex version, with = ¢ = 1 (a1 2/3) (pseudo) mixed-norm). Note that MKL is
also implemented by our algorithm, with= 0 andq = 1.

Table 1 summarizes the average performance of SVM, MKL, &fd, €hat is, for4 different penalization
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Figure 1: Electrode median relevance for MKL (left), CKL (center) and CKL. (right). The darker the color,
the higher the relevance. Electrodes in white with a blao#eiare discarded (the relevance is exactly zero).
The arrow represents the frontal direction.

terms: quadratic penalization for the classical SVM (whglrained with the mean &f96 kernels),/; norm
for MKL, and mixed-norms for the two versions of CKL: CKlJ, and CKL;. The number of channels and
kernels selected by these algorithms is also reported.

Table 1: Average Results for SVMs withdifferent penalization terms on the BCI datasets.
Algorithms AUC # Channels| # Kernels
SVM 83.87+ 0.8 64 896
MKL 85.43+0.9| 62.2+1 | 255.8+ 15
CKL;/, || 85.49+1.1| 629+1 | 835.7+25
CKL, 84.15+ 0.8 | 24.0+4 60.9+ 10

The prediction performances of thealgorithms are similar, with a slight advantage for sparsg¢hmds.
CKL,/, is much less sparse than MKL, which itself keeps about fones as much kernels compared to GKL
In the number of groups, MKL and CKL, behave similarly, with only one or two channels removed. GKL
is much sparser and removes about two thirds of the channels.

Figure 6 represents the median relevance of the electrogastite 10 experiments. It displays which
electrodes have been selected by the different kernelifepmethods. For one experiment, the relevance for
channell is computed by the relative contribution of grotifp the norm of the solution, that is

1 1.,
E Z UT”fm“%im ’

meG, ™

whereZ is a normalization factor that sets the sum of relevances¢o o

The results for CKL are particularly neat, with high relevances for the elat#oin the areas of the visual
cortex (especially the lateral electrodes-Pand PQ), and the primary motor and Somatosensory cortex (C
and CR). The scalp maps for MKL and CKi, are very similar and show the importance of the same regions.
In addition they also highlight numerous frontal electr®tieat are not likely to be relevant for the BCI P300
Speller paradigm.
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7 Conclusion and Further Works

This paper is at the crossroad of kernel learning and varisddection. From the former viewpoint, we extended
the multiple kernel learning problem to take into accoust ginoup structure among kernels. From the latter
viewpoint, we generalized the hierarchical penalizatramfework to kernel classifiers by considering penalties
in RKHS instead of parametric function spaces.

As a side contribution, we also provide a smooth variatidoahulation for arbritrary mixed-norm penal-
ties, enabling to tackle a wide variety of problems. Thigrfalation is not restricted to convex mixed-norm, a
property that turns out to be of interest for reaching sparsace more interpretable solutions.

Our approach is embedded, in the sense that the kernel pgp@meters are optimized jointly with the
parameters of classifier to minimize the soft-margin cigier It is however implemented by a simple wrapper
algorithm, for which the inner and the outer subproblemshhe same objective function, and where the inner
loop is a standard SVM problem.

In particular, this implementation allows to use availabtgvers for kernel machines in the inner loop.
Hence, although this paper considered binary classificgioblems, our approach can be readily extended to
other learning problems, such as multiclass classificatilustering, regression or ranking.
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