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ABSTRACT

Frequency Domain Linear Prediction (FDLP) represents an effi-

cient technique for representing the long-term amplitude modula-

tions (AM) of speech/audio signals using autoregressive models.

For the proposed analysis technique, relatively long temporal seg-

ments (1000 ms) of the input signal are decomposed into a set of

sub-bands. FDLP is applied on each sub-band to model the tempo-

ral envelopes. The residual of the linear prediction represents the

frequency modulations (FM) in the sub-band signal. In this paper,

we present several applications of the proposed AM-FM decompo-

sition technique for a variety of tasks like wide-band audio coding,

speech recognition in reverberant environments and robust feature

extraction for phoneme recognition.

Index Terms— Frequency Domain Linear Prediction (FDLP),

AM-FM decomposition, Wide-band audio coding, Robust features

for speech recognition.

1. INTRODUCTION

Conventionally, signal analysis techniques for speech/audio sig-

nals start with estimating the spectral content of relatively short

(about 10-40 ms) segments of the signal (short-term spectral or

transform domain coefficients). Each estimated vector of spectral

components represents a sample of the underlying dynamic pro-

cess in production of these signals at a given time-frame. Stack-

ing such estimates of the short-term spectra in time provides a

two-dimensional (time-frequency) representation of these signals

that forms the basis for many speech and audio processing sys-

tems (for example AAC [1], PLP [2]). However, the problems of

time-frequency resolution and efficient sampling of the short-term

representation are addressed in an ad-hoc manner.

Alternatively, one can directly estimate trajectories of spec-

tral energies in the individual frequency sub-bands, each estimated

vector then representing the underlying dynamic process in a given

sub-band. Such estimates, stacked in frequency, also form a two-

dimensional representation of signals (for example LP-TRAP [3]).

Spectral representation of sub-band energies, also called “Modu-

lation Spectra”, have been used in many engineering applications.

Early work done in [4] for predicting speech intelligibility and

characterizing room acoustics are now widely used in the indus-

try [5]. Recently, there has been many applications of such con-
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cepts for robust speech recognition [6], audio coding [7] and noise

suppression [8].

In this paper, we propose to connect the modulation based ap-

proaches for speech/audio applications using Frequency Domain

Linear Prediction (FDLP). Our approach is based on the assump-

tion that speech/audio signals in critical bands can be represented

as a modulated signal [11], with the AM component obtained using

Hilbert envelope estimate and the FM component obtained from

the Hilbert carrier. The sub-band temporal envelopes are estimated

using FDLP, which forms an efficient technique for autoregressive

modelling of temporal envelopes of the signal [9, 10]. FDLP ex-

ploits the predictability of the slowly varying long-term AM en-

velopes of speech/audio signals in critical bands. The FDLP resid-

ual signal forms the sub-band FM component.

This paper presents various applications of the proposed AM-

FM decomposition for signal analysis in speech and audio pro-

cessing systems. Modulation spectral components, derived us-

ing FDLP envelopes, are used as features for phoneme recogni-

tion task in noisy speech [12]. For speech recognition in rever-

berant environments, AM envelopes extracted from narrow sub-

bands of long segments of the signal are gain normalized to allevi-

ate the effects of reverberation artifacts in speech signal. Short-

term features, derived by integrating the gain normalized tem-

poral envelopes, provide good robustness in reverberant environ-

ments [13]. For wide-band audio coding applications, the AM and

FM components are quantized and transmitted [14]. Subjective

and objective quality evaluations show that the FDLP based au-

dio codec at ∼ 48 kbps provides similar results compared to the

state-of-art codecs at this bit-rate.

An overview of the engineering applications of the FDLP anal-

ysis technique is shown in Fig. 1. Long term segments of the input

speech/audio signal are decomposed into a set of sub-bands. FDLP

is used for AM-FM decomposition in each sub-band (Sec. 2). The

sub-band AM envelopes are gain normalized for the task of speech

recognition in reverberant environments (Sec. 3). The AM en-

velopes are converted into modulation spectral components for

phoneme recognition in noisy speech (Sec. 4). For wide-band au-

dio coding applications, the AM and FM components are quan-

tized and encoded (Sec. 5).

2. FREQUENCY DOMAIN LINEAR PREDICTION

Typically, autoregressive (AR) models have been used in

speech/audio applications for representing the envelope of the

power spectrum of the signal by performing the operation of Time

Domain Linear Prediction (TDLP) [15]. This paper utilizes AR
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Figure 1: Application of the FDLP technique for speech and audio processing systems - Reverberant speech recognition (Sec. 3), Modula-

tion features for phoneme recognition (Sec. 4) and Wide-band audio coding (Sec. 5).
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Figure 2: Illustration of the all-pole modeling property of FDLP.

(a) a portion of the sub-band speech signal, (b) its Hilbert enve-

lope (c) all pole model obtained using FDLP, (d) sub-band AM

envelope estimate and (e) the sub-band FM component.

models for obtaining smoothed, minimum phase, parametric mod-

els of temporal rather than spectral envelopes. The duality between

time and frequency domains means that AR modeling can be ap-

plied equally well to discrete spectral representations of the signal

instead of time-domain signal samples. For the FDLP technique,

the squared magnitude response of the all-pole filter approximates

the Hilbert envelope of the signal (in a manner similar to the ap-

proximation of the power spectrum of the signal by TDLP [15]).

In our experiments, we implement FDLP in two steps. Long

term segments of the input speech/audio signal (1000 ms) are de-

composed into a set of sub-bands by windowing the discrete co-

sine transform (DCT). Then, we apply linear prediction on the

sub-band DCT components to derive the AR models of Hilbert

envelopes [10].

For many modulated signals in the real world, the quadrature

version of a real input signal and its Hilbert transform are identi-

cal [16]. This means that the Hilbert envelope approximates the

squared AM envelope of the signal. Thus, FDLP estimates the

AM envelope of the signal and the FDLP residual contains the FM

component of the signal. Acoustic signals in sub-bands are modu-

lated signals [11] and hence, FDLP is used for AM-FM decompo-

sition of sub-band signals. Fig. 2 shows (a) a portion of sub-band

speech signal, (b) its Hilbert envelope, (c) an all pole model of

the Hilbert Envelope using FDLP, (d) the AM envelope estimate

obtained as the square root of FDLP envelope and (e) the FDLP

residual signal representing the sub-band FM component.

3. REVERBERANT SPEECH RECOGNITION

For signal analysis in long temporal windows with narrow sub-

bands, the spectral autocorrelation function of the reverberant

speech is the multiplication of spectral autocorrelation function

of the clean speech with that of the room impulse response. For

the room impulse response, the spectral autocorrelation function

in narrow frequency sub-bands can be assumed to be slowly vary-

ing compared to that of the speech signal. Thus, normalizing the

gain of the sub-band FDLP envelopes suppresses the multiplica-

tive effect present in the spectral autocorrelation function of the

reverberant speech [13].

For feature extraction, segments of the input speech signal (of

the order of 1000 ms) are decomposed into a number of narrow

sub-bands, where FDLP is applied to obtain a parametric model

of the temporal envelope. These temporal envelopes are gain nor-

malized to suppress the reverberation artifacts in speech signal.

The whole set of sub-band temporal envelopes forms a two dimen-

sional (time-frequency) representation of the input signal energy.

This two-dimensional representation is convolved with a rectan-

gular window of duration 25 ms and re-sampled at a rate of 100

Hz (10 ms intervals, similar to the estimation of short term power

spectrum in conventional feature extraction techniques). These

sub-sampled short-term spectral energies are converted to short-

term cepstral features similar to the PLP feature extraction tech-

nique.

We apply the proposed features for a connected word recogni-

tion task on a digits corpus [13] using the Aurora evaluation sys-

tem [17]. The models are trained using TIDIGITS training dataset

which contains 8400 clean speech utterances. These models are

tested on the digits corpus recorded using far-field microphones

which forms part of Aurora-5 speech database [18] (ICSI Meeting

task). The test data consists of four sets with 2790 utterances each.

Each of these sets correspond to speech recorded simultaneously

using four different far-field microphones. The results for the pro-

posed FDLP technique, along with those obtained for other robust

feature extraction techniques namely Cepstral Mean Subtraction

(CMS) [19], Long Term Log Spectral Subtraction (LTLSS) [20]

and PLP [2], is shown in Table 1. In reverberant speech recogni-

tion experiments, FDLP features provide a relative improvement
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PLP CMS LTLSS FDLP

Clean 99.7 99.7 99.6 99.1

Revb. 69.1 73.6 76.8 87.0

Table 1: Word accuracies (%) for clean and reverberated speech

tested on models trained with clean utterances.

PLP ETSI MRASTA FDLP

Clean 64.9 63.1 63.9 65.4

Tel. 34.4 47.7 47.5 52.7

Table 2: Phoneme recognition accuracies (%) for clean and tele-

phone speech tested on models trained with clean utterances.

of about 44% over the other feature extraction techniques.

4. MODULATION FEATURES FOR PHONEME

RECOGNITION

The long-term sub-band FDLP envelopes form a compact rep-

resentation of the temporal dynamics over long regions of the

speech signal. For the task of phoneme recognition, the sub-

band temporal envelopes are compressed using a static compres-

sion scheme which is a logarithmic function and a dynamic com-

pression scheme [12]. The dynamic compression is realized by an

adaptation circuit consisting of five consecutive nonlinear adapta-

tion loops [21]. Each of these loops consists of a divider and a low-

pass filter with time constants ranging from 5 ms to 500 ms. The

input signal is divided by the output signal of the low-pass filter in

each adaptation loop. Sudden transitions in the sub-band envelope

that are very fast compared to the time constants of the adaptation

loops are amplified linearly at the output due to the slow changes

in the low pass filter output, whereas the slowly changing regions

of the input signal are compressed. The compressed temporal en-

velopes are divided into 200 ms segments with a shift of 10 ms.

Discrete Cosine Transform (DCT) is applied on the static and the

adaptive segments to yield the static and the adaptive modulation

spectrum respectively. We use 14 modulation frequency compo-

nents from each cosine transform, yielding modulation spectrum

in the 0 − 70 Hz region with a resolution of 5 Hz. The static

and adaptive modulation features for each sub-band are stacked

together to obtain modulation features for each sub-band.

The proposed features are used for a phoneme recognition task

on the HTIMIT database [22]. We use a phoneme recognition sys-

tem based on the Hidden Markov Model - Artificial Neural Net-

work (HMM-ANN) paradigm [23]. The models are trained on

clean speech using the TIMIT database downsampled to 8 kHz.

The training data consists of 3000 utterances, cross-validation data

set consists of 696 utterances and the test data set consists of

1344 utterances. For phoneme recognition experiments in tele-

phone channel, speech data collected from 9 telephone sets in the

HTIMIT database are used, which introduce a variety of channel

distortions in the test signal. For each of these telephone chan-

nels, 842 test utterances, having clean recordings in the TIMIT

test set, are used. The system is trained only on the TIMIT

data, representing clean speech without the distortions introduced

by the communication channel but tested on the clean TIMIT

test set as well as the HTIMIT degraded speech [12]. Table 2

shows results for the proposed technique compared with those

obtained for other robust feature extraction techniques namely,

Multi-resolution RASTA (MRASTA) [24], and the Advanced-
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Figure 3: MUSHRA results for 6 speech/audio samples using three

coded versions at 48 kbps FDLP codec (FDLP), MPEG-4 HE-

AAC (AAC) and LAME-MP3 (LAME)), hidden reference (Hid.

Ref.) and 7 kHz low-pass filtered anchor (LPF7k).

ETSI (noise-robust) distributed speech recognition front-end [25].

For the task of phoneme recognition in telephone speech, the pro-

posed features, on the average, provide a relative improvement of

about 10% over the other feature extraction techniques considered.

5. WIDE-BAND AUDIO CODING

In wide-band audio coding, long segments of the input

speech/audio signals are analyzed using a non-uniform Quadrature

Mirror Filter (QMF) bank to decompose the signal into frequency

sub-bands [14]. For each sub-band signal, the Line Spectral Fre-

quency (LSF) parameters of the AR model are quantized using

Vector Quantization (VQ). The remaining sub-band FM compo-

nents are split into relatively short frames (50 ms) and transformed

using the Modified Discrete Cosine Transform (MDCT). We use

the sine window with 50 % overlap for the MDCT analysis. The

MDCT coefficients of the FM signal are quantized using the split

VQ approach. Although the split VQ approach is suboptimal com-

pared to a full search VQ, it reduces the computational complexity

and memory requirements to manageable limits without severely

degrading the VQ performance. The VQ quantization levels are

Huffman encoded for further reduction of bit-rates. At the de-

coder, quantized MDCT coefficients of the FDLP residual sig-

nals are reconstructed and transformed back to the time-domain

using inverse MDCT. The reconstructed FDLP envelopes (from

LSF parameters) are used to modulate the corresponding sub-band

residual signals. Finally, sub-band synthesis is applied to recon-

struct the full-band signal. Without the use of any psycho-acoustic

models, the FDLP codec provides efficient audio compression for

speech/audio content at 48 kbps.

The subjective evaluation of the proposed audio codec is per-

formed using single channel audio signals (sampled at 48 kHz)

present in the framework for exploration of speech and audio

coding [26]. This database comprises of speech, music and

speech over music recordings. Recently, these audio samples were

used for the development of a low bit-rate unified speech/audio

codec [27]. The MUSHRA (MUltiple Stimuli with Hidden Ref-

erence and Anchor) methodology for subjective evaluation is em-
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ployed. It is defined by ITU-R recommendation BS.1534 [29].

We perform the MUSHRA tests on 6 speech/audio samples from

the database with 6 listeners using the FDLP codec along with

LAME-MP3 (MPEG 1, layer 3) [28] at 48 kbps denoted as

LAME, and MPEG-4 HE-AAC v1 [1] at 48 kbps denoted as AAC.

The HE-AAC coder is the combination of spectral band replica-

tion (SBR) [30] and advanced audio coding (AAC). The mean

MUSHRA scores (with 95% confidence interval) for the subjec-

tive listening tests, shown in Fig. 3, indicate that the subjective

quality of the proposed FDLP codec is slightly poorer than the

AAC codec but better than the LAME codec.

6. CONCLUSIONS

We have presented a novel signal analysis technique based on AR

modelling of amplitude modulations. This technique provides an

AM-FM decomposition of speech/audio signals in sub-bands. We

have applied the proposed AM-FM decomposition technique for

a variety of tasks like wide-band audio coding and speech recog-

nition in noisy environments. The results show the usefulness of

the proposed signal analysis technique for these speech and audio

applications.
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