
TROPER
HCRAESER

PAIDI

FACE DETECTION USING BOOSTED
JACCARD DISTANCE-BASED REGRESSION

Cosmin Atanasoaei Chris McCool
Sébastien Marcel

Idiap-RR-02-2012

JANUARY 2012

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch

Face detection using boosted Jaccard distance-based regression

Cosmin Atanasoaei, Christopher McCool, Sébastien Marcel
Idiap Research Institute
Martigny, Switzerland

cosmin.atanasoaei@idiap.ch

Abstract

This paper presents a new face detection method. We

train a model that predicts the Jaccard distance between

a sample sub-window and the ground truth face location.

This model produces continuous outputs as opposite to the

binary output produced by the widely used boosted cas-

cade classifiers. To train this model we introduce a gen-

eralization of the binary classification boosting algorithms

in which arbitrary smooth loss functions can be optimized.

This way single output regression and binary classification

models can be trained with the same procedure.

Our method presents several significant advantages.

First, it circumvents the need for a specific discretization

of the location and scale during testing. Second, it pro-

vides an approximation of the search direction (in location

and scale) towards the nearest ground truth location. And

finally, the training set consists of more diverse samples

(e.g. samples covering portions of the faces) that cannot

be used to train a classifier. We provide experimental re-

sults on BioID face dataset to compare our method with the

sliding-windows approach.

1. Introduction
Face detection consists of finding the position of all the

faces, if any, in images. Two components are usually re-
quired: a classifier and a search algorithm. The search
(or scanning) algorithm forms sub-windows (or samples) at
different locations and scales which are feed to the classi-
fier. The sub-windows labelled as positive samples are con-
sidered as final detections. Usually a clustering algorithm
(e.g. non-maxima suppression, averaging the overlapping
regions, mean shift) is run on these detections to reduce the
number of multiple detections.

Recently there has been a great interest in real-time face
detection systems. Their speed depends mostly on the speed
of the classifier to evaluate a sub-window. These systems
are usually built using boosted classifiers [13, 14], because
of their potential computational efficiency while providing

state of the art performance. Another important factor is
the speed to compute the features. The fastest features are
evaluated in constant complexity at any location and scale,
for example: Haar-like features [13] and MCT [6] or multi-
block LBP codes [14].

The most popular and simple search strategy for face de-
tection is the sliding-windows approach (we refer to this
method as SScan). The location and scale space is usually
discretized using a fixed grid or a coarse-to-fine approach.

There are two problems with the SScan approach that
we address in this paper. First, the discretization param-
eters are difficult to automatically adjust to the size of the
image to scan and it clearly depends on the (unknown) num-
ber, on the size and on the distance between adjacent faces.
Second, the classifiers cannot be trained with samples that
cover just a part of the face. For example it is impossible
to decide if a sample containing just half of the face should
be considered as a positive or as a negative training sam-
ple. Therefore an uncertain region around the ground truth
is formed during training [3, 2]. But these kind of samples
consistently appear at testing time and there is no guarantee
on the classifier’s output in this situation.

A possible solution is to use regression to learn a richer
information than just a label of a sub-window to test. There
have been some previous work on this research direction.
For example a boosted model is trained in [2] to predict
the displacement of a facial feature patch from the ground
truth. In [3] a regression approach is used to predict the eye
positions. Our work follows this direction.

More specifically, we propose a new real-time face de-
tection method that uses regression to guide the search. We
train a model that predicts the Jaccard distance between a
sample sub-window and the nearest ground truth face lo-
cation. Then this model is used to search for faces in two
steps. First we initialize of a set of potential detections with
a coarse sampling and second we iteratively refine the most
promising detections. We refer to this method as JScan.

The main contributions of our paper can be summarized
as follows:

• We train a model to learn how accurate a sub-window

1

is in both location and scale. This allows for arbitrary
displacements and scale variations of the ground truth
face locations sub-windows in the training samples.
We then use this model for face detection without the
need for a specific discretization of the search space.

• We propose a general formulation of boosting algo-
rithms that is independent of the loss function and the
specific classification or regression task to solve. This
formulation allows for training binary classifiers and
single output regressors with the same algorithm.

• An additional contribution is the proposed features that
combine Multi-Block Local Binary Patterns and Mod-
ified Census Transform features.

This paper is organized as follows. The Section 2
presents a general view of the boosting algorithms for both
classification and regression. Here we briefly introduce the
sliding-windows approach to face detection. In Section 3
we describe our proposed method: the model that learns
the distance of a sub-window to the ground truth face loca-
tion and the associated search algorithm similar to sliding-
windows. The experimental procedure and the compara-
tive results with an equivalent complex boosted classifier
are presented in Section 4. Finally we conclude and point
to future work directions in Section 5.

2. Related work
In this section we present a general view of the boosting

algorithms for both classification and regression (2.1). Then
we briefly introduce the sliding-windows approach to face
detection (2.2).

2.1. Boosting
Boosting [10] is a greedy method for learning a strong

classifier as a linear combination of weak classifiers. This
process is done iteratively in boosting rounds: a single new
weak classifier is chosen and added to the combination.
Each new weak classifier is usually trained to correct the
mistakes made by the previous ones and to focus on the
most challenging samples. Boosting can also be interpreted
as a gradient descent algorithm in the functional space of
the weak classifiers [9].

In this paper we focus on a more general formulation of
boosting as a greedy optimization of the Taylor expansion
of the loss function to optimize [9, 11]. This has the advan-
tage of having the same formulation for both classification
and regression, allowing for an easy and fair comparison
between classification and regression methods for face de-
tection.

More formally let χ be the input signal space and
{(xn, yn)n=1:N} ∈ (χ× R)N a set of N training sam-
ples. The targets {yn} to learn can be either binary labels

{−1,+1} or any other scalar for regression problems. The
goal is to build a functional f : χ → R to map the samples
xn to their targets yn. At each boosting round t, t ≤ T , its
approximation is a linear combination of gs weak learners:
ft =

�
s≤t gs.

The criteria to choose f is to minimize a loss function of
the form: L(ft) =

�
n l(yn, ft(xn)). At each step t+1 the

weak learner gt+1 is chosen to minimize:

gt+1 = arg min
g

�

n

l(yn, ft(xn) + g(xn)). (1)

Taking the Taylor expansion of the loss, in the current
ft point, up to the second order, the optimization problem
becomes:

gt+1 = arg min
g

L(ft) +

�

n

�
∂l(yn, f)

∂f
|f=ft(xn)

�
g(xn) +

1

2

�

n

�
∂2l(yn, f)

∂f2
|f=ft(xn)

�
g2(xn). (2)

Most boosting algorithms can be derived from this for-
mulation. We distinguish between second order and first
order boosting algorithms depending if they use or not the
second order term in the Taylor expansion in Eq. 2.

The first order boosting algorithms perform a gradient
descent in the functional space:

gt+1 = arg max
g

|
�

n

�
∂l(yn, f)

∂f
|f=ft(xn)

�
g(xn)|. (3)

For example: “AdaBoost“ [10] minimizes the exponential
loss l(y, f) = exp(−yf) and restricts the weak classifiers
to the form gs : χ → {−1,+1}, while “AnyBoost“ [9] is a
generic formulation for any loss functions. It can be noticed
that the optimal weak learner gt+1 is known up to a scaling
factor. This is the reason why gt+1 is typically scaled using
the line-search algorithm, fixed steps or decreasing steps. In
particular cases the optimal scale can be found analytically
(e.g. AdaBoost).

The second order boosting algorithms use adaptive New-
ton steps to minimize the loss function. A well known al-
gorithm of this type is “Gentle AdaBoost“ [5, 11] which
optimizes the exponential loss for the classification task.

Usually the normalized partial derivatives of the loss
function are considered as weights associated to each sam-
ple (e.g. AdaBoost, Gentle AdaBoost). This allows, in cer-
tain conditions for the classification task, to interpret boost-
ing as a greedy algorithm that concentrates the current weak

Classification: l1(y, f) = exp(−yf)

l2(y, f) = log(1 + exp(−yf))

Regression: l3(y, f) = 1
2 (y − f)2

l4(y, f) = exp(y − f) + exp(f − y)− 2

Table 1. Various loss functions for classification (l1, l2) and regres-
sion (l3, l4).

learner on the samples miss-classified by the previous weak
learners.

The loss function depends on the specific problem to
solve (see Table 1). For example, the classification task re-
quires the two classes to be separated as far as possible:
l(y, f) = l(−yf), while the regression task needs a predic-
tion as close as possible to the target: l(y, f) = l(y − f).

2.2. Face detection using sliding-windows (SScan)
The Algorithm 1 presents the sliding-windows approach

to face detection. Given a face classifier M that processes
sub-windows of size Mw ×Mh, the algorithm searches for
faces in the image I of size Iw × Ih. The discretization of
the location and scale space is governed by the dx, dy, ds
parameters. The dx and dy coefficients are used to compute
the displacement in location between two sub-windows, rel-
ative to the model size, for the scaled image Is of size
Iws ×Ihs by the s factor. If the classifier scores above a given
threshold τ , then the detection det = {x, y, s} is accepted
in the final list D.

Algorithm 1 Face detection using sliding-windows.
1: dx ∈ (0, 1) , dy ∈ (0, 1) , ds ∈ (0, 1) , τ,M, I,D = φ
2: for s = 1 to s > 0 do
3: scale the image: Is ← I ⊗ s
4: for x = 0 to x < Iws do
5: for y = 0 to y < Ihs do
6: det = {x, y, s}
7: if M(det) ≥ τ then
8: D ← D ∪ det
9: end if

10: y ← y + dy ∗Mh

11: end for
12: x ← x+ dx ∗Mw

13: end for
14: s ← s− ds
15: end for
16: return D

There are several problems with this method. First, the
dx, dy, ds parameters are difficult to set a priori. They de-
pendent on the size of the image to search and the number of
and the distance between face locations. Second, the search
algorithm uses a face classifier that is trained with roughly

normalized samples. For example it cannot be trained with
samples that cover just a part of the face. This is because
it is impossible to decide if a sample containing just half of
the face should be considered as a positive or as a negative
training sample. Therefore an uncertain region around the
ground truth is formed during training [3, 2]. The problem
is that there is no guarantee on the output of the classifier for
these kind of sub-windows that can appear during testing.

3. Proposed approach
In this section we introduce the features and the weak

learner (3.1). Then we describe the training algorithm (3.2)
using the framework presented in the previous section. Next
we present the Jaccard distance (3.3) and how to use it for
face detection (3.4).

3.1. Features and weak learner
A real-time face detection system requires features that

are fast to compute at any location and scale. The first real-
time system used Haar-like features [12], but LBP-based
features became also very popular because they are robust
to illumination changes [6]. Recently, the Multi-Block LBP
features [14] have been shown to outperform both Haar-
like features and LBP codes. Hence, in this work we use a
new feature - the Multi-Block Modified Census Transform
(MBMCT), that combines the multi-block idea proposed in
[14] and the MCT features proposed in [6].

The MBMCT features are parametrized by the top-left
coordinate (x, y) and the size w×h of the rectangular cells
in the 3× 3 neighbourhood. This gives a region of 3w× 3h
pixels to compute the 9-bit MBMCT:

MBMCT (x, y, w, h) =
�

i=0:8

δ(pi ≥ p̄) ∗ 2i, (4)

where δ is the Kronecker delta function, p̄ is the average
pixel intensity in the 3×3 region and pi is the average pixel
intensity in the cell i (see Fig. 1 (a)). The feature is com-
puted in constant time for any parametrization using the in-
tegral image. Various patterns at multiple scales and aspect
ratios can be obtained by varying the parameters w and h
(see Fig. 1 (b)).

The MBMCT feature values are non-metric codes and
this restricts the type of weak learner to boost. We use the
multi-branch decision tree proposed in [14] as weak learner.
This weak learner is parametrized by a feature index (e.g.
dimension in the feature space) and a set of fixed outputs,
one for each distinct feature value. More formally, the weak
learner g is computed for a sample x and a feature d with:

g(x) = lut[xd], (5)
where lut is a look-up table with 512 entries au (because
there are 512 distinct MCT codes) and d indexes the space

(a) (b)

Figure 1. (a) Multi-block MCT feature for image representation.
(b) Examples of some patterns that can be obtained by varying the
parameters w and h.

of x, y, w, h possible MBMCT parametrizations. The goal
of the boosting algorithm is then to compute the optimum
feature d and au entries.

3.2. Training
In this section we derive the second order boosting al-

gorithm to train the multi-branch decision tree. We chose
this formulation over the first order because generally the
loss decreases faster using Newton-Raphson steps than us-
ing gradient descent steps. The Eq. 2 can be rewritten for a
fixed feature d as:

gt+1(d, au) = arg min
au

L(ft) +

�

u

au




�

n,xd
n=u

�
∂l(yn, f)

∂f
|f=ft(xn)

�

+

�

u

a2u



1

2

�

n,xd
n=u

�
∂2l(yn, f)

∂f2
|f=ft(xn)

�

 (6)

or more compactly as:

gt+1 = arg min
d,au

L(ft) +
�

u

auL
�
u +

�

u

1

2
a2uL

��
u, (7)

where L�
u and L��

u are the cumulated first and second order
derivatives of the loss for the samples that have the feature
d with the value u. It can be noticed that the quadratic op-
timization problem can be solved separately for each look-
up-table entries au. The exact solution and the potential loss
decrease ∆ are:

au = −L�
u

L��
u

= −

�
n,xd

n=u

�
∂l(yn,f)

∂f |f=ft(xn)

�

�
n,xd

n=u

�
∂2l(yn,f)

∂f2 |f=ft(xn)

� (8)

∆ = −
�

u

(L�
u)

2

2L��
u

. (9)

The training algorithm is presented in Algorithm 2. At
each boosting round t, the optimal weak learner gt+1 is cho-
sen by evaluating each feature d and selecting the optimal
one with the highest decrease ∆ in the loss. Then gt+1 is
added to the strong model f . It can be noticed that the algo-
rithm is of linear complexity with the number of samples,
features and boosting rounds. There are two important ben-
efits: it performs feature selection and it can be used for any
smooth loss function. In this paper we use this algorithm
for both face classification and Jaccard distance-based face
regression.

Algorithm 2 Second order boosting multi-branch MBMCT
decision trees.

1: for t = 0, f = 0 to t ≤ T do
2: d∗ = 0,∆∗ = ∞, a∗u = 0
3: for feature d do
4: for feature value u ∈ 0...511 do
5: compute L�

u and L��
u

6: end for
7: ∆ = −

�
u
(L�

u)
2

2L��
u

8: if ∆ < ∆∗ then
9: d∗ ← d,∆∗ ← ∆, a∗u ← −L�

u
L��

u

10: end if
11: end for
12: f ← f + gt+1(d∗, a∗u), t ← t+ 1
13: end for
14: return f

3.3. Jaccard distance
The Jaccard distance [7] is a statistical method to mea-

sure the similarity between two sets A and B (see Eq. 10).

J(A,B) = 1− |A ∩B|
|A ∪B| . (10)

This can be extended to measure the overlapping be-
tween two rectangular regions. Then, |A ∩ B| and |A ∪ B|
stand for the area of their intersection and reunion, respec-
tively. We decided to use an approximation to the Jaccard
distance that it is easier to compute in the case of face de-
tection:

Jm(A,B) = 1− |A ∩B|
max(|A|, |B|) (11)

Let A be the ground truth face location and B a sub-window
to evaluate. Then, the perfect detection corresponds to
the distance Jm(A,B) = 0, while the background sub-
windows corresponds to the distance Jm(A,B) = 1. The
target y to learn (see Sections 2.1 and 3.2) for the particular
sub-window B is Jm(A,B).

3.4. Face detection using Jaccard distance-based re-
gression (JScan)

We propose a regression-driven search algorithm for face
detection. Instead of using a classifier, we train a model
to learn a richer information: the Jaccard distance between
a sub-window and the closest ground truth face location.
An immediate benefit of using regression is that the model
can be trained with sub-windows at any location and scale,
which implies that no uncertain region is formed any more.

Assuming that such a model M is provided, the search
algorithm becomes as presented in Algorithm 3. There
are several significant differences compared to Algorithm
1. First, no dx, dy, ds discretization is needed any more.
This is because the model predicts how far the current sub-
window is from the true face location, which can be used
to guide the search instead of some a priori fixed discretiza-
tion parameters. Second, the proposed method is split in
two stages: the initialization of potential locations (steps 8,
10 and 12) and the refinement (steps 14, 15) of these loca-
tions to minimize the Jaccard distance. It can be noticed
that we refine only the sub-windows that are close to the
ground truth. This has the benefit of concentrating the effort
(evaluating sub-windows) in the most promising regions of
the search space. Finally, we ignore the detections that are
farther away than τ from the true location (step 16). This
corresponds to eliminating false alarms (see Algorithm 1,
step 7).

Initialization stage (steps 1-12)
The search for the optimal face locations is initialized us-

ing an uniform grid. The idea is to sample such that all the

faces to be included at least in halves in some sub-window.
This implies that we need to sample every Mw

2 and Mh

2
on the horizontal and vertical axis, respectively. The scale
sampling factor is slightly more difficult to set. Let s be
the current scale. Then a sub-window at this scale has the
size of 1

sM
w × 1

sM
h relative to the original image. The

difference in size between two sub-windows at consecutive
scales s and s� < s is: (1

s� −
1
s)M

w × (1
s� −

1
s)M

h. To
make sure all the faces are contained at least halved in some
sub-window we set the conditions: (1

s� −
1
s)M

w ≤ Mw

2 and
(1
s� −

1
s)M

h ≤ Mh

2 . This implies 1
s� −

1
s ≤ 1

2 . At the limit,
it can be shown that we obtain the following relation for the
scale variation: sn = 2

n+1 , n ≥ 1.

Refinement stage (steps 14 and 15)
Next the detections close enough to the ground truth lo-

cations are refined in two steps. Given that the Jaccard dis-
tance is isotropic, the optimal direction where the face lo-
cation resides cannot be deduced from this information. In-
stead we sample independently each axis (horizontal, verti-
cal and scale) with two values (left - right, down - up, bigger

- smaller). In the first step we sample with the half, while
in the second step with the quarter of the displacement used
in the initialization. The sampling spacing is decreased be-
cause smaller steps are required as the detection get closer
to the ground truth locations. Only the detections that are
within 0.50 and 0.40 Jaccard distance from the ground truth
are refined at the first and the second step respectively. It
can be noticed that it pointless to have more than two re-
finement steps because the spacing resolution (divided by
two at each step) reaches the limit.

For example, for the sub-window (x, y, 1
s) we generate

at the first refinement step the six sub-windows to refine:
(x± Mw

4 , y± Mh

4 , 1
s ±

1
4). Considering a model of the size

24× 24, the initialization part process locations at every 12
pixels, while the refinement steps at every 6 and 3 pixels
respectively.

Algorithm 3 Face detection using Jaccard distance-based
regression.

1: τ ∈ (0, 1) ,M, I,D = φ

2: for s = 1 to s ≥ max(M
w

Iw , Mh

Ih) do
3: Is ← I ⊗ s
4: for x = 0 to x < Iws do
5: for y = 0 to y < Ihs do
6: det = {x, y, s}
7: D ← D ∪ det
8: y ← y + Mh

2
9: end for

10: x ← x+ Mw

2
11: end for
12: 1

s ← 1
s + 1

2
13: end for
14: refine(D, 0.50, x± Mw

4 , y ± Mh

4 , 1
s ± 1

4)

15: refine(D, 0.40, x± Mw

8 , y ± Mh

8 , 1
s ± 1

8)
16: threshold(D, τ)
17: return D

4. Experiments and results
As a proof of concept, we have performed experiments

to investigate the feasibility of the proposed idea. For this
we have compared our proposed face detection method with
the sliding-windows approach using an equivalent complex
boosted classifier.

4.1. Experimental setup
The training samples were generated using the BANCA

[1] English face dataset (6240 images) and the CALTECH-
101 [4] background dataset (451 images). The BANCA
dataset contains images taken in controlled and uncon-
trolled conditions of a single person in an office environ-
ment. We normalized these images to have the eyes hori-

zontally aligned and with 32 pixels distance between them.
Then we collected roughly 6 billion sub-windows of 24×24
size using a very fine discretization of location and scale.

Each model was trained using 500,000 randomly se-
lected samples. The training samples were generated to be
evenly distributed over the output values: the class labels
{−1,+1} for classification and the Jaccard distance values
[0, 1] for regression. The classifier required one more re-
striction to overcome the uncertain area problem (see Sec-
tion 2.2): the positive samples to overlap at least 90%, while
the negative samples to overlap at most 10% respectively
with the ground truth face location.

The same feature parametrization (see Section 3.1) was
used for both models. The MBMCT features were gen-
erated with the cell size varying in the range {1 . . . 8} ×
{1 . . . 8}. This generates roughly 7,000 features per sam-
ple. We used the second-order boosting procedure with 200
rounds to train both models (see Section 3.2). The only dif-
ference is in the choice of appropriate loss functions: the
exponential l1(y, f) = exp(−yf) and the sum of exponen-
tials l4(y, f) = exp(y−f)+exp(f−y)−2 losses (see Table
1) were used for the classifier and the regressor respectively.

We have chosen the BioID dataset [8] as the test dataset
because it contains face images captured with a setup close
to the one used as the training dataset (BANCA), although
significantly more challenging to detect. This dataset con-
tains 1521 images of a single person taken in different office
environments.

The ROC curves are built by varying the threshold τ (see
Algorithms 1 and 3) and measuring the detection rate (DR)
and the number of false alarms (FA). Multiple detections
are integrated using non-maxima suppression. This is per-
formed iteratively: first we chose the detection with the
highest classification score or lowest Jaccard distance and
second, we remove the other detections that overlap more
than 60% with it.

4.2. Results
There are several aspects we investigate: the evolution

of the training loss, the face detection performance and the
speed of the proposed JScan method. Finally we provide
some examples of the proposed detection process produced
on the BioID dataset. We would like to point out that the
aim of this paper is to assess the proposed method and not
to produce the best possible results. Our goal is to compare
a boosted classifier and a boosted regressor on the same
datasets. It is clear that improved results can be obtained
with more datasets, but it is out of the scope of this study.

Training loss

The training loss evolution provides an insight into how dif-
ficult a task is to solve for a particular model. We have plot-

ted in Fig. 2 the logarithmic evolution of the training loss
for the face classifier and the Jaccard distance-based regres-
sor. It can be noticed that the loss decreases exponentially
in the case of classification, but only linearly in the case of
regression. This suggests that it is significantly harder to
learn how far a sub-window is from the ground truth than
classifying it as face or background. Still, a slowly increas-
ing accurate regression output is produced as the number of
boosting rounds increases.

-12

-10

-8

-6

-4

-2

0

2

4

6

0 50 100 150 200

lo
g

1
0

(l
o

ss
)

rounds

TrainLoss

Regressor
Classifier

Figure 2. The logarithmic evolution of the training loss for the face
classifier (red) and the Jaccard distance-based regressor (blue).

Face detection performance

We have evaluated the face detection performance of our
method JScan and the baseline SScan on the BioID dataset.
The sliding-windows approach depends on the search space
parameters for location and scale. Hence, we have used
two scenarios: the coarse search (dx = 0.25, dy = 0.25,
ds = 0.20) and the fine search (dx = 0.20, dy = 0.20,
ds = 0.10), which we denote as SScan (coarse) and SScan

(fine) respectively.
The logarithmic ROC curves are plotted in Fig. 3. It can

be noticed that the performance of the SScan method clearly
depends on the search parametrization: the fine search sig-
nificantly outperforms the coarse search. This is at the
cost of a slower face detector, because the number of sub-
windows increases rapidly with the search parameters.

The proposed JScan method performs significantly bet-
ter than the baseline with a DR 5% larger for the same num-
ber of false alarms. This performance is maintained for
various number of boosting rounds (see Fig. 4) with a no-
ticeable larger improvement for small number of boosting
rounds. This correlates with the evolution of the training
loss (see Fig. 2) when the regressor learns faster for the first
rounds, but significantly slower for large number of boost-
ing rounds. This allows the classifier to close the gap in
terms of performance.

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds200-overlap0.50

JScan
SScan(fine)

SScan(coarse)

Figure 3. The logarithmic ROC curves for the BioID dataset us-
ing JScan (blue) and SScan with coarse (magenta) and fine (red)
search parametrization. All models were trained using 200 boost-
ing rounds.

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds10-overlap0.50

JScan
SScan(fine)

SScan(coarse)

(a) 10 rounds

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds20-overlap0.50

JScan
SScan(fine)

SScan(coarse)

(b) 20 rounds

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds50-overlap0.50

JScan
SScan(fine)

SScan(coarse)

(c) 50 rounds

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

D
R

log10(FA)

BioID-rounds100-overlap0.50

JScan
SScan(fine)

SScan(coarse)

(d) 100 rounds

Figure 4. The logarithmic ROC curves for the BioID dataset us-
ing various number of boosting rounds. The results for JScan
are plotted with blue, while for SScan with coarse and fine search
parametrization with magenta and red, respectively.

Detection speed

We have also studied the number of processed sub-windows
for each method (see Table 2) at various number of boosting
rounds. It can be noticed that as the number of boosting
rounds increases, the JScan method processes fewer sub-
windows for both test datasets. This is because the Jaccard
distance-based regressor becomes more reliable and fewer
sub-windows need to be refined (see Algorithm 3). This
contrasts with both SScan instances that process the same
number of sub-windows. Hence, it is possible to achieve
an even higher speed with a more accurate regressor. We
conclude that our proposed method JScan is significantly
faster than the baseline methods for a similar complexity of

Boosting rounds 10 20 50 100 200
BioID

JScan 2,941 2,668 2,462 2,388 2,347
SScan (coarse) 8,485 8,485 8,485 8,485 8,485
SScan (fine) 21,055 21,055 21,055 21,055 21,055
Speed-up factor 2.88 3.18 3.44 3.55 3.61

Table 2. The number of processed sub-windows (in thousands) for
the BioID dataset using various number of boosting rounds. The
JScan speed-up factor is computed relative to SScan (coarse).

(a) y=0.15, f(x)=0.10 (b) y=0.35, f(x)=0.39 (c) y=0.35, f(x)=0.33

(d) y=0.62, f(x)=0.63 (e) y=0.64, f(x)=0.59 (f) y=0.98, f(x)=0.93

Figure 5. Examples of sub-windows (x) processed by the JScan
method on the BioID dataset. The number on the left of the caption
(y) is the Jaccard distance and the number on the right f(x) is the
estimated one.

the model. Indeed, the classifier and the regressor contain
the same number of parameters.

Examples

Figure 5 presents some sub-windows processed by our pro-
posed method on the BioID dataset. The number on the left
of the caption (y) is the Jaccard distance and the number
on the right f(x) is the estimated one. These samples con-
tain faces at different location displacements and scale vari-
ations. This makes the Jaccard distance modelling a more
difficult task than face classification. For example the sam-
ples b, c, d and e (see Fig. 5) are excluded when training the
face classifier because they are ambiguous. But the Jaccard
distance model must cope with these difficult samples. This
results in significant errors at testing, but still the predictions
are accurate enough for successfully guiding the refinement
of potential face detections (see Fig. 6).

As shown in Fig. 6, the proposed detection refinement
stage concentrates the effort on the most promising loca-
tions (hopefully around the ground truth face locations).
This is because the number of detections to refine decreases

(a) Initialization stage (b) Initialization stage

(c) Refinement stage (step 1) (d) Refinement stage (step 1)

(e) Refinement stage (step 2) (f) Refinement stage (step 2)

Figure 6. Illustration of the detection process with the JScan
method for two images (left and right column respectively). On
the first row we display the centres of the initialized detections,
while on the second and third rows the refined detections in the
first and the second step respectively.

at each step: the ones with a score smaller than 0.50 and
0.40 for the first and second step respectively. This corre-
sponds to detections that are closer, in terms of the Jaccard
distance, than 0.50 and 0.40 respectively from the ground
truth.

5. Conclusions
In this paper we present a new face detection method.

We train a model to learn the Jaccard distance between a
sub-window and the ground truth location. For this we gen-
eralize the boosting algorithm for binary classification to
optimize any smooth loss function. Then the binary clas-
sifiers and single output regressors can be trained with the
same algorithm, the only difference being in the choice of
appropriate loss function.

The experimental results have shown that our face de-
tector processes significantly fewer sub-windows than the
baseline sliding-windows approach using an equivalent
complex classifier. The face detection performance is im-
proved over the baseline on the BioID dataset a detection

rate 5% higher for the same number of false alarms. These
encouraging results show that the idea is feasible. We plan
to perform experiments on other more challenging datasets
to further assess its performance.

An interesting finding is that the number of sub-windows
to process decreases with the number of boosting rounds.
This suggests that a more accurate Jaccard distance regres-
sor would improve the proposed detection method as to pro-
cess fewer sub-windows which results in a faster face de-
tector. To achieve this we envisage several future works:
boosting more powerful weak learners, faster optimization
in respect to the number of boosting rounds and adapting
bootstrapping from classification to regression.

6. Acknowledgment
The authors would like to thank the FP7 European

MOBIO project (IST-214324) and the Hasler Foundation
(CONTEXT project) for their financial support.

References
[1] E. Bailly-Bailliére, S. Bengio, F. Bimbot, M. Hamouz, J. Kit-

tler, J. Mariéthoz, J. Matas, K. Messer, V. Popovici, F. Porée,
B. Ruiz, and J.-P. Thiran. The banca database and evaluation
protocol. page 1057. 2003. 5

[2] D. Cristinacce and T. Cootes. Boosted regression active
shape models. pages xx–yy, 2007. 1, 3

[3] M. Everingham and A. Zisserman. Regression and classifi-
cation approaches to eye localization in face images. pages
441–448, 2006. 1, 3

[4] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories. page 178,
2004. 5

[5] J. Friedman, T. Hastie, and R. Tibshirani. Additive Logistic
Regression: a Statistical View of Boosting. The Annals of

Statistics, 38(2), 2000. 2
[6] B. Froba and A. Ernst. Face detection with the modified

census transform. Automatic Face and Gesture Recognition,

IEEE International Conference on, 0:91, 2004. 1, 3
[7] P. Jaccard. Étude comparative de la distribution florale dans

une portion des alpes et des jura. Bulletin del la Société Vau-

doise des Sciences Naturelles, 37:547–579, 1901. 4
[8] O. Jesorsky, K. J. Kirchberg, and R. Frischholz. Robust face

detection using the hausdorff distance. In AVBPA ’01: Pro-

ceedings of the Third International Conference on Audio-

and Video-Based Biometric Person Authentication, pages
90–95, London, UK, 2001. Springer-Verlag. 6

[9] L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Func-
tional gradient techniques for combining hypotheses. In A. J.
Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, ed-
itors, Advances in Large Margin Classifiers, pages 221–246.
MIT Press, 2000. 2

[10] R. E. Schapire. The boosting approach to machine learning:
An overview, 2002. 2

[11] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing vi-
sual features for multiclass and multiview object detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 29:854–869, 2007. 2
[12] P. Viola and M. Jones. Fast and robust classification using

asymmetric adaboost and a detector cascade. In Advances

in Neural Information Processing System 14, pages 1311–
1318. MIT Press, 2001. 3

[13] P. Viola and M. Jones. Robust real-time face detection. In-

ternational Journal of Computer Vision, 57:137–154, 2004.
1

[14] L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Z. Li. Face
detection based on multi-block lbp representation. In ICB,
pages 11–18, 2007. 1, 3

