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Abstract

This paper presents a new approach to estimate “universal” phoneme posterior probabilities for
mixed language speech recognition. More specifically, we propose a new theoretical framework to
combine phoneme class posterior probabilities in a principled way by using (statistical) evidence
about the language identity. We investigate the proposed approach in a mixed language environment
(SpeechDat(II)) consisting of five European languages. Our studies show that the proposed approach
can yield significant improvements on a mixed language task, while maintaining the performance on
monolingual tasks. Additionally, through a case study, we also demonstrate the potential benefits of
the proposed approach for non-native speech recognition.

Index Terms— Speech recognition, Mixed language speech recognition, Non-native speech, Acoustic
model combination, Universal phoneme set

1 Introduction

In monolingual speech recognition, the language being spoken is known during testing. On the other
hand, in mixed language speech recognition, it is assumed that the language is not known a priori.
One possible approach to perform mixed language speech recognition is to build multiple monolingual
systems, run them, and select the word hypothesis with the maximum likelihood (among all systems).
Such an approach has certain drawbacks. For instance, not all languages may have sufficient resources for
building a reliable monolingual system. Also, there could be considerable degradation in performance
when combining monolingual systems for the mixed language task [1]. Thus, in multilingual speech
recognition literature, the use of “universal” phoneme models has been proposed [2,3] and will be further
explored here based on exploiting properties of phoneme class posterior probabilities.

The use of universal phoneme models allows the sharing of acoustic training data, can help in porting
ASR systems across languages with limited resources and provides the ability to make a soft (statistical)
decision at the phoneme level about the language being spoken. However, it has also been observed
that with a larger quantity of monolingual training data, systems using universal phoneme models yield
lower performance than systems using monolingual phoneme models. One reason for this could be that
the universal phoneme set is (generally) built by merging the phonemes from multiple languages based on



their phonetic symbol (e.g. IPA, SAMPA). Although different languages can have phonemes that share
the same phonetic symbol, it is widely accepted that their acoustic manifestations can be significantly
different, depending on the language. As a result, the same phoneme classes from different languages,
as well as phoneme instances pronounced by non-native speakers, may not cluster well [4].

In this paper, we thus investigate the notion (and estimation) of universal phoneme posteriors, con-
ditioned on the (unknown) spoken language. This is done in the context of hybrid HMM/MLP ASR
systems, where multilayer perceptrons (MLP) are providing us with phoneme posterior estimates. Mono-
lingual phoneme posterior probabilities (phoneme posteriors) for each language are thus estimated (by
MLP) and then combined (using statistical evidence about language identity) to estimate language de-
pendent universal phoneme posteriors. The proposed approach thus attempts to merge the benefits of the
greater class discrimination provided by monolingual systems with the benefits of a soft decision offered
by systems using universal phoneme models.

We formulate the notion of monolingual and universal phoneme posteriors in Section 2, before the
proposed approach is investigated on SpeechDat(II) databases from five European languages in Section 3.
Our findings suggest that our novel approach can yield improvement in mixed language environments.
Further analysis of the results show that the proposed approach could also be potentially applied to non-
native and/or accented speech recognition (Section 4). We discuss the novel approach in Section 5 and
Section 6 concludes the paper.

2 PHONEME POSTERIOR ESTIMATION

In this section, we present the estimation of monolingual and universal phoneme posteriors. For the sake
of clarity, we first briefly present the notation used in this paper before explaining how we estimated
language-conditioned universal phoneme posteriors.

2.1 Notation

Each language [ € {1,..., N} (IV is the number of different languages) has its own phoneme set con-
sisting of monolingual phonemes, mf, where k € {1,..., K;} (K being the number of phonemes in
language [). Each phoneme, mf , corresponds to a SAMPA! symbol. By merging all of the phoneme sets
and assuming that the same SAMPA symbol represents the same phoneme class across languages, we
can build one universal phoneme set consisting of universal phonemes u?, where i € {1,..., I} (I being
the number of universal phonemes).

We distinguish between monolingual phoneme posteriors, P (mﬁt\mt), (for ease of notation we omit
the conditional variable [, because the language is implicit to mf) and universal phoneme posteriors,
P(ul|z;). The term x; represents the acoustic vector observation at time ¢. The expressions mft and u!
stand for the statistical events m;; = k (the system of language [ is in class k at time ¢) and u; = (the
system is in class ¢ at time t), respectively.

'http://www.phon.ucl.ac.uk/home/sampa/



2.2  Monolingual phoneme posteriors

Conventional approaches to hybrid HMM-based speech recognition use monolingual phoneme posteri-
ors. In a multilingual environment and in the case of HMM/MLP ASR systems, this requires training one
MLP with K, outputs per language, ¢, to estimate monolingual phoneme posteriors, P (mft]wt) As we
know from many previous experiments, MLPs yield very good estimates of these phoneme pbsteriors [5].

2.3 Universal phoneme posteriors

We compare two different approaches to estimate universal phoneme posteriors: (1) a conventional lan-
guage independent approach, based on the training of one single multilingual MLP, and (2) a new lan-
guage dependent approach, where universal language-conditioned phoneme posteriors are first obtained
and then combined.

2.3.1 Language independent approach
In this approach, an MLP with I outputs is trained with the data from all available languages to estimate
universal phoneme posteriors, P(u}|z;).

2.3.2 Language dependent approach

In the language dependent approach, each language contributes to the estimation of the universal phoneme
posteriors through proper combination of monolingual phoneme posteriors:

N
P(ujley) = > P(uf,l) (1)
=1
N .
= > P(ujlzy, 1) P(I]xy) 2)
=1

which suggests to weight the language-conditioned universal phoneme posteriors, P(ul|zs,1), by the
corresponding frame-based language posterior probability, P(l|xz;).

One way to estimate the language-conditioned universal phoneme posterior, P(u! |z, ), is by a linear
combination of monolingual phoneme posteriors:

K
P(ujlz,l) = > P(mf,uilz) (3)
k=1
K
= Y Pluflwr,mf,) P(mf|a) )
k=1

As previously noted from past literature [4], language independent acoustic modeling techniques tend
to degrade the performance of ASR systems due to the greater within phoneme class variability across



languages. Thus, we may hypothesize that a linear combination of language dependent posteriors may
provide a better estimate of universal phoneme posterior probabilities, where Equation (4) shows that
we should weight the monolingual phoneme posteriors, P(mﬁt\wt), by the conditional probabilities,
P(u%‘xbmﬁt)'

An MLP classifier could be trained to estimate P(u|x;, mft), but this is not obvious. Alternatively,
one could assume that P(u}|zy, mft) is (1) conditionally independent of the acoustic observation, z;
(given mﬁt), and (2) time invariant. The resulting conditional probability, P(u’]mf), can then be es-
timated by exploiting linguistic knowledge or by applying data-driven techniques. For this work, we
study the linguistic knowledge approach where a probability of one occurs when the SAMPA symbol for
monolingual and universal phoneme sets correspond:

. 1, ifu! =mF
P(u'|mf) = oL )
0, ifu'#my
Equations (2), (4) and (5) then yield the following universal phoneme posterior estimates:
. N Kl .
Pluila) = 37 P(lla) Y P lmf) Pl 1) ©)
=1 k=1

3 EXPERIMENTAL SETUP

For this study, we use the application words corpus (isolated words) from the SpeechDat(Il) databases
of British English (EN), Spanish (ES), Italian (IT), Swiss French (SF) and Swiss German (SZ). In total
there are 6.8, 0.8 and 2.5 hours of training, development and testing data, respectively. All 182 words
(about 36 words per language) are transcribed in the dictionaries. For more details about the databases
and the phoneme sets, the reader is referred to [1].

In this section, we first describe the different phoneme posterior estimators before we introduce the
monolingual and the mixed language tasks along with the systems that are evaluated.

3.1 Phoneme posterior estimators

We investigate three different MLP-based posterior estimators (trained with Quicknet? software). As
we usually do, all the MLPs used 39 Mel-Frequency Perceptual Linear Prediction (MF-PLP) features
(Co—Ci2+ A+ AA) in a nine frame temporal context (four preceding and following frames), extracted
with HTK?3, as input.

3.1.1 Monolingual estimator

To estimate monolingual phoneme posteriors, we used MLPs from previous work [1] (one MLP per lan-
guage). Each MLP had one hidden layer containing 600 hidden nodes. The MLP output dimensionality

“http://www.icsi.berkeley.edu/Speech/qn.html
3http://htk.eng.cam.ac.uk/



corresponds to the number of phonemes in each language.

3.1.2 Universal estimators

We distinguish between the language independent and the language dependent estimation technique.

Language independent: a universal MLP with one hidden layer containing 2620 hidden units (to
keep the total number of parameters the same as in Section 3.1.1) is trained to estimate 92 universal
phoneme posteriors.

Language dependent: Following Equation (6), we need three components to estimate language de-
pendent universal phoneme posteriors. The language posteriors P(l|z;) are estimated with the recently
proposed hierarchical MLP-based language identification (LID) approach [6]. The conditional phoneme
posteriors, P (u' \mf), are estimated according to Equation (5) and the monolingual phoneme posteriors,
P(mF,|z1), from the monolingual classifiers discussed in Section 3.1.1 are used. The frame-based lan-
guage7 posterior estimates tend to be noisy, therefore we smooth them by averaging over a fixed window
(on which we assumed that the language stays the same) as shown below:

t+c

P(l]ay) = —Z (U]n) (7

n=t—c

The smoothing window ¢ was tuned on the development set and fixed to ¢ = 21.

3.2 Monolingual task

For the monolingual task, we assume that the language being spoken is known in advance. We compare
three different systems on this task. Each system uses five isolated word recognizers (one for each
language) and we select and run the recognizer associated with the known input language.

* System mono uses monolingual phoneme posteriors.
» System uMLP uses language independent phoneme posteriors estimated with the universal MLP.

» System comb uses language dependent phoneme posteriors obtained by combining monolingual
posteriors. Since P(l|z;) is known in a monolingual environment, System comb would yield the
same result as System mono. Nevertheless, also for the monolingual task, we use the estimates of
P(l|z¢) for System comb.

3.3 Mixed language task

For the mixed language task, we assume that the spoken language is not known a priori. On this task, we
study four different systems.

* System bbox (blackbox) uses monolingual phoneme posteriors. It runs all five recognizers and
picks the output of the recognizer with the highest likelihood*.

*The performance of System bbox has already been published in [1].



e System LID uses monolingual phoneme posteriors. Firstly, the language is identified with our
recently proposed hierarchical MLP-based LID approach [6] and secondly, the recognizer of the
identified language is run.

» System uMLP uses language independent phoneme posteriors. One recognizer with a shared
lexicon is built and run.

» System comb uses language dependent phoneme posteriors. One recognizer with a shared lexicon
is built and run.

4 RESULTS

In this section, we present the experimental results of the systems presented in Section 3.

4.1 Monolingual task

Table 1 summarizes the number of errors for each system on the monolingual task (6975 test utterances
in total). Although System comb is using estimates of P(I|x;), there is no significant difference in
performance between the three systems (McNemar test with significance level 2.5%).

Monolingual task
System mono | uMLP | comb
Total errors 171 169 192
Word accuracy | 97.5% | 97.6% | 97.2%

Table 1: Comparison of the three systems (see Section 3.2) on the monolingual task (language known
during testing).

4.2 Mixed language task

Table 2 shows the number of errors for each system on the mixed language task. System bbox and
System LID are both significantly outperformed by the systems that use universal phoneme posteriors.
Universal phoneme posteriors should thus be preferred in mixed language environments.

Mixed language task
System bbox | LID uMLP | comb
Total errors 951 430 331 308
Word accuracy | 86.4% | 93.8% | 95.3% | 95.6%

Table 2: Comparison of the four systems (see Section 3.3) on the mixed language task (language not
known a priori).



System LID and System comb use the same language posterior estimator. System LID performs
an utterance-based hard decision about the language, whereas System comb incorporates the smoothed
language posteriors on a frame basis. System comb significantly outperforms System LID. Thus, the
benefits of soft decisions taken in the universal phoneme approach are evident.

System comb performs best, but there is no significant improvement compared to System uMLP
(McNemar, 2.5%). The universal MLP estimator is based on the assumption that the same SAMPA
symbol represents the same phoneme across languages. Since the same assumption can be found in the
binary formulation of Equation 5, it is not surprising that both estimation techniques yield similar results.
However, by estimating P (ut|x;, mft) in a data-driven way, we could expect better results for System
comb.

4.3 Non-native speech - a case study

We hypothesize that the knowledge contained in multilingual speech recognizers may even be useful
in a monolingual context, especially when dealing with accented or non-native speech. In particular,
the estimates of P(I|z;) in System comb enable a dynamic weighting of phoneme probabilities from
different language sources that may be beneficial under such circumstances. Since the SpeechDat(Il)
databases contain only a few non-native speech utterances it is difficult to explore this claim in detail,
however, most speakers of the Swiss French corpus volunteered to provide their mother tongue. We
therefore analyzed one case (file A14417A4) and assumed that the spoken language was known a priori.
The utterance consisted of the French word stop, read by a native Swiss German speaker. The word stop
was present in the dictionaries of English, Swiss German and Swiss French, but each language uses a
different phonetic transcription.

In Figure 1, the smoothed language posteriors are shown. The x-axis provides the phoneme forced
alignment and the y-axis shows the language posteriors. As we might expect, the posteriors of both
the spoken language (Swiss French) and the mother tongue (Swiss German) dominate in the speech
regions, but interestingly the Swiss German posteriors are the most important. However, on the relatively
long silence at the end of the utterance, the distribution changes completely which indicates that the
hierarchical MLP-based LID approach learns the language and not the channel.

Frame-based Swiss German and Swiss French phoneme posteriors (estimated by their respective
monolingual MLPs) are given in Figure 2. It can be seen that the Swiss German phoneme posteriors
correspond quite well with the phoneme alignments. In the case of Swiss French, /O] has low posterior
probability for the frames with which it should normally be associated, while the phonemes [a~] and
[O/] have high posterior probabilities. As a result, the Swiss French recognizer wrongly decodes the
utterance as [a~] [f] [a~] (enfant, “child” in English), whereas System comb and System uMLP both
correctly decoded the utterance. This implies that the proposed approach can be exploited to boost the
performance of non-native ASR.

S DISCUSSION

System comb aims at estimating universal phoneme posteriors while conserving language specific char-
acteristics. The contribution is twofold: it targets to improve speech recognition in mixed language
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Figure 1: Language posteriors of the considered utterance. The x-axis provides the forced aligned
phoneme alignment.
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Figure 2: Frame-based phoneme posteriors for Swiss German and Swiss French MLP classifiers. The
intensity in the image is scaled between 0 and 1 (1 is black and O is white). For the sake of clarity, only
the posteriors for a subset of all phonemes are displayed.

environments and it has the potential to exploit multilingual information to improve speech recognition
of accented and/or non-native speech. Furthermore, it might also be useful for acoustic modeling in
code-switching environments.

It is possible to draw similarities between the proposed language dependent approach and other ap-
proaches studied in a multilingual scenario. For instance, (1) the notion of estimating universal posteriors
conditioned upon language identity i.e., P(ut|z;,1) can be compared to the use of language questions
in the decision of splitting the polyphone tree [2], and (2) the idea of weighted combination of mono-
lingual phoneme posteriors in our case can be seen in the same light as the acoustic model interpolation
approach to improve speech recognition of low-resource languages [2]. We can also find some simi-
larity with other work which has looked at combining knowledge from various languages at the feature
level [7] as opposed to the probabilistic combination presented here.

6 CONCLUSION

We have presented a novel approach to estimate universal phoneme posteriors based on a probabilistic
combination of monolingual phoneme classifiers and compared this against conventional monolingual



and universal phoneme posterior estimators. We observe no significant difference in using monolingual
or universal phoneme posteriors in a monolingual environment. However, if the language is not known
a priori, the use of universal phoneme posteriors leads to significant improvements in performance (over
the use of monolingual posteriors) with the newly proposed approach yielding the best system. Further-
more, a case study on a non-native speech utterance suggests that universal phoneme posteriors could
also help in improving speech recognition on non-native speech, hence pointing towards further research
in that direction.

In the future, we also aim to further explore the proposed approach by using data driven methods to
model the relation between monolingual phoneme units and universal phoneme units (i.e., P(ut|z;, mft))
that relaxes the linguistic constraint that the same phonetic symbols represent the same phonemes across
languages.
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