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Abstract. In this paper we extend the Parts-Based approach of face
verification by performing a frequency-based decomposition. The Parts-
Based approach divides the face into a set of blocks which are then
considered to be separate observations, this is a spatial decomposition of
the face. This paper extends the Parts-Based approach by also dividing
the face in the frequency domain and treating each frequency response
from an observation separately. This can be expressed as forming a set of
sub-images where each sub-image represents the response to a different
frequency of, for instance, the Discrete Cosine Transform. Each of these
sub-images is treated separately by a Gaussian Mixture Model (GMM)
based classifier. The classifiers from each sub-image are then combined
using weighted summation with the weights being derived using linear
logistic regression. It is shown on the BANCA database that this method
improves the performance of the system from an Average Half Total
Error Rate of 26.59% for a baseline GMM Parts-Based system to 14.85%
for a column-based approach on the frequency sub-images, for Protocol
P.

1 Introduction

The face is an object that we as humans know can be recognised. It is used to
verify the identity of people on a daily basis through its inclusion in passports,
drivers licences and other identity cards. However, performing automatic face
verification has proved to be a very challenging task. This is shown by the fact
that face recognition has been an active area of research for over 25 years [1], in
fact the earliest research into face recognition was conducted by Bledsoe [2] in
1966.

Many techniques have been proposed to perform face verification ranging
from dimensionality reduction techniques like Principal Component Analysis
(PCA) [3] and Linear Discriminant Analysis (LDA) [4] through to feature dis-
tribution modelling techniques such as Hidden Markov Models (HMMs) [5] and
Gaussian Mixture Models (GMMs) [6, 7]. Several other approaches to dimension-
ality reduction have been proposed some of which, such as [8, 9], are improve-
ments on pioneering techniques such as PCA and LDA. Other recent approach
explore different techniques such as Local Binary Pattern (LBPs) [10]. Examples



of recent LBP-based techniques include the Local Gabor Pattern Histogram Se-
quence [11], descriptor-based method [12] and it has even been used as a generic
pre-processing technique [13]. It is not the aim of this paper to provide an ex-
tensive review of face verification techniques, rather we take a deeper look at an
existing and widely used feature distribution modelling and propose an alterna-
tive method to form the features.

A recent advance in face verification has been the effective use of feature
distribution modelling techniques. Two effective methods for performing feature
distribution were both published in 2002, these being the work of Sanderson
and Paliwal [6] and Martinez [7]; despite the earlier work of Samaria et al. [5,
14] and Nefian and Hayes [15] who used HMMs. Martinez divided the face into
k pre-defined regions, then trained a PCA representation for each k-region and
the variation of each region’s PCA vector was then modelled using a simplified
GMM, thus there were k-GMMs; we note the GMM of Martinez is simplified
as it does not include a weight for each mixture component which implies a
pre-set equal weight for each mixture component. By contrast, Sanderson and
Paliwal proposed that the face could be divided into blocks and all of these blocks
could be used to derive a single GMM, this method implies that at matching
time each block is a assigned a probability of coming from the components of
the GMM; thus there are no pre-defined regions, rather, each block is aligned
probabilistically. This method of Sanderson and Paliwal, from here on referred
to as the GMM Parts-Based approach, has since been used and extended by
several researchers.

The approach of Sanderson and Paliwal has been employed and extended
to include background model adaptation [16] and the use of LBPs as a pre-
processing technique [13]. By using background model adaptation, the hope is
to form a general description of the face (a background model) which can be used
as a starting point to derive a more reliable client model as well as providing
a description for faces that are not of the client. By using the LBP as a pre-
processing technique Heusch et al. [13] showed that extra illumination robustness
could be achieved leading to improved results.

In [17] we proposed a method to perform both a Spatial and Frequency based
decomposition for the GMM Parts-Based approach. The frequency decomposi-
tion was achieved by collating the responses from each DCT coefficient from
each block (observation) and forming a separate sub-image for each frequency.
Each of these sub-images was treated separately and a GMM based classifier
was generated for each sub-image. The classifiers from each sub-image were then
combined using weighted summation with the weights being derived using lin-
ear logistic regression. Tests conducted on the BANCA database showed that
this extension provided a significant improvement with the Average Half Total
Error Rate being reduced from of 24.38% to 15.17% when compared to a base-
line Parts-Based approach. It is worth noting that the baseline system and our
sub-image system used exactly the same feature vectors but re-assembled them
differently and so modelled in different way.
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We extend upon the previous work [17] by: examining the methods robustness
to its hyper parameters such as block and image size, performing a comparison
of the local frequency band approach against other related state-of-the-art tech-
niques, and finally investigating explanations for why the column-based approach
outperforms all other approaches. We first begin by providing an overview of the
GMM Parts-Based approach and we then explain clearly the differences between
this technique and our proposed approach.

2 Related Work on GMM Parts-Based Face Verification

The Parts-Based approach divides the face into blocks, or parts, and treats each
block as a separate observation of the same underlying signal (the face). In this
method a feature vector is obtained from each block by applying the Discrete
Cosine Transform and the distribution of these feature vectors is then modelled
using GMMs. Several advances have been made upon this technique, for instance,
Cardinaux et al. [16] proposed the use of background model adaptation while
Lucey and Chen [18] examined a method to retain part of the structure of the
face utilising the Parts-Based framework as well as proposing a relevance based
adaptation.

This parts-based framework is quite different to other parts-based techniques
such as that of Heisele et al. [19]. For instance Heisele et al. pre-define a set of
regions (similar to Martinez [7]) and then derive an expert classifier for each
region. By contrast the GMM Parts-Based approach derives a single classifier
for the whole face and blocks are not associated to an expert classifier but
rather are probabilistically aligned to the components of the GMM. By doing
this probabilistic alignment problems associated with poorly aligned images are
more easily overcome and it suggests one of the advantages of using a GMM
over holistic techniques such as PCA and LDA.

2.1 Feature Extraction

The feature extraction algorithm is described by the following steps. The face is
normalised, registered and cropped. This cropped and normalised face is divided
into blocks (parts) and from each block (part) a feature vector is obtained. Each
feature vector is treated as a separate observation of the same underlying signal
(in this case the face) and the distribution of the feature vectors is modelled
using GMMs. This process is illustrated in Figure 1.

The feature vectors from each block are obtained by applying the DCT. It
would be possible to apply advanced feature extraction methods such as the
DCTmod2 [6], however, this advanced feature extraction method uses the DCT
as its basis feature vector and by using only the DCT we can treat each coefficient
as a separate frequency response from the image, or block. This is because each
DCT coefficient is orthogonal whereas some of the DCTmod2 coefficients are not
orthogonal since they incorporate spatial information by using the deltas from
neighbouring blocks. More details about the DCT can be found in [20].
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Input Image Image Blocks

Features (DCT) from Blocks

Fig. 1. A flow chart describing the extraction of feature vectors from the face image
for Parts-Based approaches.

2.2 Feature Distribution Modelling

Feature distribution modelling is achieved by performing background model
adaptation of GMMs [16, 18]. The use of background model adaptation is not new
to the field of biometric authentication in fact it is commonly used in the field
of speaker verification [21]. Background model adaptation first trains a world
(background) model Ωworld from a set of faces and then derives the client model
for the ith client Ωi

client by adapting the world model to match the observations
of the client.

Two common methods of performing adaptation are mean only adaptation
[22] and full adaptation [23]. Mean only adaptation is often used when there are
few observations available because adapting the means of each mixture compo-
nent requires fewer observations to derive a useful approximation. Full adapta-
tion is used when there are sufficient observations to adapt all the parameters
of each mode. Mean only adaptation is the method chosen for this work as it
requires fewer observations to perform adaptation, this is the same adaptation
method employed by Cardinaux et al. [16].

2.3 Verification

A description of the Parts-Based approach is not complete without defining how
an observation is verified. To verify an observation, x, it is scored against both
the client (Ωi

client) and world (Ωworld) model, this is true even for methods
that do not perform background model adaptation [6]. The two models, Ωi

client

and Ωworld, produce a log-likelihood score which is then combined using the
log-likelihood ratio (LLR),

h(x) = ln(p(x | Ωi
client))− ln(p(x | Ωworld)), (1)

to produce a single score. This score is used to assign the observation to the
world class of faces (not the client) or the client class of faces (it is the client)
and consequently a threshold τ has to be applied to the score h(x) to declare
(verify) that x matches to the ith client model Ωi

client when h(x) ≥ τ .
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3 Local Frequency Band Approach

The proposed method is to divide the face into separate blocks and to then de-
compose these blocks in the frequency domain. This can be achieved by treating
the frequency response from each block separately to form frequency sub-images,
this process is applied to the DCT feature vectors obtained by applying the Parts-
Based approach. An important property of the DCT is that each coefficient is
orthogonal and thus each frequency can be considered independently.

The technique was introduced in [17] and is summarised as follows:

1. the face is cropped and normalised to a 68× 68 image,
2. the face is divided into square blocks with an overlap of 4 pixels in the

horizontal and vertical axes,
3. the D DCT coefficients from each block are separated and used to form their

own frequency sub-image, and
4. a feature vector is formed by taking a block from the frequency sub-image

and vectorising it.

The way in which the frequency sub-images are formed is demonstrated in Figure
2. It is important to note that the number of sub-images formed is determined
by the number of D DCT coefficients retained.

Image Blocks

Features 
f rom row 1

Features 
f rom row i

Features 
f rom last  row

Frequency
Sub- image 1

Frequency
Sub- image D

M

1

Fig. 2. The figure above describes how the face can be decomposed into separate
frequency sub-bands (sub-images). The value D refers to the total number of DCT
coefficients extracted from each block.

3.1 Motivation

To illustrate the differences between the frequency decomposition approach and
the classic Parts-Based approach the following statements are made. For the
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Parts-Based approach it is often stated that the face is broken into blocks and
the distribution of each block is then modelled [6, 18], however, another stricter
statement would be that the frequency information from each block is simultane-
ously modelled since each dimension of the feature vector represents a different
sampling frequency of the DCT. By contrast the frequency decomposition ap-
proach separates the frequency information from each local block and forms
many feature vectors from the resulting frequency sub-images. Thus the image
is decomposed in both the spatial domain and the frequency domain.

A side effect of working on the frequency sub-images is that the feature
vectors formed from these sub-images will retain extra spatial information. This
is because the frequency decomposition approach gets the response from each
block and then extracts a feature vector using responses from several blocks.
This means that the feature vectors extracted from the frequency sub-images
will actually span several blocks when compared to the Parts-Based approach,
for instance the feature vector could be formed from a frequency sub-image by
spanning an entire row or column of the image.

3.2 Feature Extraction

Three methods of forming a feature vector from the frequency sub-images are
examined, these are to form a feature vector:

1. across a row of the frequency sub-image (row-based approach),
2. across a column of the frequency sub-image (column-based approach), or
3. from a square block of the frequency sub-image which is vectorised (block-

based approach).

These three methods are described in more detail below and also visually in
Figure 3.

Row-based approach (SBRow): For this approach feature vectors are formed
from the sub-images by performing a horizontal scan. This means that they
get formed across the face capturing the spatial relationship between the left
eye, right eye, the asymmetry of the nose and how the mouth varies.

Column-based approach (SBCol): The feature vectors are formed from by
scanning the face in a vertical manner. This means that the feature vectors
are formed in stripes down the face and could capture the spatial relationship
of features such as eyes to mouth, eyebrows to eyes to mouth and nose to
mouth.

Block-based approach (SBBlk): In this approach the feature vectors are formed
in a block-based manner. Square blocks are formed, so as to not bias the
technique in either the vertical or horizontal direction, and these blocks are
vectorised to produce the feature vector. Conceptually this collects informa-
tion from adjacent regions of the face meaning that blocks which capture
the spatial relationship between the eye and the cheek or the eye and the
bridge of the nose could exist.
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An issue with applying these three feature extraction techniques is that each
method should result in the same number of observations and the same number
of dimensions for the feature vector, so as to not bias any one method. This is a
particularly restrictive requirement when considering the block-based approach
as there is a further requirement that the blocks are square blocks so that equal
emphasis is placed on the horizontal or vertical responses.

The above requirements led to the initial face image size being 68×68 pixels.
This means that when using square blocks of 8 × 8 pixels (with four pixels of
overlap between blocks in the vertical and horizontal direction) this results in
local frequency sub-images of size 16 × 16. Using the row- and column-based
approaches this would lead to feature vectors of dimensionality 16 with 16 ob-
servations (by using all the data from a row or column). To retain the same
dimensionality for the block-based method would require us to sample (from the
frequency sub-image) with a non-overlapping block of size 4× 4 which leads to
a dimensionality of 16 with 16 observations.

The initial sampling parameter to form the frequency sub-images will change
the final frequency sub-image sizes. For instance changing just the block size
12×12 would lead to local frequency sub-images of size 15×15 if we use the same
overlap margin of 4 pixels. In this particular case forming a square block from
the frequency sub-images would not lead to the same number of samples (and
thereby an unfair comparison). Therefore for initial testing we limited ourself to
sampling using an 8× 8 block with a four pixel overlap. We then vary the block
size and produce results where possible (in Section 5.3).

3.3 Classifier Combination

Once a set of feature vectors is obtained a classifier is then trained for each
frequency sub-image. The approach is it to perform the same background model
adaptation that was used for the Parts-Based approach [16]. Each classifier (Ck)
is combined using weighted linear score fusion,

Cweight sum =

K
∑

k=1

βkCk, (2)

where βk is the weight given to the kth classifier and K is the number of classi-
fiers (frequency sub-images) that are combined. This method is used as Kittler
et al. [24] showed that the sum rule (which is what linear classifier score fusion
abstracts to be) is robust to estimation errors. The weights, βk, for the classi-
fiers are derived using an implementation of linear logistic regression [25]. Prior
to performing linear logistic regression the output of each classifier is z-score
normalised.

By performing z-score normalisation the classifiers have a common frame of
reference which means that the weights provide an insight into the relevance of
each classifier. This common frame of reference is achieved by normalising the
scores such that the impostor scores can be assumed to have zero mean and unit
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Frequency
Sub- image D

Forming a  feature  vector
f rom a  row of  the  sub- image

(a)

Frequency
Sub- image D

Forming a  feature  vector
f rom a  column of  the  sub- image

values f rom the f i rst  X columns

values f rom the last  X columns

(b)

Frequency
Sub- image D

Forming a  feature  vector
f rom a b lock of  the  sub- image

(c)

Fig. 3. Forming the feature vectors (a) along a row of the frequency sub-image, (b)
along a column of the frequency sub-image and (c) from a block of the frequency
sub-image. In total there are D frequency sub-images.

variance. These parameters are derived using the development set defined by
each experimental protocol.

3.4 Relationship to Other Work

Some work has already proposed the use of frequency decomposotion. For in-
stance, in the work of Zhang et al. the initial input image is transformed into
as many of 40 Gabor filtered images [11]. From each of these Gabor filtered im-
ages sub-regions are defined and a histograms is obtained from each sub-region.
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Finally, all of these histograms are concatenated to form one vector which then
represents the image. This is quite different from the sub-bands approach as the
histograms from the Gabor filtered images of Zhang et al. are forced to come
from pre-defined regions. By contrast we divide the frequency sub-images into
feature vectors and these feature vectors are probabilistically aligned to their
associated GMM.

4 Experimental Protocol

The experiments were conducted on the BANCA English database [26]. This
database has challenging conditions in terms of pose and illumination and has
several well defined protocols and it has been used to evaluate face recognition
techniques in two international competitions [27, 28].

4.1 BANCA Database

The 52 subjects in this database are split into two gender-balanced groups, g1
and g2. Each subject participated in 12 recording sessions, grouped into three
different scenarios:

– Controlled (Sessions 1-4): Captured in a controlled environment using a
high quality camera.

– Degraded (Sessions 5-8): Captured in a less-controlled environment using
a low quality camera (a web-cam).

– Adverse (Sessions 9-12): Captured in an uncontrolled environment using
a high quality camera.

An example of the three scenarios is provided in Figure 4.

Fig. 4. Examples from the BANCA dataset, representing (from left to right) controlled,
degraded and adverse capture conditions.

In each recording session two recordings were captured. One is a client access
where the user matches their claimed identity and the other is an impostor attack
where the user did not match their claimed identity; a different identity is claimed
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each time such that each client is attacked once by all the other clients. There
is an additional world model group consisting of 30 subjects (15 male and 15
female).

Within the BANCA protocol there are three defined data sets: world model,
development and evaluation. The world model data set conists of users that
are external to both the development and evaluation data sets, this set is used
to train background models such as the background GMM. The development

set is used to calibrate the system for instance by deriving weights for fusion
or by deriving the decision threshold τ which is used on the evaluation set.
The evaluation set is used to evaluate the final system and as such it includes
enrollment and testing data for all of the clients. The development and evaluation

sets come from g1 and g2 used in a cross-validated manner.

4.2 Normalisation

Each face image is cropped and scaled to a size of 68× 68 pixels with a distance
between the eyes of 33 pixels. Illumination normalisation is applied to each image
as a two stage process, the image is histogram equalised and then encoded using
a Local Binary Pattern (LBP) [10]. This is the same normalisation strategy
employed by Heusch et al. [13] which was also applied to a GMM parts-based
system (using DCT feature vectors). The parameters used by Heusch et al. were
an LBP of radius of R = 2 and with P = 8 sampling points along the circle. A
visual description of the LBP encoding process is given in Figure 5 and more
formally it is written as,

LBP (xc, yc) =

P
∑

i=0

s(pi − pc) ∗ 2
i, (3)

where (xc,yc) is a given pixel position in the image, pi is the ith sampling point
on the LBP circle, pc is the center of the LBP circle (which is the point xc,yc),
and where the function s is,

s(x) =

{

1 if x ≥ 0
0 if x < 0.

(4)

4.3 Protocols

The following experimental configurations are defined for the BANCA dataset:
Matched Controlled (Mc), Matched Degraded (Md), Matched Adverse (Ma), Un-
matched Degraded (Ud), Unmatched Adverse (Ua), Pooled test (P) and Grand
test (G). The Table in 1 summarises the usage of the different sessions in each
configuration. “TT” refers to the client enrollment while “T” depicts the client
and imposter test sessions. For example, in configuration Mc the true client data
from session 1 is used for enrollment and the true client data from sessions 2, 3
and 4 are used for testing. The imposter attack data from all sessions are used
for imposter testing.
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Fig. 5. A diagram illustrating how the LBP operator can be applied to a set of pixels
from an image.

Session P G Ud Ua Mc Md Ma

1 TT TT TT TT TT

2 T T T

3 T T T

4 T T T

5 TT TT

6 T T T T

7 T T T T

8 T T T T

9 TT TT

10 T T T T

11 T T T T

12 T T T T
Table 1. Usage of different sesisons in BANCA configurations.

4.4 Performance Measures

Results are presented numerically using the Average Half Total Error Rate
(HTER) and graphically using Detection Error Tradeoff (DET) plots. The HTER
is an average of the False Acceptance Rate (FAR) and False Rejection Rate
(FRR) at a given threshold such that

HTER =
FAR+ FRR

2
, (5)

where the threshold is obtained from the Equal Error Rate (where the FAR
equals the FRR) on the development data. For the BANCA experiments we
present the Average HTER which is the average HTER from g1 and g2 (when
used as the evaluation set),

Average HTER =
g1HTER + g2HTER

2
, (6)

and this is derived in a cross-validated manner by tuning parameters, such as the
threshold, on one data set (taken as the development set) and then calculating
the HTER on the other data set (taken as the evaluation set). The second
method of presenting results, DET plots, provide a more complete description of
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the system performance by plotting the percentage of FAR versus the percentage
of FRR on a log scale, for more details on the use of DET plots for assessing
system performance readers are referred to [29].

Parameters such as the number of mixture components M and block size
B are derived in a global manner while other parameters such as the decision
threshold τdecision and classifier weights βk are derived in a cross-validated man-
ner. When deriving the parameters in a global manner the best results from Pro-
tocol P of the BANCA database are used whereas the cross-validated parameters
are derived on the independent development set defined for each Protocol.

5 Analysis of Verification Performance

To analyse the effectiveness of the local frequency band approach a consistent
basis for comparison is needed and for this work we provide two ways of compar-
ing the system performance. First, using exactly the same images and exactly the
same DCT features a baseline GMM Parts-Based system is derived: this means
that 68 × 68 face images are used, the same image normalisation procedure is
applied and the top 15 dimensions of the DCT are retained as a feature vector.
More details about this system are provided below. Second, the performance of
state-of-the-art systems are presented and contrasted with the current system.
Where possible we present results using both manual and automatic annotations.

The effect of using manual and automatic eye positions is examined since
any deployed face verification system will need to cope with errors introduced
from an automatic face detection system. The manually annotated eye positions
were provided with the BANCA database and the automatically annotated eye
positions were obtained using a face detector based on a cascade of LBP-like
features [30] 1. There were 93 images (out of 6, 540 images) where the automatic
face detector could not find the face, these images were excluded from training,
development and evaluation of the automatic systems.

5.1 Baseline System

Two baseline systems are considered for this work one that uses DCT feature
vectors and another that uses DCTmod2 feature vectors. DCTmod2 feature
vectors are examined as it was previously found to be more robust than DCT
feature vectors [6]. The size of the feature vectors, D = 15 for DCT feature
vectors and D = 18 for DCTmod2 feature vectors, was chosen based on work
conducted in [6]. Both baseline systems were developed using 68×68 face images
and varying the number mixtures by powers of 2 such that M = [16, 32..., 512].

Results on the Development set of the P protocol found that a system using
DCTmod2 feature vectors, for both manual and automatic eye positions, pro-
vides the best performance. For the manual annotations M = 128 provided the

1 This detector has been implemented with the Torch3vision computer vision library
(torch3vision.idiap.ch)
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best performance while for automatic annotations M = 256 provided the best
performance. These two systems were then used to produce results for all of the
BANCA protocols and are presented in Table 2. These results are different to
those presented in [17] where DCT feature vectors were found to provide the
optimal system.

P G Ud Ua Mc Md Ma

manual 26.59% 11.68% 27.31% 30.37% 8.78% 14.71% 16.81%
automatic 27.84% 11.98% 25.51% 30.12% 7.55% 15.27% 17.33%

Table 2. This table presents the average HTER for the baseline Parts-Based verifica-
tion system. This system uses DCTmod2 feature vectors and results are presented for
all of the BANCA protocols. We present results when using both manual and automatic
annotation of the eye positions.

For the baseline system it can be seen that the performance is consistent be-
tween manual and automatic eye annotations. The absolute performance degra-
dation for Protocol P is 1.25%. This consistency in performance is attributed
to the fact there are 93 faces which are not located and consequently are com-
pletely ignored and also that the Parts-Based approach is robust to imprecise
face localisation.

The robustness to imprecise face localisation can be seen by examining the
baseline systems using the two Parts-Based systems, one which uses DCT feature
vectors and one which uses DCTmod2 feature vectors. Tables 2 and 3 present the
optimal performance for the DCTmod2 and DCT feature vectors respectively.
It can be seen that the performance using manual and automatic annotations is
very similar, in fact both sets of features have very similar performance except
for the case of Mc, Md and Ma. For these three matched protocols it can be seen
that the DCTmod2 feature vectors perform significantly better than their DCT
counterparts with the performance degrading on average by 4.8% when using
the DCT feature vectors; this average is formed across the Mc, Md, and Ma
protocols across both the manual and automatic annotations. This implies that
one major advantage of using the DCTmod2 feature, over just DCT features,
occurs when the conditions between enrollment and testing are matched.

P G Ud Ua Mc Md Ma

manual 26.58% 15.83% 27.07% 30.77% 11.54% 19.15% 21.14%
automatic 27.53% 19.54% 28.76% 30.14% 13.91% 20.20% 23.33%

Table 3. This table presents the average HTER for the Parts-Based verification system
using DCT features for all of the BANCA protocols with an optimal value of M = 64
for both manual and automatic annotations.
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5.2 Subband Approaches

The initial experiments indicated that all of the local frequency sub-band ap-
proaches, across all BANCA protocols, provided significantly improved perfor-
mance when compared to the baseline system. When using manual annotations,
see Table 4 and Figure 6 for full results, the optimal local frequency sub-band
approach is the column-based approach followed by the block-based approach
and finally the row-based approach. The column-based approach provides an
absolute improvement over the baseline system (using DCTmod2 features) of
11.74% for Protocol P with the average HTER reducing from 26.59% to 14.85%;
the frequency sub-band systems are optimised in a similar manner to the base-
line systems, however, because there are fewer observations (o = 16 observations
for each frequency sub-image whereas o = 256 for the Parts-Based approach)
the number of mixtures were constrained to M = [2, 4, 8..., 32].

P G Ud Ua Mc Md Ma

baseline 26.59% 11.68% 27.31% 30.37% 8.78% 14.71% 16.81%

row-based 19.73% 8.13% 18.91% 23.17% 6.6% 11.35% 12.71%
block-based 18.05% 7.64% 16.41% 24.58% 8.65% 9.86% 12.55%
column-based 14.85% 5.04% 12.90% 21.71% 5.77% 8.45% 12.87%

Table 4. This table presents the average HTER for the local frequency sub-band
approaches and the optimal baseline system (see Table 2) when using manually an-

notated eye locations for all of the BANCA protocols. Each system has Mrow = 8,
Mblk = 4 and Mcol = 8 mixture components respectively. Highlighted are the best
performing systems.

Examining the performance of the sub-band approach for automatic anno-
tations it was found that the column-based frequency sub-band approach was
again superior to that of the baseline system. This result is true across all test
conditions, see Table 5 for full results, except Mc where the baseline system
outperforms the column-based approach by absolute difference of 0.33% which
is not a significant amount. Further analysis shows that the column-based ap-
proach is also more robust than either the row-based or block-based approaches.
For instance when comparing the performance of manual and automatic eye lo-
cations on Protocol P the column-based approach has an absolute performance
degradation of 1.77% whereas the block-based and row-based approaches have
a degradation of 3.52% and 5.97% respectively. A similar result happens for the
other protocols with the average performance degradation, between manual and
automatic eye locations, for all of the BANCA protocols being 1.65%, 5.05% and
4.59% for the column-, block- and row-based techniques respectively.

The experiments presented thus far have demonstrated that choosing the
correct method for forming a feature vector has a significant impact on the local
frequency sub-band approach. It has been shown empirically that the column-
based approach is more robust to localisation errors than either the row-based
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Fig. 6. In this figure we present the DET plots of the four systems (baseline, row-based,
block-based and column-based) for protocol P for g1 of the BANCA database. It can
be seen that the column-based approach outperforms every other approach.

P G Ud Ua Mc Md Ma

baseline 27.84% 11.98% 25.51% 30.12% 7.55% 15.27% 17.33%

row-based 26.58% 9.55% 27.28% 28.00% 9.32% 17.03% 15.83%
block-based 21.57% 12.29% 24.43% 25.17% 14.7% 16.53% 18.34%
column-based 16.62% 7.40% 17.97% 19.86% 7.88% 10.41% 13.02%

Table 5. This table presents the average HTER for the local frequency sub-band
approaches and optimal baseline system (see Table 2) on automatically annotated

eye locations for all of the BANCA protocols. Each system has Mrow = 16, Mblk = 4
and Mcol = 8 mixture components respectively. Highlighted are the best performing
systems.

or block-based approaches. Also, the column-based performs better than either
the row-based or block-based approaches for all of the test conditions. This fact
could be explained by suggesting that the features of the face are more stable
when scanned in a vertical manner, particularly when there is misalignment of
the face image. Another argument is that there is more variance in the features
when they are scanned in a vertical rather than horizontal manner. This second
line of reasoning, regarding the variance of the features, forms the basis for the
experiments in the later sections. Before proceeding to these experiments the
issue of block and image size is examined and then a comparison with state-of-
the-art feature distribution modelling techniques is provided.
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5.3 Block Size and Image Resolution

The initial experiments above (and in [17]) analysed the system performance
using a block size of B = 8, these experiments were extended in two ways. The
first is to include three other blocks sizes B = 4, B = 12 and B = 16 for the
68×68 images and the second is to apply a similar procedure to higher resolution
images.

The results for varying the block sizes can be found in Table 6. It can be
seen in this Table that when we use larger blocks (than B = 8) there is a minor
degradation in performance, while if we decrease the block size (to B = 4) there
is a significant degradation in performance. Given these results we have retained
the optimal block-size of B = 8 for the 68× 68 images.

B = 4 B = 8 B = 12 B = 16

row-based 24.91% 19.73% 20.68% 22.98%
block-based N/A 18.05% N/A N/A
column-based 16.21% 14.85% 15.04% 15.96%

Table 6. This table presents the average HTER (%) on Protocol P of the BANCA
database using manual annotations while varying the block size. The value N/A is
presented when it is not possible to fairly apply this technique.

To better understand the effect of block size a higher resolution image with
several block sizes was examined. The cropped image size was changed to be
approximately one and a half times bigger than the original 68 × 68 pixels.
The final image size used was 104 × 104 pixels so that a constant 4 pixel shift
between each block could be used. A range of block sizes were considered (B =
8, 12, 16, 20, 24, 28) and it was found that block size does have an impact on
the performance of the column-based systems; we did not consider a block-
size of B = 4 as it already shown to degrade performance in smaller images.
However, the performance of the system is fairly stable over the range of block
sizes B = 12, 16, 20 because for these block sizes the difference in performance
is less than 1% and for all the block sizes the difference in performance is at
most 2.11%, see Table 7. It can also be seen that there is a minimal performance
increase of 0.12% when using the higher resolution 104×104 images (best average
HTER of 14.73%) compared to the 68 × 68 images (best average HTER of
14.85%).

B = 8 B = 12 B = 16 B = 20 B = 24 B = 28

column-based 16.84% 15.79% 14.73% 15.44% 16.22% 16.19%

Table 7. This table presents the average HTER (%) on Protocol P of the BANCA
database using manual annotations while varying the block size for images of size
104× 104 pixels.
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Given the comparable performance between these two image resolutions it
can be seen that this method is particularly suited to lower resolution images.
When using higher resolution images there is not a significant improvement in
performance and so it is difficult to justify using the higher resolution image. It
can also be seen that for both the 68 images and 104 × 104 images there is an
effect in varying the block size, however, this effect on performance is relatively
minor within a range of appropriate block sizes. Therefore, for the remainder of
this article only the results for the 68× 68 images with a block size of B = 8 is
considered.

5.4 Sampling Rate

The formation of the frequency sub-images is influenced by the sampling rate
from the initial image. From the above experiments our initial image size was 68
and the sampling rate was every 4 pixels, using a set of 8 × 8 blocks to sample
this image led to frequency sub-images of size 16 × 16. Therefore, we increased
the sampling rate by factors of 2 to yield two new sampling rates: every 2 pixels
and every 1 pixel. This provides us with frequency sub-images of size 31 × 31
(when sampling every 2 pixels) and 61× 61 (when sampling every 1 pixel). This
has the dual effect of increasing our dimensionality for the SBcol system but also
increasing the number of observations.

In Table 8 we present the performance for sampling every 1 pixel for manual
and automatic annotations on the BANCA protocols. We only present the full
performance for sampling every 1 pixel as this performed better than sampling
every 2 pixels. It can be seen that for manual annotations we have a reasonable
gain in performance when compared to the column-based technique in Table 4.
However, when we compare the performance when using automatic annotations
we can see there is minimal difference between the default sampling rate of every
4 pixels (the column-based entry in Table 5) and sampling every 1 pixel (Table
8). Given these results and given that sampling every 1 pixel provides us with
almost 4 times the data and feature vectors that are almost 4 times larger we
chose to produce the final results on the default system which samples every 4
pixels.

P G Ud Ua Mc Md Ma

manual 12.64% 3.85% 10.00% 17.04% 4.87% 7.15% 10.06%

automatic 16.57% 6.36% 17.60% 19.84% 6.83% 11.36% 12.18%

Table 8. This table presents the average HTER (%) for all of the BANCA protocols.
Results are presented for manual and automatic annotations using a sampling rate of
every 1 pixel.
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5.5 Performance Comparison

To provide an overview of the column-based sub-band approach its performance
is compared to state-of-the-art techniques for the BANCA database. Previous
state-of-the-art face verification systems, tested on the Mc protocol of BANCA,
are taken from the work of Heusch and Marcel [31] and Cardinaux et al. [32].
These two sets of results provide a comparison to a Bayesian Network classifier
(BN), a Partial Shape Collapse GMM classifier (PSC-GMM), state-of-the-art
GMM Parts-Based classifier and two state-of-the-art HMM-based classifiers; the
two HMM classifiers are the 1D HMM (which models vertical transitions) and
P2D HMM (which models vertical and horizontal transitions). When quoting the
results from Cardinaux et al. [32] only the results on g2 are available. All of these
results are reproduced in Table 9 where it can be seen that the column-based sub-
band (SBCol) approach outperforms the three other systems, including the more
complex BN and HMM approaches. Furthermore, the column-based approach
has fewer parameters as each sub-band consists of an M = 8 component GMM.
However, this only compares the case of the matched condition.

HTER on g1 (%) HTER on g2 (%) Total Parameters

SBCol 8.1 3.5 4,095
P2D HMM [32] N/A 4.6 73, 728

Bayesian Network [31] 9.0 5.4 5, 225
1D HMM [32] N/A 6.9 4, 032
GMM [32] N/A 8.9 9, 216

PSC-GMM [31] 11.3 11.3 6× 33, 280

Table 9. This table presents the average HTER (%) on the BANCA database using
Manual annotations on the Mc protocol for the column-based frequency sub-band
approach, a Bayesian Network approach, PSC-GMM method and a state-of-the-art
GMM approach. Because some results are only available to the first decimal place then
all results are rounded to one decimal place.

In [32] further results for unmatched conditions (Ud and Ua) and for the P
protocol are also available and so we compare the SBCol approach to these results
for both Manual and Automatic annotations, see Table 10. It can be seen that
the SBCol approach clearly outperforms both the 1D HMM and GMM systems
particularly for Automatic eye locations, however, the SBCol system performs
worse than the P2D HMM system. It has to be noted that the P2D HMM system
is a much more complex system which requires an order of magnitude more
parameters to be estimated and used when compared to the SBCol approach.
Therefore, the SBCol approach can be viewed as a tradeoff between accuracy
and computational complexity when compared to the P2D HMM system.
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Manual SBCol P2D HMM [32] 1D HMM [32] GMM [32]

Ud 13.6 15.3 16.3 17.3
Ua 18.9 13.1 17.0 20.9
P 14.6 13.5 14.7 17.0

Automatic SBCol P2D HMM [32] 1D HMM [32] GMM [32]

Ud 18.9 15.9 25.9 21.0
Ua 19.7 14.7 23.4 24.8
P 15.5 14.7 21.7 19.5

Table 10. This table presents the HTER (%) on g2 of the BANCA database using
Manual and Automatic annotations for the Ud, Ua and P protocols. The results are
presented for SBCol, P2D HMM, 1D HMM and GMM system. Because some results
are only available to the first decimal place then all results are rounded to one decimal
place.

6 Analysis of Information Content

In the following experiments we analyse potential explanations as to why the
column-based sub-band approach performs significantly better than the row-
based or block-based methods. The first possible explanation for this difference
in performance is that the variance in the column-based features is higher than
that of either the row-based or block-based features.

To analyse the variance within the row- and column-based feature vectors
Principal Component Analysis (PCA) was applied. PCA was used to represent
the features extracted using the row- and column-based methods in their most
compact form, this is based on variance. All the row-based (or column-based)
observations, feature vectors, from a particular sub-band j were used to derive a
vector space V row

j (or V col
j ) using PCA. The eigenvalues of the resulting vector

spaces represent the variance of each dimension (the ability to compress informa-
tion). It was envisaged that the column-based method would have a more even
spread for the resulting eigenvalues whereas for the row-based method there
would be a greater variance in the first few eigenvalues or dimensions of the
resulting vector spaces.

The results, in Figure 7, show that both techniques encode a similar quantity
of information with the exception of sub-bands j = [1, 2, 6, 7]. These sub-bands
correspond to the 0th coefficient (mean or DC value of the blocks) and the first
three vertical-only responses of the DCT; because this is a 2D-DCT there is both
a horizontal and vertical cosine function, therefore the vertical-only response
corresponds to the case where only the vertical cosine function varies. To analyse
sub-bands j = [1, 2, 6, 7] in more detail two approaches were taken: i) a visual
inspection and ii) a performance-based inspection.

Upon visual inspection it can be seen that these sub-bands correspond to
the most face-like sub-bands. In Figure 8 the average response over the entire
BANCA database for each sub-band is presented. In this figure it can seen that
j = [1, 2, 6, 7] represent those sub-bands which are most face-like, however, sub-
band j = 15 also appears to be face-like. These sub-bands (j = [1, 2, 6, 7, 15])
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Fig. 7. In this figure the percentage of variance (represented by the eigenvalues) for the
vector space of each sub-band is presented for both the row-based and column-based
feature extraction approaches. The percentage of variance (y-axis) is calculated as a
percentage of the total eigenvalues (x-axis) for the PCA vector space of the particular
sub-band j.
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correspond to the mean or DC coefficient (j = 1) and the vertical-only responses
of the DCT (j = [2, 6, 7, 15]) with a frequency of θ = [π/16, π/8, 3π/16, π/4]
respectively. They are also the sub-bands for which there was more redundant
information for the row-based feature extraction approach (high values in the
first few eigen-values) from the PCA analysis.
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Fig. 8. In this figure the average response of the 15 sub-bands for the entire BANCA
database is provided. It can be seen that there are sub-bands (or DCT coeffi-
cients) which appear significantly more face-like than others, these being sub-bands
j = [1, 2, 6, 7, 15]. Note that each sub-band has been normalised to have the range
[0...1] and so that each colourmap is comparable.

To further examine the importance of sub-bands j = [1, 2, 6, 7] the perfor-
mance of the column-based approach was analysed with and without these sub-
bands. Using these sub-bands the Average HTER on Protocol P was found to be
16.44%, which is only 1.69% worse than the full sub-bands system. This result
suggests that the majority of the discriminatory information is held in these par-
ticular sub-bands. This seems to be a very useful result if we want to implement
an efficient face verification system as it implies only four sub-bands need to be
calculated. To confirm this result the performance of these sub-bands was plot-
ted against the full system and a system consisting of the remaining sub-bands
(j = [3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15]) and is presented in Figure 9.

The results in Figure 9 suggest that the Average HTER is a misleading error
rate for performance evaluation, when used in isolation. This is because the per-
formance of the column-based approach using just four sub-bands (j = [1, 2, 6, 7])
is similar to the full column-based approach for parts of the DET plot around the
point where the error rates are equal. However, the performance of the system
using just the four sub-bands degrades significantly in the top-left hand corner
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of the DET plot, this part of the DET plot represents the area of most interest
for authentication purposes as it represents a highly secure system with a low
False Acceptance Rate. From these results we can see that a significant amount
of information is retained in just the four sub-bands j = [1, 2, 6, 7], however,
in spite of this the other eleven sub-bands j = [3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15]
also contain important information when used in combination with these four
sub-bands.
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Fig. 9. In this figure the DET plot for the full row-based approach, the full column-
based approach, the column-based approach using j = [1, 2, 6, 7] and the column-based
approach using j = [3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15] are all presented.

7 Conclusions and Future Work

In this paper the local frequency band approach to Parts-Based approach has
been analysed and reasons for the improved performance of the column-based
approach have been examined. The local frequency band approach, using the
column-based method for forming feature vectors, was found to provide an ab-
solute improvement in the HTER of 11.74% when compared to a similar baseline
system (using DCTmod2 features). It was also shown that the this method is
only slight worse than a state-of-the-art P2D HMM technique but with signifi-
cantly fewer parameters (and complexity).

To ascertain the reason for the improved performance of the column-based
approach an analysis of the variance and the performance each the frequency
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sub-band was performed. It was found that the most important sub-bands were
j = [1, 2, 6, 7] which corresponded to the vertical-only responses of the DCT
(as well as the DC value of the DCT). These four sub-bands account for a
significant amount of the performance difference for the column-based approach
when compared to the row-based approach, however, it must also be stated that
the other eleven sub-bands also contain important information when used in
conjunction with these four sub-bands.

Future work will examine the applicability of this technique to a Parts-Based
HMM or Bayesian Network framework. Also under consideration is how this
system performs when the image normalisation technique is biased to the vertical
direction since the face is normally cropped to have more vertical pixels than
horizontal pixels as the face is usually considered to be longer than it is wider.
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