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Abstract

Person identification using audio (speech) and vi-
sual (facial appearance, static or dynamic) modalities,
either independently or jointly, is a thoroughly investi-
gated problem in pattern recognition. In this work, we
explore a novel task : person identification in a cross-
modal scenario, i.e., matching the speaker in an au-
dio recording to the same speaker in a video recording,
where the two recordings have been made during differ-
ent sessions, using speaker specific information which is
common to both the audio and video modalities. Several
recent psychological studies have shown how humans
can indeed perform this task with an accuracy signifi-
cantly higher than chance. Here we propose two sys-
tems which can solve this task comparably well, using
purely pattern recognition techniques. We hypothesize
that such systems could be put to practical use in multi-
modal biometric and surveillance systems.

1. Introduction

We often create a mental image of a person whose
voice is familiar (from telephone conversations, for ex-
ample) but whom we have never seen. We often also
create a mental “voice model” from visual informa-
tion (either static or dynamic) of persons we have never
heard. Recent studies have investigated these phenom-
ena scientifically [6] [9] [2] [7], asking human ob-
servers to match an audio recording of an unknown
voice X to two video recordings of two unknown speak-
ers, A and B, one of which is X, and vice versa. It was
found that humans performed in this task with an ac-
curacy significantly above chance. Let us define this
crossmodal matching task (which we term as the XAB
task [9]) as follows.

The XAB task has two stages : (1) the learning stage
and (2) the matching stage. In the learning stage, joint
audio and video information is available in the form of

synchronized audio and video (dynamic facial appear-
ance) recordings of persons speaking. The purpose of
this stage is to extract or store knowledge required to
map speaker identities between audio and video modal-
ities. In the matching stage, there are two cases, the
Audio-to-Video (a-v) matching task and the Video-to-
Audio (v-a) matching task. In the a-v task, an audio
recording of a person X speaking, and two video record-
ings showing two different persons speaking, A and B,
are provided. Given that exactly one out of A and B
is X, the task is to decide which one it is. For all the
speakers in the matching stage, it is critical that no joint
(synchronized) audio and video information be avail-
able. We term this the Audio-Video Mismatch criterion.
This causes the XAB task to be distinct from a simple
audio-to-video synchronization task where both modal-
ities capture the same event in time[8]. To ensure this,
the audio and video recordings in the matching stage
should be temporally non-overlapping, i.e., they should
be made during different sessions, and speakers in the
matching stage should be all distinct from speakers in
the learning stage. The converse v-a task is exactly the
same as the a-v task with the roles of the modalities re-
versed.

There are several studies with human observers per-
forming the XAB task.1 Lachs et al. [9] and Kamachi
et al. [6] reported human observers correctly matching
X to A or B around65% of the times. Krauss et al.
have shown similar matching performance using static
instead of dynamic visual information [7]. Campanella
et al. [2] provide additional insights on cross-modal in-
formation transfer in humans.

In this preliminary work, we explore a possible so-
lution to the XAB task by creating modality indepen-
dent speaker models which can be used equally on both
audio and video data. We study two approaches, the
K-means clustering approach and theK-nearest neigh-

1For humans, the learning stage comprises of all speech-related
joint audio-visual stimuli received as part of normal day-to-day activ-
ities prior to the experiments.



bour approach. Our methods have shown reasonable
results which compare well with that shown by human
observers.

The rest of the paper is organized as follows. In
Sec.2, we describe the proposed speaker matching
framework. We describe our experiments in Sec.3. In
Sec.4, we discuss the results and highlight certain as-
pects of our method. Finally, Sec.5 outlines the main
conclusions of our work.

2. The Proposed Framework

2.1. Feature Extraction

For the video modality, we concentrated on lip ap-
pearance features since they have been shown to be
robust and efficient[10]. The video frame rate was
25fps. From each video frame, a16 × 16 Region-
Of-Interest (ROI) around the lips was extracted using
available annotation, followed by geometric normaliza-
tion and inter-frame alignment. Next, 2D-DCT fea-
tures [10] were extracted and 3rd to 10th 2highest en-
ergy coefficients were retained to form the video fea-
ture vectors. Mean normalization was performed for
each video sequence[10]. For the audio modality, the
audio data sampled at 8kHz was blocked into frames
equal in duration to the video frames (corresponding to
320 samples) and 16 Mel-Frequency Cepstral Coeffi-
cients (MFCC)[10] was extracted from each block, out
of which 1st to 8th 2 were retained. For each audio se-
quence, Cepstral Mean Subtraction [10] was performed.
It is to be noted that only voiced frames were used, both
for audio and video modalities.

2.2. Cross-modal Learning and Matching

For the learning stage, synchronized audio and video
data is available. LetSa andSv denote the sets of au-
dio and video feature vectors extracted from this data.
These sets, termed the audio and video learning sets,
are ordered such that thei-th elementxa

i ∈ Sa is
synchronous to thei-th element,xv

i ∈ Sv. For the
matching stage, let X, A and B also denote the respec-
tive recordings as well as the persons X, A and B. Let
Sm

X ,Sm
A ,Sm

B denote the feature vectors extracted from
X, A and B, wherem can indicate either the audio (a)
or the video (v) modality depending on whether it is an
(a-v) or (v-a) task. LetRa andRv denote the audio and
video feature spaces, i.e.Sa ⊂ Ra, Sv ⊂ Rv.

2These coefficients have been selected by trial-and-error togive
best performance.

2.2.1 K-means Clustering (KMC) Approach In the
learning stage, the learning setsSa and Sv are in-
dependently clustered intoK clusters,{Sa

k}
K
k=1

and
{Sv

k}
K
k=1

, using K-means algorithm [5] with squared-
Euclidean distance. Let{Ra

k}
K
k=1

and{Rv
k}

K
k=1

denote
the corresponding Voronoi cells formed by segmenting
the spacesRa andRv according to these clusters, i.e,
Sa

k ⊂ Ra
k, Sv

k ⊂ Rv
k for 1 ≤ k ≤ K. Let Hva denote

theK×K Hebbian projection matrix [4], each of whose
elementsHva(ka, kv) estimates the probability that an
audio vectorxa belongs to a particular cellRa

ka
in the

audio feature space, given that its synchronous video
vectorxv belongs to the cellRv

kv
in the video feature

space, i.e.Hva(ka, kv) = Pr(xa ∈ Ra
ka
|xv ∈ Rv

kv
). It

is estimated as

Hva(ka, kv) =
1

|Sv
kv
|

∑

xv∈Sv
kv

1Sa
ka

(xa) (1)

where1 ≤ ka, kv ≤ K, xa is the audio vector syn-
chronous with video vectorxv and| · | denotes the size
of a countable set. The inverse Hebbian projection,Hav

can be calculated as in Eqn. 1 by interchanging the au-
dio and video modalities. The matricesHav andHva

are the outputs of the learning stage.
For the matching stage, let us consider the (a-v) task.

Let pa
X ,pv

A and pv
B be the probability mass functions

(PMF) of the feature vectors extracted from X, A and B,
i.e. Sa

X ,Sv
A andSv

B respectively, based on theK clusters
formed in the learning stage. Thus,pa

X(k) = Pr(xa ∈
Ra

k|x
a ∈ Sa

X), pv
A(k) = Pr(xv ∈ Rv

k|x
v ∈ Sv

A) and
pv

B(k) = Pr(xv ∈ Rv
k|x

v ∈ Sv
B). These PMFs are

estimated as,

pa
X(k) =

1

|Sa
X |

∑

xa∈Sa
X

1Ra
k
(xa) (2)

pv
A(k) =

1

|Sv
A |

∑

xv∈Sv
A

1Rv
k
(xv) (3)

pv
B(k) =

1

|Sv
B|

∑

xv∈Sv
B

1Rv
k
(xv) (4)

where1 ≤ k ≤ K. Next, we use the Hebbian projection
matrix,Hva to project the two PMFs in the video space,
pv

A ,pv
B to the audio space, as follows,

p̃a
A = Hvapv

A (5)

p̃a
B = Hvapv

B (6)

These two PMFs (which we term as pseudo-PMFs) are
used to approximate the true PMFs of the unavailable
audio feature vectors corresponding to the video-only



recordings A and B [4]. For the matching task, we con-
sider these PMFs as speaker specific models and decide,

X ≡

{

A if ρB(pa
X , p̃a

A) ≥ ρB(pa
X , p̃a

B),

B if ρB(pa
X , p̃a

A) < ρB(pa
X , p̃a

B)
(7)

where ρB denotes the Bhattacharyya coefficient [5]
between two PMFsp1,p2 and is calculated as,
ρB(p1,p2) =

∑

∀k p1(k)
1

2 p2(k)
1

2 . For the (v-a) task,
a similar procedure was followed, interchanging the
roles of the audio and video modalities.
2.2.2 K-Nearest Neighbours (KNN) Approach There
is no separate learning stage in this approach. Infor-
mation in the audio and video learning setsSa,Sv (ref.
Sec. 3.2.1) is directly used in the matching stage. For
the matching stage, let us again consider the (a-v) task.
For each audio vectorxa

X,i ∈ Sa
X extracted from X, we

form the setΨX,i of the indices ofKa-nearest neigh-
bours [5] ofxa

X,i in Sa, the audio learning set. Simi-
larly, we form sets of indices ofKv-nearest neighbours
{ΨA,i}, {ΨB,i} for each vector inSv

A ,Sv
B, the video

vectors extracted from A and B respectively, fromSv,
the video learning set. These nearest neighbour sets
are independent of modalities since each element inSv

has a corresponding element inSa (ref. Sec.2.2). This
forms the basis of the cross-modal mapping in this ap-
proach. To match X to A or B, we use the sum of the
sizes of intersectionssI between the nearest neighbour
sets of X and those of A,B, as follows,

X ≡

{

A if sI(X, A) ≥ sI(X, B),

B sI(X, A) < sI(X, B)
(8)

wheresI(X, A), sI(X, B) are defined as follows,

sI(X, A) =
1

|Sa
X ||S

v
A |

∑

xa
X,i

∈Sa
X

∑

xv
A,j

∈Sv
A

|ΨX,i ∩ ΨA,j |

(9)

sI(X, B) =
1

|Sa
X ||S

v
B|

∑

xa
X,i

∈Sa
X

∑

xv
B,j

∈Sv
B

|ΨX,i ∩ΨB,j |

(10)
For the (v-a) task, a similar procedure was followed, in-
terchanging the role of the audio and video modalities.
It can be shown that the sumssI(X, A), sI(X, B) can
be equivalently expressed as approximations to theL2-
inner product of the PMFs corresponding to the audio
and video data. However, compared to Sec.3.2.1, the
feature space is now subdivided much more minutely,
each vector in the learning setsSa,Sv forming its own
cell. This amounts to exploiting maximally the informa-
tion available for cross-modal matching. Our proposed
matching criterion based on comparing thesI values is
motivated by the use of theL2 inner product kernel in
state-of-the-art speaker verification systems [3].

3. Experiments

All experiments were performed on the M2VTS
audio-visual database [1] with 24 male and 10
female speakers. Synchronized audio and video
data was recorded in a controlled environment
across multiple sessions separated by one week
intervals. Lip annotations were obtained from
http://www.ee.surrey.ac.uk/Projects/
M2VTS/experiments/lip_tracking/. We
tested our approach on two conditions : (1) lexically
matched and (2) lexically mismatched. For condition
(1), speech content in X, A and B were lexically
matched. Recordings from the database were used as it
is : in each recording, the speaker counted from ‘0’ to
‘9’ in their native language. For the second (more diffi-
cult) condition, the recordings were rearranged so that
segments used for X were lexically mismatched with
A and B : if X contained ‘0’ to ‘4’, A and B contained
‘5’ to ‘9’ and vice-versa. Ofcourse, the Audio-Video
Mismatch criterion (ref. Sec.1) was always maintained
in both conditions. X, A and B consisted of around
4.5 seconds of data each. Separate experiments were
performed on only male (M), only female (F) and
both male and female (F+M) speakers. For each XAB
task, two speakers were separated from the complete
set, these two were used in the matching stage, while
all the remaining speakers were used in the learning
stage. For one complete experiment, the XAB task
was repeated for all possible pairs of speakers in the
matching stage. Considering all possible combinations,
the total number of times the XAB task (a-v and v-a
each) was independently evaluated is 2208 for the M
case, 360 for the F case and 4488 for the F+M case.
The match score for each experiment is calculated as,

Match score=
No. of succesful matches
Total no. of XAB tasks

× 100%

(11)
Since each task has two alternatives only one out of
which is correct, the expected score for a random clas-
sifier would be50%. Each experiment was repeated
for different values ofK, the number of clusters, and
Ka, Kv, the number of nearest neighbours, for the
KMC and KNN approaches respectively. Optimal value
of K was 64, while forKa, Kv it varied from 2 to 256
according to the conditions tested. Table 1 gives the re-
sults of our experiments in terms of the match scores
obtained, using the optimal parameter values.

4. Discussions

For the lexically matched case, both the KMC and
KNN approaches give match scores around65%. This



Proposed XAB task Lex. Lex. mis-
Approach type matched matched

M 66.6 *
a-v F 79.4 *

KMC F+M 66.4 *
M 65.1 *

v-a F 60.0 *
F+M 64.9 *

M 68.9 56.0
a-v F 64.2 57.8

KNN F+M 66.4 56.6
M 66.0 55.6

v-a F 61.9 60.6
F+M 63.4 56.1

Table 1. Match scores (%) for the XAB task
using the proposed approaches. An as-
terisk (*) denotes that a match score bet-
ter than random chance (50%) could not
be obtained.

XAB task Lex. Lex. mis-
type matched matched

Kamachi et al. a-v 69.0 59.0
[6] v-a 66.0 60.0
Lachs et al. a-v 60.7 n.a.
[9] v-a 65.1 n.a.

Table 2. Match scores (%) for the XAB task
performed by human observers.

is statistically significant, given the total number of
times the XAB task was evaluated (ref. Sec.3). For
the lexically mismatched case, the performance of KNN
drops by10% but is still significant; KMC is unable to
perform at more than chance level. This shows the rela-
tive robustness of the KNN approach. Our method com-
pares well with results reported by studies using human
observers on the XAB task [9] [6] as shown in Table
2, although it is to be noted that these studies used dif-
ferent databases. It is to be noted that human perfor-
mance fell drastically for time-reversed stimuli [6] [9];
our method is unaffected by this, being based on static
feature vectors only.

In future, we aim to develop our method further, us-
ing this preliminary study as a basis, and improve the
match scores so that it can be used in practical appli-
cations, such as (1) a cross-modal surveillance scenario
where prior speech data (but no visual data, for example
via telephone conversations) about a person X has been
collected and presently it is required to identify this per-

son out of a group which is under video surveillance
(but no audio data is currently available, for example
due to distance from group or noisy environment), and
(2) a multimodal biometric system which uses cross-
modalities (a-v, v-a) to augment the normal audio and
video modalities and make it more reliable.

5. Conclusion

In this work, we explored a novel pattern recognition
task : crossmodal person identification, where the iden-
tity of a speaker X in an audio recording is matched with
one of two speakers A and B in two video recordings,
and vice-versa. The recordings are temporally non-
overlapping. The basis of our idea is to form modality
independent speaker models which can be used on ei-
ther audio or video data independently. We have pro-
posed two approaches, theK-nearest neighbour ap-
proach and theK-means clustering approach, both of
which have shown performance better than chance.
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