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Abstract

Person identification using audio (speech) and vi-
sual (facial appearance, static or dynamic) modalities,
either independently or jointly, is a thoroughly investi-
gated problem in pattern recognition. In this work, we
explore a novel task : person identification in a cross-
modal scenario, i.e., matching the speaker in an au-
dio recording to the same speaker in a video recording,
where the two recordings have been made during differ-
ent sessions, using speaker specific information which is
common to both the audio and video modalities. Several

synchronized audio and video (dynamic facial appear-
ance) recordings of persons speaking. The purpose of
this stage is to extract or store knowledge required to
map speaker identities between audio and video modal-
ities. In the matching stage, there are two cases, the
Audio-to-Video (a-v) matching task and the Video-to-
Audio (v-a) matching task. In the a-v task, an audio
recording of a person X speaking, and two video record-
ings showing two different persons speaking, A and B,
are provided. Given that exactly one out of A and B
is X, the task is to decide which one it is. For all the
speakers in the matching stage, it is critical that no joint

recent psychological studies have shown how humans (synchronized) audio and video information be avail-
can indeed perform this task with an accuracy signifi- able. We term this the Audio-Video Mismatch criterion.
cantly higher than chance. Here we propose two sys- This causes the XAB task to be distinct from a simple
tems which can solve this task comparably well, using audio-to-video synchronization task where both modal-
purely pattern recognition techniques. We hypothesize ities capture the same event in time[8]. To ensure this,
that such systems could be put to practical use in multi- the audio and video recordings in the matching stage

modal biometric and surveillance systems.

1. Introduction

We often create a mental image of a person whose
voice is familiar (from telephone conversations, for ex-
ample) but whom we have never seen. We often also
create a mental “voice model” from visual informa-
tion (either static or dynamic) of persons we have never

should be temporally non-overlapping, i.e., they should
be made during different sessions, and speakers in the
matching stage should be all distinct from speakers in
the learning stage. The converse v-a task is exactly the
same as the a-v task with the roles of the modalities re-
versed.

There are several studies with human observers per-
forming the XAB task! Lachs et al. [9] and Kamachi
et al. [6] reported human observers correctly matching
X to A or B around65% of the times. Krauss et al.

heard. Recent studies have investigated these phenom-have shown similar matching performance using static

ena scientifically [6] [9] [2] [7], asking human ob-
servers to match an audio recording of an unknown
voice X to two video recordings of two unknown speak-
ers, A and B, one of which is X, and vice versa. It was
found that humans performed in this task with an ac-
curacy significantly above chance. Let us define this
crossmodal matching task (which we term as the XAB
task [9]) as follows.

The XAB task has two stages : (1) the learning stage
and (2) the matching stage. In the learning stage, joint
audio and video information is available in the form of

instead of dynamic visual information [7]. Campanella
et al. [2] provide additional insights on cross-modal in-
formation transfer in humans.

In this preliminary work, we explore a possible so-
lution to the XAB task by creating modality indepen-
dent speaker models which can be used equally on both
audio and video data. We study two approaches, the
K-means clustering approach and fienearest neigh-

1For humans, the learning stage comprises of all speectedela
joint audio-visual stimuli received as part of normal daydy activ-
ities prior to the experiments.



bour approach. Our methods have shown reasonable 2.2.1 K-means Clustering (KMC) Approach In the

results which compare well with that shown by human
observers.

The rest of the paper is organized as follows. In
Sec.2, we describe the proposed speaker matching
framework. We describe our experiments in Sec.3. In
Sec.4, we discuss the results and highlight certain as-
pects of our method. Finally, Sec.5 outlines the main
conclusions of our work.

2. The Proposed Framework
2.1. Feature Extraction

For the video modality, we concentrated on lip ap-

pearance features since they have been shown to be

robust and efficient[10]. The video frame rate was
25fps. From each video frame, 1& x 16 Region-
Of-Interest (ROI) around the lips was extracted using
available annotation, followed by geometric normaliza-
tion and inter-frame alignment. Next, 2D-DCT fea-
tures [10] were extracted and?3o 10" 2highest en-
ergy coefficients were retained to form the video fea-
ture vectors. Mean normalization was performed for
each video sequence[10]. For the audio modality, the
audio data sampled at 8kHz was blocked into frames
equal in duration to the video frames (corresponding to
320 samples) and 16 Mel-Frequency Cepstral Coeffi-
cients (MFCC)[10] was extracted from each block, out
of which 15t to 8" 2 were retained. For each audio se-
guence, Cepstral Mean Subtraction [10] was performed.
Itis to be noted that only voiced frames were used, both
for audio and video modalities.

2.2. Cross-modal L earning and Matching

For the learning stage, synchronized audio and video
data is available. Le8* andS" denote the sets of au-
dio and video feature vectors extracted from this data.
These sets, termed the audio and video learning sets,
are ordered such that theth elementx? € S° is
synchronous to the-th elementx} € S". For the
matching stage, let X, A and B also denote the respec-
tive recordings as well as the persons X, A and B. Let
S¢, S, SE' denote the feature vectors extracted from
X, A and B, wherem can indicate either the audio (a)
or the video (v) modality depending on whether it is an
(a-v) or (v-a) task. LeR* andR" denote the audio and
video feature spaces, i.8¢ C R%, S” C R".

2These coefficients have been selected by trial-and-errgiveo
best performance.

learning stage, the learning se8$ and S” are in-
dependently clustered int& clusters, {S¢}< , and
{Sv}E |, using K-means algorithm [5] with squared-
Euclidean distance. L§R¢} X | and{R?}X_, denote
the corresponding Voronoi cells formed by segmenting
the space®R®* andR" according to these clusters, i.e,
St C Ry, S CcRyforl <k < K. LetH" denote
the K x K Hebbian projection matrix [4], each of whose
elementsH"*(k,, k,,) estimates the probability that an
audio vectorx” belongs to a particular ceRRy; in the
audio feature space, given that its synchronous video
vectorx"” belongs to the celR; in the video feature
space, i.eH" (kq, ky) = Pr(x* € Rf |x" € R} ). It
is estimated as

H" (ka, ky) = 1)

% Z 1SZG (x%)
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wherel < k4, k, < K, x% is the audio vector syn-
chronous with video vectat” and| - | denotes the size

of a countable set. The inverse Hebbian projectidft,

can be calculated as in Eqn. 1 by interchanging the au-
dio and video modalities. The matrices*” and H"*

are the outputs of the learning stage.

For the matching stage, let us consider the (a-v) task.
Let p%,pi and pg be the probability mass functions
(PMF) of the feature vectors extracted from X, A and B,
i.e. 8¢, SE andSg respectively, based on ti€ clusters
formed in the learning stage. Thuysy (k) = Pr(x® €
R} |x* € S%), pi(k) = Pr(x? € R}|x” € S}) and
pg(k) = Pr(x¥ € R}|x" € S§). These PMFs are
estimated as,

1
Pi(k) = go7 D Irp(x") (2
| Xlx“GSQ
1
pX(k):S—U Z 1ry(x") ()
| A|x“€SX
1
PR = g O Imyx) @
| B|x”€Sg

wherel < k < K. Next, we use the Hebbian projection
matrix, H"* to project the two PMFs in the video space,
PR, pp to the audio space, as follows,

(5)
(6)

These two PMFs (which we term as pseudo-PMFs) are
used to approximate the true PMFs of the unavailable
audio feature vectors corresponding to the video-only

pi = H'p}

pE = H"p}



recordings A and B [4]. For the matching task, we con- 3. Experiments
sider these PMFs as speaker specific models and decide,
) _ ~ All experiments were performed on the M2VTS
= A I pe(P%, PA) = pB(PX, P8); @) audio-visual database [1] with 24 male and 10
B if ps(P%, PR) < rB(PY, PB) female speakers. Synchronized audio and video

- data was recorded in a controlled environment
where pjp denotes the Bhattacharyya coefficient [3] across multiple sessions separated by one week

between two PMFsp1, p2 anld is calculated as, ol Lip annotations were obtained from
PB(P1,P2) = Dy P1(k)2pa(k)=. For the (v-a) task, http://ww. ee. surrey. ac. uk/ Proj ect s/
a similar procedure was followed, interchanging the MRVTS/ experi ment s/ i p_t racki ng/ We
roles of the audio and video modalities. - o ) .
: tested our approach on two conditions : (1) lexically

.2'2‘2 [-Nearest Naghbours(Kl\_IN)Approach There matched and (2) lexically mismatched. For condition
IS no separate Iegrnlng stage in th.'s approach.  Infor- (1), speech content in X, A and B were lexically
gatlog '; ih? a(l;.d'o ?nd vu?jep Ieharnmg S:ts S" (ref. E matched. Recordings from the database were used as it

€c. 5.2. _) Is directly used in _t € ma_tc Ing stage. For o each recording, the speaker counted from ‘0’ to
the matching stage, let us again consider the (a-v) task. ‘9’ in their native language. For the second (more diffi-

For each audio Vedo{&»? < _Sgl( extracted from X,_we cult) condition, the recordings were rearranged so that
form the Set\I’aX’i. of t?e |nd|ces_ ofKa-ngarest ne|gh7 segments used for X were lexically mismatched with
bours [5] ofx; In S ! the audio leaming Set. SIMi- A and B : if X contained ‘0’ to ‘4", A and B contained
larly, we form sets of indices ok ,-nearest neighbours ‘5" t0 ‘9’ and vice-versa. Ofcourse, the Audio-Video

{‘I"?i}’ {‘I’thi}t fzrfeack’la\vecéolg InSy, E;_’ tf|1e ;/:g;o Mismatch criterion (ref. Sec.1) was always maintained
vectors extracted from A an respectively, fram, in both conditions. X, A and B consisted of around

the y|deo learning set. 'I_'hese. nearest ”e'ghbouf sets4_5 seconds of data each. Separate experiments were
are independent qf modalities since each eIemeStf.m performed on only male (M), only female (F) and
has a corresppndmg elementSf (ref. Sec..2.2.). Thls both male and female (F+M) speakers. For each XAB
forms the basis of the cross-modal mapping in this ap- task, two speakers were separated from the complete
p_roach. .TO matc_h Xto A or B, we use the sum of the set, these two were used in the matching stage, while
sizes of intersections; between the nearest neighbour all the remaining speakers were used in the learning

sets of X and those of A,B, as follows, stage. For one complete experiment, the XAB task

A if s;(X,A) > s;(X,B), was repeated for all possible pairs of speakers in the
X = B si(X,A) <_S (X,B) (8) matching stage. Considering all possible combinations,
L7 L7 the total number of times the XAB task (a-v and v-a
wheres;(X,A),s; (X, B) are defined as follows, each) was independently evaluated is 2208 for the M
) case, 360 for the F case and 4488 for the F+M case.
XA) =~ Wy N Wy The match score for each experiment is calculated as,
OCA) = TR 2, 2 [T el
XX, €K XX ;ESR Match Score— No. of succesful matcheg L00%
1 ©) Total no. of XAB tasks (011)
si(X,B) = ——— Uy, N Vg _ _
it ) IS%||Sg| xa.zejsa XWZE:SU ¥, 6.4l Since each task has two alternatives only one out of
ETTRTRITE (10 which is correct, the expected score for a random clas-

sifier would be50%. Each experiment was repeated

For the (v-a) task, a similar procedure was followed, in- )
for different values ofi, the number of clusters, and

terchanging the role of the audio and video modalities. _
It can be shown that the surss(X,A),s;(X,B) can K., K,, the number of nearest n_e|ghbour_s, for the
be equivalently expressed as approximations tdthe KMC and KNN approaches re_spec'qvely. Optimal value
inner product of the PMFs corresponding to the audio ©Of & was 64, while fork,, K, it varied from 2 to 256
and video data. However, compared to Sec.3.2.1, the according to the cpndltlon_s tested. Table 1 gives the re-
feature space is now subdivided much more minutely, sults_ of our gxperlmen_ts in terms of the match scores
each vector in the learning s8¢, S* forming its own obtained, using the optimal parameter values.

cell. This amounts to exploiting maximally the informa-

tion available for cross-modal matching. Our proposed 4. Discussions

matching criterion based on comparing thevalues is

motivated by the use of thB? inner product kernel in For the lexically matched case, both the KMC and
state-of-the-art speaker verification systems [3]. KNN approaches give match scores aro6fh. This



Proposed| XAB task Lex. Lex. mis-
Approach type matched| matched
M 66.6 *
a-v F 79.4 *
KMC F+M 66.4 *
M 65.1 *
v-a F 60.0 *
F+M 64.9 *
M 68.9 56.0
a-v F 64.2 57.8
KNN F+M 66.4 56.6
M 66.0 55.6
v-a F 61.9 60.6
F+M 63.4 56.1

Table 1. Match scores (%) for the XAB task
using the proposed approaches. An as-
terisk (*) denotes that a match score bet-
ter than random chance (50%) could not
be obtained.

XAB task Lex. Lex. mis-

type matched| matched
Kamachi et al. a-v 69.0 59.0
[6] v-a 66.0 60.0
Lachs et al. a-v 60.7 n.a.
[9] v-a 65.1 n.a.

Table 2. Match scores (%) for the XAB task
performed by human observers.

is statistically significant, given the total number of
times the XAB task was evaluated (ref. Sec.3). For
the lexically mismatched case, the performance of KNN
drops by10% but is still significant; KMC is unable to
perform at more than chance level. This shows the rela-
tive robustness of the KNN approach. Our method com-
pares well with results reported by studies using human
observers on the XAB task [9] [6] as shown in Table
2, although it is to be noted that these studies used dif-
ferent databases. It is to be noted that human perfor-
mance fell drastically for time-reversed stimuli [6] [9];
our method is unaffected by this, being based on static
feature vectors only.

In future, we aim to develop our method further, us-
ing this preliminary study as a basis, and improve the
match scores so that it can be used in practical appli-
cations, such as (1) a cross-modal surveillance scenario
where prior speech data (but no visual data, for example
via telephone conversations) about a person X has been
collected and presently it is required to identify this per-

son out of a group which is under video surveillance
(but no audio data is currently available, for example
due to distance from group or noisy environment), and
(2) a multimodal biometric system which uses cross-
modalities (a-v, v-a) to augment the normal audio and
video modalities and make it more reliable.

5. Conclusion

In this work, we explored a novel pattern recognition
task : crossmodal person identification, where the iden-
tity of a speaker X in an audio recording is matched with
one of two speakers A and B in two video recordings,
and vice-versa. The recordings are temporally non-
overlapping. The basis of our idea is to form modality
independent speaker models which can be used on ei-
ther audio or video data independently. We have pro-
posed two approaches, th€-nearest neighbour ap-
proach and the<-means clustering approach, both of
which have shown performance better than chance.
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